
Skyline Console Developer
Documentation

Release 3.0.1.dev2

Skyline Console contributors

Dec 24, 2024

CONTENTS

1 Introduction 1

2 Using Skyline Console 3
2.1 Installation Guide . 3

2.1.1 System Requirements . 3
System Requirements . 3

2.1.2 Installing Guide . 3
Skyline Installation Guide for Ubuntu . 3

2.2 Configuration Guide . 8
2.2.1 Skyline Console Settings Reference . 8

2.3 User Documentation . 9
2.3.1 Openstack Dashboard . 9

Console page . 9
User page . 10
Administrator page . 10

2.3.2 Create and manage networks (Network tab) 11
create a network . 12
create a router . 12
create a port . 13
create a fip . 13
create a security group . 14

2.3.3 Launch and manage instances (Compute tab) 14
Create a key pair . 14
Launch an instance . 14
Create an instance snapshot . 16
Control the state of an instance . 16
Allocate a floating IP address to an instance . 16
Upload an image . 16

2.3.4 Create and manage volumes (Storage tab) . 17
Create a volume . 17
Attach a volume to an instance . 18
Detach a volume from an instance . 18
Create a snapshot from a volume . 19
Edit a volume . 19
Delete a volume . 19

2.3.5 Supported Browsers . 20
2.4 Administration Guide . 20

2.4.1 Manage instances (Compute tab) . 20
Manage compute hosts . 20

i

Create a flavor . 20
Delete a flavor . 21
Create a host aggregate . 21
Manage host aggregates . 21

2.4.2 Manage volumes (Storage tab) . 22
Create a volume type . 22
Delete a volume type . 22

2.4.3 Manage projects, users and roles (Identity tab) 22
Create a role . 23
Edit a role . 23
Delete a role . 23
Add a new project . 23
Delete a project . 24
Update a project . 24
Add a new user . 24
Delete a user . 24
Update a user . 25

3 Contributor Docs 27
3.1 Contributor Documentation . 27

3.1.1 Getting Started . 27
So You Want to Contribute . 27
Backporting a Fix . 30
Skyline Project Releases . 31
Contributing Documentation to Skyline Console 33

3.1.2 Writing Release Notes . 34
Release notes . 34

3.1.3 Programming HowTos and Tutorials . 36
Setting Up a Development Environment . 36

3.1.4 Other Resources . 38
Code Reviews . 38

3.2 Development Guide . 41
3.2.1 Ready To Work . 41

Preparation before development . 41
Front-end package used in production environment 42
Front-end package used for testing . 42

3.2.2 Catalog Introduction . 42
Introduction to the first-level directory . 42
Catalog Introduction-Image Version . 43

3.3 Tests Guide . 49
3.3.1 Ready To Work . 49

E2E test . 50
Unit test . 52

3.3.2 Catalog Introduction . 52
3.3.3 How To Edit E2E Case . 54

1. Prepare relevant variables in text . 54
2. Login before operation . 55
3. Create associated resources . 55
4. Write cases . 55
5. delete associated resources . 56

4 Release Notes 57

ii

5 Information 59
5.1 Glossary . 59

iii

iv

CHAPTER

ONE

INTRODUCTION

Skyline Console is one part of OpenStack Modern Dashboard, which provides a web based user interface
to OpenStack services including Nova, Swift, Keystone, etc.

1

https://github.com/openstack/skyline-console

Skyline Console Developer Documentation, Release 3.0.1.dev2

2 Chapter 1. Introduction

CHAPTER

TWO

USING SKYLINE CONSOLE

How to use Skyline Console in your own projects.

2.1 Installation Guide

This section describes how to install and configure Skyline.

2.1.1 System Requirements

System Requirements

Supported Operating Systems

Skylines source install supports the following host Operating Systems (OS):

• Ubuntu Focal (20.04)

2.1.2 Installing Guide

Skyline Installation Guide for Ubuntu

This section will guide you through the installation of Skyline on Ubuntu 20.04 LTS.

Source Install Ubuntu

This section describes how to install and configure the Skyline Console service. Before you begin, you
must have a ready OpenStack environment. At least it includes keystone, glance, nova, neutron
and skyline-apiserver service.

For more information about skyline-apiserver installation, refer to the OpenStack Skyline APIServer
Guide.

3

https://docs.openstack.org/skyline-apiserver/latest/install/source-install-ubuntu.html
https://docs.openstack.org/skyline-apiserver/latest/install/source-install-ubuntu.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

Prerequisites

1. Install system dependencies

sudo apt update
sudo apt install -y git python3-pip nginx make ssl-cert
sudo apt-get install libgtk2.0-0 libgtk-3-0 libgbm-dev libnotify-dev␣
↪→libgconf-2-4 libnss3 libxss1 libasound2 libxtst6 xauth xvfb

2. Install nvm (version control system for nodejs)

wget -P /root/ --tries=10 --retry-connrefused --waitretry=60 --no-dns-
↪→cache --no-cache https://raw.githubusercontent.com/nvm-sh/nvm/master/
↪→install.sh
bash /root/install.sh
. /root/.nvm/nvm.sh

3. Install nodejs

nvm install --lts=Erbium
nvm alias default lts/erbium
nvm use default

4. Install yarn

npm install -g yarn

Install and configure components

We will install the Skyline Console service from source code.

1. Git clone the repository from OpenDev (GitHub)

cd ${HOME}
git clone https://opendev.org/openstack/skyline-console.git

Note: If you meet the following error, you need to run command sudo apt install -y
ca-certificates:

fatal: unable to access https://opendev.org/openstack/skyline-sonsole.git/: server certificate veri-
fication failed. CAfile: none CRLfile: none

2. Install skyline-console

cd ${HOME}/skyline-console
make package
sudo pip3 install --force-reinstall dist/skyline_console-*.whl

3. Ensure that skyline folders have been created

4 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

sudo mkdir -p /etc/skyline /var/log/skyline

Note: Ensure that skyline.yaml file is available in /etc/skyline folder. For more information about
skyline.yml, see OpenStack Skyline Settings.

4. Generate nginx configuration file

skyline-nginx-generator -o /etc/nginx/nginx.conf
sudo sed -i "s/server .* fail_timeout=0;/server 0.0.0.0:28000 fail_
↪→timeout=0;/g" /etc/nginx/nginx.conf

Note: We need to change the upstream skyline value in /etc/nginx/nginx.conf to 0.0.
0.0:28000. Default value is unix:/var/lib/skyline/skyline.sock.

Finalize installation

Start nginx service

sudo systemctl start nginx.service
sudo systemctl enable nginx.service

Docker Install Ubuntu

This section describes how to install and configure Skyline service. Before you begin, you must
have a ready OpenStack environment. At least it includes keystone, glance, nova and neutron
service.

Note: You have install the docker service on the host machine. You can follow the docker installation.

Prerequisites

Before you install and configure Skyline service, you must create a database.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql

2. Create the skyline database:

MariaDB [(none)]> CREATE DATABASE skyline DEFAULT CHARACTER SET \
utf8 DEFAULT COLLATE utf8_general_ci;

2.1. Installation Guide 5

https://docs.openstack.org/skyline-apiserver/latest/configuration/settings.html
https://docs.docker.com/engine/install/ubuntu/

Skyline Console Developer Documentation, Release 3.0.1.dev2

3. Grant proper access to the skyline database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON skyline.* TO 'skyline'@
↪→'localhost' \
IDENTIFIED BY 'SKYLINE_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON skyline.* TO 'skyline'@'%'␣
↪→\
IDENTIFIED BY 'SKYLINE_DBPASS';

Replace SKYLINE_DBPASS with a suitable password.

4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

1. Create a skyline user:

$ openstack user create --domain default --password-prompt skyline

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	1qaz2wsx3edc4rfv5tgb6yhn7ujm8ikl
name	skyline
options	{}
password_expires_at	None
+---------------------+----------------------------------+

2. Add the admin role to the skyline user:

$ openstack role add --project service --user skyline admin

Note: This command provides no output.

Install and configure components

We will install Skyline service from docker image.

1. Pull Skyline service image from Docker Hub:

$ sudo docker pull 99cloud/skyline:2023.2

2. Ensure that some folders of skyline have been created

6 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

$ sudo mkdir -p /etc/skyline /var/log/skyline /var/lib/skyline /var/log/
↪→nginx

3. Configure /etc/skyline/skyline.yaml file

Note: Change the related configuration in /etc/skyline/skyline.yaml. Detailed introduc-
tion of the configuration can be found in OpenStack Skyline Settings.

default:
database_url: mysql://skyline:SKYLINE_DBPASS@DB_SERVER:3306/skyline
debug: true
log_dir: /var/log

openstack:
keystone_url: http://KEYSTONE_SERVER:5000/v3/
system_user_password: SKYLINE_SERVICE_PASSWORD

Replace SKYLINE_DBPASS, DB_SERVER, KEYSTONE_SERVER and SKYLINE_SERVICE_PASSWORD
with a correct value.

Finalize installation

1. Run bootstrap server

$ sudo docker run -d --name skyline_bootstrap \
-e KOLLA_BOOTSTRAP="" \
-v /etc/skyline/skyline.yaml:/etc/skyline/skyline.yaml \
-v /var/log:/var/log \
--net=host 99cloud/skyline:2023.2

If you see the following message, it means that the bootstrap server is␣
↪→successful:

+ echo '/usr/local/bin/gunicorn -c /etc/skyline/gunicorn.py skyline_
↪→apiserver.main:app'
+ mapfile -t CMD
++ xargs -n 1
++ tail /run_command
+ [[-n 0]]
+ cd /skyline-apiserver/
+ make db_sync
alembic -c skyline_apiserver/db/alembic/alembic.ini upgrade head
2022-08-19 07:49:16.004 | INFO | alembic.runtime.migration:__init__
↪→:204 - Context impl MySQLImpl.
2022-08-19 07:49:16.005 | INFO | alembic.runtime.migration:__init__
↪→:207 - Will assume non-transactional DDL.
+ exit 0

2. Cleanup bootstrap server

2.1. Installation Guide 7

https://docs.openstack.org/skyline-apiserver/latest/configuration/settings.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

$ sudo docker rm -f skyline_bootstrap

3. Run skyline

$ sudo docker run -d --name skyline --restart=always \
-v /etc/skyline/skyline.yaml:/etc/skyline/skyline.yaml \
-v /var/log:/var/log \
--net=host 99cloud/skyline:2023.2

Note: The skyline image is both include skyline-apiserver and skyline-console. And you can visit
the skyline UI https://xxxxx:9999.

2.2 Configuration Guide

2.2.1 Skyline Console Settings Reference

• Prepare a usable backend

– Prepare an accessible backend, for example: https://172.20.154.250

– Add file config/local_config.yaml:

server: https://172.20.154.250

• Configure access host and port

– The default configuration is in config/config.yaml - host is 0.0.0.0 - port is 8088 -
If the current configuration does not need to be changed, the following steps do not need to
be operated.

– Added file config/local_config.yaml

– Add host and port configurations

host: localhost
port: 8080

• Execute in the project root directory, which is the same level as package.json

yarn run dev

– Use the host and port configured in config/config.yaml or config/local_config.
yaml to access, such as http://localhost:8088.

