
kayobe Documentation
Release 11.8.1.dev24

OpenStack Foundation

Sep 04, 2023

CONTENTS

1 Overview 1

2 Kayobe 3
2.1 Features . 3
2.2 Documentation . 4
2.3 Release Notes . 4
2.4 Bugs . 4
2.5 Community . 4
2.6 License . 4

3 Contents 5
3.1 Getting Started . 5
3.2 Architecture . 5
3.3 Support Matrix . 7
3.4 Installation . 7
3.5 Usage . 10
3.6 Configuration Guide . 11
3.7 Deployment . 122
3.8 Upgrading . 132
3.9 Administration . 141
3.10 Resources . 154
3.11 Advanced Documentation . 154
3.12 Contributor Guide . 168

i

ii

CHAPTER

ONE

OVERVIEW

Welcome to the Kayobe documentation, the official source of information for understanding and using
Kayobe.

This documentation is maintained at opendev.org here. Feedback and contributions welcome, see con-
tributing for information on how.

1

https://opendev.org/openstack/kayobe.git

kayobe Documentation, Release 11.8.1.dev24

2 Chapter 1. Overview

CHAPTER

TWO

KAYOBE

Kayobe enables deployment of containerised OpenStack to bare metal.

Containers offer a compelling solution for isolating OpenStack services, but running the control plane
on an orchestrator such as Kubernetes or Docker Swarm adds significant complexity and operational
overheads.

The hosts in an OpenStack control plane must somehow be provisioned, but deploying a secondary Open-
Stack cloud to do this seems like overkill.

Kayobe stands on the shoulders of giants:

• OpenStack bifrost discovers and provisions the cloud

• OpenStack kolla builds container images for OpenStack services

• OpenStack kolla-ansible delivers painless deployment and upgrade of containerised OpenStack
services

To this solid base, kayobe adds:

• Configuration of cloud host OS & flexible networking

• Management of physical network devices

• A friendly openstack-like CLI

All this and more, automated from top to bottom using Ansible.

2.1 Features

• Heavily automated using Ansible

• kayobe Command Line Interface (CLI) for cloud operators

• Deployment of a seed VM used to manage the OpenStack control plane

• Configuration of physical network infrastructure

• Discovery, introspection and provisioning of control plane hardware using OpenStack bifrost

• Deployment of an OpenStack control plane using OpenStack kolla-ansible

• Discovery, introspection and provisioning of bare metal compute hosts using OpenStack ironic and
ironic inspector

• Virtualised compute using OpenStack nova

3

https://docs.openstack.org/bifrost/latest/
https://docs.openstack.org/kolla-ansible/latest/
https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/ironic-inspector/latest/
https://docs.openstack.org/nova/latest/

kayobe Documentation, Release 11.8.1.dev24

• Containerised workloads on bare metal using OpenStack magnum

• Big data on bare metal using OpenStack sahara

• Control plane and workload monitoring and log aggregation using OpenStack monasca

2.2 Documentation

https://docs.openstack.org/kayobe/latest/

2.3 Release Notes

https://docs.openstack.org/releasenotes/kayobe/

2.4 Bugs

https://bugs.launchpad.net/kayobe

2.5 Community

OFTCs IRC channel: #openstack-kolla

2.6 License

Kayobe is distributed under the Apache 2.0 License.

4 Chapter 2. Kayobe

https://docs.openstack.org/magnum/latest/
https://docs.openstack.org/sahara/latest/
https://wiki.openstack.org/wiki/Monasca
https://docs.openstack.org/kayobe/latest/
https://docs.openstack.org/releasenotes/kayobe/
https://bugs.launchpad.net/kayobe
http://webchat.oftc.net/?channels=openstack-kolla
https://www.apache.org/licenses/LICENSE-2.0

CHAPTER

THREE

CONTENTS

3.1 Getting Started

We advise new users start by reading the Architecture documentation first in order to understand Kayobes
various components.

For users wishing to learn interactively we recommend starting at either the all-in-one overcloud deploy-
ment or the A Universe From Nothing deployment guide.

Once familiar with Kayobes constituent parts, move on to the Installation section to prepare a baremetal
environment and then Deployment to deploy to it.

• Architecture - The function of Kayobes host and networking components

• Installation - The prerequisites and options for installing Kayobe

• Usage - An introduction to the Kayobe CLI

• Configuration - How to configure Kayobes various components

• Deployment- Using Kayobe to deploy OpenStack

• Upgrading - Upgrading from one OpenStack release to another

• Administration - Post-deploy administration tasks

• Resources - External links to Kayobe resources

• Contributor - Contributing to Kayobe and deploying Kayobe development environments

3.2 Architecture

3.2.1 Hosts in the System

In a system deployed by Kayobe we define a number of classes of hosts.

Ansible control host The Ansible control host is the host on which kayobe, kolla and kolla-ansible will
be installed, and is typically where the cloud will be managed from.

Seed host The seed host runs the bifrost deploy container and is used to provision the cloud hosts. By
default, container images are built on the seed. Typically the seed host is deployed as a VM but
this is not mandatory.

5

kayobe Documentation, Release 11.8.1.dev24

Infrastructure VM hosts Infrastructure VMs (or Infra VMs) are virtual machines that may be deployed
to provide supplementary infrastructure services. They may be for things like proxies or DNS
servers that are dependencies of the Cloud hosts.

Cloud hosts The cloud hosts run the OpenStack control plane, network, monitoring, storage, and virtu-
alised compute services. Typically the cloud hosts run on bare metal but this is not mandatory.

Bare metal compute hosts In a cloud providing bare metal compute services to tenants via ironic, these
hosts will run the bare metal tenant workloads. In a cloud with only virtualised compute this
category of hosts does not exist.

Note: In many cases the control and seed host will be the same, although this is not mandatory.

Cloud Hosts

Cloud hosts can further be divided into subclasses.

Controllers Controller hosts run the OpenStack control plane services.

Network Network hosts run the neutron networking services and load balancers for the OpenStack API
services.

Monitoring Monitoring host run the control plane and workload monitoring services. Currently, kayobe
does not deploy any services onto monitoring hosts.

Virtualised compute hypervisors Virtualised compute hypervisors run the tenant Virtual Machines
(VMs) and associated OpenStack services for compute, networking and storage.

3.2.2 Networks

Kayobes network configuration is very flexible but does define a few default classes of networks. These
are logical networks and may map to one or more physical networks in the system.

Overcloud out-of-band network Name of the network used by the seed to access the out-of-band man-
agement controllers of the bare metal overcloud hosts.

Overcloud provisioning network The overcloud provisioning network is used by the seed host to pro-
vision the cloud hosts.

Workload out-of-band network Name of the network used by the overcloud hosts to access the out-of-
band management controllers of the bare metal workload hosts.

Workload provisioning network The workload provisioning network is used by the cloud hosts to pro-
vision the bare metal compute hosts.

Internal network The internal network hosts the internal and admin OpenStack API endpoints.

Public network The public network hosts the public OpenStack API endpoints.

External network The external network provides external network access for the hosts in the system.

6 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

3.3 Support Matrix

3.3.1 Supported Operating Systems

Kayobe supports the following host Operating Systems (OS):

• CentOS Stream 8 (since Wallaby 10.0.0 release)

• Rocky Linux 8 (since Xena 11.1.0 release)

• Ubuntu Focal 20.04 (since Wallaby 10.0.0 release)

Note: CentOS 7 is no longer supported as a host OS. The Train release supports both CentOS 7 and 8,
and provides a route for migration. See the Kayobe Train documentation for information on migrating to
CentOS 8.

Note: CentOS Linux 8 (as opposed to CentOS Stream 8) is no longer supported as a host OS. The
Victoria release will in future support both CentOS Linux 8 and CentOS Stream 8, and provides a route
for migration.

3.3.2 Supported container images

For details of container image distributions supported by Kolla Ansible, see the support matrix.

For details of which images are supported on which distributions, see the Kolla support matrix.

3.4 Installation

Kayobe can be installed via the released Python packages on PyPI, or from source. Installing from PyPI
ensures the use of well used and tested software, whereas installing from source allows for the use of
unreleased or patched code. Installing from a Python package is supported from Kayobe 5.0.0 onwards.

3.4.1 Prerequisites

Currently Kayobe supports the following Operating Systems on the Ansible control host:

• CentOS Linux 8

• CentOS Stream 8 (since Wallaby 10.0.0 release)

• Rocky Linux 8 (since Xena 11.1.0 release)

• Ubuntu Focal 20.04 (since Wallaby 10.0.0 release)

See the support matrix for details of supported Operating Systems for other hosts.

To avoid conflicts with python packages installed by the system package manager it is recommended to
install Kayobe in a virtualenv. Ensure that the virtualenv python module is available on the Ansible
control host. It is necessary to install the GCC compiler chain in order to build the extensions of some
of kayobes python dependencies.

3.3. Support Matrix 7

https://docs.openstack.org/kayobe/train/centos8.html
https://docs.openstack.org/kolla-ansible/xena/user/support-matrix.html
https://docs.openstack.org/kolla/xena/support_matrix

kayobe Documentation, Release 11.8.1.dev24

On CentOS/Rocky:

$ dnf install -y python3-devel python3-virtualenv gcc libffi-devel

On Ubuntu:

$ apt install -y python3-dev python3-virtualenv gcc libffi-dev

If installing Kayobe from source, then Git is required for cloning and working with the source code
repository.

On CentOS/Rocky:

$ dnf install -y git

On Ubuntu:

$ apt install -y git

On Ubuntu, ensure that /usr/bin/python points to a Python 3 interpreter:

$ apt install -y python-is-python3

3.4.2 Local directory structure

The directory structure for a Kayobe Ansible control host environment is configurable, but the following
is recommended, where <base_path> is the path to a top level directory:

<base_path>/
src/

kayobe/
kayobe-config/
kolla-ansible/

venvs/
kayobe/
kolla-ansible/

This pattern ensures that all dependencies for a particular environment are installed under a single top
level path, and nothing is installed to a shared location. This allows for the option of using multiple
Kayobe environments on the same control host.

Creation of a kayobe-config source code repository will be covered in the configuration guide. The
Kolla Ansible source code checkout and Python virtual environment will be created automatically by
kayobe.

Not all of these directories will be used in all scenarios - if Kayobe or Kolla Ansible are installed from a
Python package then the source code repository is not required.

8 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

3.4.3 Installation from PyPI

This section describes how to install Kayobe from a Python package in a virtualenv. This is supported
from Kayobe 5.0.0 onwards.

First, change to the top level directory, and make the directories for source code repositories and python
virtual environments:

$ cd <base_path>
$ mkdir -p src venvs

Create a virtualenv for Kayobe:

$ virtualenv <base_path>/venvs/kayobe

Activate the virtualenv and update pip:

$ source <base_path>/venvs/kayobe/bin/activate
(kayobe) $ pip install -U pip

If using the latest version of Kayobe:

(kayobe) $ pip install kayobe

Alternatively, to install a specific release of Kayobe:

(kayobe) $ pip install kayobe==5.0.0

Finally, deactivate the virtualenv:

(kayobe) $ deactivate

3.4.4 Installation from source

This section describes how to install Kayobe from source in a virtualenv.

First, change to the top level directory, and make the directories for source code repositories and python
virtual environments:

$ cd <base_path>
$ mkdir -p src venvs

Next, obtain the Kayobe source code. For example:

$ cd <base_path>/src
$ git clone https://opendev.org/openstack/kayobe.git -b stable/xena

Create a virtualenv for Kayobe:

$ virtualenv <base_path>/venvs/kayobe

Activate the virtualenv and update pip:

3.4. Installation 9

kayobe Documentation, Release 11.8.1.dev24

$ source <base_path>/venvs/kayobe/bin/activate
(kayobe) $ pip install -U pip

Install Kayobe and its dependencies using the source code checkout:

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install .

Finally, deactivate the virtualenv:

(kayobe) $ deactivate

Editable source installation

From Kayobe 5.0.0 onwards it is possible to create an editable install of Kayobe. In an editable install,
any changes to the Kayobe source tree will immediately be visible when running any Kayobe commands.
To create an editable install, add the -e flag:

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install -e .

This is particularly useful when installing Kayobe for development.

3.5 Usage

3.5.1 Command Line Interface

Note: Where a prompt starts with (kayobe) it is implied that the user has activated the Kayobe vir-
tualenv. This can be done as follows:

$ source /path/to/venv/bin/activate

To deactivate the virtualenv:

(kayobe) $ deactivate

To see information on how to use the kayobe CLI and the commands it provides:

(kayobe) $ kayobe help

As the kayobeCLI is based on the cliff package (as used by the openstack client), it supports tab auto-
completion of subcommands. This can be activated by generating and then sourcing the bash completion
script:

(kayobe) $ kayobe complete > kayobe-complete
(kayobe) $ source kayobe-complete

10 Chapter 3. Contents

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

kayobe Documentation, Release 11.8.1.dev24

Working with Ansible Vault

If Ansible vault has been used to encrypt Kayobe configuration files, it will be necessary to provide the
kayobe command with access to vault password. There are three options for doing this:

Prompt Use kayobe --ask-vault-pass to prompt for the password.

File Use kayobe --vault-password-file <file> to read the password from a (plain text) file.

Environment variable Export the environment variable KAYOBE_VAULT_PASSWORD to read the pass-
word from the environment.

Limiting Hosts

Sometimes it may be necessary to limit execution of kayobe or kolla-ansible plays to a subset of the hosts.
The --limit <SUBSET> argument allows the kayobe ansible hosts to be limited. The --kolla-limit
<SUBSET> argument allows the kolla-ansible hosts to be limited. These two options may be combined
in a single command. In both cases, the argument provided should be an Ansible host pattern, and will
ultimately be passed to ansible-playbook as a --limit argument.

Tags

Ansible tags provide a useful mechanism for executing a subset of the plays or tasks in a playbook. The
--tags <TAGS> argument allows execution of kayobe ansible playbooks to be limited to matching plays
and tasks. The --kolla-tags <TAGS> argument allows execution of kolla-ansible ansible playbooks to
be limited to matching plays and tasks. The --skip-tags <TAGS> and --kolla-skip-tags <TAGS>
arguments allow for avoiding execution of matching plays and tasks.

Check and diff mode

Ansible supports check and diff modes, which can be used to improve visibility into changes that would be
made on target systems. The Kayobe CLI supports the --check argument, and since 11.0.0, the --diff
argument. Note that these modes are not always guaranteed to work, when some tasks are dependent on
earlier ones.

3.6 Configuration Guide

The configuration guide is split into two parts - scenarios and reference. The scenarios section pro-
vides information on configuring Kayobe for different scenarios. The reference section provides detailed
information on many of Kayobes configuration options.

3.6. Configuration Guide 11

http://docs.ansible.com/ansible/latest/intro_patterns.html
http://docs.ansible.com/ansible/latest/playbooks_tags.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_checkmode.html

kayobe Documentation, Release 11.8.1.dev24

3.6.1 Configuration Scenarios

This section provides information on configuring Kayobe for different scenarios.

All in one scenario

Note: This documentation is intended as a walk through of the configuration required for a minimal
all-in-one overcloud host. If you are looking for an all-in-one environment for test or development, see
Automated Setup.

This scenario describes how to configure an all-in-one controller and compute node using Kayobe. This
is a very minimal setup, and not one that is recommended for a production environment, but is useful for
learning about how to use and configure Kayobe.

Prerequisites

This scenario requires a basic understanding of Linux, networking and OpenStack.

It also requires a single host running a supported operating system (VM or bare metal), with:

• 1 CPU

• 8GB RAM

• 40GB disk

• at least one network interface that has Internet access

You will need access to a user account with passwordless sudo. The default user in a cloud image (e.g.
centos or rocky or ubuntu) is typically sufficient. This user will be used to run Kayobe commands. It
will also be used by Kayobe to bootstrap other user accounts.

Overview

An all in one environment consists of a single node that provides both control and compute services.
There is no seed host, and no provisioning of the overcloud host. Customisation is minimal, in order to
demonstrate the basic required configuration in Kayobe:

+---------------------------+
| Overcloud host |
| |
| |
| +-------------+ |
		+	
	Containers		
+-------------+			
+-------------+			
+---------+-------+---------+

(continues on next page)

12 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

| |
| NIC 1 |
| |
+---+---+

|
|

+-----------------+------------------+ Internet

The networking in particular is relatively simple. The main interface of the overcloud host, labelled NIC
1 in the above diagram, will be used only for connectivity to the host and Internet access. A single Kayobe
network called aio carries all control plane traffic, and is based on virtual networking that is local to the
host.

Later in this tutorial, we will create a dummy interface called dummy0, and plug it into a bridge called
br0:

+--------------+
| |
| OVS |
| |
+--------------+

|
|

+--------------+
| |
| br0 |
| 192.168.33.3 |
| 192.168.33.2 |
+--------------+

| dummy0 |
+--------+

The use of a bridge here allows Kayobe to connect this network to the Open vSwitch network, while
maintaining an IP address on the bridge. Ordinarily, dummy0 would be a NIC providing connectivity
to a physical network. Were using a dummy interface here to keep things simple by using a fixed IP
subnet, 192.168.33.0/24. The bridge will be assigned a static IP address of 192.168.33.3, and
this address will by used for various things, including Ansible SSH access and OpenStack control plane
traffic. Kolla Ansible will manage a Virtual IP (VIP) address of 192.168.33.2 on br0, which will be
used for OpenStack API endpoints.

Contents

Overcloud

Note: This documentation is intended as a walk through of the configuration required for a minimal
all-in-one overcloud host. If you are looking for an all-in-one environment for test or development, see
Automated Setup.

