Troubleshooting Ironic

Nova returns “No valid host was found” Error

Sometimes Nova Conductor log file “nova-conductor.log” or a message returned from Nova API contains the following error:

NoValidHost: No valid host was found. There are not enough hosts available.

“No valid host was found” means that the Nova Scheduler could not find a bare metal node suitable for booting the new instance.

This in turn usually means some mismatch between resources that Nova expects to find and resources that Ironic advertised to Nova.

A few things should be checked in this case:

  1. Make sure that enough nodes are in available state, not in maintenance mode and not already used by an existing instance. Check with the following command:

    openstack baremetal node list --provision-state available --no-maintenance --unassociated
    

    If this command does not show enough nodes, use generic openstack baremetal node list to check other nodes. For example, nodes in manageable state should be made available:

    openstack baremetal node provide <IRONIC NODE>
    

    The Bare metal service automatically puts a node in maintenance mode if there are issues with accessing its management interface. Check the power credentials (e.g. ipmi_address, ipmi_username and ipmi_password) and then move the node out of maintenance mode:

    openstack baremetal node maintenance unset <IRONIC NODE>
    

    The node validate command can be used to verify that all required fields are present. The following command should not return anything:

    openstack baremetal node validate <IRONIC NODE> | grep -E '(power|management)\W*False'
    

    Maintenance mode will be also set on a node if automated cleaning has failed for it previously.

  2. Make sure that you have Compute services running and enabled:

    $ openstack compute service list --service nova-compute
    +----+--------------+-------------+------+---------+-------+----------------------------+
    | ID | Binary       | Host        | Zone | Status  | State | Updated At                 |
    +----+--------------+-------------+------+---------+-------+----------------------------+
    |  7 | nova-compute | example.com | nova | enabled | up    | 2017-09-04T13:14:03.000000 |
    +----+--------------+-------------+------+---------+-------+----------------------------+
    

    By default, a Compute service is disabled after 10 consecutive build failures on it. This is to ensure that new build requests are not routed to a broken Compute service. If it is the case, make sure to fix the source of the failures, then re-enable it:

    openstack compute service set --enable <COMPUTE HOST> nova-compute
    
  3. Starting with the Pike release, check that all your nodes have the resource_class field set using the following command:

    openstack --os-baremetal-api-version 1.21 baremetal node list --fields uuid name resource_class
    

    Then check that the flavor(s) are configured to request these resource classes via their properties:

    openstack flavor show <FLAVOR NAME> -f value -c properties
    

    For example, if your node has resource class baremetal-large, it will be matched by a flavor with property resources:CUSTOM_BAREMETAL_LARGE set to 1. See Create flavors for use with the Bare Metal service for more details on the correct configuration.

  4. Upon scheduling, Nova will query the Placement API service for the available resource providers (in the case of Ironic: nodes with a given resource class). If placement does not have any allocation candidates for the requested resource class, the request will result in a “No valid host was found” error. It is hence sensible to check if Placement is aware of resource providers (nodes) for the requested resource class with:

    $ openstack allocation candidate list --resource CUSTOM_BAREMETAL_LARGE='1'
    +---+-----------------------------+--------------------------------------+-------------------------------+
    | # | allocation                  | resource provider                    | inventory used/capacity       |
    +---+-----------------------------+--------------------------------------+-------------------------------+
    | 1 | CUSTOM_BAREMETAL_LARGE=1    | 2f7b9c69-c1df-4e40-b94e-5821a4ea0453 | CUSTOM_BAREMETAL_LARGE=0/1    |
    +---+-----------------------------+--------------------------------------+-------------------------------+
    

    For Ironic, the resource provider is the UUID of the available Ironic node. If this command returns an empty list (or does not contain the targeted resource provider), the operator needs to understand first, why the resource tracker has not reported this provider to placement. Potential explanations include:

    • the resource tracker cycle has not finished yet and the resource provider will appear once it has (the time to finish the cycle scales linearly with the number of nodes the corresponding nova-compute service manages);

    • the node is in a state where the resource tracker does not consider it to be eligible for scheduling, e.g. when the node has maintenance set to True; make sure the target nodes are in available and maintenance is False;

  5. If you do not use scheduling based on resource classes, then the node’s properties must have been set either manually or via inspection. For each node with available state check that the properties JSON field has valid values for the keys cpus, cpu_arch, memory_mb and local_gb. Example of valid properties:

    $ openstack baremetal node show <IRONIC NODE> --fields properties
    +------------+------------------------------------------------------------------------------------+
    | Property   | Value                                                                              |
    +------------+------------------------------------------------------------------------------------+
    | properties | {u'memory_mb': u'8192', u'cpu_arch': u'x86_64', u'local_gb': u'41', u'cpus': u'4'} |
    +------------+------------------------------------------------------------------------------------+
    

    Warning

    If you’re using exact match filters in the Nova Scheduler, make sure the flavor and the node properties match exactly.