• The front-end real-time update environment used for development is done.

For more information about skyline configuration settings, see OpenStack Skyline Settings.

8 Chapter 2. Using Skyline Console

https://docs.openstack.org/skyline-apiserver/latest/configuration/settings.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

2.3 User Documentation

2.3.1 Openstack Dashboard

Console page

Home tab

Home tab shows user information and details of quota about Compute, Storage, Network, etc. And it
provides a button to quickly jump to Instances, Volumes, Networks and Routers page.

Compute tab

• Instances: View, launch, delete, create a snapshot from, attach or detach interface to, attach or
detach volume to, associate floating ip to, manage security group of, stop, pause, lock, shelve,
suspend, reboot or soft reboot instances, modify instance tags, or connect to them through VNC.

• Instance snapshots: View, edit, delete instance snapshots, launch instances or create volumes from
them.

• Flavors: View flavors.

• Server Groups: View, create or delete server groups.

• Images: View, create, edit, delete images, launch instances or create volumes from them.

• Key Pairs: View, create, edit, import, and delete key pairs.

Storage tab

• Volumes: View, create, edit, and delete volumes. Create volume snapshot, create volume backup,
clone volume, extend volume or change volume type, attach or detach them to instance.

• Volume Backups: View, create, edit, and delete volume backups. Also, create volumes from them
and restore backup.

• Volume Snapshots: View, create, edit, delete volume snapshots. And create volumes from them.

Network tab

• Networks: View, create, edit and delete networks.

• Ports: View, create, edit, delete ports and manage security group for ports.

• Routers: View, create, edit, delete and manage routers.

• Floating IPs: Allocate IP addresses or release them.

• Topology: View the network topology.

• Security Groups: View, create, edit, and delete security groups and security group rules.

2.3. User Documentation 9

Skyline Console Developer Documentation, Release 3.0.1.dev2

User page

User center tab

User center shows the details of user, including Username, Email, Phone, Real Name and User ID.

Application credentials tab

Application credentials provide a way to delegate a user authorization to an application without sharing
the user password authentication. This is a useful security measure, especially for situations where the
user identification is provided by an external source, such as LDAP or a single-sign-on service. Instead of
storing user passwords in config files, a user creates an application credential for a specific project, with
all or a subset of the role assignments they have on that project, and then stores the application credential
identifier and secret in the config file.

Administrator page

Home tab

Home tab shows basic platform information (the numbers of projects, users, nodes), virtual resource
usage (CPU usages, memory usages), compute and network services status.

Compute tab

• Instances: View, stop, suspend, cold or live migrate, soft or hard reboot, and delete instances that
belong to all projects. Also, view the log for an instance or access an instance through VNC.

• Instance snapshots: View, edit, delete instance snapshots.

• Flavors: View, create, edit, manage metadata for, and delete flavors.

• Server Groups: View, create or delete server groups.

• Images: View, create, edit, manage metadata for, and delete images.

• Hypervisors: View the hypervisor summary. Also, view and manage compute nodes.

• Host Aggregates: View, create, manage metadata for, edit and delete host aggregates. View the list
of availability zones.

Storage tab

• Volumes: View, update status for, migrate and delete volumes.

• Volume Backups: View and delete restore backup.

• Volume Snapshots: View and delete volume snapshots.

• Volume Types: View, create, edit, encrypt, manage access for and delete volume types.

• Storage Backends: View storage backends.

10 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

Network tab

• Networks: View, create and delete networks.

• Ports: View and delete ports.

• Routers: View and delete routers.

• Floating IPs: Allocate IP addresses or release them.

• Security Groups: View and delete security groups.

Identity tab

• Domains: View, create, edit, enable, disable and delete domains.

• Projects: View, create, edit, enable, disable and delete projects. Also, manage users or user groups
of projects, modify tags for them.

• Users: View, create, edit, enable, disable, delete users. And edit System Permission of users,
update user password.

• User Groups: View, create, edit and delete user groups.

• Roles: View, create, edit and delete roles.

Global setting tab

• System Info: Use the following tabs to view the service information:

– Services: View a list of the services.

– Compute Services: View a list of all Compute services and enable or disable them.

– Network Agents: View the network agents and enable or disable them.

– Block Storage Services: View a list of all Block Storage services and enable or disable them.

– Orchestration Services: View a list of all Orchestration services.

• System Config: View, edit and reset system config.

• Metadata Definitions: View, edit and delete system metadata definitions.

2.3.2 Create and manage networks (Network tab)

The OpenStack Networking service provides a scalable system for managing the network connectivity
within an OpenStack cloud deployment. It handles the creation and management of a virtual networking
infrastructure, including networks, switches, subnets, and routers. Advanced services such as firewalls
or virtual private network (VPN) can also be used.

Networking in OpenStack is complex. This section provides the basic instructions for creating a network
and a router. For detailed information about managing networks, refer to the OpenStack Networking
Guide.

2.3. User Documentation 11

https://docs.openstack.org/neutron/latest/admin/
https://docs.openstack.org/neutron/latest/admin/

Skyline Console Developer Documentation, Release 3.0.1.dev2

create a network

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Network tab and click Networks category.

4. Click Create Network.

5. In the Create Network dialog box, specify the following values.

Network Name: Specify a name to identify the network.

Description: A human-readable description for the resource.

Shared: Share the network with other projects. Non admin users are not allowed to set shared
option.

Available Zone: Select a availability zone for the network.

Port Security Enabled: Select the port security status of the network.

Create Subnet: Select this check box to create a subnet.

You do not have to specify a subnet when you create a network, but if you do not specify a subnet,
the network can not be attached to an instance.

Subnet Name: Specify a name for the subnet.

CIDR: Specify the IP address for the subnet.

IP Version: Select IPv4 or IPv6.

Gateway IP: Specify an IP address for a specific gateway. This parameter is optional.

Disable Gateway: Select this check box to disable a gateway IP address.

DHCP: Select this check box to enable DHCP.

Allocation Pools: Specify IP address pools.

DNS: Specify the DNS server.

Host Routes: Specify the IP address of host routes.

6. Click OK.

The dashboard shows the network on the Networks tab.

create a router

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Network tab and click Routers category.

4. Click Create Router.

5. In the Create Router dialog box, specify the following values.

Name: Specify a name to identify the router.

Open External Gateway: Select this check box to specify external gateway.

12 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

External Gateway: Specify external gateway for the router.

Click OK, and the new router is now displayed in the Routers tab.

6. To connect a private network to the newly created router, perform the following steps:

A) On the Routers tab, select More of the router, click connect Subnet.

C) In the Connect Subnet dialog box, select a Network and Subnet.

7. Click OK.

You have successfully created the router. You can view the new topology from the Topology tab.

create a port

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Network tab and click Ports category.

4. Click Create Virtual Adapter.

5. In the Create Virtual Adapter dialog box, specify the following values.

Name: Specify name to identify the port.

Owned Network: Select a network attached to the port.

Owned Subnet: Select a subnet attached to the port.

If you specify both a subnet ID and an IP address, OpenStack tries to allocate the IP address on
that subnet to the port.

If you specify only a subnet ID, OpenStack allocates an available IP from that subnet to the port.

Port Security: Select this check box to specify security group.

Security Group: Select a security groups applied to the port.

6. Click OK.

The new port is now displayed in the Ports list.

create a fip

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Network tab and click Floating IPs category.

4. Click Allocate IP.

5. In the Allocate IP dialog box, specify the following values.

Network: Specify a network associated with the floating IP.

Description: A human-readable description for the resource.

Batch Allocate: Select this check box to specify the number of batch creation.

Count: Specify the number of batch creation.

2.3. User Documentation 13

Skyline Console Developer Documentation, Release 3.0.1.dev2

6. Click OK.

The dashboard shows the floating ip on the Floating IPs tab.

create a security group

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Network tab and click Security Groups category.

4. Click Create Security Group.

5. In the Create Security Group dialog box, specify Name and Description, click OK and the new
security group is now displayed in the Security Groups list.

2.3.3 Launch and manage instances (Compute tab)

The OpenStack Compute service provides a way to provision compute instances (aka virtual servers). It
supports creating virtual machines, baremetal servers (through the use of ironic), and has limited support
for system containers. For detailed information, refer to the OpenStack Nova Guide.

Create a key pair

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Compute tab and click Key Pairs category.

4. Click Create Keypair.

5. In the Create Volume dialog box, select one of Create Type options:

• Create Keypair: If you choose this option, enter a Name.

• Import Keypair: If you choose this option, a new field for Public Key displays. Enter the
Name of your key pair, copy the public key into the Public Key box.

6. Click OK.

The Dashboard lists the key pair on the Key Pairs tab.

Launch an instance

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Compute tab and click Instances category.

4. Click Create Instance.

14 Chapter 2. Using Skyline Console

https://docs.openstack.org/nova/latest/

Skyline Console Developer Documentation, Release 3.0.1.dev2

5. On the Create Instance page, enter the instance values.

Available Zone: The availability zone from which to launch the server.

Specification: Select a flavor for your server instance.

Start Source: Select one of the following options:

• Image: If choose this option, a new field for Operating System displays. You can select the
image from the list. And enter the size of the volume used as System Disk of the instance.

Note: click the Deleted with the instance option to delete the volume on deleting the instance.

• Instance Snapshot: Using this option, you can boot from a volume snapshot and create a new
volume by choosing Instance Snapshot from a list.

• Bootable Volume: If you choose this option, a new field for Bootable Volume displays. You
can select the volume from the list.

Data Disk: The disks mounted on the instance.

6. Click Next: Network Config.

You can choose Networks, Ports or a mix of both for the instance network config.

Networks: Add a network to the instance. If you specify the networks, Virtual LAN and Security
Group are required fields.

Virtual LAN : Specify a subnet of the network and assign fixed IP address automatically or manually
for the instance.

Security Group: Security groups are a kind of cloud firewall that define which incoming network
traffic is forwarded to instances.

Ports: Activate the ports that you want to assign to the instance.

Note: The port executes its own security group rules by default.

7. Click Next: System Config.

Name: The server name.

Login Type: Select one of the following options:

• Keypair: If you choose this option, a new field for Keypair displays. The key pair allows you
to SSH into your newly created instance. You can select an existing key pair, import a key
pair, or generate a new key pair.

• Password: Enter the Login Password and confirm it. And you can login to the instance by
using password.

8. Click Next: Confirm Config and confirm your choice.

The instance are created and you can wait for a few seconds to follow the changes of the instance
list data or manually refresh the data to get the final display result.

2.3. User Documentation 15

Skyline Console Developer Documentation, Release 3.0.1.dev2

Create an instance snapshot

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Compute tab and click Instances category.

4. Select an instance to create a snapshot from it.

5. In the Action column, select Backups & Snapshots and click Create Snapshot.

6. In the Create Instance Snapshot dialog box, enter a snapshot name.

7. Click OK.

The dashboard shows the new instance snapshot in Instance Snapshots tab.

Control the state of an instance

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Compute tab and click Instances category.

4. Select the instance for which you want to change the state.

5. In the Action column of the instance, click Instance Status and select the status.

Allocate a floating IP address to an instance

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Compute tab and click Instances category.