3.6. Configuration Guide 13

kayobe Documentation, Release 11.8.1.dev24

Preparation

Use the bootstrap user described in prerequisites to access the machine.

As described in the overview, we will use a bridge (br0) and a dummy interface (dummy0) for control
plane networking. Use the following commands to create them and assign the bridge a static IP address
of 192.168.33.3:

sudo ip l add br0 type bridge
sudo ip l set br0 up
sudo ip a add 192.168.33.3/24 dev br0
sudo ip l add dummy0 type dummy
sudo ip l set dummy0 up
sudo ip l set dummy0 master br0

This configuration is not persistent, and must be recreated if the VM is rebooted.

Installation

Follow the instructions in Installation to set up an Ansible control host environment. Typically this would
be on a separate machine, but here we are keeping things as simple as possible.

Configuration

Clone the kayobe-config git repository, using the correct branch for the release you are deploying. In this
example we will use the stable/xena branch.

cd <base path>/src
git clone https://opendev.org/openstack/kayobe-config.git -b stable/xena
cd kayobe-config

This repository is bare, and needs to be populated. The repository includes an example inventory, which
should be removed:

git rm etc/kayobe/inventory/hosts.example

Create an Ansible inventory file and add the machine to it. In this example our machine is called
controller0. Since this is an all-in-one environment, we add the controller to the compute group,
however normally dedicated compute nodes would be used.

Listing 1: etc/kayobe/inventory/hosts

This host acts as the configuration management Ansible control host. This␣
↪→must be
localhost.
localhost ansible_connection=local

[controllers]
controller0

(continues on next page)

14 Chapter 3. Contents

https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

[compute:children]
controllers

The inventory directory also contains group variables for network interface configuration. In this exam-
ple we will assume that the machine has a single network interface called dummy0. We will create a bridge
called br0 and plug dummy0 into it. Replace the network interface configuration for the controllers
group with the following:

Listing 2: etc/kayobe/inventory/group_vars/
controllers/network-interfaces

Controller interface on all-in-one network.
aio_interface: br0

Interface dummy0 is plugged into the all-in-one network bridge.
aio_bridge_ports:

- dummy0

In this scenario a single network called aio is used. We must therefore set the name of the default
controller networks to aio:

Listing 3: etc/kayobe/networks.yml

Kayobe network configuration.

##
↪→#
Network role to network mappings.

Map all networks to the all-in-one network.

Name of the network used for admin access to the overcloud
#admin_oc_net_name:
admin_oc_net_name: aio

Name of the network used by the seed to manage the bare metal overcloud
hosts via their out-of-band management controllers.
#oob_oc_net_name:

Name of the network used by the seed to provision the bare metal overcloud
hosts.
#provision_oc_net_name:

Name of the network used by the overcloud hosts to manage the bare metal
compute hosts via their out-of-band management controllers.
#oob_wl_net_name:

Name of the network used by the overcloud hosts to provision the bare metal
workload hosts.

(continues on next page)

3.6. Configuration Guide 15

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

#provision_wl_net_name:

Name of the network used to expose the internal OpenStack API endpoints.
#internal_net_name:
internal_net_name: aio

List of names of networks used to provide external network access via
Neutron.
Deprecated name: external_net_name
If external_net_name is defined, external_net_names will default to a list
containing one item, external_net_name.
#external_net_names:
external_net_names:

- aio

Name of the network used to expose the public OpenStack API endpoints.
#public_net_name:
public_net_name: aio

Name of the network used by Neutron to carry tenant overlay network traffic.
#tunnel_net_name:
tunnel_net_name: aio

Name of the network used to carry storage data traffic.
#storage_net_name:
storage_net_name: aio

Name of the network used to carry storage management traffic.
#storage_mgmt_net_name:
storage_mgmt_net_name: aio

Name of the network used to carry swift storage data traffic.
#swift_storage_net_name:

Name of the network used to carry swift storage replication traffic.
#swift_storage_replication_net_name:

Name of the network used to perform hardware introspection on the bare metal
workload hosts.
#inspection_net_name:

Name of the network used to perform cleaning on the bare metal workload
hosts
#cleaning_net_name:

##
↪→#
Network definitions.

(continues on next page)

16 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

<omitted for clarity>

Next the aio network must be defined. This is done using the various attributes described in Network
Configuration. These values should be adjusted to match the environment. The aio_vip_address
variable should be a free IP address in the same subnet for the virtual IP address of the OpenStack API.

Listing 4: etc/kayobe/networks.yml

<omitted for clarity>

##
↪→#
Network definitions.

All-in-one network.
aio_cidr: 192.168.33.0/24
aio_vip_address: 192.168.33.2

##
↪→#
Network virtual patch link configuration.

<omitted for clarity>

Kayobe will automatically allocate IP addresses. In this case however, we want to ensure that the host
uses the same IP address it has currently, to avoid loss of connectivity. We can do this by populating the
network allocation file. Use the correct hostname and IP address for your environment.

Listing 5: etc/kayobe/network-allocation.yml

aio_ips:
controller0: 192.168.33.3

The default OS distribution in Kayobe is CentOS. If using an Ubuntu host, set the os_distribution
variable in etc/kayobe/globals.yml to ubuntu or rocky if using Rocky Linux..

Listing 6: etc/kayobe/globals.yml

os_distribution: "ubuntu"

Kayobe uses a bootstrap user to create a stack user account. By default, this user is centos on CentOS,
rocky on Rocky and ubuntu on Ubuntu, in line with the default user in the official cloud images. If you
are using a different bootstrap user, set the controller_bootstrap_user variable in etc/kayobe/
controllers.yml. For example, to set it to cloud-user (as seen in MAAS):

Listing 7: etc/kayobe/controllers.yml

controller_bootstrap_user: "cloud-user"

By default, on systems with SELinux enabled, Kayobe will disable SELinux and reboot the system to
apply the change. In a test or development environment this can be a bit disruptive, particularly when

3.6. Configuration Guide 17

kayobe Documentation, Release 11.8.1.dev24

using ephemeral network configuration. To avoid rebooting the system after disabling SELinux, set
disable_selinux_do_reboot to false in etc/kayobe/globals.yml.

Listing 8: etc/kayobe/globals.yml

disable_selinux_do_reboot: false

In a development environment, we may wish to tune some Kolla Ansible variables. Using QEMU as the
virtualisation type will be necessary if KVM is not available. Reducing the number of OpenStack service
workers helps to avoid using too much memory.

Listing 9: etc/kayobe/kolla/globals.yml

Most development environments will use nested virtualisation, and we can't
guarantee that nested KVM support is available. Use QEMU as a lowest common
denominator.
nova_compute_virt_type: qemu

Reduce the control plane's memory footprint by limiting the number of worker
processes to one per-service.
openstack_service_workers: "1"

We can see the changes that have been made to the configuration.

cd <base path>/src/kayobe-config
git status

On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
deleted: etc/kayobe/inventory/hosts.example

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: etc/kayobe/globals.yml
modified: etc/kayobe/inventory/group_vars/controllers/network-interfaces
modified: etc/kayobe/kolla/globals.yml
modified: etc/kayobe/networks.yml

Untracked files:
(use "git add <file>..." to include in what will be committed)
etc/kayobe/inventory/hosts
etc/kayobe/network-allocation.yml

The git diff command is also helpful. Once all configuration changes have been made, they should
be committed to the kayobe-config git repository.

cd <base path>/src/kayobe-config
git add etc/kayobe/inventory/hosts etc/kayobe/network-allocation.yml

(continues on next page)

18 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

git add --update
git commit -m "All in one scenario config"

In a real environment these changes would be pushed to a central repository.

Deployment

We are now ready to perform a deployment.

Activate the Kayobe virtual environment:

cd <base path>/venvs/kayobe
source bin/activate

Activate the Kayobe configuration environment:

cd <base path>/src/kayobe-config
source kayobe-env

Bootstrap the control host:

kayobe control host bootstrap

Configure the overcloud host:

kayobe overcloud host configure

After this command has run, some files in the kayobe-config repository will have changed. Kayobe
performs static allocation of IP addresses, and tracks them in etc/kayobe/network-allocation.
yml. Normally there may be changes to this file, but in this case we manually added the IP address of
controller0 earlier. Kayobe uses tools provided by Kolla Ansible to generate passwords, and stores
them in etc/kayobe/kolla/passwords.yml. It is important to track changes to this file.

cd <base path>/src/kayobe-config
git add etc/kayobe/kolla/passwords.yml
git commit -m "Add autogenerated passwords for Kolla Ansible"

Pull overcloud container images:

kayobe overcloud container image pull

Deploy overcloud services:

kayobe overcloud service deploy

3.6. Configuration Guide 19

kayobe Documentation, Release 11.8.1.dev24

Testing

The init-runonce script provided by Kolla Ansible (not for production) can be used to setup some
resources for testing. This includes:

• some flavors

• a cirros image

• an external network

• a tenant network and router

• security group rules for ICMP, SSH, and TCP ports 8000 and 8080

• an SSH key

• increased quotas

For the external network, use the same subnet as before, with an allocation pool range containing free IP
addresses:

pip install python-openstackclient
export EXT_NET_CIDR=192.168.33.0/24
export EXT_NET_GATEWAY=192.168.33.3
export EXT_NET_RANGE="start=192.168.33.4,end=192.168.33.254"
source "${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh"
${KOLLA_SOURCE_PATH}/tools/init-runonce

Create a server instance, assign a floating IP address, and check that it is accessible.

openstack server create --image cirros --flavor m1.tiny --key-name mykey --
↪→network demo-net demo1
openstack floating ip create public1

The floating IP address is displayed after it is created, in this example it is 192.168.33.4:

openstack server add floating ip demo1 192.168.33.4
ssh cirros@192.168.33.4

3.6.2 Configuration Reference

This section provides detailed information on many of Kayobes configuration options.

Kayobe Configuration

This section covers configuration of Kayobe. As an Ansible-based project, Kayobe is for the most part
configured using YAML files.

20 Chapter 3. Contents

https://download.cirros-cloud.net/

kayobe Documentation, Release 11.8.1.dev24

Configuration Location

Kayobe configuration is by default located in /etc/kayobe on the Ansible control host. This location
can be overridden to a different location to avoid touching the system configuration directory by setting
the environment variable KAYOBE_CONFIG_PATH. Similarly, kolla configuration on the Ansible control
host will by default be located in /etc/kolla and can be overridden via KOLLA_CONFIG_PATH.

Configuration Directory Layout

The Kayobe configuration directory contains Ansible extra-vars files and the Ansible inventory. An
example of the directory structure is as follows:

extra-vars1.yml
extra-vars2.yml
inventory/

group_vars/
group1-vars
group2-vars

groups
host_vars/

host1-vars
host2-vars

hosts

Configuration Patterns

Ansibles variable precedence rules are fairly well documented and provide a mechanism we can use for
providing site localisation and customisation of OpenStack in combination with some reasonable default
values. For global configuration options, Kayobe typically uses the following patterns:

• Playbook group variables for the all group in <kayobe repo>/ansible/group_vars/all/*
set global defaults. These files should not be modified.

• Playbook group variables for other groups in <kayobe repo>/ansible/group_vars/
<group>/* set defaults for some subsets of hosts. These files should not be modified.

• Extra-vars files in ${KAYOBE_CONFIG_PATH}/*.yml set custom values for global variables and
should be used to apply global site localisation and customisation. By default these variables are
commented out.

Additionally, variables can be set on a per-host basis using inventory host variables files in
${KAYOBE_CONFIG_PATH}/inventory/host_vars/*. It should be noted that variables set in extra-
vars files take precedence over per-host variables.

3.6. Configuration Guide 21

http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

kayobe Documentation, Release 11.8.1.dev24

Configuring Kayobe

The kayobe-config git repository contains a Kayobe configuration directory structure and unmodified
configuration files. This repository can be used as a mechanism for version controlling Kayobe configu-
ration. As Kayobe is updated, the configuration should be merged to incorporate any upstream changes
with local modifications.

Alternatively, the baseline Kayobe configuration may be copied from a checkout of the Kayobe repository
to the Kayobe configuration path:

$ mkdir -p ${KAYOBE_CONFIG_PATH:-/etc/kayobe/}
$ cp -r etc/kayobe/* ${KAYOBE_CONFIG_PATH:-/etc/kayobe/}

Once in place, each of the YAML and inventory files should be manually inspected and configured as
required.

Inventory

The inventory should contain the following hosts:

Ansible Control host This should be localhost.

Seed hypervisor If provisioning a seed VM, a host should exist for the hypervisor that will run the VM,
and should be a member of the seed-hypervisor group.

Seed The seed host, whether provisioned as a VM by Kayobe or externally managed, should exist in the
seed group.

Cloud hosts and bare metal compute hosts are not required to exist in the inventory if discovery of the
control plane hardware is planned, although entries for groups may still be required.

Use of advanced control planes with multiple server roles and customised service placement across those
servers is covered in Control Plane Service Placement.

Site Localisation and Customisation

Site localisation and customisation is applied using Ansible extra-vars files in
${KAYOBE_CONFIG_PATH}/*.yml.

Configuration of Ansible

Ansible configuration is described in detail in the Ansible documentation. In addition to the standard
locations, Kayobe supports using an Ansible configuration file located in the Kayobe configuration at
${KAYOBE_CONFIG_PATH}/ansible.cfg. Note that if the ANSIBLE_CONFIG environment variable is
specified it takes precedence over this file.

22 Chapter 3. Contents

https://opendev.org/openstack/kayobe-config
https://docs.ansible.com/ansible/latest/reference_appendices/config.html

kayobe Documentation, Release 11.8.1.dev24

Encryption of Secrets

Kayobe supports the use of Ansible vault to encrypt sensitive information in its configuration. The
ansible-vault tool should be used to manage individual files for which encryption is required. Any
of the configuration files may be encrypted. Since encryption can make working with Kayobe difficult,
it is recommended to follow best practice, adding a layer of indirection and using encryption only where
necessary.

Location of data files

Kayobe needs to know where to find any files not contained within its python package; this includes its
Ansible playbooks and any other files it needs for runtime operation. These files are known collectively
as data files.

Kayobe will attempt to detect the location of its data files automatically. However, if you have installed
kayobe to a non-standard location this auto-detection may fail. It is possible to manually override the
path using the environment variable: KAYOBE_DATA_FILES_PATH. This should be set to a path with the
following structure:

requirements.yml
ansible/

roles/
...

...

Where ansible is the ansible directory from the source checkout and ... is an elided representation
of any files and subdirectories contained within that directory.

Ansible

Ansible configuration is described in detail in the Ansible documentation. It is explained elsewhere in
this guide how to configure Ansible for Kayobe and Kolla Ansible.

In this section we cover some options for tuning Ansible for performance and scale.

SSH pipelining

SSH pipelining is disabled in Ansible by default, but is generally safe to enable, and provides a reasonable
performance improvement.

3.6. Configuration Guide 23

http://docs.ansible.com/ansible/playbooks_vault.html
http://docs.ansible.com/ansible/playbooks_best_practices.html#best-practices-for-variables-and-vaults
https://docs.ansible.com/ansible/latest/reference_appendices/config.html

kayobe Documentation, Release 11.8.1.dev24

Listing 10: $KAYOBE_CONFIG_PATH/ansible.cfg

[ssh_connection]
pipelining = True

Forks

By default Ansible executes tasks using a fairly conservative 5 process forks. This limits the parallelism
that allows Ansible to scale. Most Ansible control hosts will be able to handle far more forks than this.
You will need to experiment to find out the CPU, memory and IO limits of your machine.

For example, to increase the number of forks to 20:

Listing 11: $KAYOBE_CONFIG_PATH/ansible.cfg

[defaults]
forks = 20

Fact caching

Note: Fact caching will not work correctly in Kayobe prior to the Ussuri release.

By default, Ansible gathers facts for each host at the beginning of every play, unless gather_facts is
set to false. With a large number of hosts this can result in a significant amount of time spent gathering
facts.

One way to improve this is through Ansibles support for fact caching. In order to make this work with
Kayobe, it is necessary to change Ansibles gathering configuration option to smart. Additionally, it
is necessary to use separate fact caches for Kayobe and Kolla Ansible due to some of the facts (e.g.
ansible_facts.user_uid and ansible_facts.python) differing.

Example

In the following example we configure Kayobe and Kolla Ansible to use fact caching using the jsonfile
cache plugin.

Listing 12: $KAYOBE_CONFIG_PATH/ansible.cfg

[defaults]
gathering = smart
fact_caching = jsonfile
fact_caching_connection = /tmp/kayobe-facts

Listing 13: $KAYOBE_CONFIG_PATH/kolla/ansible.cfg

[defaults]
gathering = smart

(continues on next page)

24 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#caching-facts
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#default-gathering
https://docs.ansible.com/ansible/latest/plugins/cache/jsonfile.html
https://docs.ansible.com/ansible/latest/plugins/cache/jsonfile.html

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

fact_caching = jsonfile
fact_caching_connection = /tmp/kolla-ansible-facts

You may also wish to set the expiration timeout for the cache via [defaults]
fact_caching_timeout.

Fact gathering

Fact filtering

Filtering of facts can be used to speed up Ansible. Environments with many network interfaces on the
network and compute nodes can experience very slow processing with Kayobe and Kolla Ansible. This
happens due to the processing of the large per-interface facts with each task. To avoid storing certain facts,
we can use the kayobe_ansible_setup_filter variable, which is used as the filter argument to
the setup module.

