# -*- coding: utf-8 -*-
# Copyright (C) 2012 Yahoo! Inc. All Rights Reserved.
# Copyright (C) 2013 Rackspace Hosting All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import contextlib
import copy
import itertools
import posixpath as pp
import fasteners
import six
from taskflow import exceptions as exc
from taskflow.persistence import path_based
from taskflow.types import tree
[docs]class FakeInode(tree.Node):
"""A in-memory filesystem inode-like object."""
def __init__(self, item, path, value=None):
super(FakeInode, self).__init__(item, path=path, value=value)
[docs]class FakeFilesystem(object):
"""An in-memory filesystem-like structure.
This filesystem uses posix style paths **only** so users must be careful
to use the ``posixpath`` module instead of the ``os.path`` one which will
vary depending on the operating system which the active python is running
in (the decision to use ``posixpath`` was to avoid the path variations
which are not relevant in an implementation of a in-memory fake
filesystem).
**Not** thread-safe when a single filesystem is mutated at the same
time by multiple threads. For example having multiple threads call into
:meth:`~taskflow.persistence.backends.impl_memory.FakeFilesystem.clear`
at the same time could potentially end badly. It is thread-safe when only
:meth:`~taskflow.persistence.backends.impl_memory.FakeFilesystem.get`
or other read-only actions (like calling into
:meth:`~taskflow.persistence.backends.impl_memory.FakeFilesystem.ls`)
are occurring at the same time.
Example usage:
>>> from taskflow.persistence.backends import impl_memory
>>> fs = impl_memory.FakeFilesystem()
>>> fs.ensure_path('/a/b/c')
>>> fs['/a/b/c'] = 'd'
>>> print(fs['/a/b/c'])
d
>>> del fs['/a/b/c']
>>> fs.ls("/a/b")
[]
>>> fs.get("/a/b/c", 'blob')
'blob'
"""
#: Root path of the in-memory filesystem.
root_path = pp.sep
[docs] @classmethod
def normpath(cls, path):
"""Return a normalized absolutized version of the pathname path."""
if not path:
raise ValueError("This filesystem can only normalize paths"
" that are not empty")
if not path.startswith(cls.root_path):
raise ValueError("This filesystem can only normalize"
" paths that start with %s: '%s' is not"
" valid" % (cls.root_path, path))
return pp.normpath(path)
#: Split a pathname into a tuple of ``(head, tail)``.
split = staticmethod(pp.split)
[docs] @staticmethod
def join(*pieces):
"""Join many path segments together."""
return pp.sep.join(pieces)
def __init__(self, deep_copy=True):
self._root = FakeInode(self.root_path, self.root_path)
self._reverse_mapping = {
self.root_path: self._root,
}
if deep_copy:
self._copier = copy.deepcopy
else:
self._copier = copy.copy
[docs] def ensure_path(self, path):
"""Ensure the path (and parents) exists."""
path = self.normpath(path)
# Ignore the root path as we already checked for that; and it
# will always exist/can't be removed anyway...
if path == self._root.item:
return
node = self._root
for piece in self._iter_pieces(path):
child_node = node.find(piece, only_direct=True,
include_self=False)
if child_node is None:
child_node = self._insert_child(node, piece)
node = child_node
def _insert_child(self, parent_node, basename, value=None):
child_path = self.join(parent_node.metadata['path'], basename)
# This avoids getting '//a/b' (duplicated sep at start)...
#
# Which can happen easily if something like the following is given.
# >>> x = ['/', 'b']
# >>> pp.sep.join(x)
# '//b'
if child_path.startswith(pp.sep * 2):
child_path = child_path[1:]
child_node = FakeInode(basename, child_path, value=value)
parent_node.add(child_node)
self._reverse_mapping[child_path] = child_node
return child_node
def _fetch_node(self, path, normalized=False):
if not normalized:
normed_path = self.normpath(path)
else:
normed_path = path
try:
return self._reverse_mapping[normed_path]
except KeyError:
raise exc.NotFound("Path '%s' not found" % path)
[docs] def get(self, path, default=None):
"""Fetch the value of given path (and return default if not found)."""
try:
return self._get_item(self.normpath(path))
except exc.NotFound:
return default
def _get_item(self, path, links=None):
node = self._fetch_node(path, normalized=True)
if 'target' in node.metadata:
# Follow the link (and watch out for loops)...
path = node.metadata['target']
if links is None:
links = []
if path in links:
raise ValueError("Recursive link following not"
" allowed (loop %s detected)"
% (links + [path]))
else:
links.append(path)
return self._get_item(path, links=links)
else:
return self._copier(node.metadata['value'])
def _up_to_root_selector(self, root_node, child_node):
# Build the path from the child to the root and stop at the
# root, and then form a path string...
path_pieces = [child_node.item]
for parent_node in child_node.path_iter(include_self=False):
if parent_node is root_node:
break
path_pieces.append(parent_node.item)
if len(path_pieces) > 1:
path_pieces.reverse()
return self.join(*path_pieces)
@staticmethod
def _metadata_path_selector(root_node, child_node):
return child_node.metadata['path']
[docs] def ls_r(self, path, absolute=False):
"""Return list of all children of the given path (recursively)."""