4. In the Action column, select Related Resources and click Associate Floating IP.

5. In the Associate Floating IP dialog box, select Instance IP and Floating Ip Address.

6. Click OK.

Note: To disassociate an IP address from an instance, click the Disassociate Floating Ip button.

Upload an image

Images are used to create virtual machine instances within the cloud. For information about creating
image files, see the OpenStack Glance Guide.

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Compute tab and click Images category.

4. Click Create Image.

16 Chapter 2. Using Skyline Console

https://docs.openstack.org/glance/latest/

Skyline Console Developer Documentation, Release 3.0.1.dev2

5. On the Create Image page, enter the following values:

Name: The name of the image.

Upload Type: Select one of the following options:

• Upload File: If choose this option, click Click to Upload to upload the binary image data file.

• File URL: If choose this option, enter the File URL.

Format: Select the image format (for example, QCOW2) for the image.

OS: Select the image operating system (for example, CentOS).

OS Version: The image operating system version.

OS Admin: The administrator name of image operating system. in general, administrator for Win-
dows, root for Linux.

Min System Disk (GiB): Amount of disk space in GB that is required to boot the image.

Min Memory (GiB): Amount of Memory in GB that is required to boot the image.

Protected: Image protection for deletion.

Usage Type: Select usage type (for example, Common Server) for the image.

Description: A human-readable description for the resource.

6. Click Confirm.

The image is queued to be uploaded. It might take some time before the status changes from
Queued to Active.

2.3.4 Create and manage volumes (Storage tab)

A volume is a detachable block storage device similar to a USB hard drive. You can attach a volume to
a running instance or detach a volume and attach it to another instance at any time. You can also create
a snapshot from or delete a volume. Only administrative users can create volume types.

OpenStack Block Storage enables you to add extra block-level storage to your OpenStack Compute in-
stances. For detailed information, refer to the OpenStack Cinder Guide.

Create a volume

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Storage tab and click Volumes category.

4. Click Create Volume.

5. On the Create Volume page, specify the following values.

Available Zone: Select a availability zone for the volume.

Data Source Type: Select one of the following options:

2.3. User Documentation 17

https://docs.openstack.org/cinder/latest/admin/index.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

• Blank Volume: If you choose this option, a new field for Volume Type displays. You can
select the volume type from the list. You can create an empty volume. An empty volume
does not contain a file system or a partition table.

• Image: If you choose this option, a new field for Operating System displays. You can select
the image from the list.

• Volume Snapshot: If you choose this option, a new field for Volume Snapshot displays. You
can select the snapshot from the list.

Volume Type: Specify a volume type to choose an appropriate storage back end.

Capacity (GiB): Specify the size of the volume, in gibibytes (GiB).

Name: Specify a name to identify the volume.

6. Click Confirm.

You have successfully created the volume. You can view the volume from the Volumes tab.

Attach a volume to an instance

After you create one or more volumes, you can attach them to instances. You can attach a volume to one
instance at a time.

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Storage tab and click Volumes category.

4. Select the volume to add to an instance.

5. In the Action column, select Instance Related and click Attach.

6. In the Attach dialog box, select an instance.

7. Click OK.

The dashboard shows the instance to which the volume is now attached and the device name.

You can view the status of a volume in the Volumes tab of the dashboard. The volume is either Available
or In-Use.

Now you can log in to the instance and mount, format, and use the disk.

Detach a volume from an instance

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Storage tab and click Volumes category.

4. In the Action column of the volume, select Instance Related and click Detach.

5. In the Detach dialog box, select an instance.

6. Click OK.

A message indicates whether the action was successful.

18 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

Create a snapshot from a volume

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Storage tab and click Volumes category.

4. Select a volume from which to create a snapshot.

5. In the Action column, select Data Protection and click Create Snapshot.

6. In the Create Volume Snapshot dialog box, enter a snapshot name.

7. Click OK.

The dashboard shows the new volume snapshot in Volume Snapshots tab.

Edit a volume

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Storage tab and click Volumes category.

4. In the Action column of the volume, click Edit.

5. In the Edit dialog box, update the name and description of the volume.

6. Click OK.

Note: You can extend a volume by using the Extend Volume option available in the More dropdown
list and entering the new value for volume size.

Delete a volume

When you delete an instance, the data in its attached volumes is not deleted.

1. Log in to the dashboard.

2. Select the appropriate project from the Switch Project menu at the top left.

3. On the Console page, open the Storage tab and click Volumes category.

4. Select the check boxes for the volumes that you want to delete.

5. Click Delete and confirm your choice.

Note: If you select the cascading deletion check box, when the volume has snapshots, the asso-
ciated snapshot will be automatically deleted first, and then the volume will be deleted, thereby
improving the success rate of deleting the volume.

A message indicates whether the action was successful.

2.3. User Documentation 19

Skyline Console Developer Documentation, Release 3.0.1.dev2

2.3.5 Supported Browsers

Skyline is primarily tested and supported on the latest version of Chrome.

2.4 Administration Guide

Skyline is an OpenStack dashboard optimized by UI and UE. It has a modern technology stack and ecol-
ogy, is easier for developers to maintain and operate by users, and has higher concurrency performance.

2.4.1 Manage instances (Compute tab)

As an administrative user, you can manage compute nodes. You can create and delete flavors, and you
can create and manage host aggregates. For more information, refer to the Launch and manage instances
(Compute tab).

Manage compute hosts

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Compute tab and click Hypervisors category.

3. Click Compute Hosts tab.

On the Compute Hosts page, you can Enable or Disable the compute hosts.

Create a flavor

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Compute tab and click Flavors category.

3. Click Create Flavor.

4. On the Params Setting page, specify the following values.

Architecture: Select one of the following options:

• X86 Architecture: If choose this option, you can select General Purpose, Compute Opti-
mized, Memory Optimized or High Clock Speed as flavor Type.

• Heterogeneous Computing: If choose this option, you can select Compute Optimized Type
with GPU or Visualization Compute Optimized Type with GPU as flavor Type.

Name: Enter the flavor name.

CPU(Core): Enter the number of virtual CPUs to use.

Ram Size (GiB): Enter the amount of RAM to use, in gigabytes.

NUMA Nodes: Enter the number of Non-Uniform Memory Access nodes.

5. Click Next: Access Type Setting.

6. On the Access Type Setting page, specify the following values.

Access Type: Select one of the following options:

20 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

• Public‘: Select this option to make the flavor publicly visible.

• Access Control: If choose this option, you can select projects from Access Control list to
determine which projects are visible to the flavor.

7. Click Confirm.

The new flavor is now displayed in the Flavors list.

Delete a flavor

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Compute tab and click Flavors category.

3. Select the check boxes for the flavors that you want to delete.

4. Click Delete and confirm your choice.

A message indicates whether the action was successful.

Create a host aggregate

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Compute tab and click Host Aggregates category.

3. Click Host Aggregate tab.

4. Click Create Host Aggregate.

5. In the Create Host Aggregate dialog box, specify the following values.

• Name: The host aggregate name.

• Create new AZ:

– If set this option to Yes, specify New Availability Zone name to create new availability
zone.

– If set this option to No, select a Availability Zone of the host aggregate.

6. Click OK.

Manage host aggregates

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Compute tab and click Host Aggregates category.

3. Click Host Aggregate tab.

4. In the Action column of the host aggregate, click Manage Host.

5. In the Manage Host dialog box, add hosts to the aggregate or remove hosts from it.

6. Click OK.

2.4. Administration Guide 21

Skyline Console Developer Documentation, Release 3.0.1.dev2

2.4.2 Manage volumes (Storage tab)

As an administrative user, you can manage volumes and volume types for users in various projects. You
can create and delete volume types, and you can view and delete volumes. For more information, refer
to the Create and manage volumes (Storage tab).

Create a volume type

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Storage tab and click Volume Types category.

3. Click Create Volume Type.

4. In the Create Volume Type dialog box, specify the following values.

Name: Specify a name to identify the volume type.

Description: A human-readable description for the resource.

Shared: Shared volume can be mounted on multiple instances.

Public: Select this check box to make the volume type publicly visible.

Note: If you do not choose this check box, a new field for Access Control displays. You can select
projects from the list to determine which projects are visible to the volume type.

5. Click OK.

You have successfully created the volume type. You can view the volume type from the Volume
Types tab.

Delete a volume type

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Storage tab and click Volume Types category.

3. Select the check boxes for the volume types that you want to delete.

4. Click Delete and confirm your choice.

A message indicates whether the action was successful.

2.4.3 Manage projects, users and roles (Identity tab)

OpenStack administrators can create projects, create accounts for new users and create roles.

A project is the base unit of resource ownership. Resources are owned by a specific project. A project
is owned by a specific domain. A role is a personality that a user assumes to perform a specific set of
operations. A role includes a set of rights and privileges. A user is an individual consumer that is owned
by a domain. A role explicitly associates a user with projects or domains. A user with no assigned roles
has no access to OpenStack resources.

22 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

OpenStack Identity Service is the module in the OpenStack framework that manages the authentication,
service rules and service token functions. For detailed information, refer to the OpenStack Keystone
Guide.

Create a role

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Roles category.

3. Click Create Role.

4. In the Create Role dialog box, enter the role Name and Description.

5. Click OK.

The new role is now displayed in the Roles list.

Edit a role

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Roles category.

3. In the Action column of the role, click Edit.

4. In the Edit dialog box, update Name and Description of the role.

5. Click OK.

A message indicates whether the action was successful.

Delete a role

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Roles category.

3. Select the check boxes for the roles that you want to delete.

4. Click Delete and confirm your choice.

A message indicates whether the action was successful.

Add a new project

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Projects category.

3. Click Create Project.

4. In the Create Project dialog box, enter the Project Name, Description, Status and Affiliated Do-
main.

5. Click OK.

The new project is now displayed in the Projects list.

2.4. Administration Guide 23

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystone/latest/

Skyline Console Developer Documentation, Release 3.0.1.dev2

Delete a project

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Projects category.

3. Select the check boxes for the projects that you want to delete.

4. Click Delete and confirm your choice.

A message indicates whether the action was successful.

Update a project

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Projects category.

3. In the Action column of the project, click Edit.

4. In the Edit dialog box, update Name and Description of the project.

5. Click OK.

A message indicates whether the action was successful.

Note: You can enable or disable the project by using the Enable or Forbidden options available
in the More dropdown list.

Add a new user

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Users category.

3. On the Create User page, enter the user User Name, Password, Confirm Password, Email, Phone,
Real Name and Status.

If you choose Advanced Options, new fields for Select Project and Select User Group display. You
can assign role to user on project. You can also add user to group.

4. Click Confirm.

The new user is now displayed in the Users list.

Delete a user

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Users category.

3. Select the check boxes for the users that you want to delete.

4. Click Delete and confirm your choice.

A message indicates whether the action was successful.

24 Chapter 2. Using Skyline Console

Skyline Console Developer Documentation, Release 3.0.1.dev2

Update a user

1. Log into the OpenStack Dashboard as the Admin user.

2. On the Administrator page, open the Identity tab and click Users category.

3. In the Action column of the user, click Edit.

4. In the Edit dialog box, update User Name, Description, Email, Phone and Real Name of the user.

5. Click OK.

A message indicates whether the action was successful.