  6. The Nova flavor that you are using does not match any properties of the available Ironic nodes. Use

    openstack flavor show <FLAVOR NAME>
    

    to compare. The extra specs in your flavor starting with capability: should match ones in node.properties['capabilities'].

    Note

    The format of capabilities is different in Nova and Ironic. E.g. in Nova flavor:

    $ openstack flavor show <FLAVOR NAME> -c properties
    +------------+----------------------------------+
    | Field      | Value                            |
    +------------+----------------------------------+
    | properties | capabilities:boot_option='local' |
    +------------+----------------------------------+
    

    But in Ironic node:

    $ openstack baremetal node show <IRONIC NODE> --fields properties
    +------------+-----------------------------------------+
    | Property   | Value                                   |
    +------------+-----------------------------------------+
    | properties | {u'capabilities': u'boot_option:local'} |
    +------------+-----------------------------------------+
    
  7. After making changes to nodes in Ironic, it takes time for those changes to propagate from Ironic to Nova. Check that

    openstack hypervisor stats show
    

    correctly shows total amount of resources in your system. You can also check openstack hypervisor show <IRONIC NODE> to see the status of individual Ironic nodes as reported to Nova.

  8. Figure out which Nova Scheduler filter ruled out your nodes. Check the nova-scheduler logs for lines containing something like:

    Filter ComputeCapabilitiesFilter returned 0 hosts
    

    The name of the filter that removed the last hosts may give some hints on what exactly was not matched. See Nova filters documentation for more details.

  9. If none of the above helped, check Ironic conductor log carefully to see if there are any conductor-related errors which are the root cause for “No valid host was found”. If there are any “Error in deploy of node <IRONIC-NODE-UUID>: [Errno 28] …” error messages in Ironic conductor log, it means the conductor run into a special error during deployment. So you can check the log carefully to fix or work around and then try again.

Patching the Deploy Ramdisk

When debugging a problem with deployment and/or inspection you may want to quickly apply a change to the ramdisk to see if it helps. Of course you can inject your code and/or SSH keys during the ramdisk build (depends on how exactly you’ve built your ramdisk). But it’s also possible to quickly modify an already built ramdisk.

Create an empty directory and unpack the ramdisk content there:

$ mkdir unpack
$ cd unpack
$ gzip -dc /path/to/the/ramdisk | cpio -id

The last command will result in the whole Linux file system tree unpacked in the current directory. Now you can modify any files you want. The actual location of the files will depend on the way you’ve built the ramdisk.

Note

On a systemd-based system you can use the systemd-nspawn tool (from the systemd-container package) to create a lightweight container from the unpacked filesystem tree:

$ sudo systemd-nspawn --directory /path/to/unpacked/ramdisk/ /bin/bash

This will allow you to run commands within the filesystem, e.g. use package manager. If the ramdisk is also systemd-based, and you have login credentials set up, you can even boot a real ramdisk enviroment with

$ sudo systemd-nspawn --directory /path/to/unpacked/ramdisk/ --boot

After you’ve done the modifications, pack the whole content of the current directory back:

$ find . | cpio -H newc -o | gzip -c > /path/to/the/new/ramdisk

Note

You don’t need to modify the kernel (e.g. tinyipa-master.vmlinuz), only the ramdisk part.

API Errors

The debug_tracebacks_in_api config option may be set to return tracebacks in the API response for all 4xx and 5xx errors.

Retrieving logs from the deploy ramdisk

When troubleshooting deployments (specially in case of a deploy failure) it’s important to have access to the deploy ramdisk logs to be able to identify the source of the problem. By default, Ironic will retrieve the logs from the deploy ramdisk when the deployment fails and save it on the local filesystem at /var/log/ironic/deploy.

To change this behavior, operators can make the following changes to /etc/ironic/ironic.conf under the [agent] group:

  • deploy_logs_collect: Whether Ironic should collect the deployment logs on deployment. Valid values for this option are:

    • on_failure (default): Retrieve the deployment logs upon a deployment failure.

    • always: Always retrieve the deployment logs, even if the deployment succeed.

    • never: Disable retrieving the deployment logs.