One case where this is particularly useful is to avoid collecting facts for virtual tap (beginning with t)
and bridge (beginning with q) interfaces created by Neutron. These facts are large map values which can
consume a lot of resources on the Ansible control host. Kayobe and Kolla Ansible typically do not need
to reference them, so they may be filtered. For example, to avoid collecting facts beginning with q or t:

Listing 14: $KAYOBE_CONFIG_PATH/globals.yml

kayobe_ansible_setup_filter: "ansible_[!qt]*"

Similarly, for Kolla Ansible (notice the similar but different file names):

Listing 15: $KAYOBE_CONFIG_PATH/kolla/globals.yml

kolla_ansible_setup_filter: "ansible_[!qt]*"

This causes Ansible to collect but not store facts matching that pattern, which includes the virtual interface
facts. Currently we are not referencing other facts matching the pattern within Kolla Ansible. Note that
including the ansible prefix causes meta facts module_setup and gather_subset to be filtered, but
this seems to be the only way to get a good match on the interface facts.

The exact improvement will vary, but has been reported to be as large as 18x on systems with many
virtual interfaces.

Fact gathering subsets

It is also possible to configure which subsets of facts are gathered, via
kayobe_ansible_setup_gather_subset, which is used as the gather_subset argument to
the setup module. For example, if one wants to avoid collecting facts via facter:

Listing 16: $KAYOBE_CONFIG_PATH/globals.yml

kayobe_ansible_setup_gather_subset: "all,!facter"

Similarly, for Kolla Ansible (notice the similar but different file names):

3.6. Configuration Guide 25

kayobe Documentation, Release 11.8.1.dev24

Listing 17: $KAYOBE_CONFIG_PATH/kolla/globals.yml

kolla_ansible_setup_gather_subset: "all,!facter"

OS Distribution

As of the Wallaby 10.0.0 release, Kayobe supports multiple Operating System (OS) distributions. See
the support matrix for a list of supported OS distributions. The same OS distribution should be used
throughout the system.

The os_distribution variable in etc/kayobe/globals.yml can be used to set the OS distribution
to use. It may be set to either centos or or rocky or ubuntu, and defaults to centos.

The os_release variable in etc/kayobe/globals.yml can be used to set the release of the OS.
When os_distribution is set to centos it may be set to 8-stream, and this is its default value.
When os_distribution is set to ubuntu it may be set to focal, and this is its default value. When
os_distribution is set to rocky it may be set to 8, and this is its default value.

These variables are used to set various defaults, including:

• Bootstrap users

• Overcloud host root disk image build configuration

• Seed VM root disk image

• Kolla base container image

Example: using Ubuntu

In the following example, we set the OS distribution to ubuntu:

Listing 18: globals.yml

os_distribution: "ubuntu"

Example: using Rocky

In the following example, we set the OS distribution to rocky:

26 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 19: globals.yml

os_distribution: "rocky"

Physical Network Configuration

Kayobe supports configuration of physical network devices. This feature is optional, and this section may
be skipped if network device configuration will be managed via other means.

Devices are added to the Ansible inventory, and configured using Ansibles networking modules. Config-
uration is applied via the kayobe physical network configure command. See Physical Network
for details.

The following switch operating systems are currently supported:

• Cumulus Linux (via Network Command Line Utility (NCLU))

• Dell OS 6

• Dell OS 9

• Dell PowerConnect

• Juniper Junos OS

• Mellanox MLNX OS

Adding Devices to the Inventory

Network devices should be added to the Kayobe Ansible inventory, and should be members of the
switches group.

Listing 20: inventory/hosts

[switches]
switch0
switch1

In some cases it may be useful to differentiate different types of switches, For example, a mgmt network
might carry out-of-band management traffic, and a ctl network might carry control plane traffic. A
group could be created for each of these networks, with each group being a child of the switches group.

Listing 21: inventory/hosts

[switches:children]
mgmt-switches
ctl-switches

[mgmt-switches]
switch0

[ctl-switches]
switch1

3.6. Configuration Guide 27

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-44/System-Configuration/Network-Command-Line-Utility-NCLU/

kayobe Documentation, Release 11.8.1.dev24

Network Device Configuration

Configuration is typically specific to each network device. It is therefore usually best to add a host_vars
file to the inventory for each device. Common configuration for network devices can be added in a
group_vars file for the switches group or one of its child groups.

Listing 22: inventory/host_vars/switch0

Host configuration for switch0
ansible_host: 1.2.3.4

Listing 23: inventory/host_vars/switch1

Host configuration for switch1
ansible_host: 1.2.3.5

Listing 24: inventory/group_vars/switches

Group configuration for 'switches' group.
ansible_user: alice

Common Configuration Variables

The type of switch should be configured via the switch_type variable. See Device-specific Configura-
tion Variables for details of the value to set for each device type.

ansible_host should be set to the management IP address used to access the device. ansible_user
should be set to the user used to access the device.

Global switch configuration is specified via the switch_config variable. It should be a list of configu-
ration lines to apply.

Per-interface configuration is specified via the switch_interface_config variable. It should be an
object mapping switch interface names to configuration objects. Each configuration object contains a
description item and a config item. The config item should contain a list of per-interface configu-
ration lines.

The switch_interface_config_enable_discovery and switch_interface_config_disable_discovery
variables take the same format as the switch_interface_config variable. They define interface
configuration to apply to enable or disable hardware discovery of bare metal compute nodes.

Listing 25: inventory/host_vars/switch0

ansible_host: 1.2.3.4

ansible_user: alice

switch_config:
(continues on next page)

28 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

- global config line 1
- global config line 2

switch_interface_config:
interface-0:
description: controller0
config:

- interface-0 config line 1
- interface-0 config line 2

interface-1:
description: compute0
config:

- interface-1 config line 1
- interface-1 config line 2

Network device configuration can become quite repetitive, so it can be helpful to define group variables
that can be referenced by multiple devices. For example:

Listing 26: inventory/group_vars/switches

Group configuration for the 'switches' group.
switch_config_default:

- default global config line 1
- default global config line 2

switch_interface_config_controller:
- controller interface config line 1
- controller interface config line 2

switch_interface_config_compute:
- compute interface config line 1
- compute interface config line 2

Listing 27: inventory/host_vars/switch0

ansible_host: 1.2.3.4

ansible_user: alice

switch_config: "{{ switch_config_default }}"

switch_interface_config:
interface-0:
description: controller0
config: "{{ switch_interface_config_controller }}"

interface-1:
description: compute0
config: "{{ switch_interface_config_compute }}"

3.6. Configuration Guide 29

kayobe Documentation, Release 11.8.1.dev24

Device-specific Configuration Variables

Cumulus Linux (with NCLU)

Configuration for these devices is applied using the nclu Ansible module.

switch_type should be set to nclu.

SSH configuration

As with any non-switch host in the inventory, the nclumodule relies on the default connection parameters
used by Ansible:

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

Dell OS6 and OS9

Configuration for these devices is applied using the dellos6_config and dellos9_config Ansible
modules.

switch_type should be set to dellos6 or dellos9.

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• ansible_ssh_pass is the SSH password.

• switch_auth_pass is the enable password.

Alternatively, set switch_dellos_provider to the value to be passed as the provider argument to
the dellos*_config module.

Dell PowerConnect

Configuration for these devices is applied using the stackhpc.dell-powerconnect-switch Ansible
role. The role uses the expect Ansible module to automate interaction with the switch CLI via SSH.

switch_type should be set to dell-powerconnect.

30 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• switch_auth_pass is the SSH password.

Juniper Junos OS

Configuration for these devices is applied using the junos_config Ansible module.

switch_type should be set to junos.

switch_junos_config_format may be used to set the format of the configuration. The variable is
passed as the src_format argument to the junos_config module. The default value is text.

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• ansible_ssh_pass is the SSH password. Mutually exclusive with
ansible_ssh_private_key_file.

• ansible_ssh_private_key_file is the SSH private key file. Mutually exclusive with
ansible_ssh_pass.

• switch_junos_timeout may be set to a timeout in seconds for communicating with the device.

Alternatively, set switch_junos_provider to the value to be passed as the provider argument to the
junos_config module.

Mellanox MLNX OS

Configuration for these devices is applied using the stackhpc.mellanox-switch Ansible role. The
role uses the expect Ansible module to automate interaction with the switch CLI via SSH.

switch_type should be set to mellanox.

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• switch_auth_pass is the SSH password.

3.6. Configuration Guide 31

kayobe Documentation, Release 11.8.1.dev24

Network Configuration

Kayobe provides a flexible mechanism for configuring the networks in a system. Kayobe networks are
assigned a name which is used as a prefix for variables that define the networks attributes. For ex-
ample, to configure the cidr attribute of a network named arpanet, we would use a variable named
arpanet_cidr.

Global Network Configuration

Global network configuration is stored in ${KAYOBE_CONFIG_PATH}/networks.yml. The following
attributes are supported:

cidr CIDR representation (<IP>/<prefix length>) of the networks IP subnet.

allocation_pool_start IP address of the start of Kayobes allocation pool range.

allocation_pool_end IP address of the end of Kayobes allocation pool range.

inspection_allocation_pool_start IP address of the start of ironic inspectors allocation pool
range.

inspection_allocation_pool_end IP address of the end of ironic inspectors allocation pool range.

neutron_allocation_pool_start IP address of the start of neutrons allocation pool range.

neutron_allocation_pool_end IP address of the end of neutrons allocation pool range.

gateway IP address of the networks default gateway.

inspection_gateway IP address of the gateway for the hardware introspection network.

neutron_gateway IP address of the gateway for a neutron subnet based on this network.

vlan VLAN ID.

mtu Maximum Transmission Unit (MTU).

vip_address

Note: Use of the vip_address attribute is deprecated. Instead use
kolla_internal_vip_address and kolla_external_vip_address.

Virtual IP address (VIP) used by API services on this network.

fqdn

Note: Use of the fqdn attribute is deprecated. Instead use kolla_internal_fqdn and
kolla_external_fqdn.

Fully Qualified Domain Name (FQDN) used by API services on this network.

routes

Note: options is not currently supported on Ubuntu.

32 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

List of static IP routes. Each item should be a dict containing the item cidr, and optionally
gateway, table and options. cidr is the CIDR representation of the routes destination.
gateway is the IP address of the next hop. table is the name or ID of a routing table to which the
route will be added. options is a list of option strings to add to the route.

rules List of IP routing rules.

On CentOS or Rocky, each item should be a string describing an iproute2 IP routing rule.

On Ubuntu, each item should be a dict containing optional items from, to, priority and table.
from is the source address prefix to match with optional prefix. to is the destination address prefix
to match with optional prefix. priority is the priority of the rule. table is the routing table ID.

physical_network Name of the physical network on which this network exists. This aligns with the
physical network concept in neutron.

libvirt_network_name A name to give to a Libvirt network representing this network on the seed
hypervisor.

no_ip Whether to allocate an IP address for this network. If set to true, an IP address will not be
allocated.

Configuring an IP Subnet

An IP subnet may be configured by setting the cidr attribute for a network to the CIDR representation
of the subnet.

To configure a network called example with the 10.0.0.0/24 IP subnet:

Listing 28: networks.yml

example_cidr: 10.0.0.0/24

Configuring an IP Gateway

An IP gateway may be configured by setting the gateway attribute for a network to the IP address of the
gateway.

To configure a network called example with a gateway at 10.0.0.1:

3.6. Configuration Guide 33

kayobe Documentation, Release 11.8.1.dev24

Listing 29: networks.yml

example_gateway: 10.0.0.1

This gateway will be configured on all hosts to which the network is mapped. Note that configuring
multiple IP gateways on a single host will lead to unpredictable results.

Configuring an API Virtual IP Address

A virtual IP (VIP) address may be configured for use by Kolla Ansible on the internal and external
networks, on which the API services will be exposed. The variable will be passed through to the
kolla_internal_vip_address or kolla_external_vip_address Kolla Ansible variable.

To configure a network called example with a VIP at 10.0.0.2:

Listing 30: networks.yml

example_vip_address: 10.0.0.2

Configuring an API Fully Qualified Domain Name

A Fully Qualified Domain Name (FQDN) may be configured for use by Kolla Ansible on the internal
and external networks, on which the API services will be exposed. The variable will be passed through
to the kolla_internal_fqdn or kolla_external_fqdn Kolla Ansible variable.

To configure a network called example with an FQDN at api.example.com:

Listing 31: networks.yml

example_fqdn: api.example.com

Configuring Static IP Routes

Static IP routes may be configured by setting the routes attribute for a network to a list of routes.

To configure a network called examplewith a single IP route to the 10.1.0.0/24 subnet via 10.0.0.1:

Listing 32: networks.yml

example_routes:
- cidr: 10.1.0.0/24
gateway: 10.0.0.1

These routes will be configured on all hosts to which the network is mapped.

If necessary, custom options may be added to the route:

34 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 33: networks.yml

example_routes:
- cidr: 10.1.0.0/24
gateway: 10.0.0.1
options:

- onlink
- metric 400

Note that custom options are not currently supported on Ubuntu.

Configuring a VLAN

A VLAN network may be configured by setting the vlan attribute for a network to the ID of the VLAN.

To configure a network called example with VLAN ID 123:

Listing 34: networks.yml

example_vlan: 123

IP Address Allocation

IP addresses are allocated automatically by Kayobe from the allocation pool defined by
allocation_pool_start and allocation_pool_end. If these variables are undefined, the
entire network is used, except for network and broadcast addresses. IP addresses are only allocated if
the network cidr is set and DHCP is not used (see bootproto in Per-host Network Configuration).
The allocated addresses are stored in ${KAYOBE_CONFIG_PATH}/network-allocation.yml using
the global per-network attribute ips which maps Ansible inventory hostnames to allocated IPs.

If static IP address allocation is required, the IP allocation file network-allocation.yml may be man-
ually populated with the required addresses.

Configuring Dynamic IP Address Allocation

To configure a network called examplewith the 10.0.0.0/24 IP subnet and an allocation pool spanning
from 10.0.0.4 to 10.0.0.254:

Listing 35: networks.yml

example_cidr: 10.0.0.0/24
example_allocation_pool_start: 10.0.0.4
example_allocation_pool_end: 10.0.0.254

Note: This pool should not overlap with an inspection or neutron allocation pool on the same network.

3.6. Configuration Guide 35

kayobe Documentation, Release 11.8.1.dev24

Configuring Static IP Address Allocation

To configure a network called examplewith statically allocated IP addresses for hosts host1 and host2:

Listing 36: network-allocation.yml

example_ips:
host1: 10.0.0.1
host2: 10.0.0.2

Advanced: Policy-Based Routing

Policy-based routing can be useful in complex networking environments, particularly where asymmetric
routes exist, and strict reverse path filtering is enabled.

Configuring IP Routing Tables

Custom IP routing tables may be configured by setting the global variable network_route_tables in
${KAYOBE_CONFIG_PATH}/networks.yml to a list of route tables. These route tables will be added to
/etc/iproute2/rt_tables.

To configure a routing table called exampleroutetable with ID 1:

Listing 37: networks.yml

network_route_tables:
- name: exampleroutetable
id: 1

To configure route tables on specific hosts, use a host or group variables file.

Configuring IP Routing Policy Rules

IP routing policy rules may be configured by setting the rules attribute for a network to a list of rules.
The format of each rule currently differs between CentOS/Rocky and Ubuntu.

CentOS/Rocky

The format of a rule is the string which would be appended to ip rule <add|del> to create or delete
the rule.

To configure a network called example with an IP routing policy rule to handle traffic from the subnet
10.1.0.0/24 using the routing table exampleroutetable:

36 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 38: networks.yml

example_rules:
- from 10.1.0.0/24 table exampleroutetable

These rules will be configured on all hosts to which the network is mapped.

Ubuntu

The format of a rule is a dictionary with optional items from, to, priority, and table.

To configure a network called example with an IP routing policy rule to handle traffic from the subnet
10.1.0.0/24 using the routing table exampleroutetable:

Listing 39: networks.yml

example_rules:
- from: 10.1.0.0/24
table: exampleroutetable

These rules will be configured on all hosts to which the network is mapped.

Configuring IP Routes on Specific Tables

A route may be added to a specific routing table by adding the name or ID of the table to a table attribute
of the route:

To configure a network called example with a default route and a connected (local subnet) route to the
subnet 10.1.0.0/24 on the table exampleroutetable:

Listing 40: networks.yml

example_routes:
- cidr: 0.0.0.0/0
gateway: 10.1.0.1
table: exampleroutetable

- cidr: 10.1.0.0/24
table: exampleroutetable

Per-host Network Configuration

Some network attributes are specific to a hosts role in the system, and these are stored in
${KAYOBE_CONFIG_PATH}/inventory/group_vars/<group>/network-interfaces. The follow-
ing attributes are supported:

interface The name of the network interface attached to the network.

parent The name of the parent interface, when configuring a VLAN interface using
systemd-networkd syntax.