Note: You can enable or disable the user by using the Enable or Forbidden options available in
the More dropdown list.

For more information about dashboard, see Openstack Dashboard.

To deploy skyline, see Skyline Installation Guide for Ubuntu.

To configure skyline, see OpenStack Skyline Settings.

2.4. Administration Guide 25

https://docs.openstack.org/skyline-apiserver/latest/configuration/settings.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

26 Chapter 2. Using Skyline Console

CHAPTER

THREE

CONTRIBUTOR DOCS

3.1 Contributor Documentation

In this section you will find information on how to contribute to skyline-console. Content includes ar-
chitectural overviews, tips and tricks for setting up a development environment.

3.1.1 Getting Started

So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with the skyline-console
project, which is responsible for the following OpenStack deliverables:

skyline-console

The OpenStack Modern Dashboard - front-end.
code: https://opendev.org/openstack/skyline-console
docs: https://docs.openstack.org/skyline-console/latest/
Launchpad: https://launchpad.net/skyline-console

Communication

IRC
We use IRC a lot. You will, too. You can find infomation about what IRC network OpenStack
uses for communication (and tips for using IRC) in the Setup IRC section of the main OpenStack
Contributor Guide.

People working on the Skyline Console project may be found in the #openstack-skyline IRC
channel during working hours in their timezone. The channel is logged, so if you ask a ques-
tion when no one is around, you can check the log to see if its been answered: http://eavesdrop.
openstack.org/irclogs/%23openstack-skyline/

weekly meeting

27

https://docs.openstack.org/contributors/
https://opendev.org/openstack/skyline-console
https://docs.openstack.org/skyline-console/latest/
https://launchpad.net/skyline-console
https://docs.openstack.org/contributors/common/irc.html
http://eavesdrop.openstack.org/irclogs/%23openstack-skyline/
http://eavesdrop.openstack.org/irclogs/%23openstack-skyline/

Skyline Console Developer Documentation, Release 3.0.1.dev2

Note: Now we have not weekly meeting, we will have it in the future.

mailing list
We use the openstack-discuss@lists.openstack.org mailing list for asynchronous discussions or to
communicate with other OpenStack teams. Use the prefix [skyline] in your subject line (its a
high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Contacting the Core Team

The skyline-core team is an active group of contributors who are responsible for directing and maintaining
the skyline-console project. As a new contributor, your interaction with this group will be mostly through
code reviews, because only members of skyline-core can approve a code change to be merged into the
code repository.

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
//docs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of skyline-core is maintained in gerrit: https://review.opendev.org/admin/groups/
1fe65032c39f1d459327b010730627a904d7b793,members

Project Team Lead

For each development cycle, Skyline Console project Active Technical Contributors (ATCs) elect a
Project Team Lead who is responsible for running midcycles, and skyline-console sessions at the Project
Team Gathering for that cycle (and who is also ultimately responsible for everything else the project
does).

• You automatically become an ATC by making a commit to one of the skyline-console deliverables.
Other people who havent made a commit, but have contributed to the project in other ways (for
example, making good bug reports) may be recognized as extra-ATCs and obtain voting privileges.
If you are such a person, contact the current PTL before the Extra-ATC freeze indicated on the
current development cycle schedule (which you can find from the OpenStack Releases homepage
.

The current Skyline Console project Project Team Lead (PTL) is listed in the Skyline Console project
reference maintained by the OpenStack Technical Committee.

All common PTL duties are enumerated in the PTL guide.

28 Chapter 3. Contributor Docs

mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/admin/groups/1fe65032c39f1d459327b010730627a904d7b793,members
https://review.opendev.org/admin/groups/1fe65032c39f1d459327b010730627a904d7b793,members
https://releases.openstack.org/index.html
https://governance.openstack.org/tc/reference/projects/skyline.html
https://governance.openstack.org/tc/reference/projects/skyline.html
https://docs.openstack.org/project-team-guide/ptl.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

New Feature Planning

The Skyline Console project uses blueprints to track new features. Heres a quick rundown of what they
are and how the Skyline Console project uses them.

blueprints

Exist in Launchpad, where they can be targeted to release milestones.
You file one at https://blueprints.launchpad.net/skyline-console

Feel free to ask in #openstack-skyline if you have an idea you want to develop and youre not sure
whether it requires a blueprint and a spec or simply a blueprint.

The Skyline Console project observes the following deadlines. For the current development cycle, the
dates of each (and a more detailed description) may be found on the release schedule, which you can find
from: https://releases.openstack.org/

• bp freeze (all bps must be approved by this date)

• new feature status checkpoint

Task Tracking

We track our tasks in Launchpad. See the top of the page for the URL of Skyline Console project deliv-
erable.

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag in the Bugs section.

When you start working on a bug, make sure you assign it to yourself. Otherwise someone else may also
start working on it, and we dont want to duplicate efforts. Also, if you find a bug in the code and want
to post a fix, make sure you file a bug (and assign it to yourself!) just in case someone else comes across
the problem in the meantime.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so in the Launchpad space for
the affected deliverable:

• skyline-console: https://bugs.launchpad.net/skyline-console

Getting Your Patch Merged

Before your patch can be merged, it must be reviewed and approved.

The Skyline Console project policy is that a patch must have two +2s before it can be merged. (Exceptions
are documentation changes, which require only a single +2, for which the PTL may require more than
two +2s, depending on the complexity of the proposal.) Only members of the skyline-core team can vote
+2 (or -2) on a patch, or approve it.

Note: Although your contribution will require reviews by members of skyline-core, these arent the
only people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other

3.1. Contributor Documentation 29

https://blueprints.launchpad.net/skyline-console
https://releases.openstack.org/
https://bugs.launchpad.net/skyline-console

Skyline Console Developer Documentation, Release 3.0.1.dev2

developers you know to review your code and you can review theirs. (A good way to learn your way
around the codebase is to review other peoples patches.)

If youre thinking, Im new at this, how can I possibly provide a helpful review?, take a look at How to
Review Changes the OpenStack Way.

There are also some Skyline Console project specific reviewing guidelines in the Code Reviews section
of the Skyline Console Contributor Guide.

In addition, some changes may require a release note. Any patch that changes functionality, adds func-
tionality, or addresses a significant bug should have a release note. You can find more information about
how to write a release note in the Release notes section of the Skyline Console Contributors Guide.

Note: Keep in mind that the best way to make sure your patches are reviewed in a timely manner is to
review other peoples patches. Were engaged in a cooperative enterprise here.

If your patch has a -1 from Zuul, you should fix it right away, because people are unlikely to review a
patch that is failing the CI system.

How long it may take for your review to get attention will depend on the current project priorities. For
example, the feature freeze is at the third milestone of each development cycle, so feature patches have
the highest priority just before M-3. These dates are clearly noted on the release schedule for the current
release, which you can find from https://releases.openstack.org/

You can see whos been doing what with Skyline Console recently in Stackalytics: https://www.
stackalytics.io/report/activity?module=skyline-group

Backporting a Fix

From time to time, you may find a bug thats been fixed in master, and youd like to have that fix in the
release youre currently using (for example, Wallaby). What you want to do is propose a backport of the
fix.

Note: The Skyline Console project observes the OpenStack Stable Branch Policy. Thus, not every
change in master is backportable to the stable branches. In particular, features are never backportable.
A really complicated bugfix may not be backportable if what it fixes is low-occurrence and theres a high
risk that it may cause a regression elsewhere in the software.

How can you tell? Ask in the #openstack-skyline channel on IRC.

Since we use git for source code version control, backporting is done by cherry-picking a change that has
already been merged into one branch into another branch. The gerrit web interface makes it really easy
to do this. In fact, maybe too easy. Here are some guidelines:

• Before you cherry-pick a change, make sure it has already merged to master. If the change hasnt
merged yet, it may require further revision, and the commit youve cherry-picked wont be the correct
commit to backport.

• Backports must be done in reverse chronological order. Since OpenStack releases are named
alphabetically, this means reverse alphabetical order: stable/yoga, stable/xena, etc.

30 Chapter 3. Contributor Docs

https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://releases.openstack.org/
https://www.stackalytics.io/report/activity?module=skyline-group
https://www.stackalytics.io/report/activity?module=skyline-group
https://docs.openstack.org/project-team-guide/stable-branches.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

• The cherry-pick must have merged into the closest most recent branch before it will be considered
for a branch, that is, a cherry-pick to stable/xena will not be considered until it has merged into
stable/yoga first.

– This is because sometimes a backport requires revision along the way. For example, different
OpenStack releases support different versions of Python. So if a fix uses a language feature
introduced in Python 3.8, it will merge just fine into current master (during zed development),
but it will not pass unit tests in stable/yoga (which supports Python 3.6). Likewise, if you
already cherry-picked the patch from master directly to stable/xena, it wont pass tests there
either (because xena also supports Python 3.6).

So its better to follow the policy and wait until the patch is merged into stable/yoga before
you propose a backport to stable/xena.

• You can propose backports directly from git instead of using the gerrit web interface, but if you
do, you must include the fact that its a cherry-pick in the commit message. Gerrit does this au-
tomatically for you if you cherry-pick from a merged commit (which is the only kind of commit
you should cherry-pick from in Gerrit); git will do it for you if you use the -x flag when you do a
manual cherry-pick.

This will keep the history of this backport intact as it goes from branch to branch. We want this
information to be in the commit message and to be accurate, because if the fix causes a regression
(which is always possible), it will be helpful to the poor sucker who has to fix it to know where
this code came from without digging through a bunch of git history.

If you have questions about any of this, or if you have a bug to fix that is only present in one of the stable
branches, ask for advice in #openstack-skyline on IRC.

Backport CI Testing

Like all code changes, backports should undergo continuous integration testing. This is done automati-
cally by Zuul for changes that affect the main skyline-console code.

This shouldnt be a big deal because presumably youve done local testing with your backend to ensure
that the code works as expected in a stable branch; were simply asking that this be documented on the
backport.

Skyline Project Releases

The Skyline project follows the OpenStack 6 month development cycle, at the end of which a new stable
branch is created from master, and master becomes the development branch for the next development
cycle.

Because many OpenStack consumers dont move as quickly as OpenStack development, we backport
appropriate bugfixes from master into the stable branches and create new releases for consumers to use
for a while. See the Stable Branches section of the OpenStack Project Team Guide for details about the
timelines.

What follows is information about the Skyline project and its releases.

3.1. Contributor Documentation 31

https://docs.openstack.org/project-team-guide/stable-branches.html
https://docs.openstack.org/project-team-guide/index.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

Where Stuff Is

The Skyline Project Deliverables

https://governance.openstack.org/tc/reference/projects/skyline.html#deliverables

The Code Repositories

• https://opendev.org/openstack/skyline-apiserver

• https://opendev.org/openstack/skyline-console

All Skyline Project Releases

https://releases.openstack.org/teams/skyline.html

How Stuff Works

Releases from Master

Releases from master for skyline-console follow the cycle-with-rc release model.

• The cycle-with-rc model describes projects that produce a single release at the end of the cycle,
with one or more release candidates (RC) close to the end of the cycle and optional development
milestone betas published on a per-project need.