  • deploy_logs_storage_backend: The name of the storage backend where the logs will be stored. Valid values for this option are:

    • local (default): Store the logs in the local filesystem.

    • swift: Store the logs in Swift.

  • deploy_logs_local_path: The path to the directory where the logs should be stored, used when the deploy_logs_storage_backend is configured to local. By default logs will be stored at /var/log/ironic/deploy.

  • deploy_logs_swift_container: The name of the Swift container to store the logs, used when the deploy_logs_storage_backend is configured to “swift”. By default ironic_deploy_logs_container.

  • deploy_logs_swift_days_to_expire: Number of days before a log object is marked as expired in Swift. If None, the logs will be kept forever or until manually deleted. Used when the deploy_logs_storage_backend is configured to “swift”. By default 30 days.

When the logs are collected, Ironic will store a tar.gz file containing all the logs according to the deploy_logs_storage_backend configuration option. All log objects will be named with the following pattern:

<node-uuid>[_<instance-uuid>]_<timestamp yyyy-mm-dd-hh:mm:ss>.tar.gz

Note

The instance_uuid field is not required for deploying a node when Ironic is configured to be used in standalone mode. If present it will be appended to the name.

Accessing the log data

When storing in the local filesystem

When storing the logs in the local filesystem, the log files can be found at the path configured in the deploy_logs_local_path configuration option. For example, to find the logs from the node 5e9258c4-cfda-40b6-86e2-e192f523d668:

$ ls /var/log/ironic/deploy | grep 5e9258c4-cfda-40b6-86e2-e192f523d668
5e9258c4-cfda-40b6-86e2-e192f523d668_88595d8a-6725-4471-8cd5-c0f3106b6898_2016-08-08-13:52:12.tar.gz
5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_2016-08-08-14:07:25.tar.gz

Note

When saving the logs to the filesystem, operators may want to enable some form of rotation for the logs to avoid disk space problems.

When storing in Swift

When using Swift, operators can associate the objects in the container with the nodes in Ironic and search for the logs for the node 5e9258c4-cfda-40b6-86e2-e192f523d668 using the prefix parameter. For example:

$ swift list ironic_deploy_logs_container -p 5e9258c4-cfda-40b6-86e2-e192f523d668
5e9258c4-cfda-40b6-86e2-e192f523d668_88595d8a-6725-4471-8cd5-c0f3106b6898_2016-08-08-13:52:12.tar.gz
5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_2016-08-08-14:07:25.tar.gz

To download a specific log from Swift, do:

$ swift download ironic_deploy_logs_container "5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_2016-08-08-14:07:25.tar.gz"
5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_2016-08-08-14:07:25.tar.gz [auth 0.341s, headers 0.391s, total 0.391s, 0.531 MB/s]

The contents of the log file

The log is just a .tar.gz file that can be extracted as:

$ tar xvf <file path>

The contents of the file may differ slightly depending on the distribution that the deploy ramdisk is using:

  • For distributions using systemd there will be a file called journal which contains all the system logs collected via the journalctl command.

  • For other distributions, the ramdisk will collect all the contents of the /var/log directory.

For all distributions, the log file will also contain the output of the following commands (if present): ps, df, ip addr and iptables.

Here’s one example when extracting the content of a log file for a distribution that uses systemd:

$ tar xvf 5e9258c4-cfda-40b6-86e2-e192f523d668_88595d8a-6725-4471-8cd5-c0f3106b6898_2016-08-08-13:52:12.tar.gz
df
ps
journal
ip_addr
iptables

DHCP during PXE or iPXE is inconsistent or unreliable

This can be caused by the spanning tree protocol delay on some switches. The delay prevents the switch port moving to forwarding mode during the nodes attempts to PXE, so the packets never make it to the DHCP server. To resolve this issue you should set the switch port that connects to your baremetal nodes as an edge or PortFast type port. Configured in this way the switch port will move to forwarding mode as soon as the link is established. An example on how to do that for a Cisco Nexus switch is:

$ config terminal
$ (config) interface eth1/11
$ (config-if) spanning-tree port type edge

IPMI errors

When working with IPMI, several settings need to be enabled depending on vendors.

Enable IPMI over LAN

Machines may not have IPMI access over LAN enabled by default. This could cause the IPMI port to be unreachable through ipmitool, as shown:

$ ipmitool -I lan -H ipmi_host -U ipmi_user -P ipmi_pass chassis power status
Error: Unable to establish LAN session

To fix this, enable IPMI over lan setting using your BMC tool or web app.