3.6. Configuration Guide 37

kayobe Documentation, Release 11.8.1.dev24

bootproto Boot protocol for the interface. Valid values are static and dhcp. The default is static.
When set to dhcp, an external DHCP server must be provided.

defroute Whether to set the interface as the default route. This attribute can be used to disable config-
uration of the default gateway by a specific interface. This is particularly useful to ignore a gateway
address provided via DHCP. Should be set to a boolean value. The default is unset. This attribute
is only supported on distributions of the Red Hat family.

bridge_ports For bridge interfaces, a list of names of network interfaces to add to the bridge.

bond_mode For bond interfaces, the bonds mode, e.g. 802.3ad.

bond_ad_select For bond interfaces, the 802.3ad aggregation selection logic to use. Valid values are
stable (default selection logic if not configured), bandwidth or count.

bond_slaves For bond interfaces, a list of names of network interfaces to act as slaves for the bond.

bond_miimon For bond interfaces, the time in milliseconds between MII link monitoring.

bond_updelay For bond interfaces, the time in milliseconds to wait before declaring an interface up
(should be multiple of bond_miimon).

bond_downdelay For bond interfaces, the time in milliseconds to wait before declaring an interface
down (should be multiple of bond_miimon).

bond_xmit_hash_policy For bond interfaces, the xmit_hash_policy to use for the bond.

bond_lacp_rate For bond interfaces, the lacp_rate to use for the bond.

ethtool_opts

Note: ethtool_opts is not currently supported on Ubuntu.

Physical network interface options to apply with ethtool. When used on bond and bridge inter-
faces, settings apply to underlying interfaces. This should be a string of arguments passed to the
ethtool utility, for example "-G ${DEVICE} rx 8192 tx 8192".

zone

Note: zone is not currently supported on Ubuntu.

The name of firewalld zone to be attached to network interface.

IP Addresses

An interface will be assigned an IP address if the associated network has a cidr attribute. The IP address
will be assigned from the range defined by the allocation_pool_start and allocation_pool_end
attributes, if one has not been statically assigned in network-allocation.yml.

38 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Configuring Ethernet Interfaces

An Ethernet interface may be configured by setting the interface attribute for a network to the name
of the Ethernet interface.

To configure a network called example with an Ethernet interface on eth0:

Listing 41: inventory/group_vars/<group>/
network-interfaces

example_interface: eth0

Configuring Bridge Interfaces

A Linux bridge interface may be configured by setting the interface attribute of a network to the name
of the bridge interface, and the bridge_ports attribute to a list of interfaces which will be added as
member ports on the bridge.

To configure a network called example with a bridge interface on breth1, and a single port eth1:

Listing 42: inventory/group_vars/<group>/
network-interfaces

example_interface: breth1
example_bridge_ports:

- eth1

Bridge member ports may be Ethernet interfaces, bond interfaces, or VLAN interfaces. In the case of
bond interfaces, the bond must be configured separately in addition to the bridge, as a different named
network. In the case of VLAN interfaces, the underlying Ethernet interface must be configured separately
in addition to the bridge, as a different named network.

Configuring Bond Interfaces

A bonded interface may be configured by setting the interface attribute of a network to the name of
the bonds master interface, and the bond_slaves attribute to a list of interfaces which will be added as
slaves to the master.

To configure a network called example with a bond with master interface bond0 and two slaves eth0
and eth1:

Listing 43: inventory/group_vars/<group>/
network-interfaces

example_interface: bond0
example_bond_slaves:

- eth0
- eth1

Optionally, the bond mode and MII monitoring interval may also be configured:

3.6. Configuration Guide 39

kayobe Documentation, Release 11.8.1.dev24

Listing 44: inventory/group_vars/<group>/
network-interfaces

example_bond_mode: 802.3ad
example_bond_miimon: 100

Bond slaves may be Ethernet interfaces, or VLAN interfaces. In the case of VLAN interfaces, underlying
Ethernet interface must be configured separately in addition to the bond, as a different named network.

Configuring VLAN Interfaces

A VLAN interface may be configured by setting the interface attribute of a network to the name of
the VLAN interface. The interface name must normally be of the form <parent interface>.<VLAN
ID> to ensure compatibility with all supported host operating systems.

To configure a network called examplewith a VLAN interface with a parent interface of eth2 for VLAN
123:

Listing 45: inventory/group_vars/<group>/
network-interfaces

example_interface: eth2.123

To keep the configuration DRY, reference the networks vlan attribute:

Listing 46: inventory/group_vars/<group>/
network-interfaces

example_interface: "eth2.{{ example_vlan }}"

Alternatively, when using Ubuntu as a host operating system, VLAN interfaces can be named arbitrar-
ily using syntax supported by systemd-networkd. In this case, a parent attribute must specify the
underlying interface:

40 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 47: inventory/group_vars/<group>/
network-interfaces

example_interface: "myvlan{{ example_vlan }}"
example_parent: "eth2"

Ethernet interfaces, bridges, and bond master interfaces may all be parents to a VLAN interface.

Bridges and VLANs

Adding a VLAN interface to a bridge directly will allow tagged traffic for that VLAN to be forwarded by
the bridge, whereas adding a VLAN interface to an Ethernet or bond interface that is a bridge member
port will prevent tagged traffic for that VLAN being forwarded by the bridge.

For example, if you are bridging eth1 to breth1 and want to access VLAN 1234 as a tagged VLAN
from the host, while still allowing Neutron to access traffic for that VLAN via Open vSwitch, your setup
should look like this:

$ sudo brctl show
bridge name bridge id STP enabled interfaces
breth1 8000.56e6b95b4178 no p-breth1-phy

eth1
$ sudo ip addr show | grep 1234 | head -1
10: breth1.1234@breth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc␣
↪→noqueue state UP group default qlen 1000

It should not look like this:

$ sudo brctl show
bridge name bridge id STP enabled interfaces
breth1 8000.56e6b95b4178 no p-breth1-phy

eth1
$ sudo ip addr show | grep 1234 | head -1
10: eth1.1234@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue␣
↪→state UP group default qlen 1000

This second configuration may be desirable to prevent specific traffic, e.g. of the internal API network,
from reaching Neutron.

Domain Name Service (DNS) Resolver Configuration

Kayobe supports configuration of hosts DNS resolver via resolv.conf. DNS configuration should be
added to dns.yml. For example:

Listing 48: dns.yml

resolv_nameservers:
- 8.8.8.8
- 8.8.4.4

resolv_domain: example.com
(continues on next page)

3.6. Configuration Guide 41

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

resolv_search:
- kayobe.example.com

It is also possible to prevent kayobe from modifying resolv.conf by setting resolv_is_managed to
false.

Network Role Configuration

In order to provide flexibility in the systems network topology, Kayobe maps the named networks to
logical network roles. A single named network may perform multiple roles, or even none at all. The
available roles are:

Overcloud admin network (admin_oc_net_name) Name of the network used to access the overcloud
for admin purposes, e.g for remote SSH access.

Overcloud out-of-band network (oob_oc_net_name) Name of the network used by the seed to access
the out-of-band management controllers of the bare metal overcloud hosts.

Overcloud provisioning network (provision_oc_net_name) Name of the network used by the seed
to provision the bare metal overcloud hosts.

Workload out-of-band network (oob_wl_net_name) Name of the network used by the overcloud
hosts to access the out-of-band management controllers of the bare metal workload hosts.

Workload provisioning network (provision_wl_net_name) Name of the network used by the over-
cloud hosts to provision the bare metal workload hosts.

Workload cleaning network (cleaning_net_name) Name of the network used by the overcloud hosts
to clean the baremetal workload hosts.

Internal network (internal_net_name) Name of the network used to expose the internal OpenStack
API endpoints.

Public network (public_net_name) Name of the network used to expose the public OpenStack API
endpoints.

Tunnel network (tunnel_net_name) Name of the network used by Neutron to carry tenant overlay
network traffic.

External networks (external_net_names, deprecated: external_net_name) List of names of
networks used to provide external network access via Neutron. If external_net_name is de-
fined, external_net_names defaults to a list containing only that network.

Storage network (storage_net_name) Name of the network used to carry storage data traffic.

Storage management network (storage_mgmt_net_name) Name of the network used to carry stor-
age management traffic.

Swift storage network (swift_storage_net_name) Name of the network used to carry Swift storage
data traffic. Defaults to the storage network (storage_net_name).

Swift storage replication network (swift_storage_replication_net_name) Name of the net-
work used to carry storage management traffic. Defaults to the storage management network
(storage_mgmt_net_name)

Workload inspection network (inspection_net_name) Name of the network used to perform hard-
ware introspection on the bare metal workload hosts.

42 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

These roles are configured in ${KAYOBE_CONFIG_PATH}/networks.yml.

Warning: Changing external_net_names after initial deployment has a potential for creating
network loops. Kayobe / Ansible will not clean up any items removed from this variable in the OVS.
Any additional interfaces that map to network names from the list will be added to the bridge. Any
previous entries that should be removed, must be deleted in OVS manually prior to applying changes
via Kayobe in order to avoid creating a loop.

Configuring Network Roles

To configure network roles in a system with two networks, example1 and example2:

Listing 49: networks.yml

admin_oc_net_name: example1
oob_oc_net_name: example1
provision_oc_net_name: example1
oob_wl_net_name: example1
provision_wl_net_name: example2
internal_net_name: example2
public_net_name: example2
tunnel_net_name: example2
external_net_names:

- example2
storage_net_name: example2
storage_mgmt_net_name: example2
swift_storage_net_name: example2
swift_replication_net_name: example2
inspection_net_name: example2
cleaning_net_name: example2

Overcloud Admin Network

The admin network is intended to be used for remote access to the overcloud hosts. Kayobe will use
the address assigned to the host on this network as the ansible_host when executing playbooks. It is
therefore a necessary requirement to configure this network.

By default Kayobe will use the overcloud provisioning network as the admin network. It is, however,
possible to configure a separate network. To do so, you should override admin_oc_net_name in your
networking configuration.

If a separate network is configured, the following requirements should be taken into consideration:

• The admin network must be configured to use the same physical network interface as the provi-
sioning network. This is because the PXE MAC address is used to lookup the interface for the
cloud-init network configuration that occurs during bifrost provisioning of the overcloud.

3.6. Configuration Guide 43

kayobe Documentation, Release 11.8.1.dev24

Overcloud Provisioning Network

If using a seed to inspect the bare metal overcloud hosts, it is necessary to define a DHCP allocation
pool for the seeds ironic inspector DHCP server using the inspection_allocation_pool_start and
inspection_allocation_pool_end attributes of the overcloud provisioning network.

Note: This example assumes that the example network is mapped to provision_oc_net_name.

To configure a network called example with an inspection allocation pool:

example_inspection_allocation_pool_start: 10.0.0.128
example_inspection_allocation_pool_end: 10.0.0.254

Note: This pool should not overlap with a kayobe allocation pool on the same network.

Workload Cleaning Network

A separate cleaning network, which is used by the overcloud to clean baremetal workload (compute)
hosts, may optionally be specified. Otherwise, the Workload Provisoning network is used. It is nec-
essary to define an IP allocation pool for neutron using the neutron_allocation_pool_start and
neutron_allocation_pool_end attributes of the cleaning network. This controls the IP addresses
that are assigned to workload hosts during cleaning.

Note: This example assumes that the example network is mapped to cleaning_net_name.

To configure a network called example with a neutron provisioning allocation pool:

example_neutron_allocation_pool_start: 10.0.1.128
example_neutron_allocation_pool_end: 10.0.1.195

Note: This pool should not overlap with a kayobe or inspection allocation pool on the same network.

Workload Provisioning Network

If using the overcloud to provision bare metal workload (compute) hosts, it is necessary
to define an IP allocation pool for the overclouds neutron provisioning network using the
neutron_allocation_pool_start and neutron_allocation_pool_end attributes of the work-
load provisioning network.

Note: This example assumes that the example network is mapped to provision_wl_net_name.

To configure a network called example with a neutron provisioning allocation pool:

44 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

example_neutron_allocation_pool_start: 10.0.1.128
example_neutron_allocation_pool_end: 10.0.1.195

Note: This pool should not overlap with a kayobe or inspection allocation pool on the same network.

Workload Inspection Network

If using the overcloud to inspect bare metal workload (compute) hosts, it is necessary to
define a DHCP allocation pool for the overclouds ironic inspector DHCP server using the
inspection_allocation_pool_start and inspection_allocation_pool_end attributes of the
workload provisioning network.

Note: This example assumes that the example network is mapped to provision_wl_net_name.

To configure a network called example with an inspection allocation pool:

example_inspection_allocation_pool_start: 10.0.1.196
example_inspection_allocation_pool_end: 10.0.1.254

Note: This pool should not overlap with a kayobe or neutron allocation pool on the same network.

Neutron Networking

Note: This assumes the use of the neutron openvswitch ML2 mechanism driver for control plane
networking.

Certain modes of operation of neutron require layer 2 access to physical networks in the system. Hosts in
the network group (by default, this is the same as the controllers group) run the neutron networking
services (Open vSwitch agent, DHCP agent, L3 agent, metadata agent, etc.).

The kayobe network configuration must ensure that the neutron Open vSwitch bridges on the network
hosts have access to the external network. If bare metal compute nodes are in use, then they must also
have access to the workload provisioning network. This can be done by ensuring that the external and
workload provisioning network interfaces are bridges. Kayobe will ensure connectivity between these
Linux bridges and the neutron Open vSwitch bridges via a virtual Ethernet pair. See Configuring Bridge
Interfaces.

3.6. Configuration Guide 45

kayobe Documentation, Release 11.8.1.dev24

Network to Host Mapping

Networks are mapped to hosts using the variable network_interfaces. Kayobes playbook group vari-
ables define some sensible defaults for this variable for hosts in the top level standard groups. These
defaults are set using the network roles typically required by the group.

Seed

By default, the seed is attached to the following networks:

• overcloud admin network

• overcloud out-of-band network

• overcloud provisioning network

This list may be extended by setting seed_extra_network_interfaces to a list of names of
additional networks to attach. Alternatively, the list may be completely overridden by setting
seed_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/seed.yml.

Seed Hypervisor

By default, the seed hypervisor is attached to the same networks as the seed.

This list may be extended by setting seed_hypervisor_extra_network_interfaces to a list of
names of additional networks to attach. Alternatively, the list may be completely overridden by setting
seed_hypervisor_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/
seed-hypervisor.yml.

Infra VMs

By default, infrastructure VMs are attached to the following network:

• overcloud admin network

This list may be extended by setting infra_vm_extra_network_interfaces to a list of names
of additional networks to attach. Alternatively, the list may be completely overridden by set-
ting infra_vm_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/
infra-vms.yml.

Controllers

By default, controllers are attached to the following networks:

• overcloud admin network

• workload (compute) out-of-band network

• workload (compute) provisioning network

• workload (compute) inspection network

• workload (compute) cleaning network

46 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

• internal network

• storage network

In addition, if the controllers are also in the network group, they are attached to the following networks:

• public network

• external network

• tunnel network

This list may be extended by setting controller_extra_network_interfaces to a list of names
of additional networks to attach. Alternatively, the list may be completely overridden by set-
ting controller_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/
controllers.yml.

Network Hosts

By default, controllers provide Neutron network services and load balancing. If separate network hosts
are used (see Example 1: Adding Network Hosts), they are attached to the following networks:

• overcloud admin network

• internal network

• storage network

• public network

• external network

• tunnel network

This list may be extended by setting controller_network_host_extra_network_interfaces to
a list of names of additional networks to attach. Alternatively, the list may be completely overrid-
den by setting controller_network_host_network_interfaces. These variables are found in
${KAYOBE_CONFIG_PATH}/controllers.yml.

Monitoring Hosts

By default, the monitoring hosts are attached to the same networks as the controllers when they are in
the controllers group. If the monitoring hosts are not in the controllers group, they are attached
to the following networks by default:

• overcloud admin network

• internal network

• public network

This list may be extended by setting monitoring_extra_network_interfaces to a list of names
of additional networks to attach. Alternatively, the list may be completely overridden by set-
ting monitoring_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/
monitoring.yml.

3.6. Configuration Guide 47

kayobe Documentation, Release 11.8.1.dev24

Storage Hosts

By default, the storage hosts are attached to the following networks:

• overcloud admin network

• internal network

• storage network

• storage management network

In addition, if Swift is enabled, they can also be attached to the Swift management and replication net-
works.

Virtualised Compute Hosts

By default, virtualised compute hosts are attached to the following networks:

• overcloud admin network

• internal network

• storage network

• tunnel network

This list may be extended by setting compute_extra_network_interfaces to a list of names
of additional networks to attach. Alternatively, the list may be completely overridden by setting
compute_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/compute.
yml.

Other Hosts

If additional hosts are managed by kayobe, the networks to which these hosts are attached may be defined
in a host or group variables file. See Control Plane Service Placement for further details.

Complete Example

The following example combines the complete network configuration into a single system configuration.
In our example cloud we have three networks: management, cloud and external:

+------------+ +----------------+ +---------
↪→-------+

| | | +-+ | ␣
↪→ +-+

| | | | +-+ | Bare␣
↪→metal | +-+

| Seed | | Cloud hosts | | | | ␣
↪→compute hosts | | |

| | | | | | | ␣
↪→ | | |

| | | | | | | ␣
↪→ | | | (continues on next page)

48 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

+-----+------+ +----------------+ | | +---------
↪→-------+ | |

| +-----------------+ | +--------
↪→---------+ |

| +-----------------+ +------
↪→-----------+

| | | | ␣
↪→ |

| | | | ␣
↪→ |

| | | | ␣
↪→ |

| | | | ␣
↪→ |
management +--------+------------------------+--------------------------------
↪→--------------+

| | ␣
↪→ |
cloud +------------------------------------+-----------------------------
↪→-+------------+

|
external +---------------------------------------+--------------------------
↪→--------------+

The management network is used to access the servers BMCs and by the seed to inspect and provision
the cloud hosts. The cloud network carries all internal control plane and storage traffic, and is used by
the control plane to provision the bare metal compute hosts. Finally, the external network links the
cloud to the outside world.