For more information about the release models and deliverable types: https://releases.openstack.org/
reference/release_models.html

Branching

All Skyline project deliverables follow the OpenStack stable branch policy. Briefly,

• The stable branches are intended to be a safe source of fixes for high impact bugs and security
issues which have been fixed on master since a given release.

• Stable branches are cut from the last release of a given deliverable, at the end of the common
6-month development cycle.

While anyone may propose a release, releases must be approved by the OpenStack Release Managers.

32 Chapter 3. Contributor Docs

https://governance.openstack.org/tc/reference/projects/skyline.html#deliverables
https://opendev.org/openstack/skyline-apiserver
https://opendev.org/openstack/skyline-console
https://releases.openstack.org/teams/skyline.html
https://releases.openstack.org/reference/release_models.html
https://releases.openstack.org/reference/release_models.html
https://docs.openstack.org/project-team-guide/stable-branches.html
https://review.opendev.org/admin/groups/5c75219bf2ace95cdea009c82df26ca199e04d59,members

Skyline Console Developer Documentation, Release 3.0.1.dev2

Contributing Documentation to Skyline Console

This page provides guidance on how to provide documentation for those who may not have previously
been active writing documentation for OpenStack.

Documentation Content

To keep the documentation consistent across projects, and to maintain quality, please follow the Open-
Stack Writing style guide.

Using RST

OpenStack documentation uses reStructuredText to write documentation. The files end with a .rst
extension. The .rst files are then processed by Sphinx to build HTML based on the RST files.

Note: Files that are to be included using the .. include:: directive in an RST file should use the
.inc extension. If you instead use the .rst this will result in the RST file being processed twice during
the build and cause Sphinx to generate a warning during the build.

reStructuredText is a powerful language for generating web pages. The documentation team has put
together an RST conventions page with information and links related to RST.

Building Skyline Consoles Documentation

To build documentation the following command should be used:

tox -e docs

When building documentation it is important to also run docs.

Note: The tox documentation jobs (docs, releasenotes) are set up to treat Sphinx warnings as errors.
This is because many Sphinx warnings result in improperly formatted pages being generated, so we prefer
to fix those right now, instead of waiting for someone to report a docs bug.

During the documentation build a number of things happen:

• All of the RST files under doc/source are processed and built.

– The openstackdocs theme is applied to all of the files so that they will look consistent with
all the other OpenStack documentation.

– The resulting HTML is put into doc/build/html.

After the build completes the results may be accessed via a web browser in the doc/build/html direc-
tory structure.

3.1. Contributor Documentation 33

https://docs.openstack.org/doc-contrib-guide/writing-style.html
https://docs.openstack.org/doc-contrib-guide/rst-conv.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

Review and Release Process

Documentation changes go through the same review process as all other changes.

Note: Reviewers can see the resulting web page output by clicking on openstack-tox-docs in the
Zuul check table on the review, and then look for Artifacts > Docs preview site.

This is also true for the build-openstack-releasenotes check jobs.

Once a patch is approved it is immediately released to the docs.openstack.org website and can be seen
under Skyline Consoles Documentation Page at https://docs.openstack.org/skyline-console/latest. When
a new release is cut a snapshot of that documentation will be kept at https://docs.openstack.org/
skyline-console/<release>. Changes from master can be backported to previous branches if nec-
essary.

Finding something to contribute

If you are reading the documentation and notice something incorrect or undocumented, you can directly
submit a patch following the advice set out below.

There are also documentation bugs that other people have noticed that you could address:

• https://bugs.launchpad.net/skyline-console/+bugs?field.tag=doc

Note: If you dont see a bug listed, you can also try the tag docs or documentation. We tend to use doc
as the appropriate tag, but occasionally a bug gets tagged with a variant.

3.1.2 Writing Release Notes

Please follow the format, it will make everyones life easier.

Release notes

The release notes for a patch should be included in the patch.

If the following applies to the patch, a release note is required:

• Upgrades

– The deployer needs to take an action when upgrading

– A new config option is added that the deployer should consider changing from the default

– A configuration option is deprecated or removed

• Features

– A new feature is implemented

– Feature is deprecated or removed

– Current behavior is changed

34 Chapter 3. Contributor Docs

https://docs.openstack.org/skyline-console/latest
https://bugs.launchpad.net/skyline-console/+bugs?field.tag=doc

Skyline Console Developer Documentation, Release 3.0.1.dev2

• Bugs

– A security bug is fixed

– A long-standing or important bug is fixed

• APIs

– REST API changes

Reviewing release note content

Release notes are user facing. We expect operators to read them (and other people interested in seeing
whats in a new release may read them, too). This makes a release note different from a commit message,
which is aimed at other developers.

Keep this in mind as you review a release note. Also, since its user facing, something you would think
of as a nit in a code comment (for example, bad punctuation or a misspelled word) is not really a nit in a
release noteits something that needs to be corrected. This also applies to the format of the release note,
which should follow the standards set out later in this document.

In summary, dont feel bad about giving a -1 for a nit in a release note. We dont want to have to go back
and fix typos later, especially for a bugfix thats likely to be backported, which would require squashing
the typo fix into the backport patch (which is something thats easy to forget). Thus we really want to get
release notes right the first time.

Fixing a release note

Of course, even with careful writing and reviewing, a mistake can slip through that isnt noticed until
after a release. If that happens, the patch to correct a release note must be proposed directly to the stable
branch in which the release note was introduced. (Yes, this is completely different from how we handle
bugs.)

This is because of how reno scans release notes and determines what release they go with. See Updating
Stable Branch Release Notes in the reno User Guide for more information.

Bugs

For bug fixes, release notes must include the bug number in Launchpad with a link to it as a RST link.

Note the use of the past tense (Fixed) instead of the present tense (Fix). This is because although you are
fixing the bug right now in the present, operators will be reading the release notes in the future (at the
time of the release), at which time your bug fix will be a thing of the past.

Additionally, keep in mind that when your release note is published, it is mixed in with all the other
release notes and wont obviously be connected to your patch. Thus, in order for it to make sense, you
may need to repeat information that you already have in your commit message. Thats OK.

3.1. Contributor Documentation 35

https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes
https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes

Skyline Console Developer Documentation, Release 3.0.1.dev2

Creating the note

Skyline Console uses reno to generate release notes. Please read the docs for details. In summary, use

$ tox -e venv -- reno new <bug-,bp-,whatever>

Then edit the sample file that was created and push it with your change.

To see the results:

$ git commit # Commit the change because reno scans git log.

$ tox -e releasenotes

Then look at the generated release notes files in releasenotes/build/html in your favorite browser.

3.1.3 Programming HowTos and Tutorials

Setting Up a Development Environment

This page describes how to setup a working development environment that can be used in developing
skyline-console on Linux. These instructions assume youre already familiar with git. Refer to Get-
tingTheCode for additional information.

Following these instructions will allow you to run the skyline-console unit tests.

Linux Systems

Install system dependencies

• Ubuntu/Debian

sudo apt-get install libgtk2.0-0 libgtk-3-0 libgbm-dev libnotify-
↪→dev libgconf-2-4 libnss3 libxss1 libasound2 libxtst6 xauth xvfb

• CentOS

yum install -y xorg-x11-server-Xvfb gtk2-devel gtk3-devel␣
↪→libnotify-devel GConf2 nss libXScrnSaver alsa-lib

Getting the code

Grab the code:

git clone https://opendev.org/openstack/skyline-console.git
cd skyline-console

36 Chapter 3. Contributor Docs

https://docs.openstack.org/reno/latest/
https://wiki.openstack.org/wiki/Getting_The_Code
https://wiki.openstack.org/wiki/Getting_The_Code

Skyline Console Developer Documentation, Release 3.0.1.dev2

Setup Your Local Development Env

• Install nvm (version control system for nodejs)

wget -P /root/ --tries=10 --retry-connrefused --waitretry=60 --no-dns-
↪→cache --no-cache https://raw.githubusercontent.com/nvm-sh/nvm/master/
↪→install.sh
bash /root/install.sh
. /root/.nvm/nvm.sh

• Install nodejs

nvm install --lts=Erbium
nvm alias default lts/erbium
nvm use default

• Verify nodejs and npm versions

node -v
v12.*.*
npm -v
6.*.*

• Install yarn

npm install -g yarn

• Install the project dependency under the root directory, with package.json in the same place.

yarn install

After those steps, please just wait until the installation is complete.

You can also use the following commands:

• yarn run mock: Use the mock interface of rap2

• yarn run dev: To use the actual interface, you can copy config/config.yaml to config/
local_config.yaml , and replace the server value with the correct address.

• yarn run build: Build packages and then you can hand over the contents of the generated dist
directory to the back end.

For more information about configuration, see Skyline Console Settings Reference.

3.1. Contributor Documentation 37

http://rap2.taobao.org/

Skyline Console Developer Documentation, Release 3.0.1.dev2

Running tests

• e2e tests

yarn run test:e2e

• unit tests

yarn run test:unit

Contributing Your Work

Once your work is complete you may wish to contribute it to the project. skyline-console uses the Gerrit
code review system. For information on how to submit your branch to Gerrit, see GerritWorkflow.

3.1.4 Other Resources

Code Reviews

Skyline Console follows the same Review guidelines outlined by the OpenStack community. This page
provides additional information that is helpful for reviewers of patches to Skyline Console.

Gerrit

Skyline Console uses the Gerrit tool to review proposed code changes. The review site is https://review.
opendev.org

Gerrit is a complete replacement for Github pull requests. All Github pull requests to the Skyline Console
repository will be ignored.

See Quick Reference for information on quick reference for developers. See Getting Started for infor-
mation on how to get started using Gerrit. See Development Workflow for more detailed information on
how to work with Gerrit.

The Great Change

Skyline Console has a modern technology stack and ecology, is easier for developers to maintain and
operate by users, and has higher concurrency performance. And it focus on functional design and user
experience. Embrace modern browser technology and ecology: React, Ant Design and Mobx. Use React
component to process rendering, the page display process is fast and smooth, bringing users a better UI
and UE experience.

38 Chapter 3. Contributor Docs

https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/doc-contrib-guide/docs-review-guidelines.html
https://review.opendev.org/q/project:openstack/skyline-apiserver+status:open
https://review.opendev.org
https://review.opendev.org
https://docs.openstack.org/infra/manual/developers.html#quick-reference
https://docs.openstack.org/infra/manual/developers.html#getting-started
https://docs.openstack.org/infra/manual/developers.html#development-workflow

Skyline Console Developer Documentation, Release 3.0.1.dev2

Unit Tests

Skyline Console requires unit tests with all patches that introduce a new branch or function in the code.
Changes that do not come with a unit test change should be considered closely and usually returned to
the submitter with a request for the addition of unit test.

CI Job rechecks

CI job runs may result in false negatives for a considerable number of causes:

• Network failures.

• Not enough resources on the job runner.

• Storage timeouts caused by the array running nightly maintenance jobs.

• External service failure: pypi, package repositories, etc.

• Non skyline-console components spurious bugs.

And the list goes on and on.

When we detect one of these cases the normal procedure is to run a recheck writing a comment with
recheck for core Zuul jobs.