Troubleshooting lanplus interface

When working with lanplus interfaces, you may encounter the following error:

$ ipmitool -I lanplus -H ipmi_host -U ipmi_user -P ipmi_pass power status
Error in open session response message : insufficient resources for session
Error: Unable to establish IPMI v2 / RMCP+ session

To fix that issue, please enable RMCP+ Cipher Suite3 Configuration setting using your BMC tool or web app.

Why are my nodes stuck in a “-ing” state?

The Ironic conductor uses states ending with ing as a signifier that the conductor is actively working on something related to the node.

Often, this means there is an internal lock or reservation set on the node and the conductor is downloading, uploading, or attempting to perform some sort of Input/Output operation.

In the case the conductor gets stuck, these operations should timeout, but there are cases in operating systems where operations are blocked until completion. These sorts of operations can vary based on the specific environment and operating configuration.

What can cause these sorts of failures?

Typical causes of such failures are going to be largely rooted in the concept of iowait, either in the form of downloading from a remote host or reading or writing to the disk of the conductor. An operator can use the iostat tool to identify the percentage of CPU time spent waiting on storage devices.

The fields that will be particularly important are the iowait, await, and tps ones, which can be read about in the iostat manual page.

In the case of network file systems, for backing components such as image caches or distributed tftpboot or httpboot folders, IO operations failing on these can, depending on operating system and underlying client settings, cause threads to be stuck in a blocking wait state, which is realistically undetectable short the operating system logging connectivity errors or even lock manager access errors.

For example with nfs, the underlying client recovery behavior, in terms of soft, hard, softreval, nosoftreval, will largely impact this behavior, but also NFS server settings can impact this behavior. A solid sign that this is a failure, is when an ls /path/to/nfs command hangs for a period of time. In such cases, the Storage Administrator should be consulted and network connectivity investigated for errors before trying to recover to proceed.

File Size != Disk Size

An easy to make misconception is that a 2.4 GB file means that only 2.4 GB is written to disk. But if that file’s virtual size is 20 GB, or 100 GB things can become very problematic and extend the amount of time the node spends in deploying and deploy wait states.

Again, these sorts of cases will depend upon the exact configuration of the deployment, but hopefully these are areas where these actions can occur.

  • Conversion to raw image files upon download to the conductor, from the [DEFAULT]force_raw_images option, in particular with the iscsi deployment interface. Users using glance and the direct deployment interface may also experience issues here as the conductor will cache the image to be written which takes place when the [agent]image_download_source is set to http instead of swift.

  • Write of a QCOW2 file over the iscsi deployment interface from the conductor to the node being deployed can result in large amounts of “white space” to be written to be transmitted over the wire and written to the end device.

Note

The QCOW2 image conversion utility does consume quite a bit of memory when converting images or writing them to the end storage device. This is because the files are not sequential in nature, and must be re-assembled from an internal block mapping. Internally Ironic limits this to 1GB of RAM. Operators performing large numbers of deployments may wish to explore the direct deployment interface in these sorts of cases in order to minimize the conductor becoming a limiting factor due to memory and network IO.

Why are my nodes stuck in a “wait” state?

The Ironic conductor uses states containing wait as a signifier that the conductor is waiting for a callback from another component, such as the Ironic Python Agent or the Inspector. If this feedback does not arrive, the conductor will time out and the node will eventually move to a failed state. Depending on the configuration and the circumstances, however, a node can stay in a wait state for a long time or even never time out. The list of such wait states includes:

  • clean wait for cleaning,

  • inspect wait for introspection,

  • rescue wait for rescueing, and

  • wait call-back for deploying.

Communication issues between the conductor and the node

One of the most common issues when nodes seem to be stuck in a wait state occur when the node never received any instructions or does not react as expected: the conductor moved the node to a wait state but the node will never call back. Examples include wrong ciphers which will make ipmitool get stuck or BMCs in a state where they accept commands, but don’t do the requested task (or only a part of it, like shutting off, but not starting). It is useful in these cases to see via a ping or the console if and which action the node is performing. If the node does not seem to react to the requests sent be the conductor, it may be worthwhile to try the corresponding action out-of-band, e.g. confirm that power on/off commands work when directly sent to the BMC. The section on IPMI errors. above gives some additional points to check. In some situations, a BMC reset may be necessary.

Ironic Python Agent stuck

Nodes can also get remain in a wait state when the component the conductor is waiting for gets stuck, e.g. when a hardware manager enters a loop or is waiting for an event that is never happening. In these cases, it might be helpful to connect to the IPA and inspect its logs, see the trouble shooting guide of the ironic-python-agent (IPA) on how to do this.