We could describe such a network as follows:

Listing 50: networks.yml

Network role mappings.
oob_oc_net_name: management
provision_oc_net_name: management
oob_wl_net_name: management
provision_wl_net_name: cloud
internal_net_name: cloud
public_net_name: external
external_net_name: external
storage_net_name: cloud
storage_mgmt_net_name: cloud
inspection_net_name: cloud

management network definition.
management_cidr: 10.0.0.0/24
management_allocation_pool_start: 10.0.0.1
management_allocation_pool_end: 10.0.0.127

(continues on next page)

3.6. Configuration Guide 49

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

management_inspection_allocation_pool_start: 10.0.0.128
management_inspection_allocation_pool_end: 10.0.0.254

cloud network definition.
cloud_cidr: 10.0.1.0/24
cloud_allocation_pool_start: 10.0.1.1
cloud_allocation_pool_end: 10.0.1.127
cloud_inspection_allocation_pool_start: 10.0.1.128
cloud_inspection_allocation_pool_end: 10.0.1.195
cloud_neutron_allocation_pool_start: 10.0.1.196
cloud_neutron_allocation_pool_end: 10.0.1.254

external network definition.
external_cidr: 10.0.3.0/24
external_allocation_pool_start: 10.0.3.1
external_allocation_pool_end: 10.0.3.127
external_neutron_allocation_pool_start: 10.0.3.128
external_neutron_allocation_pool_end: 10.0.3.254
external_routes:

- cidr: 10.0.4.0/24
gateway: 10.0.3.1

We can map these networks to network interfaces on the seed and controller hosts:

Listing 51: inventory/group_vars/seed/
network-interfaces

management_interface: eth0

Listing 52: inventory/group_vars/controllers/
network-interfaces

management_interface: eth0
cloud_interface: breth1
cloud_bridge_ports:

- eth1
external_interface: eth2

We have defined a bridge for the cloud network on the controllers as this will allow it to be plugged into
a neutron Open vSwitch bridge.

Kayobe will allocate IP addresses for the hosts that it manages:

Listing 53: network-allocation.yml

management_ips:
seed: 10.0.0.1
control0: 10.0.0.2

(continues on next page)

50 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

control1: 10.0.0.3
control2: 10.0.0.4

cloud_ips:
control0: 10.0.1.1
control1: 10.0.1.2
control2: 10.0.1.3

external_ips:
control0: 10.0.3.1
control1: 10.0.3.2
control2: 10.0.3.3

Note that although this file does not need to be created manually, doing so allows for a predictable IP
address mapping which may be desirable in some cases.

Routed Control Plane Networks

This section describes configuration for routed control plane networks. This is an advanced concept and
generally applies only to larger deployments that exceed the reasonable size of a broadcast domain.

Concept

Kayobe currently supports the definition of various different networks - public, internal, tunnel, etc.
These typically map to a VLAN or flat network, with an associated IP subnet. When a cloud exceeds the
reasonable size of a single VLAN/subnet, or is physically distributed, this approach no longer works.

One way to resolve this is to have multiple subnets that map to a single logical network, and provide
routing between them. This is a similar concept to Neutrons routed provider networks, but for the control
plane networks.

Limitations

There are currently a few limitations to using routed control plane networks. Only the following networks
have been tested:

• admin_oc

• internal

• tunnel

• storage

• storage_mgmt

Additionally, only compute nodes and storage nodes have been tested with routed control plane networks
- controllers were always placed on the same set of networks during testing.

Bare metal provisioning (of the overcloud or baremetal compute) has not been tested with routed control
plane networks, and would not be expected to work without taking additional steps.

3.6. Configuration Guide 51

https://docs.openstack.org/neutron/xena/admin/config-routed-networks.html

kayobe Documentation, Release 11.8.1.dev24

Configuration

The approach to configuring Kayobe for routed control plane networks is as follows:

• create groups in the inventory for the different sets of networks

• place hosts in the appropriate groups

• move vip_address and fqdn network attributes to global variables

• move global network name configuration to group variables

• add new networks to configuration

• add network interface group variables

Example

In this example, we initially have a number of different logical networks:

• public_0

– 10.0.0.0/24

– VLAN 100

• internal_0

– 10.0.1.0/24

– VLAN 101

• tunnel_0

– 10.0.2.0/24

– VLAN 102

• storage_0

– 10.0.3.0/24

– VLAN 103

• storage_mgmt_0

– 10.0.4.0/24

– VLAN 104

Initially the following hosts are connected to these networks:

• controllers[0:2]: public_0, internal_0, tunnel_0, storage_0

• compute[0:127]: internal_0, tunnel_0, storage_0

• storage[0:63]: internal_0, storage_0, storage_mgmt_0

Now consider that we wish to add 128 compute nodes and 64 storage nodes. This would exceed size of
the current subnets. We could increase the subnet sizes, but there are good reasons to keep broadcast
domains reasonably small.

To resolve this, we can add some more networks:

52 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

• internal_1

– 10.1.1.0/24

– VLAN 111

• tunnel_1

– 10.1.2.0/24

– VLAN 112

• storage_1

– 10.1.3.0/24

– VLAN 113

• storage_mgmt_1

– 10.1.4.0/24

– VLAN 114

The network must provide routes between the following networks:

• internal_0 and internal_1

• tunnel_0 and tunnel_1

• storage_0 and storage_1

• storage_mgmt_0 and storage_mgmt_1

Now we can connect the new hosts to these networks:

• compute[128:255]: internal_1, tunnel_1, storage_1

• storage[64:127]: internal_1, storage_1, storage_mgmt_1

Inventory

To model this change we could use an inventory such as the following:

Listing 54: inventory/hosts

localhost ansible_connection=local

[controllers]
controller[0:2]

[compute]
compute[0:255]

[storage]
storage[0:127]

[network-0]
controller[0:2]

(continues on next page)

3.6. Configuration Guide 53

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

[compute-network-0]
compute[0:127]

[storage-network-0]
storage[0:63]

[network-0:children]
compute-network-0
storage-network-0

[network-1]

[compute-network-1]
compute[128:255]

[storage-network-1]
storage[64:127]

[network-1:children]
compute-network-1
storage-network-1

Kolla API addresses

Remove all variables defining vip_address or fqdn network attributes from networks.yml, and move
the configuration to the API address variables in kolla.yml.

Network names

To move global network name configuration to group variables, the following variables should be com-
mented out in networks.yml:

Listing 55: networks.yml

#admin_oc_net_name:
#internal_net_name:
#tunnel_net_name:
#storage_net_name:
#storage_mgmt_net_name:

Create group variable files in inventory/group_vars/network-0 and inventory/group_vars/
network-1:

Listing 56: inventory/group_vars/network-0

admin_oc_net_name: internal_0
internal_net_name: internal_0
tunnel_net_name: tunnel_0

(continues on next page)

54 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

storage_net_name: storage_0
storage_mgmt_net_name: storage_mgmt_0

Listing 57: inventory/group_vars/network-1

admin_oc_net_name: internal_1
internal_net_name: internal_1
tunnel_net_name: tunnel_1
storage_net_name: storage_1
storage_mgmt_net_name: storage_mgmt_1

Networks

Now, ensure both sets of networks are defined in networks.yml. Static routes are added between the
pairs of networks here, although these will depend on your routing configuration. Other network at-
tributes may be necessary, we are including cidr, vlan and routes only here for brevity:

Listing 58: networks.yml

public_0_cidr: 10.0.0.0/24
public_0_vlan: 100

internal_0_cidr: 10.0.1.0/24
internal_0_vlan: 101
internal_0_routes:

- cidr: "{{ internal_1_cidr }}"
gateway: 10.0.1.1

internal_1_cidr: 10.1.1.0/24
internal_1_vlan: 111
internal_1_routes:

- cidr: "{{ internal_0_cidr }}"
gateway: 10.1.1.1

tunnel_0_cidr: 10.0.2.0/24
tunnel_0_vlan: 102
tunnel_0_routes:

- cidr: "{{ tunnel_1_cidr }}"
gateway: 10.0.2.1

tunnel_1_cidr: 10.1.2.0/24
tunnel_1_vlan: 112
tunnel_1_routes:

- cidr: "{{ tunnel_0_cidr }}"
gateway: 10.1.2.1

storage_0_cidr: 10.0.3.0/24
storage_0_vlan: 103

(continues on next page)

3.6. Configuration Guide 55

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

storage_0_routes:
- cidr: "{{ storage_1_cidr }}"
gateway: 10.0.3.1

storage_1_cidr: 10.1.3.0/24
storage_1_vlan: 113
storage_1_routes:

- cidr: "{{ storage_0_cidr }}"
gateway: 10.1.3.1

storage_mgmt_0_cidr: 10.0.4.0/24
storage_mgmt_0_vlan: 104
storage_mgmt_0_routes:

- cidr: "{{ storage_mgmt_1_cidr }}"
gateway: 10.0.4.1

storage_mgmt_1_cidr: 10.1.4.0/24
storage_mgmt_1_vlan: 114
storage_mgmt_1_routes:

- cidr: "{{ storage_mgmt_0_cidr }}"
gateway: 10.1.4.1

Network interfaces

Since there are now differently named networks, the network interface variables are named differently.
This means that we must provide a group variables file for each set of networks and each type of host.
For example:

Listing 59: inventory/group_vars/compute-network-0/
network-interfaces

internal_0_interface: eth0.101
tunnel_0_interface: eth0.102
storage_0_interface: eth0.103

Listing 60: inventory/group_vars/compute-network-1/
network-interfaces

internal_1_interface: eth0.111
tunnel_1_interface: eth0.112
storage_1_interface: eth0.113

Listing 61: inventory/group_vars/storage-network-0/
network-interfaces

internal_0_interface: eth0.101
storage_0_interface: eth0.103
storage_mgmt_0_interface: eth0.104

56 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 62: inventory/group_vars/storage-network-1/
network-interfaces

internal_1_interface: eth0.111
storage_1_interface: eth0.113
storage_mgmt_1_interface: eth0.114

The normal interface configuration group variables files inventory/group_vars/compute/
network-interfaces and inventory/group_vars/storage/network-interfaces should be re-
moved.

Group variables for controller network interfaces may be placed in inventory/group_vars/
controllers/network-interfaces as normal.

Alternative approach

There is an alternative approach which has not been tested, but may be of interest. Rather than having
differently named networks (e.g. internal_0 and internal_1), it should be possible to use the same
name everywhere (e.g. internal), but define the network attributes in group variables. This approach
may be a little less verbose, and allows the same group variables file to set the network interfaces as
normal (e.g. via internal_interface).

Host Configuration

This section covers configuration of hosts. It does not cover configuration or deployment of containers.
Hosts that are configured by Kayobe include:

• Seed hypervisor (kayobe seed hypervisor host configure)

• Seed (kayobe seed host configure)

• Infra VMs (kayobe infra vm host configure)

• Overcloud (kayobe overcloud host configure)

Unless otherwise stated, all host configuration described here is applied to each of these types of host.

See also:

Ansible tags for limiting the scope of Kayobe commands are included under the relevant sections of this
page (for more information see Tags).

Configuration Location

Some host configuration options are set via global variables, and others have a variable for each type of
host. The latter variables are included in the following files under ${KAYOBE_CONFIG_PATH}:

• seed-hypervisor.yml

• seed.yml

• compute.yml

• controller.yml

3.6. Configuration Guide 57

kayobe Documentation, Release 11.8.1.dev24

• infra-vms.yml

• monitoring.yml

• storage.yml

Note that any variable may be set on a per-host or per-group basis, by using inventory host or group
variables - these delineations are for convenience.

Paths

Several directories are used by Kayobe on the remote hosts. There is a hierarchy of variables in
${KAYOBE_CONFIG_PATH}/globals.yml that can be used to control where these are located.

• base_path (default /opt/kayobe/) sets the default base path for various directories.

• config_path (default {{ base_path }}/etc) is a path in which to store configuration files.

• image_cache_path (default {{ base_path }}/images) is a path in which to cache down-
loaded or built images.

• source_checkout_path (default {{ base_path }}/src) is a path into which to store clones
of source code repositories.

• virtualenv_path (default {{ base_path }}/venvs) is a path in which to create Python virtual
environments.

SSH Known Hosts

tags:

ssh-known-host

While strictly this configuration is applied to the Ansible control host (localhost), it is applied dur-
ing the host configure commands. The ansible_host of each host is added as an SSH known
host. This is typically the hosts IP address on the admin network (admin_oc_net_name), as defined in
${KAYOBE_CONFIG_PATH}/network-allocation.yml (see IP Address Allocation).

Kayobe User Bootstrapping

tags:

kayobe-ansible-user

Kayobe uses a user account defined by the kayobe_ansible_user variable (in
${KAYOBE_CONFIG_PATH}/globals.yml) for remote SSH access. By default, this is stack.

Typically, the image used to provision these hosts will not include this user account, so Kayobe performs
a bootstrapping step to create it, as a different user. In cloud images, there is often a user named after the
OS distro, e.g. centos, rocky or ubuntu. This user defaults to the os_distribution variable, but
may be set via the following variables:

• seed_hypervisor_bootstrap_user

• seed_bootstrap_user

58 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

• infra_vm_bootstrap_user

• compute_bootstrap_user

• controller_bootstrap_user

• monitoring_bootstrap_user

• storage_bootstrap_user

For example, to set the bootstrap user for controllers to example-user:

Listing 63: controllers.yml

controller_bootstrap_user: example-user

PyPI Mirror and proxy

tags:

pip

Kayobe supports configuration of a PyPI mirror and/or proxy, via variables in
${KAYOBE_CONFIG_PATH}/pip.yml. Mirror functionality is enabled by setting the
pip_local_mirror variable to true and proxy functionality is enabled by setting pip_proxy
variable to a proxy URL.

Kayobe will generate configuration for:

• pip to use the mirror and proxy

• easy_install to use the mirror

for the list of users defined by pip_applicable_users (default kayobe_ansible_user and root),
in addition to the user used for Kolla Ansible (kolla_ansible_user). The mirror URL is configured
via pip_index_url, and pip_trusted_hosts is a list of trusted hosts, for which SSL verification will
be disabled.

For example, to configure use of the test PyPI mirror at https://test.pypi.org/simple/:

Listing 64: pip.yml

pip_local_mirror: true
pip_index_url: https://test.pypi.org/simple/

To configure use of the PyPI proxy:

3.6. Configuration Guide 59

https://test.pypi.org/simple/

kayobe Documentation, Release 11.8.1.dev24

Listing 65: pip.yml

pip_proxy: http://your_proxy_server:3128

Kayobe Remote Virtual Environment

tags:

kayobe-target-venv

By default, Ansible executes modules remotely using the system python interpreter, even if the Ansible
control process is executed from within a virtual environment (unless the local connection plugin is
used). This is not ideal if there are python dependencies that must be installed with isolation from the
system python packages. Ansible can be configured to use a virtualenv by setting the host variable
ansible_python_interpreter to a path to a python interpreter in an existing virtual environment.

If kayobe detects that ansible_python_interpreter is set and references a virtual environment, it
will create the virtual environment if it does not exist. Typically this variable should be set via a group
variable in the inventory for hosts in the seed, seed-hypervisor, and/or overcloud groups.

The default Kayobe configuration in the kayobe-config repository sets
ansible_python_interpreter to {{ virtualenv_path }}/kayobe/bin/python for the
seed, seed-hypervisor, and overcloud groups.

Disk Wiping

tags:

wipe-disks

Using hosts that may have stale data on their disks could affect the deployment of the cloud. This is not
a configuration option, since it should only be performed once to avoid losing useful data. It is triggered
by passing the --wipe-disks argument to the host configure commands.

Users and Groups

tags:

users

Linux user accounts and groups can be configured using the users_default variable in
${KAYOBE_CONFIG_PATH}/users.yml. The format of the list is that used by the users variable of
the singleplatform-eng.users role. The following variables can be used to set the users for specific types
of hosts:

• seed_hypervisor_users

• seed_users

• infra_vm_users

• compute_users

• controller_users

60 Chapter 3. Contents

https://galaxy.ansible.com/singleplatform-eng/users

kayobe Documentation, Release 11.8.1.dev24

• monitoring_users

• storage_users

In the following example, a single user named bob is created. A password hash has been generated via
mkpasswd --method=sha-512. The user is added to the wheel group, and an SSH key is authorised.
The SSH public key should be added to the Kayobe configuration.

Listing 66: users.yml

users_default:
- username: bob
name: Bob
password: "6wJt9MLWrHlWN8$oXJHbdaslm9guD5EC3Dry1mphuqF9NPeQ43OXk3cXZa2ze/

↪→F9FOTxm2KvvDkbdxBDs7ouwdiLTUJ1Ff40.cFU."
groups:
- wheel

append: True
ssh_key:
- "{{ lookup('file', kayobe_config_path ~ '/ssh-keys/id_rsa_bob.pub') }}"

DNF Package Repositories

tags:

dnf

On CentOS and Rocky, Kayobe supports configuration of package repositories via DNF, via variables in
${KAYOBE_CONFIG_PATH}/dnf.yml.

Configuration of dnf.conf

Global configuration of DNF is stored in /etc/dnf/dnf.conf, and options can be set via the
dnf_config variable. Options are added to the [main] section of the file. For example, to config-
ure DNF to use a proxy server:

Listing 67: dnf.yml

dnf_config:
proxy: https://proxy.example.com

CentOS/Rocky and EPEL Mirrors

CentOS/Rocky and EPEL mirrors can be enabled by setting dnf_use_local_mirror to true. CentOS
repository mirrors are configured via the following variables:

• dnf_centos_mirror_host (default mirror.centos.org) is the mirror hostname.