These false negative have periods of time where they spike, for example when there are spurious failures,
and a lot of rechecks are necessary until a valid result is posted by the CI job. And its in these periods of
time where people acquire the tendency to blindly issue rechecks without looking at the errors reported
by the jobs.

When these blind checks happen on real patch failures or with external services that are going to be out
for a while, they lead to wasted resources as well as longer result times for patches in other projects.

The Skyline community has noticed this tendency and wants to fix it, so now it is strongly encouraged to
avoid issuing naked rechecks and instead issue them with additional information to indicate that we have
looked at the failure and confirmed it is unrelated to the patch.

Efficient Review Guidelines

This section will guide you through the best practices you can follow to do quality code reviews:

• Failing Gate: You can look for possible failures in linting, unit test, functional test etc and provide
feedback on fixing it. Usually its the authors responsibility to do a local run of tox and ensure they
dont fail upstream but if something is failing on gate and the author is not be aware about how to
fix it then we can provide valuable guidance on it.

• Documentation: Check whether the patch proposed requires documentation or not and ensure the
proper documentation is added. If the proper documentation is added then the next step is to check
the status of docs job if its failing or passing. If it passes, you can check how it looks in HTML as
follows: Go to openstack-tox-docs job link -> View Log -> docs and go to the appropriate
section for which the documentation is added. Rendering: We do have a job for checking failures
related to document changes proposed (openstack-tox-docs) but we need to be aware that even if
a document change passes all the syntactical rules, it still might not be logically correct i.e. after
rendering it could be possible that the bullet points are not under the desired section or the spacing

3.1. Contributor Documentation 39

Skyline Console Developer Documentation, Release 3.0.1.dev2

and indentation is not as desired. It is always good to check the final document after rendering in
the docs job which might yield possible logical errors.

• Readability: Readability is a big factor as remembering the logic of every code path is not feasible
and contributors change from time to time. We should adapt to writing readable code which is
easy to follow and can be understood by anyone having knowledge about JavaScript and working
of Skyline Console. Sometimes it happens that a logic can only be written in a complex way, in
that case, its always good practice to add a comment describing the functionality. So, if a logic
proposed is not readable, do ask/suggest a more readable version of it and if thats not feasible then
asking for a comment that would explain it is also a valid review point.

• Downvoting reason: It often happens that the reviewer adds a bunch of comments some of which
they would like to be addressed (blocking) and some of them are good to have but not a hard
requirement (non-blocking). Its a good practice for the reviewer to mention for which comments
is the -1 valid so to make sure they are always addressed.

• Testing: Always check if the patch adds the associated unit, functional and e2e tests depending on
the change.

• Commit Message: There are few things that we should make sure the commit message includes:

1) Make sure the author clearly explains in the commit message why the code changes are necessary
and how exactly the code changes fix the issue.

2) It should have the appropriate tags (Eg: Closes-Bug, Related-Bug, Blueprint, Depends-On etc).
For detailed information refer to external references in commit message.

3) It should follow the guidelines of commit message length i.e. 50 characters for the summary line
and 72 characters for the description. More information can be found at Summary of Git commit
message structure.

4) Sometimes it happens that the author updates the code but forgets to update the commit message
leaving the commit describing the old changes. Verify that the commit message is updated as per
code changes.

• Release Notes: There are different cases where a releasenote is required like fixing a bug, adding
a feature, changing areas affecting upgrade etc. You can refer to the Release notes section in our
contributor docs for more information.

• Ways of reviewing: There are various ways you can go about reviewing a patch, following are
some of the standard ways you can follow to provide valuable feedback on the patch:

1) Testing it in local environment: The easiest way to check the correctness of a code change
proposed is to reproduce the issue (steps should be in launchpad bug) and try the same steps after
applying the patch to your environment and see if the provided code changes fix the issue. You
can also go a little further to think of possible corner cases where an end user might possibly face
issues again and provide the same feedback to cover those cases in the original change proposed.

2) Optimization: If youre not aware about the code path the patch is fixing, you can still go ahead
and provide valuable feedback about the python code if that can be optimized to improve main-
tainability or performance.

40 Chapter 3. Contributor Docs

https://wiki.openstack.org/wiki/GitCommitMessages#Including_external_references
https://wiki.openstack.org/wiki/GitCommitMessages#Summary_of_Git_commit_message_structure
https://wiki.openstack.org/wiki/GitCommitMessages#Summary_of_Git_commit_message_structure
https://docs.openstack.org/skyline-apiserver/latest/contributor/releasenotes.html

Skyline Console Developer Documentation, Release 3.0.1.dev2

3.2 Development Guide

This section describes how to develop the Skyline Console.

3.2.1 Ready To Work

For more information about installation, refer to the Source Install Ubuntu

Preparation before development

• Node environment

– Requirement in package.json: "node": ">=10.22.0"

– Verify nodejs version

node -v

• Yarn

– Install yarn

npm install -g yarn

• Install dependencies

– Execute in the project root directory, which is the same level as package.json, and wait
patiently for the installation to complete

yarn install

• Prepare a usable backend

– Prepare an accessible backend, for example: https://172.20.154.250

– Add file config/local_config.yaml:

server: https://172.20.154.250

• Configure access host and port

– The default configuration is in config/config.yaml - host is 0.0.0.0 - port is 8088 -
If the current configuration does not need to be changed, the following steps do not need to
be operated.

– Added file config/local_config.yaml

– Add host and port configurations

host: localhost
port: 8080

• Completed

– Execute in the project root directory, which is the same level as package.json

3.2. Development Guide 41

Skyline Console Developer Documentation, Release 3.0.1.dev2

yarn run dev

– Use the host and port configured in config/config.yaml or config/local_config.
yaml to access, such as http://localhost:8088

– The front-end real-time update environment used for development is done.

Front-end package used in production environment

Have the required nodejs and yarn

Execute in the project root directory, which is the same level as package.json

yarn run build

The packaged files are in the dist directory and handed over to the deployment personnel.

Front-end package used for testing

Have the required nodejs and yarn

Execute in the project root directory, which is the same level as package.json

yarn run build:test

The packaged files are in the dist directory

Note: This test package is designed to measure code coverage

It is recommended to use nginx to complete the E2E test with code coverage

3.2.2 Catalog Introduction

Introduction to the first-level directory

• Gruntfile.js: Used to collect i18n

• LICENSE: This project uses Apache License

• Makefile

• README.rst: A brief description of the front-end startup, please refer to the docs for details

• config: webpack configuration, which contains webpack configuration in public, development en-
vironment, test environment, and build environment

• cypress.json: E2E test configuration file

• docker: Contains the docker configuration used in the development environment, generation envi-
ronment, and test environment

• docs: Documentation introduction, including Chinese, English, development documentation, test-
ing documentation

42 Chapter 3. Contributor Docs

Skyline Console Developer Documentation, Release 3.0.1.dev2

• jest.config.js: Unit test configuration file

• jsconfig.json: javascript code configuration file

• package.json: Configuration files such as installation packages and commands

• yarn.lock: The version lock file of the package

• .babelrc: Babel configuration file

• .dockerignore: File configuration ignored by docker

• .eslintignore: File configuration ignored by eslint

• .eslint: Eslint configuration

• .gitignore: File configuration ignored by git

• .gitreview: Gitreview configuration

• .prettierignore: File configuration ignored by prettier

• .prettierrc: Prettier configuration

• src: The folder where the development code is located

• test: The folder where the test code is located, contains e2e test code and basic code for unit
testing

• tools: Other tools folder, containing git tools

Catalog Introduction-Image Version

.
Gruntfile.js (Used to collect i18n)
LICENSE
Makefile
README.rst
config
ăă config.yaml (The default configuration of host, port, and server during␣
↪→development)
ăă local_config.yaml (gitignore file, you can configure the host/port/server␣
↪→used in the actual development, if the actual value is different from the␣
↪→default value in config.yaml, you can modify it in this file)
ăă server.dev.js (Read the custom configuration information used during␣
↪→development)
ăă utils.js
ăă theme.js
ăă webpack.common.js
ăă webpack.dev.js (Webpack configuration used during development)
ăă webpack.e2e.js (The webpack configuration used during e2e testing can␣
↪→generate a package for testing coverage)
ăă webpack.prod.js (Webpack packaging configuration used by the generation␣
↪→environment)
cypress.json (E2E configuration)
docker
ăă dev.dockerfile

(continues on next page)

3.2. Development Guide 43

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

ăă nginx.conf
ăă prod.dockerfile
ăă test.dockerfile
docs (Documents)
jest.config.js (Unit testing configuration)
jsconfig.json
package.json
src
ăă api (Api summary, not used yet)
ăă asset
ăă ăă image (Images placement)
ăă ăă template
ăă ăă index.html
ăă components (Public components)
ăă containers
ăă ăă Action
ăă ăă ăă ConfirmAction (Confirmed action base class)
ăă ăă ăă FormAction (Single page action base class)
ăă ăă ăă ModalAction (Pop-up action base class)
ăă ăă ăă StepAction (Multi-step single-page action, for example: create a␣
↪→cloud host)
ăă ăă ăă index.jsx
ăă ăă BaseDetail (Detail page base class with detailed information)
ăă ăă List (The base class of the list page, for example: cloud host)
ăă ăă TabDetail (The base class of the detail page with tab switching, for␣
↪→example: instance details)
ăă ăă TabList (List page with tab switch)
ăă core
ăă ăă App.jsx
ăă ăă i18n.js
ăă ăă index.jsx (Entry)
ăă ăă routes.js (Routing configuration by module)
ăă layouts
ăă ăă Base (Layout used after login)
ăă ăă Blank (Blank layout)
ăă ăă User (Layout used for login)
ăă ăă admin-menu.jsx (Menu configuration used by the management platform)
ăă ăă menu.jsx (Menu configuration used by the console)
ăă locales (Translation)
ăă ăă en.json
ăă ăă index.js
ăă ăă zh.json
ăă pages (The page-directory structure is assigned according to: menu item-
↪→secondary menu, where the pages of the secondary menu are placed in the␣
↪→containers folder)
ăă ăă base
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă 404 (404 page)

(continues on next page)