node = self._fetch_node(path)
if absolute:
selector_func = self._metadata_path_selector
else:
selector_func = self._up_to_root_selector
return [selector_func(node, child_node)
for child_node in node.bfs_iter()]
[docs] def ls(self, path, absolute=False):
"""Return list of all children of the given path (not recursive)."""
node = self._fetch_node(path)
if absolute:
selector_func = self._metadata_path_selector
else:
selector_func = self._up_to_root_selector
child_node_it = iter(node)
return [selector_func(node, child_node)
for child_node in child_node_it]
[docs] def clear(self):
"""Remove all nodes (except the root) from this filesystem."""
self._reverse_mapping = {
self.root_path: self._root,
}
for node in list(self._root.reverse_iter()):
node.disassociate()
[docs] def delete(self, path, recursive=False):
"""Deletes a node (optionally its children) from this filesystem."""
path = self.normpath(path)
node = self._fetch_node(path, normalized=True)
if node is self._root and not recursive:
raise ValueError("Can not delete '%s'" % self._root.item)
if recursive:
child_paths = (child.metadata['path'] for child in node.bfs_iter())
else:
node_child_count = node.child_count()
if node_child_count:
raise ValueError("Can not delete '%s', it has %s children"
% (path, node_child_count))
child_paths = []
if node is self._root:
# Don't drop/pop the root...
paths = child_paths
drop_nodes = []
else:
paths = itertools.chain([path], child_paths)
drop_nodes = [node]
for path in paths:
self._reverse_mapping.pop(path, None)
for node in drop_nodes:
node.disassociate()
def _iter_pieces(self, path, include_root=False):
if path == self._root.item:
# Check for this directly as the following doesn't work with
# split correctly:
#
# >>> path = "/"
# path.split(pp.sep)
# ['', '']
parts = []
else:
parts = path.split(pp.sep)[1:]
if include_root:
parts.insert(0, self._root.item)
for piece in parts:
yield piece
def __delitem__(self, path):
self.delete(path, recursive=True)
@staticmethod
def _stringify_node(node):
if 'target' in node.metadata:
return "%s (link to %s)" % (node.item, node.metadata['target'])
else:
return six.text_type(node.item)
[docs] def symlink(self, src_path, dest_path):
"""Link the destionation path to the source path."""
dest_path = self.normpath(dest_path)
src_path = self.normpath(src_path)
try:
dest_node = self._fetch_node(dest_path, normalized=True)
except exc.NotFound:
parent_path, basename = self.split(dest_path)
parent_node = self._fetch_node(parent_path, normalized=True)
dest_node = self._insert_child(parent_node, basename)
dest_node.metadata['target'] = src_path
def __getitem__(self, path):
return self._get_item(self.normpath(path))
def __setitem__(self, path, value):
path = self.normpath(path)
value = self._copier(value)
try:
node = self._fetch_node(path, normalized=True)
node.metadata.update(value=value)
except exc.NotFound:
parent_path, basename = self.split(path)
parent_node = self._fetch_node(parent_path, normalized=True)
self._insert_child(parent_node, basename, value=value)
[docs]class MemoryBackend(path_based.PathBasedBackend):
"""A in-memory (non-persistent) backend.
This backend writes logbooks, flow details, and atom details to a
in-memory filesystem-like structure (rooted by the ``memory``
instance variable).
This backend does *not* provide true transactional semantics. It does
guarantee that there will be no inter-thread race conditions when
writing and reading by using a read/write locks.
"""
#: Default path used when none is provided.
DEFAULT_PATH = pp.sep
def __init__(self, conf=None):
super(MemoryBackend, self).__init__(conf)
self.memory = FakeFilesystem(deep_copy=self._conf.get('deep_copy',
True))
self.lock = fasteners.ReaderWriterLock()
def get_connection(self):
return Connection(self)
def close(self):
pass
class Connection(path_based.PathBasedConnection):
def __init__(self, backend):
super(Connection, self).__init__(backend)
self.upgrade()
@contextlib.contextmanager
def _memory_lock(self, write=False):
if write:
lock = self.backend.lock.write_lock
else:
lock = self.backend.lock.read_lock
with lock():
try:
yield
except exc.TaskFlowException:
raise
except Exception:
exc.raise_with_cause(exc.StorageFailure,
"Storage backend internal error")
def _join_path(self, *parts):
return pp.join(*parts)
def _get_item(self, path):
with self._memory_lock():
return self.backend.memory[path]
def _set_item(self, path, value, transaction):
self.backend.memory[path] = value
def _del_tree(self, path, transaction):
del self.backend.memory[path]
def _get_children(self, path):
with self._memory_lock():
return self.backend.memory.ls(path)
def _ensure_path(self, path):
with self._memory_lock(write=True):
self.backend.memory.ensure_path(path)
def _create_link(self, src_path, dest_path, transaction):
self.backend.memory.symlink(src_path, dest_path)
@contextlib.contextmanager
def _transaction(self):
"""This just wraps a global write-lock."""
with self._memory_lock(write=True):
yield
def validate(self):
pass