• dnf_centos_mirror_directory (default centos) is a directory on the mirror in which repos-
itories may be accessed.

Rocky repository mirrors are configured via the following variables:

3.6. Configuration Guide 61

kayobe Documentation, Release 11.8.1.dev24

• dnf_rocky_mirror_host (default dl.rockylinux.org) is the mirror hostname

• dnf_rocky_mirror_directory (default pub/rocky) is a directory on the mirror in which
repositories may be accessed.

EPEL repository mirrors are configured via the following variables:

• dnf_epel_mirror_host (default download.fedoraproject.org) is the mirror hostname.

• dnf_epel_mirror_directory (default pub/epel) is a directory on the mirror in which repos-
itories may be accessed.

For example, to configure CentOS and EPEL mirrors at mirror.example.com:

Listing 68: dnf.yml

dnf_use_local_mirror: true
dnf_centos_mirror_host: mirror.example.com
dnf_epel_mirror_host: mirror.example.com

Custom DNF Repositories

It is also possible to configure a list of custom DNF repositories via the dnf_custom_repos variable.
The format is a dict/map, with repository names mapping to a dict/map of arguments to pass to the
Ansible yum_repository module.

For example, the following configuration defines a single DNF repository called widgets.

Listing 69: dnf.yml

dnf_custom_repos:
widgets:
baseurl: http://example.com/repo
file: widgets
gpgkey: http://example.com/gpgkey
gpgcheck: yes

Disabling EPEL

It is possible to disable the EPEL DNF repository by setting dnf_install_epel to false.

DNF Automatic

DNF Automatic provides a mechanism for applying regular updates of packages. DNF Automatic is
disabled by default, and may be enabled by setting dnf_automatic_enabled to true.

62 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 70: dnf.yml

dnf_automatic_enabled: true

By default, only security updates are applied. Updates for all packages may be installed by setting
dnf_automatic_upgrade_type to default. This may cause the system to be less predictable as pack-
ages are updated without oversight or testing.

Apt

On Ubuntu, Apt is used to manage packages and package repositories.

Apt cache

The Apt cache timeout may be configured via apt_cache_valid_time (in seconds) in etc/kayobe/
apt.yml, and defaults to 3600.

Apt proxy

Apt can be configured to use a proxy via apt_proxy_http and apt_proxy_https in etc/kayobe/
apt.yml. These should be set to the full URL of the relevant proxy (e.g. http://squid.example.
com:3128).

Apt configuration

Arbitrary global configuration options for Apt may be defined via the apt_config variable in etc/
kayobe/apt.yml since the Yoga release. The format is a list, with each item mapping to a dict/map
with the following items:

• content: free-form configuration file content

• filename: name of a file in /etc/apt/apt.conf.d/ in which to write the configuration

The default of apt_config is an empty list.

For example, the following configuration tells Apt to use 2 attempts when downloading packages:

apt_config:
- content: |

Acquire::Retries 1;
filename: 99retries

3.6. Configuration Guide 63

kayobe Documentation, Release 11.8.1.dev24

Apt repositories

Kayobe supports configuration of custom Apt repositories via the apt_repositories variable in etc/
kayobe/apt.yml since the Yoga release. The format is a list, with each item mapping to a dict/map
with the following items:

• types: whitespace-separated list of repository types, e.g. deb or deb-src (optional, default is
deb)

• url: URL of the repository

• suites: whitespace-separated list of suites, e.g. focal (optional, default is ansible_facts.
distribution_release)

• components: whitespace-separated list of components, e.g. main (optional, default is main)

• signed_by: whitespace-separated list of names of GPG keyring files in apt_keys_path (op-
tional, default is unset)

• architecture: whitespace-separated list of architectures that will be used (optional, default is
unset)

The default of apt_repositories is an empty list.

For example, the following configuration defines a single Apt repository:

Listing 71: apt.yml

apt_repositories:
- types: deb
url: https://example.com/repo
suites: focal
components: all

In the following example, the Ubuntu Focal 20.04 repositories are consumed from a local package mirror.
The apt_disable_sources_list variable is set to true, which disables all repositories in /etc/apt/
sources.list, including the default Ubuntu ones.

64 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 72: apt.yml

apt_repositories:
- url: http://mirror.example.com/ubuntu/
suites: focal focal-updates
components: main restricted universe multiverse

- url: http://mirror.example.com/ubuntu/
suites: focal-security
components: main restricted universe multiverse

apt_disable_sources_list: true

Apt keys

Some repositories may be signed by a key that is not one of Apts trusted keys. Kayobe avoids the use of
the deprecated apt-key utility, and instead allows keys to be downloaded to a directory. This enables
repositories to use the SignedBy option to state that they are signed by a specific key. This approach is
more secure than using globally trusted keys.

Keys to be downloaded are defined by the apt_keys variable. The format is a list, with each item
mapping to a dict/map with the following items:

• url: URL of key

• filename: Name of a file in which to store the downloaded key in apt_keys_path. The extension
should be .asc for ASCII-armoured keys, or .gpg otherwise.

The default value of apt_keys is an empty list.

In the following example, a key is downloaded, and a repository is configured that is signed by the key.

3.6. Configuration Guide 65

kayobe Documentation, Release 11.8.1.dev24

Listing 73: apt.yml

apt_keys:
- url: https://example.com/GPG-key
filename: example-key.asc

apt_repositories:
- types: deb
url: https://example.com/repo
suites: focal
components: all
signed_by: example-key.asc

Development tools

tags:

dev-tools

Development tools (additional OS packages) can be configured to be installed on hosts. By default Ddvel-
opment tools are installed on all seed-hypervisor, seed, overcloud and infra-vms hosts.

The following variables can be used to set which packages to install:

• dev_tools_packages_default: The list of packages installed by default. (default is:
bash-completion, tcpdump and vim)

• dev_tools_packages_extra: The list of additional packages installed alongside default pack-
ages. (default is an empty list)

In the following example, the list of default packages to be installed on all hosts is modified to replace
vim with emacs. The bridge-utils package is added to all overcloud hosts:

Listing 74: dev-tools.yml

dev_tools_packages_default:
- bash-completion
- emacs
- tcpdump

66 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 75: inventory/group_vars/overcloud/dev-tools

dev_tools_packages_extra:
- bridge-utils

SELinux

tags:

disable-selinux

Note: SELinux applies to CentOS and Rocky systems only.

SELinux is not supported by Kolla Ansible currently, so it is disabled by Kayobe. If necessary, Kayobe
will reboot systems in order to apply a change to the SELinux configuration. The timeout for waiting for
systems to reboot is disable_selinux_reboot_timeout. Alternatively, the reboot may be avoided
by setting disable_selinux_do_reboot to false.

Network Configuration

tags:

network

Configuration of host networking is covered in depth in Network Configuration.

Firewalld

tags:

firewall

Note: Firewalld is supported on CentOS and Rocky systems only. Currently no firewall is supported on
Ubuntu.

Firewalld can be used to provide a firewall on CentOS/Rocky systems. Since the Xena release, Kayobe
provides support for enabling or disabling firewalld, as well as defining zones and rules.

The following variables can be used to set whether to enable firewalld:

• seed_hypervisor_firewalld_enabled

• seed_firewalld_enabled

• infra_vm_firewalld_enabled

• compute_firewalld_enabled

• controller_firewalld_enabled

• monitoring_firewalld_enabled

3.6. Configuration Guide 67

kayobe Documentation, Release 11.8.1.dev24

• storage_firewalld_enabled

When firewalld is enabled, the following variables can be used to configure a list of zones to create. Each
item is a dict containing a zone item:

• seed_hypervisor_firewalld_zones

• seed_firewalld_zones

• infra_vm_firewalld_zones

• compute_firewalld_zones

• controller_firewalld_zones

• monitoring_firewalld_zones

• storage_firewalld_zones

The following variables can be used to set a default zone. The default is unset, in which case the default
zone will not be changed:

• seed_hypervisor_firewalld_default_zone

• seed_firewalld_default_zone

• infra_vm_firewalld_default_zone

• compute_firewalld_default_zone

• controller_firewalld_default_zone

• monitoring_firewalld_default_zone

• storage_firewalld_default_zone

The following variables can be used to set a list of rules to apply. Each item is a dict containing arguments
to pass to the firewalld module. Arguments are omitted if not provided, with the following exceptions:
offline (default true), permanent (default true), state (default enabled):

• seed_hypervisor_firewalld_rules

• seed_firewalld_rules

• infra_vm_firewalld_rules

• compute_firewalld_rules

• controller_firewalld_rules

• monitoring_firewalld_rules

• storage_firewalld_rules

In the following example, firewalld is enabled on controllers. public and internal zones are created,
with their default rules disabled. TCP port 8080 is open in the internal zone, and the http service is
open in the public zone:

controller_firewalld_enabled: true

controller_firewalld_zones:
- zone: public
- zone: internal

(continues on next page)

68 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

controller_firewalld_rules:
Disable default rules in internal zone.
- service: dhcpv6-client
state: disabled
zone: internal

- service: samba-client
state: disabled
zone: internal

- service: ssh
state: disabled
zone: internal

Disable default rules in public zone.
- service: dhcpv6-client
state: disabled
zone: public

- service: ssh
state: disabled
zone: public

Enable TCP port 8080 in internal zone.
- port: 8080/tcp
zone: internal

Enable the HTTP service in the public zone.
- service: http
zone: public

Tuned

tags:

tuned

Note: Tuned configuration only supports CentOS/Rocky systems for now.

Built-in tuned profiles can be applied to hosts. The following variables can be used to set a tuned profile
to specific types of hosts:

• seed_hypervisor_tuned_active_builtin_profile

• seed_tuned_active_builtin_profile

• compute_tuned_active_builtin_profile

• controller_tuned_active_builtin_profile

• monitoring_tuned_active_builtin_profile

• storage_tuned_active_builtin_profile

• infra_vm_tuned_active_builtin_profile

By default, Kayobe applies a tuned profile matching the role of each host in the system:

3.6. Configuration Guide 69

kayobe Documentation, Release 11.8.1.dev24

• seed hypervisor: virtual-host

• seed: virtual-guest

• infrastructure VM: virtual-guest

• compute: virtual-host

• controllers: throughput-performance

• monitoring: throughput-performance

• storage: throughput-performance

For example, to change the tuned profile of controllers to network-throughput:

Listing 76: controllers.yml

controller_tuned_active_builtin_profile: network-throughput

Sysctls

tags:

sysctl

Arbitrary sysctl configuration can be applied to hosts. The variable format is a dict/map, mapping pa-
rameter names to their required values. The following variables can be used to set sysctl configuration
specific types of hosts:

• seed_hypervisor_sysctl_parameters

• seed_sysctl_parameters

• infra_vm_sysctl_parameters

• compute_sysctl_parameters

• controller_sysctl_parameters

• monitoring_sysctl_parameters

• storage_sysctl_parameters

For example, to set the net.ipv4.ip_forward parameter to 1 on controllers:

70 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 77: controllers.yml

controller_sysctl_parameters:
net.ipv4.ip_forward: 1

IP routing and Source NAT

tags:

ip-routing

snat

IP routing and source NAT (SNAT) can be configured on the seed host, which allows it to be used as a
default gateway for overcloud hosts. This is disabled by default since the Xena 11.0.0 release, and may
be enabled by setting seed_enable_snat to true in ${KAYOBE_CONFIG_PATH}/seed.yml.

The seed-hypervisor host also can be configured the same way to be used as a default gateway. This is
disabled by default too, and may be enabled by setting seed_hypervisor_enable_snat to true in
${KAYOBE_CONFIG_PATH}/seed-hypervisor.yml.

Disable cloud-init

tags:

disable-cloud-init

cloud-init is a popular service for performing system bootstrapping. If you are not using cloud-init, this
section can be skipped.

If using the seeds Bifrost service to provision the control plane hosts, the use of cloud-init may be con-
figured via the kolla_bifrost_dib_init_element variable.

cloud-init searches for network configuration in order of increasing precedence; each item overriding the
previous. In some cases, on subsequent boots cloud-init can automatically reconfigure network interfaces
and cause some issues in network configuration. To disable cloud-init from running after the initial server
bootstrapping, set disable_cloud_init to true in ${KAYOBE_CONFIG_PATH}/overcloud.yml.

Disable Glean

tags:

disable-glean

The glean service can be used to perform system bootstrapping, serving a similar role to cloud-init.
If you are not using glean, this section can be skipped.

If using the seeds Bifrost service to provision the control plane hosts, the use of gleanmay be configured
via the kolla_bifrost_dib_init_element variable.

After the initial server bootstrapping, the glean service can cause problems as it attempts to enable all
network interfaces, which can lead to timeouts while booting. To avoid this, the glean service is disabled.
Additionally, any network interface configuration files generated by glean and not overwritten by Kayobe
are removed.

3.6. Configuration Guide 71

kayobe Documentation, Release 11.8.1.dev24

Timezone

tags:

timezone

The timezone can be configured via the timezone variable in ${KAYOBE_CONFIG_PATH}/time.yml.
The value must be a valid Linux timezone. For example:

Listing 78: time.yml

timezone: Europe/London

NTP

tags:

ntp

Kayobe will configure Chrony on all hosts in the ntp group. The default hosts in this group are:

[ntp:children]
Kayobe will configure Chrony on members of this group.
seed
seed-hypervisor
overcloud

This provides a flexible way to opt in or out of having kayobe manage the NTP service.

Variables

Network Time Protocol (NTP) may be configured via variables in ${KAYOBE_CONFIG_PATH}/time.
yml. The list of NTP servers is configured via chrony_ntp_servers, and by default the pool.ntp.org
servers are used.

Internally, kayobe uses the the mrlesmithjr.chrony Ansible role. Rather than maintain a mapping between
the kayobe and mrlesmithjr.chrony worlds, all variables are simply passed through. This means you
can use all variables that the role defines. For example to change chrony_maxupdateskew and override
the kayobe defaults for chrony_ntp_servers:

Listing 79: time.yml

chrony_ntp_servers:
- server: 0.debian.pool.ntp.org
options:

- option: iburst
- option: minpoll
val: 8

chrony_maxupdateskew: 150.0

72 Chapter 3. Contents

https://chrony.tuxfamily.org/
https://galaxy.ansible.com/mrlesmithjr/chrony

kayobe Documentation, Release 11.8.1.dev24

Software RAID

tags:

mdadm

While it is possible to use RAID directly with LVM, some operators may prefer the userspace tools
provided by mdadm or may have existing software RAID arrays they want to manage with Kayobe.

Software RAID arrays may be configured via the mdadm_arrays variable. For convenience, this is
mapped to the following variables:

• seed_hypervisor_mdadm_arrays

• seed_mdadm_arrays

• infra_vm_mdadm_arrays

• compute_mdadm_arrays

• controller_mdadm_arrays

• monitoring_mdadm_arrays

• storage_mdadm_arrays

The format of these variables is as defined by the mdadm_arrays variable of the mrlesmithjr.mdadm
Ansible role.

For example, to configure two of the seeds disks as a RAID1 mdadm array available as /dev/md0:

Listing 80: seed.yml

seed_mdadm_arrays:
- name: md0
devices:

- /dev/sdb
- /dev/sdc

level: '1'
state: present

Encryption

tags:

luks

Encrypted block devices may be configured via the luks_devices variable. For convenience, this is
mapped to the following variables:

• seed_hypervisor_luks_devices

• seed_luks_devices

• infra_vm_luks_devices

• compute_luks_devices

• controller_luks_devices

3.6. Configuration Guide 73

https://galaxy.ansible.com/mrlesmithjr/mdadm

kayobe Documentation, Release 11.8.1.dev24

• monitoring_luks_devices

• storage_luks_devices

The format of these variables is as defined by the luks_devices variable of the stackhpc.luks Ansible
role.

For example, to encrypt the software raid device, /dev/md0, on the seed, and make it available as /dev/
mapper/md0crypt

Listing 81: seed.yml

seed_luks_devices:
- name: md0crypt
device: /dev/md0

Note: It is not yet possible to encrypt the root device.

LVM

tags:

lvm

Logical Volume Manager (LVM) physical volumes, volume groups, and logical volumes may be config-
ured via the lvm_groups variable. For convenience, this is mapped to the following variables:

• seed_hypervisor_lvm_groups

• seed_lvm_groups

• infra_vm_lvm_groups

• compute_lvm_groups

• controller_lvm_groups

• monitoring_lvm_groups

• storage_lvm_groups

The format of these variables is as defined by the lvm_groups variable of the mrlesmithjr.manage_lvm
Ansible role.

LVM for libvirt

LVM is not configured by default on the seed hypervisor. It is possible to configure LVM to provide
storage for a libvirt storage pool, typically mounted at /var/lib/libvirt/images.

To use this configuration, set the seed_hypervisor_lvm_groups variable to "{{
seed_hypervisor_lvm_groups_with_data }}" and provide a list of disks via the
seed_hypervisor_lvm_group_data_disks variable.

74 Chapter 3. Contents

https://galaxy.ansible.com/stackhpc/luks
https://galaxy.ansible.com/mrlesmithjr/manage_lvm

kayobe Documentation, Release 11.8.1.dev24

LVM for Docker

Note: In Train and earlier releases of Kayobe, the data volume group was always enabled by default.

If the devicemapper Docker storage driver is in use, the default LVM configuration is optimised for it.
The devicemapper driver requires a thin provisioned LVM volume. A second logical volume is used
for storing Docker volume data, mounted at /var/lib/docker/volumes. Both logical volumes are
created from a single data volume group.