44 Chapter 3. Contributor Docs

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă AdminOverview (Management platform home page)
ăă ăă ăă ăă ăă components
ăă ăă ăă ăă ăă ăă ComputeService.jsx
ăă ăă ăă ăă ăă ăă NetworkService.jsx
ăă ăă ăă ăă ăă ăă PlatformInfo.jsx
ăă ăă ăă ăă ăă ăă ResourceOverview.jsx
ăă ăă ăă ăă ăă ăă VirtualResource.jsx
ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă style.less
ăă ăă ăă ăă Overview (Console home page)
ăă ăă ăă ăă components
ăă ăă ăă ăă ăă ProjectInfo.jsx
ăă ăă ăă ăă ăă QuotaOverview.jsx
ăă ăă ăă ăă ăă ResourceStatistic.jsx
ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă style.less
ăă ăă ăă routes (Routing configuration)
ăă ăă ăă index.js
ăă ăă compute
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă BareMetalNode (Bare metal configuration)
ăă ăă ăă ăă Flavor (Instance type)
ăă ăă ăă ăă HostAggregate (Host Aggregate)
ăă ăă ăă ăă ăă Aggregate (Host Aggregate)
ăă ăă ăă ăă ăă AvailabilityZone (Availability zone)
ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă Hypervisors (Hypervisors management)
ăă ăă ăă ăă ăă ComputeHost (Compute host)
ăă ăă ăă ăă ăă Hypervisor (Hypervisor manager)
ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă Image (Image)
ăă ăă ăă ăă Instance (Instance)
ăă ăă ăă ăă ăă Detail (Detail page)
ăă ăă ăă ăă ăă ăă BaseDetail (Base info)
ăă ăă ăă ăă ăă ăă SecurityGroup (Security group)
ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă actions (Actions)
ăă ăă ăă ăă ăă ăă AssociateFip.jsx (Associate fip ip)
ăă ăă ăă ăă ăă ăă AttachInterface.jsx (Attach interface)
ăă ăă ăă ăă ăă ăă AttachIsoVolume.jsx (Attach iso volume)
ăă ăă ăă ăă ăă ăă AttachVolume.jsx (Attach volume)
ăă ăă ăă ăă ăă ăă ChangePassword.jsx (Change password)
ăă ăă ăă ăă ăă ăă Console.jsx (Console)
ăă ăă ăă ăă ăă ăă CreateImage.jsx (Create Image)
ăă ăă ăă ăă ăă ăă CreateIronic (Create ironic-Step-by-step Form)
ăă ăă ăă ăă ăă ăă ăă BaseStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx

(continues on next page)

3.2. Development Guide 45

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

ăă ăă ăă ăă ăă ăă ăă ConfirmStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă NetworkStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă SystemStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă index.less
ăă ăă ăă ăă ăă ăă CreateSnapshot.jsx (Create snapshot)
ăă ăă ăă ăă ăă ăă Delete.jsx (Delete instance)
ăă ăă ăă ăă ăă ăă DeleteIronic.jsx (Delete ironic)
ăă ăă ăă ăă ăă ăă DetachInterface.jsx (Detach interface)
ăă ăă ăă ăă ăă ăă DetachIsoVolume.jsx (Detach iso volume)
ăă ăă ăă ăă ăă ăă DetachVolume.jsx (Detach volume)
ăă ăă ăă ăă ăă ăă DisassociateFip.jsx (Disassociate fip iP)
ăă ăă ăă ăă ăă ăă Edit.jsx (Edit instance)
ăă ăă ăă ăă ăă ăă ExtendRootVolume.jsx (Expand the root disk)
ăă ăă ăă ăă ăă ăă LiveMigrate.jsx (Live migrate)
ăă ăă ăă ăă ăă ăă Lock.jsx (Lock instance)
ăă ăă ăă ăă ăă ăă ManageSecurityGroup.jsx (Manage security group)
ăă ăă ăă ăă ăă ăă Migrate.jsx (Migrate)
ăă ăă ăă ăă ăă ăă Pause.jsx (Pause instance)
ăă ăă ăă ăă ăă ăă Reboot.jsx (Reboot instance)
ăă ăă ăă ăă ăă ăă Rebuild.jsx (Rebuild instance)
ăă ăă ăă ăă ăă ăă RebuildSelect.jsx (Select the image to rebuild the␣
↪→instance)
ăă ăă ăă ăă ăă ăă Resize.jsx (Change configuration)
ăă ăă ăă ăă ăă ăă ResizeOnline.jsx (Modify configuration online)
ăă ăă ăă ăă ăă ăă Resume.jsx (Resume instance)
ăă ăă ăă ăă ăă ăă Shelve.jsx (Shelve instance)
ăă ăă ăă ăă ăă ăă SoftDelete.jsx (Soft delete instance)
ăă ăă ăă ăă ăă ăă SoftReboot.jsx (Soft reboot instance)
ăă ăă ăă ăă ăă ăă Start.jsx (Start instance)
ăă ăă ăă ăă ăă ăă StepCreate (Create a instance-step by step creation)
ăă ăă ăă ăă ăă ăă ăă BaseStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă ConfirmStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă NetworkStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă SystemStep
ăă ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă ăă index.less
ăă ăă ăă ăă ăă ăă Stop.jsx (Stop instance)
ăă ăă ăă ăă ăă ăă Suspend.jsx (Suspend instance)
ăă ăă ăă ăă ăă ăă Unlock.jsx (Unlock instance)
ăă ăă ăă ăă ăă ăă Unpause.jsx (Unpause instance)
ăă ăă ăă ăă ăă ăă Unshelve.jsx (Unshelve instance)

(continues on next page)

46 Chapter 3. Contributor Docs

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

ăă ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă ăă index.less
ăă ăă ăă ăă ăă components (Component)
ăă ăă ăă ăă ăă ăă FlavorSelectTable.jsx
ăă ăă ăă ăă ăă ăă index.less
ăă ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă ăă index.less
ăă ăă ăă ăă Keypair (Key pair)
ăă ăă ăă ăă ServerGroup (Instance group)
ăă ăă ăă routes (Routing configuration under the compute menu)
ăă ăă ăă index.js
ăă ăă configuration (Platform configuration)
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă Metadata (Metadata definition)
ăă ăă ăă ăă Setting (System configuration)
ăă ăă ăă ăă SystemInfo (System info)
ăă ăă ăă routes (Routing configuration under the platform configuration␣
↪→menu)
ăă ăă ăă index.js
ăă ăă heat (Resource orchestration)
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă Stack (Stack)
ăă ăă ăă routes (Routing configuration under the resource arrangement menu)
ăă ăă ăă index.js
ăă ăă identity (Identity management)
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă Domain (Domain)
ăă ăă ăă ăă Project (Project)
ăă ăă ăă ăă Role (Role)
ăă ăă ăă ăă User (User)
ăă ăă ăă ăă UserGroup (User group)
ăă ăă ăă routes (Routing configuration)
ăă ăă ăă index.js
ăă ăă management (Operation and maintenance management)
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă RecycleBin (Recycle bin)
ăă ăă ăă routes (Routing configuration)
ăă ăă ăă index.js
ăă ăă network (Network)
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă FloatingIp (Floating ip)
ăă ăă ăă ăă LoadBalancers (Load balancing)
ăă ăă ăă ăă Network (Network)
ăă ăă ăă ăă QoSPolicy (Qos policy)

(continues on next page)

3.2. Development Guide 47

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

ăă ăă ăă ăă Router (Routing)
ăă ăă ăă ăă SecurityGroup (Security group)
ăă ăă ăă ăă Topology (Network topology)
ăă ăă ăă ăă VPN (VPN)
ăă ăă ăă ăă VirtualAdapter (Virtual Adapter)
ăă ăă ăă routes (Routing configuration)
ăă ăă ăă index.js
ăă ăă storage (Storage)
ăă ăă ăă App.jsx
ăă ăă ăă containers
ăă ăă ăă ăă Backup (Backup)
ăă ăă ăă ăă Snapshot (Volume snapshot)
ăă ăă ăă ăă Storage (Storage backend)
ăă ăă ăă ăă Volume (Volume)
ăă ăă ăă ăă VolumeType (Volume type)
ăă ăă ăă ăă QosSpec (QoS)
ăă ăă ăă ăă VolumeType (Volume type)
ăă ăă ăă ăă index.jsx
ăă ăă ăă routes ()
ăă ăă ăă index.js
ăă ăă user (Login page)
ăă ăă App.jsx
ăă ăă containers
ăă ăă ăă ChangePassword (Change password-according to system␣
↪→configuration)
ăă ăă ăă ăă index.jsx
ăă ăă ăă ăă index.less
ăă ăă ăă Login (Login)
ăă ăă ăă index.jsx
ăă ăă ăă index.less
ăă ăă routes (Routing configuration)
ăă ăă index.js
ăă resources (Store the public functions and status of each resource used␣
↪→by itself)
ăă stores (Data processing, divide folders by resource type)
ăă ăă base-list.js (Base class for list data)
ăă ăă base.js (Base class for data manipulation)
ăă ăă cinder
ăă ăă glance
ăă ăă heat
ăă ăă ironic
ăă ăă keystone
ăă ăă neutron
ăă ăă nova
ăă ăă octavia
ăă ăă overview-admin.js
ăă ăă project.js
ăă ăă root.js
ăă ăă skyline

(continues on next page)

48 Chapter 3. Contributor Docs

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

ăă styles (Public styles)
ăă ăă base.less
ăă ăă main.less
ăă ăă reset.less
ăă ăă variables.less
ăă utils (Public functions)
ăă RouterConfig.jsx
ăă constants.js
ăă cookie.js
ăă file.js
ăă file.spec.js
ăă index.js
ăă index.test.js (Unit testing)
ăă local-storage.js
ăă local-storage.spec.js (Unit testing)
ăă request.js
ăă table.jsx
ăă time.js
ăă time.spec.js
ăă translate.js
ăă translate.spec.js
ăă validate.js
ăă yaml.js
ăă yaml.spec.js
test
ăă e2e (E2E testing)
ăă unit (Unit testing)
tools
ăă git_config
ăă commit_message.txt
yarn.lock

3.3 Tests Guide

This section describes how to test the Skyline Console.

3.3.1 Ready To Work

We provide two test methods

• E2E test - Focus on function point testing - Can provide code coverage data - User Cypress frame
- Test results are saved in a static page for easy preview

• Unit test - Focus on basic function testing - User Jest frame

3.3. Tests Guide 49

Skyline Console Developer Documentation, Release 3.0.1.dev2

E2E test

1. Set up E2E test environment

Note: For more information about installation, refer to the Source Install Ubuntu

E2E test environment has been successfully built in Centos and wsl2 of Windows

1. node environment

• requirement in package.json: "node": ">=10.22.0"

• verify nodejs version

node -v

2. install yarn

npm install -g yarn

3. Install dependencies

• Execute in the project root directory, which is the same level as package.json, and
wait patiently for the installation to complete

yarn install

4. Install system dependencies

• Ubuntu/Debian

sudo apt-get install libgtk2.0-0 libgtk-3-0 libgbm-dev libnotify-dev␣
↪→libgconf-2-4 libnss3 libxss1 libasound2 libxtst6 xauth xvfb

• CentOS

yum install -y xorg-x11-server-Xvfb gtk2-devel gtk3-devel libnotify-
↪→devel GConf2 nss libXScrnSaver alsa-lib

5. Adjust the access path, account and other information

E2E configuration files are stored in test/e2e/config/config.yaml, Configured in it:

• baseUrl, test access path

• env, environment variable

– switchToAdminProject, Switch to the admin project after logging in

– username, User name to access the console, a user with console operation permis-
sions is required

– password, Password to access the console

– usernameAdmin, The user name to access the management platform, a user with the
operation authority of the management platform is required

– passwordAdmin, Password to access the management platform

50 Chapter 3. Contributor Docs

Skyline Console Developer Documentation, Release 3.0.1.dev2

• testFiles, Test files list

The configuration change can be completed by directly modifying the corresponding value
in config.yaml

You can also complete configuration changes through local_config.yaml

• Copy test/e2e/config/config.yaml to test/e2e/config/local_config.
yaml

• Modify the corresponding variables in local_config.yaml

• For the value of the variable, the priority is: local_config.yaml > config.yaml

2. Command line run E2E

yarn run test:e2e

3. GUI running E2E

yarn run test:e2e:open

4. E2E test results

After the test run is over, visit test/e2e/report/merge-report.html to view

5. E2E Code coverage test results

After the test run is over, visit coverage/lcov-report/index.html to view

Note: Code coverage, the front-end package corresponding to baseUrl that needs E2E access, is
dist package with a detectable code coverage version

yarn run build:test

The file packaged in the above way is a front-end package with testable code coverage

Below, the nginx configuration for front-end access to the front-end package with code coverage
function is given

server {
listen 0.0.0.0:8088 default_server;

root /path/to/skyline-console/dist;
index index.html;
server_name _;
location / {
try_files $uri $uri/ /index.html;

}

location /api {
proxy_pass http://<backend_address>;

}
}

3.3. Tests Guide 51

Skyline Console Developer Documentation, Release 3.0.1.dev2

Unit test

1. Command line run unit tests

yarn run test:unit

2. Unit test results

You can view the running results directly in the command line console

3.3.2 Catalog Introduction

test
e2e (E2E code storage location)

config
config.yaml (Part of the configuration when E2E running, mainly␣

↪→configures the test case file list, login account and other information)
local_config.yaml (Part of the configuration when E2E running,␣

↪→mainly configures the test case file list, login account and other␣
↪→information, which is gitignore and has a higher priority than config.yaml)

fixtures (Store upload files, read files, etc. required during␣
↪→operation)

keypair (Test file read by key)
metadata.json (Test metadata read file)
stack-content.yaml (Files read by the test stack)
stack-params.yaml (Files read by the test stack)

integration (Store unit test)
pages (Adjust the directory according to the webpage menu structure)

compute (compute)
aggregate.spec.js (aggregate)
baremetal.spec.js (baremetal)
flavor.spec.js (instance flavor)
hypervisor.spec.js (hypervisor)
image.spec.js (image)
instance.spec.js (instance)
ironic.spec.js (ironic)
keypair.spec.js (keypair)
server-group.spec.js (server group)

configuration (Platform configuration)
metadata.spec.js (metadata)
system.spec.js (system info)

error.spec.js (error page)
heat (heat)

stack.spec.js (stack)
identity (identity)

domain.spec.js (Domain)
project.spec.js (Project)
role.spec.js (Role)
user-group.spec.js (User group)
user.spec.js (User)

(continues on next page)

52 Chapter 3. Contributor Docs

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

login.spec.js (Login)
management (Operation management)

recycle-bin.spec.js (Recycle)
network (Network)

floatingip.spec.js (Floating ip)
lb.spec.js (Loadbalance)
network.spec.js (Network)
qos-policy.spec.js (Qos policy)
router.spec.js (Router)
security-group.spec.js (Security group)
topology.spec.js (Network topology)
port.spec.js (Virtual Adapter)
vpn.spec.js (VPN)

storage (Storage)
backup.spec.js (Backup)
qos.spec.js (QoS)
snapshot.spec.js (Volume snapshot)
storage.spec.js (Storage)
volume-type.spec.js (Volume type)
volume.spec.js (Volume)

plugins (Cypress plugins)
index.js (Configured to read the configuration file, configured to␣

↪→use the code coverage function)
report (Store E2E test report)

merge-report.html (The final test report that records the execution␣
↪→of each use case)

merge-report.json (Summary of test results in the results directory)
results (Store test result files)
screenshots (Store a snapshot of the test error)
support (When writing a test case, double-wrapped function)

commands.js (Store login, logout and other operation functions)
common.js (Store base functions)
constants.js (Store the route of each resource)
detail-commands.js (Store the functions related to the resource␣

↪→detail page, based on the framework, the operation of the detail page is␣
↪→consistent)

form-commands.js (Stores form-related functions, based on the␣
↪→framework, consistent with the operation of form items)

index.js
resource-commands.js (Store functions related to resource␣

↪→operations, such as creating instance, creating router, deleting resources,␣
↪→etc.)

table-commands.js (Store the functions related to the resource list␣
↪→based on the framework, and it has consistency in the operation of the lis)

utils (Store the read function for the configuration file)
index.js

unit (Unit test)
local-storage-mock.js (Storage mock function in local)
locales (Translation files used when testing internationalization)

(continues on next page)

3.3. Tests Guide 53

Skyline Console Developer Documentation, Release 3.0.1.dev2

(continued from previous page)

en-US.js
zh-hans.js

setup-tests.js (setup uni test)
svg-mock.js (Mock of image loading)

E2E test code, stored in the test/e2e directory

• Other global configurations of E2E are stored in cypress.json

The basic code of the unit test is stored in the test/unit directory

• Other global configuration of unit test, stored in jest.config.js

• The test code of the unit test is usually placed in the same directory as the file to be tested, and has
a suffix of test.js or spec.js

– case: src/utils/index.js and src/utils/index.test.js

– case: src/utils/local-storage.js and src/utils/local-storage.spec.js

3.3.3 How To Edit E2E Case

For specific introduction and usage of Cypress, please refer to Official document.

Here we mainly give the E2E use cases corresponding to the resources in the front-end page of Skyline-
console, and use function defined in test/e2e/support

The following is an introduction, taking the instance use case test/e2e/integration/pages/
compute/instance.spec.js as an example

Generally, when testing the corresponding functions of a resource, follow the following order

1. Prepare relevant variables in text

• Required parameters when creating a resource, such as: name, password

• Required parameters when editing resources, such as: new name

• When creating an associated resource, the name of the associated resource, such as: network name,
router name, volume name

const uuid = Cypress._.random(0, 1e6);
const name = `e2e-instance-${uuid}`;
const newname = `${name}-1`;
const password = 'passW0rd_1';
const volumeName = `e2e-instance-attach-volume-${uuid}`;
const networkName = `e2e-network-for-instance-${uuid}`;
const routerName = `e2e-router-for-instance-${uuid}`;

54 Chapter 3. Contributor Docs

https://docs.cypress.io/guides/overview/why-cypress

Skyline Console Developer Documentation, Release 3.0.1.dev2

2. Login before operation

• If you are operating console resources, please use cy.login

• If you are operating administrator resource, please use cy.loginAdmin

• Generally, the variable listUrl is used in the login and loginAdmin functions, that is, directly access
the page where the resource is located after logging in

beforeEach(() => {
cy.login(listUrl);

});

3. Create associated resources

Create associated resources, use the resource creation function provided in resource-commands.js,
take the test instance as an example

• Create a network for testing to create a instance, attach interface

cy.createNetwork({ name: networkName });

• Create router cy.createRouter to ensure that the floating IP is reachable when testing the associated
floating IP

– The router created in the following way will open the external network gateway and bind the
subnet of the networkName network

cy.createRouter({ name: routerName, network: networkName });

• Create floating ip cy.createFip, Used to test associate floating ip

cy.createFip();

• Create volume cy.createVolume (Used to test attach volume)

cy.createVolume(volumeName);

4. Write cases

• Write cases for creating resources

• Write use cases for accessing resource details

• Write use cases corresponding to all operations of resources separately

Generally, the use case of the edit operation is written later, and then the use case of the delete
operation is written, so that you can test whether the editing is effective

3.3. Tests Guide 55

Skyline Console Developer Documentation, Release 3.0.1.dev2

5. delete associated resources

To delete associated resources, use the resource-deleting function provided in resource-commands.js,
this is to make the resources in the test account as clean as possible after the test case is executed

• Delete Floating IP

cy.deleteAll('fip');

• Delete Router routerName

cy.deleteRouter(routerName, networkName);

• Delete Network networkName

cy.deleteAll('network', networkName);

• Delete Volume volumeName

cy.deleteAll('volume', volumeName);

• Delete all available volume

cy.deleteAllAvailableVolume();

56 Chapter 3. Contributor Docs

CHAPTER

FOUR

RELEASE NOTES

See https://docs.openstack.org/releasenotes/skyline-console

57

https://docs.openstack.org/releasenotes/skyline-console

Skyline Console Developer Documentation, Release 3.0.1.dev2

58 Chapter 4. Release Notes

CHAPTER

FIVE

INFORMATION

5.1 Glossary

This glossary offers a list of terms and definitions to define a vocabulary for Skyline Console concepts.

59

	Introduction
	Using Skyline Console
	Installation Guide
	System Requirements
	System Requirements
	Supported Operating Systems

	Installing Guide
	Skyline Installation Guide for Ubuntu
	Source Install Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Docker Install Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Configuration Guide
	Skyline Console Settings Reference

	User Documentation
	Openstack Dashboard
	Console page
	Home tab
	Compute tab
	Storage tab
	Network tab

	User page
	User center tab
	Application credentials tab

	Administrator page
	Home tab
	Compute tab
	Storage tab
	Network tab
	Identity tab
	Global setting tab

	Create and manage networks (Network tab)
	create a network
	create a router
	create a port
	create a fip
	create a security group

	Launch and manage instances (Compute tab)
	Create a key pair
	Launch an instance
	Create an instance snapshot
	Control the state of an instance
	Allocate a floating IP address to an instance
	Upload an image

	Create and manage volumes (Storage tab)
	Create a volume
	Attach a volume to an instance
	Detach a volume from an instance
	Create a snapshot from a volume
	Edit a volume
	Delete a volume

	Supported Browsers

	Administration Guide
	Manage instances (Compute tab)
	Manage compute hosts
	Create a flavor
	Delete a flavor
	Create a host aggregate
	Manage host aggregates

	Manage volumes (Storage tab)
	Create a volume type
	Delete a volume type

	Manage projects, users and roles (Identity tab)
	Create a role
	Edit a role
	Delete a role
	Add a new project
	Delete a project
	Update a project
	Add a new user
	Delete a user
	Update a user

	Contributor Docs
	Contributor Documentation
	Getting Started
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	Project Team Lead
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged

	Backporting a Fix
	Backport CI Testing

	Skyline Project Releases
	Where Stuff Is
	The Skyline Project Deliverables
	The Code Repositories
	All Skyline Project Releases

	How Stuff Works
	Releases from Master
	Branching

	Contributing Documentation to Skyline Console
	Documentation Content
	Using RST
	Building Skyline Console’s Documentation
	Review and Release Process
	Finding something to contribute

	Writing Release Notes
	Release notes
	Reviewing release note content
	Fixing a release note
	Bugs
	Creating the note

	Programming HowTos and Tutorials
	Setting Up a Development Environment
	Linux Systems
	Getting the code
	Setup Your Local Development Env
	Running tests
	Contributing Your Work

	Other Resources
	Code Reviews
	Gerrit
	The Great Change
	Unit Tests
	CI Job rechecks
	Efficient Review Guidelines

	Development Guide
	Ready To Work
	Preparation before development
	Front-end package used in production environment
	Front-end package used for testing

	Catalog Introduction
	Introduction to the first-level directory
	Catalog Introduction-Image Version

	Tests Guide
	Ready To Work
	E2E test
	Unit test

	Catalog Introduction
	How To Edit E2E Case
	1. Prepare relevant variables in text
	2. Login before operation
	3. Create associated resources
	4. Write cases
	5. delete associated resources

	Release Notes
	Information
	Glossary