This configuration is enabled by the following variables, which default to true if the devicemapper
driver is in use or false otherwise:

• compute_lvm_group_data_enabled

• controller_lvm_group_data_enabled

• seed_lvm_group_data_enabled

• infra_vm_lvm_group_data_enabled

• storage_lvm_group_data_enabled

These variables can be set to true to enable the data volume group if the devicemapper driver is not
in use. This may be useful where the docker-volumes logical volume is required.

To use this configuration, a list of disks must be configured via the following variables:

• seed_lvm_group_data_disks

• infra_vm_lvm_group_data_disks

• compute_lvm_group_data_disks

• controller_lvm_group_data_disks

• monitoring_lvm_group_data_disks

• storage_lvm_group_data_disks

For example, to configure two of the seeds disks for use by LVM:

Listing 82: seed.yml

seed_lvm_group_data_disks:
- /dev/sdb
- /dev/sdc

The Docker volumes LVM volume is assigned a size given by the following variables, with a default
value of 75% (of the volume groups capacity):

• seed_lvm_group_data_lv_docker_volumes_size

• infra_vm_lvm_group_data_lv_docker_volumes_size

• compute_lvm_group_data_lv_docker_volumes_size

• controller_lvm_group_data_lv_docker_volumes_size

• monitoring_lvm_group_data_lv_docker_volumes_size

3.6. Configuration Guide 75

kayobe Documentation, Release 11.8.1.dev24

• storage_lvm_group_data_lv_docker_volumes_size

If using a Docker storage driver other than devicemapper, the remaining 25% of the volume group can
be used for Docker volume data. In this case, the LVM volumes size can be increased to 100%:

Listing 83: controllers.yml

controller_lvm_group_data_lv_docker_volumes_size: 100%

If using a Docker storage driver other than devicemapper, it is possible to avoid using LVM entirely,
thus avoiding the requirement for multiple disks. In this case, set the appropriate <host>_lvm_groups
variable to an empty list:

Listing 84: storage.yml

storage_lvm_groups: []

Custom LVM

To define additional logical logical volumes in the default data volume group, modify one of the follow-
ing variables:

• seed_lvm_group_data_lvs

• infra_vm_lvm_group_data_lvs

• compute_lvm_group_data_lvs

• controller_lvm_group_data_lvs

• monitoring_lvm_group_data_lvs

• storage_lvm_group_data_lvs

Include the variable <host>_lvm_group_data_lv_docker_volumes in the list to include the LVM
volume for Docker volume data:

Listing 85: monitoring.yml

monitoring_lvm_group_data_lvs:
- "{{ monitoring_lvm_group_data_lv_docker_volumes }}"
- lvname: other-vol
size: 1%
create: true
filesystem: ext4
mount: true
mntp: /path/to/mount

It is possible to define additional LVM volume groups via the following variables:

• seed_lvm_groups_extra

• infra_vm_lvm_groups_extra

• compute_lvm_groups_extra

• controller_lvm_groups_extra

76 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

• monitoring_lvm_groups_extra

• storage_lvm_groups_extra

For example:

Listing 86: compute.yml

compute_lvm_groups_extra:
- vgname: other-vg
disks:

- /dev/sdb
create: true
lvnames:

- lvname: other-vol
size: 100%FREE
create: true
mount: false

Alternatively, replace the entire volume group list via one of the <host>_lvm_groups variables to re-
place the default configuration with a custom one.

Listing 87: controllers.yml

controller_lvm_groups:
- vgname: only-vg
disks: /dev/sdb
create: true
lvnames:

- lvname: only-vol
size: 100%
create: true
mount: false

Kolla-Ansible bootstrap-servers

Kolla Ansible provides some host configuration functionality via the bootstrap-servers command,
which may be leveraged by Kayobe.

See the Kolla Ansible documentation for more information on the functions performed by this command,
and how to configure it.

Note that from the Ussuri release, Kayobe creates a user account for Kolla Ansible rather than this being
done by Kolla Ansible during bootstrap-servers. See User account creation for details.

3.6. Configuration Guide 77

https://docs.openstack.org/kolla-ansible/xena/reference/deployment-and-bootstrapping/bootstrap-servers.html

kayobe Documentation, Release 11.8.1.dev24

Kolla-Ansible Remote Virtual Environment

tags:

kolla-ansible

kolla-target-venv

See Context: Remote Execution Environment for information about remote Python virtual environments
for Kolla Ansible.

Docker Engine

tags:

docker

Docker engine configuration is applied by both Kayobe and Kolla Ansible (during bootstrap-servers).

The docker_storage_driver variable sets the Docker storage driver, and by default the overlay2
driver is used. If using the devicemapper driver, see LVM for information about configuring LVM for
Docker.

Various options are defined in ${KAYOBE_CONFIG_PATH}/docker.yml for configuring the
devicemapper storage.

A private Docker registry may be configured via docker_registry, with a Certificate Authority (CA)
file configured via docker_registry_ca.

To use one or more Docker Registry mirrors, use the docker_registry_mirrors variable.

If using an MTU other than 1500, docker_daemon_mtu can be used to configure this. This setting does
not apply to containers using net=host (as Kolla Ansibles containers do), but may be necessary when
building images.

Dockers live restore feature can be configured via docker_daemon_live_restore, although it is dis-
abled by default due to issues observed.

Kolla Configuration

Anyone using Kayobe to build images should familiarise themselves with the Kolla projects documenta-
tion.

Container Image Build Host

Images are built on hosts in the container-image-builders group. The default Kayobe Ansible
inventory places the seed host in this group, although it is possible to put a different host in the group, by
modifying the inventory.

For example, to build images on localhost:

Listing 88: inventory/groups

[container-image-builders:children]

78 Chapter 3. Contents

https://docs.openstack.org/kolla/xena/
https://docs.openstack.org/kolla/xena/

kayobe Documentation, Release 11.8.1.dev24

Listing 89: inventory/hosts

[container-image-builders]
localhost

Kolla Installation

Prior to building container images, Kolla and its dependencies will be installed on the container image
build host. The following variables affect the installation of Kolla:

kolla_ctl_install_type Type of installation, either binary (PyPI) or source (git). Default is
source.

kolla_source_path Path to directory for Kolla source code checkout. Default is {{
source_checkout_path ~ '/kolla' }}.

kolla_source_url URL of Kolla source code repository if type is source. Default is https://opendev.
org/openstack/kolla.

kolla_source_version Version (branch, tag, etc.) of Kolla source code repository if type is source.
Default is {{ openstack_branch }}, which is the same as the Kayobe upstream branch name.

kolla_venv Path to virtualenv in which to install Kolla on the container image build host. Default is
{{ virtualenv_path ~ '/kolla' }}.

kolla_build_config_path Path in which to generate kolla configuration. Default is {{
config_path ~ '/kolla' }}.

For example, to install from a custom Git repository:

Listing 90: kolla.yml

kolla_source_url: https://git.example.com/kolla
kolla_source_version: downstream

Global Configuration

The following variables are global, affecting all container images. They are used to generate the Kolla
configuration file, kolla-build.conf, and also affect Kolla Ansible configuration.

kolla_base_distro Kolla base container image distribution. Options are centos, debian, or
ubuntu. Default is {{ os_distribution }}.

kolla_install_type Kolla container image type: binary or source. Default is source.

kolla_docker_namespace Docker namespace to use for Kolla images. Default is kolla.

kolla_docker_registry URL of docker registry to use for Kolla images. Default is to use the value
of docker_registry variable (see Docker Engine).

kolla_docker_registry_username Username to use to access a docker registry. Default is not set,
in which case the registry will be used without authentication.

kolla_docker_registry_password Password to use to access a docker registry. Default is not set,
in which case the registry will be used without authentication.

3.6. Configuration Guide 79

https://opendev.org/openstack/kolla
https://opendev.org/openstack/kolla

kayobe Documentation, Release 11.8.1.dev24

kolla_openstack_release Kolla OpenStack release version. This should be a Docker image tag.
Default is the OpenStack release name (e.g. rocky) on stable branches and tagged releases, or
master on the Kayobe master branch.

kolla_tag Kolla container image tag. This is the tag that will be applied to built container images.
Default is kolla_openstack_release.

For example, to build the Kolla centos binary images with a namespace of example, and a private
Docker registry at registry.example.com:4000, tagged with 7.0.0.1:

Listing 91: kolla.yml

kolla_base_distro: centos
kolla_install_type: binary
kolla_docker_namespace: example
kolla_docker_registry: registry.example.com:4000
kolla_openstack_release: 7.0.0.1

The ironic-api image built with this configuration would be referenced as follows:

registry.example.com:4000/example/centos-binary-ironic-api:7.0.0.1

Further customisation of the Kolla configuration file can be performed by writing a file at
${KAYOBE_CONFIG_PATH/kolla/kolla-build.conf. For example, to enable debug logging:

Listing 92: kolla/kolla-build.conf

[DEFAULT]
debug = True

Seed Images

The kayobe seed container image build command builds images for the seed services. The only
image required for the seed services is the bifrost-deploy image.

Overcloud Images

The kayobe overcloud container image build command builds images for the control plane.
The default set of images built depends on which services and features are enabled via the
kolla_enable_<service> flags in $KAYOBE_CONFIG_PATH/kolla.yml.

For example, the following configuration will enable the Magnum service and add the magnum-api and
magnum-conductor containers to the set of overcloud images that will be built:

Listing 93: kolla.yml

kolla_enable_magnum: true

If a required image is not built when the corresponding flag is set, check the image sets defined in
overcloud_container_image_sets in ansible/group_vars/all/kolla.

80 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Image Customisation

There are three main approaches to customising the Kolla container images:

1. Overriding Jinja2 blocks

2. Overriding Jinja2 variables

3. Source code locations

Overriding Jinja2 blocks

Kollas images are defined via Jinja2 templates that generate Dockerfiles. Jinja2 blocks are frequently
used to allow specific statements in one or more Dockerfiles to be replaced with custom statements. See
the Kolla documentation for details.

Blocks are configured via the kolla_build_blocks variable, which is a dict mapping Jinja2 block
names in to their contents.

For example, to override the block header to add a custom label to every image:

Listing 94: kolla.yml

kolla_build_blocks:
header: |
LABEL foo="bar"

This will result in Kayobe generating a template-override.j2 file with the following content:

Listing 95: template-override.j2

{% extends parent_template %}

{% block header %}
LABEL foo="bar"
{% endblock %}

Overriding Jinja2 variables

Jinja2 variables offer another way to customise images. See the Kolla documentation for details of using
variable overrides to modify the list of packages to install in an image.

Variable overrides are configured via the kolla_build_customizations variable, which is a dict/map
mapping names of variables to override to their values.

For example, to add mod_auth_openidc to the list of packages installed in the keystone-base image,
we can set the variable keystone_base_packages_append to a list containing mod_auth_openidc.

Listing 96: kolla.yml

kolla_build_customizations:
keystone_base_packages_append:
- mod_auth_openidc

3.6. Configuration Guide 81

https://docs.openstack.org/kolla/xena/admin/image-building.html#generic-customisation
https://docs.openstack.org/kolla/xena/admin/image-building.html#package-customisation

kayobe Documentation, Release 11.8.1.dev24

This will result in Kayobe generating a template-override.j2 file with the following content:

Listing 97: template-override.j2

{% extends parent_template %}

{% set keystone_base_packages_append = ["mod_auth_openidc"] %}

Note that the variable value will be JSON-encoded in template-override.j2.

Source code locations

For source image builds, configuration of source code locations for packages installed in containers by
Kolla is possible via the kolla_sources variable. The format is a dict/map mapping names of sources
to their definitions. See the Kolla documentation for details. The default is to specify the URL and
version of Bifrost, as defined in ${KAYOBE_CONFIG_PATH}/bifrost.yml.

For example, to specify a custom source location for the ironic-base package:

Listing 98: kolla.yml

kolla_sources:
bifrost-base:
type: "git"
location: "{{ kolla_bifrost_source_url }}"
reference: "{{ kolla_bifrost_source_version }}"

ironic-base:
type: "git"
location: https://git.example.com/ironic
reference: downstream

This will result in Kayobe adding the following configuration to kolla-build.conf:

82 Chapter 3. Contents

https://docs.openstack.org/kolla/xena/admin/image-building.html#build-openstack-from-source

kayobe Documentation, Release 11.8.1.dev24

Listing 99: kolla-build.conf

[bifrost-base]
type = git
location = https://opendev.org/openstack/bifrost
reference = stable/rocky

[ironic-base]
type = git
location = https://git.example.com/ironic
reference = downstream

Note that it is currently necessary to include the Bifrost source location if using a seed.

Plugins & additions

These features can also be used for installing plugins and additions to source type images.

For example, to install a networking-ansible plugin in the neutron-server image:

Listing 100: kolla.yml

kolla_sources:
bifrost-base:
type: "git"
location: "{{ kolla_bifrost_source_url }}"
reference: "{{ kolla_bifrost_source_version }}"

neutron-server-plugin-networking-ansible:
type: "git"
location: https://git.example.com/networking-ansible
reference: downstream

The neutron-server image automatically installs any plugins provided to it. For images that do not, a
block such as the following may be required:

3.6. Configuration Guide 83

https://docs.openstack.org/kolla/xena/admin/image-building.html#plugin-functionality
https://docs.openstack.org/kolla/xena/admin/image-building.html#additions-functionality

kayobe Documentation, Release 11.8.1.dev24

Listing 101: kolla.yml

kolla_build_blocks:
neutron_server_footer: |
ADD plugins-archive /
pip --no-cache-dir install /plugins/*

A similar approach may be used for additions.

Kolla Ansible Configuration

Kayobe relies heavily on Kolla Ansible for deployment of the OpenStack control plane. Kolla Ansible is
installed locally on the Ansible control host (the host from which Kayobe commands are executed), and
Kolla Ansible commands are executed from there.

Kolla Ansible configuration is stored in ${KAYOBE_CONFIG_PATH}/kolla.yml.

Configuration of Ansible

Ansible configuration is described in detail in the Ansible documentation. In addition to the stan-
dard locations, Kayobe supports using an Ansible configuration file located in the Kayobe configu-
ration at ${KAYOBE_CONFIG_PATH}/kolla/ansible.cfg or ${KAYOBE_CONFIG_PATH}/ansible.
cfg. Note that if the ANSIBLE_CONFIG environment variable is specified it takes precedence over this
file.

Kolla Ansible Installation

Prior to deploying containers, Kolla Ansible and its dependencies will be installed on the Ansible control
host. The following variables affect the installation of Kolla Ansible:

kolla_ansible_ctl_install_type Type of Kolla Ansible control installation. One of binary
(PyPI) or source (git). Default is source.

kolla_ansible_source_url URL of Kolla Ansible source code repository if type is source. Default
is https://opendev.org/openstack/kolla-ansible.

kolla_ansible_source_version Version (branch, tag, etc.) of Kolla Ansible source code repository
if type is source. Default is the same as the Kayobe upstream branch.

kolla_ansible_venv_extra_requirements Extra requirements to install inside the Kolla Ansible
virtualenv. Default is an empty list.

kolla_upper_constraints_file Upper constraints file for installation of Kolla. Default is {{
pip_upper_constraints_file }}, which has a default of https://releases.openstack.
org/constraints/upper/{{ openstack_branch }}.

84 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/reference_appendices/config.html
https://opendev.org/openstack/kolla-ansible

kayobe Documentation, Release 11.8.1.dev24

Example: custom git repository

To install Kolla Ansible from a custom git repository:

Listing 102: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_ansible_source_url: https://git.example.com/kolla-ansible
kolla_ansible_source_version: downstream

Virtual Environment Extra Requirements

Extra Python packages can be installed inside the Kolla Ansible virtualenv, such as when required by
Ansible plugins.

For example, to use the hashi_vault Ansible lookup plugin, its hvac dependency can be installed using:

Listing 103: $KAYOBE_CONFIG_PATH/kolla.yml

Extra requirements to install inside the Kolla Ansible virtualenv.
kolla_ansible_venv_extra_requirements:

- "hvac"

Local environment

The following variables affect the local environment on the Ansible control host. They reference environ-
ment variables, and should be configured using those rather than modifying the Ansible variable directly.
The file kayobe-env in the kayobe-config git repository sets some sensible defaults for these variables,
based on the recommended environment directory structure.

kolla_ansible_source_path Path to directory for Kolla Ansible source code checkout. Default is
$KOLLA_SOURCE_PATH, or $PWD/src/kolla-ansible.

kolla_ansible_venv Path to virtualenv in which to install Kolla Ansible on the Ansible control host.
Default is $KOLLA_VENV_PATH or $PWD/venvs/kolla-ansible.

kolla_config_path Path to Kolla Ansible configuration directory. Default is $KOLLA_CONFIG_PATH
or /etc/kolla.

Global Configuration

The following variables are global, affecting all containers. They are used to generate the Kolla Ansible
configuration file, globals.yml, and also affect Kolla image build configuration.

3.6. Configuration Guide 85

https://docs.ansible.com/ansible/devel/plugins/lookup/hashi_vault.html
https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 11.8.1.dev24

Kolla Images

The following variables affect which Kolla images are used, and how they are accessed.

kolla_base_distro Kolla base container image distribution. Default is centos.

kolla_install_type Kolla container image type: binary or source. Default is source.

kolla_docker_registry URL of docker registry to use for Kolla images. Default is not set, in which
case Quay.io will be used.

kolla_docker_registry_insecure Whether docker should be configured to use an insecure reg-
istry for Kolla images. Default is false, unless docker_registry_enabled is true and
docker_registry_enable_tls is false.

kolla_docker_namespace Docker namespace to use for Kolla images. Default is kolla.

kolla_docker_registry_username Username to use to access a docker registry. Default is not set,
in which case the registry will be used without authentication.

kolla_docker_registry_password Password to use to access a docker registry. Default is not set,
in which case the registry will be used without authentication.

kolla_openstack_release Kolla OpenStack release version. This should be a Docker image tag.
Default is {{ openstack_release }}, which takes the OpenStack release name (e.g. rocky)
on stable branches and tagged releases, or master on the Kayobe master branch.

For example, to deploy Kolla centos binary images with a namespace of example, and a private
Docker registry at registry.example.com:4000, tagged with 7.0.0.1:

Listing 104: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_base_distro: centos
kolla_install_type: binary
kolla_docker_namespace: example
kolla_docker_registry: registry.example.com:4000
kolla_openstack_release: 7.0.0.1

The deployed ironic-api image would be referenced as follows:

registry.example.com:4000/example/centos-binary-ironic-api:7.0.0.1

Ansible

The following variables affect how Ansible accesses the remote hosts.

kolla_ansible_user User account to use for Kolla SSH access. Default is kolla.

kolla_ansible_group Primary group of Kolla SSH user. Default is kolla.

kolla_ansible_become Whether to use privilege escalation for all operations performed via Kolla
Ansible. Default is false since the 8.0.0 Ussuri release.

kolla_ansible_target_venv Path to a virtual environment on remote hosts to use for Ansible mod-
ule execution. Default is {{ virtualenv_path }}/kolla-ansible. May be set to None to use
the system Python interpreter.

86 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Context: Remote Execution Environment

By default, Ansible executes modules remotely using the system python interpreter, even if the Ansible
control process is executed from within a virtual environment (unless the local connection plugin is
used). This is not ideal if there are python dependencies that must be installed with isolation from the
system python packages. Ansible can be configured to use a virtualenv by setting the host variable
ansible_python_interpreter to a path to a python interpreter in an existing virtual environment.

The variable kolla_ansible_target_venv configures the use of a virtual environment on the remote
hosts. The default configuration should work in most cases.

User account creation

Since the Ussuri release, Kayobe creates a user account for Kolla Ansible rather than this being done
during Kolla Ansibles bootstrap-servers command. This workflow is more compatible with Ansible
fact caching, but does mean that Kolla Ansibles create_kolla_user variable cannot be used to disable
creation of the user account. Instead, set kolla_ansible_create_user to false.

kolla_ansible_create_user Whether to create a user account, configure passwordless sudo and
authorise an SSH key for Kolla Ansible. Default is true.

OpenStack Logging

The following variable affects OpenStack debug logging.

kolla_openstack_logging_debug Whether debug logging is enabled for OpenStack services. De-
fault is false.

Example: enabling debug logging

In certain situations it may be necessary to enable debug logging for all OpenStack services. This is not
usually advisable in production.

Listing 105: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_openstack_logging_debug: true

API Addresses

Note: These variables should be used over the deprecated vip_address and fqdn network attributes.

The following variables affect the addresses used for the external and internal API.

kolla_internal_vip_address Virtual IP address of OpenStack internal API. Default is the
vip_address attribute of the internal network.

3.6. Configuration Guide 87

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#caching-facts
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#caching-facts

kayobe Documentation, Release 11.8.1.dev24

kolla_internal_fqdn Fully Qualified Domain Name (FQDN) of OpenStack internal API. Default is
the fqdn attribute of the internal network if set, otherwise kolla_internal_vip_address.

kolla_external_vip_address Virtual IP address of OpenStack external API. Default is the
vip_address attribute of the external network.

kolla_external_fqdn Fully Qualified Domain Name (FQDN) of OpenStack external API. Default is
the fqdn attribute of the external network if set, otherwise kolla_external_vip_address.

TLS Encryption of APIs

The following variables affect TLS encryption of the public API.

kolla_enable_tls_external Whether TLS is enabled for the public API endpoints. Default is no.

kolla_external_tls_cert A TLS certificate bundle to use for the public API endpoints, if
kolla_enable_tls_external is true. Note that this should be formatted as a literal style block
scalar.

kolla_external_fqdn_cacert Path to a CA certificate file to use for the OS_CACERT environment
variable in openrc files when TLS is enabled, instead of Kolla Ansibles default.

The following variables affect TLS encryption of the internal API. Currently this requires all Kolla images
to be built with the APIs root CA trusted.

kolla_enable_tls_internal Whether TLS is enabled for the internal API endpoints. Default is no.

kolla_internal_tls_cert A TLS certificate bundle to use for the internal API endpoints, if
kolla_enable_tls_internal is true. Note that this should be formatted as a literal style block
scalar.

kolla_internal_fqdn_cacert Path to a CA certificate file to use for the OS_CACERT environment
variable in openrc files when TLS is enabled, instead of Kolla Ansibles default.

Example: enabling TLS for the public API

It is highly recommended to use TLS encryption to secure the public API. Here is an example:

88 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 106: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_enable_tls_external: yes
kolla_external_tls_cert: |

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

kolla_external_fqdn_cacert: /path/to/ca/certificate/bundle

Example: enabling TLS for the internal API

It is highly recommended to use TLS encryption to secure the internal API. Here is an example:

Listing 107: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_enable_tls_internal: yes
kolla_internal_tls_cert: |

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

kolla_internal_fqdn_cacert: /path/to/ca/certificate/bundle

Other certificates

In general, Kolla Ansible expects certificates to be in a directory configured via
kolla_certificates_dir, which defaults to a directory named certificates in the same di-
rectory as globals.yml. Kayobe follows this pattern, and will pass files and directories added to
${KAYOBE_CONFIG_PATH}/kolla/certificates/ through to Kolla Ansible. This can be useful
when enabling backend API TLS encryption, or providing custom CA certificates to be added to the
trust store in containers. It is also possible to use this path to provide certificate bundles for the external
or internal APIs, as an alternative to kolla_external_tls_cert and kolla_internal_tls_cert.

Note that Ansible will automatically decrypt these files if they are encrypted via Ansible Vault and it has
access to a Vault password.

Example: adding a trusted custom CA certificate to containers

In an environment with a private CA, it may be necessary to add the root CA certificate to the trust store
of containers.

Listing 108: $KAYOBE_CONFIG_PATH

kolla/
certificates/
ca/

private-ca.crt

3.6. Configuration Guide 89

kayobe Documentation, Release 11.8.1.dev24

These files should be PEM-formatted, and have a .crt extension.

Example: adding certificates for backend TLS

Kolla Ansible backend TLS can be used to provide end-to-end encryption of API traffic.

Listing 109: $KAYOBE_CONFIG_PATH

kolla/
certificates/
backend-cert.pem
backend-key.pem

See the Kolla Ansible documentation for how to provide service and/or host-specific certificates and keys.

Custom Global Variables

Kolla Ansible uses a single file for global variables, globals.yml. Kayobe provides configuration vari-
ables for all required variables and many of the most commonly used the variables in this file. Some of
these are in $KAYOBE_CONFIG_PATH/kolla.yml, and others are determined from other sources such
as the networking configuration in $KAYOBE_CONFIG_PATH/networks.yml.

Additional global configuration may be provided by creating $KAYOBE_CONFIG_PATH/kolla/
globals.yml. Variables in this file will be templated using Jinja2, and merged with the Kayobe
globals.yml configuration.

Example: use a specific tag for each image

For more fine-grained control over images, Kolla Ansible allows a tag to be defined for each image. For
example, for nova-api:

Listing 110: $KAYOBE_CONFIG_PATH/kolla/globals.yml

Use a custom tag for the nova-api container image.
nova_api_tag: v1.2.3

Example: debug logging per-service

Enabling debug logging globally can lead to a lot of additional logs being generated. Often we are only
interested in a particular service. For example, to enable debug logging for Nova services:

Listing 111: $KAYOBE_CONFIG_PATH/kolla/globals.yml

nova_logging_debug: true

90 Chapter 3. Contents

https://docs.openstack.org/kolla-ansible/xena/admin/advanced-configuration.html#tls-configuration

kayobe Documentation, Release 11.8.1.dev24

Host variables

Kayobe generates a host_vars file for each host in the Kolla Ansible inventory. These contain network
interfaces and other host-specific things. Some Kayobe Ansible variables are passed through to Kolla
Ansible, as defined by the following variables. The default set of variables should typically be kept.
Additional variables may be passed through via the *_extra variables, as described below. If a passed
through variable is not defined for a host, it is ignored.

kolla_seed_inventory_pass_through_host_vars List of names of host variables to
pass through from kayobe hosts to the Kolla Ansible seed host, if set. See also
kolla_seed_inventory_pass_through_host_vars_map. The default is:

kolla_seed_inventory_pass_through_host_vars:
- "ansible_host"
- "ansible_port"
- "ansible_ssh_private_key_file"
- "kolla_api_interface"
- "kolla_bifrost_network_interface"

It is possible to extend this list via kolla_seed_inventory_pass_through_host_vars_extra.

kolla_seed_inventory_pass_through_host_vars_map Dict mapping names of variables in
kolla_seed_inventory_pass_through_host_vars to the variable to use in Kolla Ansible.
If a variable name is not in this mapping the kayobe name is used. The default is:

kolla_seed_inventory_pass_through_host_vars_map:
kolla_api_interface: "api_interface"
kolla_bifrost_network_interface: "bifrost_network_interface"

It is possible to extend this dict via kolla_seed_inventory_pass_through_host_vars_map_extra.

kolla_overcloud_inventory_pass_through_host_vars List of names of host vari-
ables to pass through from Kayobe hosts to Kolla Ansible hosts, if set. See also
kolla_overcloud_inventory_pass_through_host_vars_map. The default is:

kolla_overcloud_inventory_pass_through_host_vars:
- "ansible_host"
- "ansible_port"
- "ansible_ssh_private_key_file"
- "kolla_network_interface"
- "kolla_api_interface"
- "kolla_storage_interface"
- "kolla_cluster_interface"
- "kolla_swift_storage_interface"
- "kolla_swift_replication_interface"
- "kolla_provision_interface"
- "kolla_inspector_dnsmasq_interface"
- "kolla_dns_interface"
- "kolla_tunnel_interface"
- "kolla_external_vip_interface"
- "kolla_neutron_external_interfaces"
- "kolla_neutron_bridge_names"

3.6. Configuration Guide 91

kayobe Documentation, Release 11.8.1.dev24

It is possible to extend this list via kolla_overcloud_inventory_pass_through_host_vars_extra.

kolla_overcloud_inventory_pass_through_host_vars_map Dict mapping names of variables
in kolla_overcloud_inventory_pass_through_host_vars to the variable to use in Kolla
Ansible. If a variable name is not in this mapping the Kayobe name is used. The default is:

kolla_overcloud_inventory_pass_through_host_vars_map:
kolla_network_interface: "network_interface"
kolla_api_interface: "api_interface"
kolla_storage_interface: "storage_interface"
kolla_cluster_interface: "cluster_interface"
kolla_swift_storage_interface: "swift_storage_interface"
kolla_swift_replication_interface: "swift_replication_interface"
kolla_provision_interface: "provision_interface"
kolla_inspector_dnsmasq_interface: "ironic_dnsmasq_interface"
kolla_dns_interface: "dns_interface"
kolla_tunnel_interface: "tunnel_interface"
kolla_neutron_external_interfaces: "neutron_external_interface"
kolla_neutron_bridge_names: "neutron_bridge_name"

It is possible to extend this dict via kolla_overcloud_inventory_pass_through_host_vars_map_extra.

Example: pass through an additional host variable

In this example we pass through a variable named my_kayobe_var from Kayobe to Kolla Ansible.

Listing 112: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_overcloud_inventory_pass_through_host_vars_extra:
- my_kayobe_var

This variable might be defined in the Kayobe inventory, e.g.

Listing 113: $KAYOBE_CONFIG_PATH/inventory/host_vars/
controller01

my_kayobe_var: foo

The variable may then be referenced in $KAYOBE_CONFIG_PATH/kolla/globals.yml, Kolla Ansible
group variables, or in Kolla Ansible custom service configuration.

In case the variable requires a different name in Kolla Ansible, use
kolla_overcloud_inventory_pass_through_host_vars_map_extra:

92 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Listing 114: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_overcloud_inventory_pass_through_host_vars_map_extra:
my_kayobe_var: my_kolla_ansible_var

Custom Group Variables

Group variables can be used to set configuration for all hosts in a group. They can be set in Kolla
Ansible by placing files in ${KAYOBE_CONFIG_PATH}/kolla/inventory/group_vars/*. Since this
directory is copied directly into the Kolla Ansible inventory, Kolla Ansible group names should be used.
It should be noted that extra-vars and host_vars take precedence over group_vars. For more
information on variable precedence see the Ansible documentation.

Example: configure a Nova cell

In Kolla Ansible, Nova cells are configured via group variables. For example, to configure cell0001
the following file could be created:

Listing 115: $KAYOBE_CONFIG_PATH/kolla/inventory/
group_vars/cell0001/all

nova_cell_name: cell0001
nova_cell_novncproxy_group: cell0001-vnc
nova_cell_conductor_group: cell0001-control
nova_cell_compute_group: cell0001-compute

Passwords

Kolla Ansible auto-generates passwords to a file, passwords.yml. Kayobe handles the or-
chestration of this, as well as encryption of the file using an Ansible Vault password speci-
fied in the KAYOBE_VAULT_PASSWORD environment variable, if present. The file is generated to
$KAYOBE_CONFIG_PATH/kolla/passwords.yml, and should be stored along with other Kayobe con-
figuration files. This file should not be manually modified.

kolla_ansible_custom_passwords Dictionary containing custom passwords to add or override in
the Kolla passwords file. Default is {{ kolla_ansible_default_custom_passwords }},
which contains SSH keys for use by Kolla Ansible and Bifrost.

3.6. Configuration Guide 93

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.openstack.org/kolla-ansible/xena/reference/compute/nova-cells-guide

kayobe Documentation, Release 11.8.1.dev24

Configuring Custom Passwords

In order to write additional passwords to passwords.yml, set the kayobe variable
kolla_ansible_custom_passwords in $KAYOBE_CONFIG_PATH/kolla.yml.

Listing 116: $KAYOBE_CONFIG_PATH/kolla.yml

Dictionary containing custom passwords to add or override in the Kolla
passwords file.
kolla_ansible_custom_passwords: >

{{ kolla_ansible_default_custom_passwords |
combine({'my_custom_password': 'correcthorsebatterystaple'}) }}

Control Plane Services

Kolla Ansible provides a flexible mechanism for configuring the services that it deploys. Kayobe adds
some commonly required configuration options to the defaults provided by Kolla Ansible, but also allows
for the free-form configuration supported by Kolla Ansible. The Kolla Ansible documentation should be
used as a reference.

Enabling Services

Services deployed by Kolla Ansible are enabled via flags.

kolla_enable_<service or feature> There are various flags that can be used to enable features.
These map to variables named enable_<service or feature> in Kolla Ansible. The default
set of enabled services and features is the same as in Kolla ansible, except that Ironic is enabled by
default in Kayobe.

Example: enabling a service

A common task is enabling a new OpenStack service. This may be done via the kolla_enable_* flags,
for example:

94 Chapter 3. Contents

https://docs.openstack.org/kolla-ansible/xena/

kayobe Documentation, Release 11.8.1.dev24

Listing 117: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_enable_swift: true

Note that in some cases additional configuration may be required to successfully deploy a service - check
the Kolla Ansible configuration reference.

Service Configuration

Kolla-ansibles flexible configuration is described in the Kolla Ansible service configuration documen-
tation. We wont duplicate that here, but essentially it involves creating files under a directory which
for users of kayobe will be $KOLLA_CONFIG_PATH/config. In kayobe, files in this directory are auto-
generated and managed by kayobe. Instead, users should create files under $KAYOBE_CONFIG_PATH/
kolla/config with the same directory structure. These files will be templated using Jinja2, merged
with kayobes own configuration, and written out to $KOLLA_CONFIG_PATH/config.

The following files, if present, will be templated and provided to Kolla Ansible. All paths are relative
to $KAYOBE_CONFIG_PATH/kolla/config. Note that typically Kolla Ansible does not use the same
wildcard patterns, and has a more restricted set of files that it will process. In some cases, it may be
necessary to inspect the Kolla Ansible configuration tasks to determine which files are supported.

Table 1: Kolla-ansible configuration files
File Purpose
aodh.conf Aodh configuration.
aodh/* Extended Aodh configuration.
backup.my.cnf Mariabackup configuration.
barbican.conf Barbican configuration.
barbican/* Extended Barbican configuration.
blazar.conf Blazar configuration.
blazar/* Extended Blazar configuration.
ceilometer.conf Ceilometer configuration.
ceilometer/* Extended Ceilometer configuration.
cinder.conf Cinder configuration.
cinder/* Extended Cinder configuration.
cloudkitty.conf CloudKitty configuration.
cloudkitty/* Extended CloudKitty configuration.
designate.conf Designate configuration.
designate/* Extended Designate configuration.
elasticsearch/* Elasticsearch configuration.
fluentd/filter Fluentd filter configuration.
fluentd/input Fluentd input configuration.
fluentd/output Fluentd output configuration.
galera.cnf MariaDB configuration.
glance.conf Glance configuration.
glance/* Extended Glance configuration.
global.conf Global configuration for all OpenStack services.
gnocchi.conf Gnocchi configuration.

continues on next page

3.6. Configuration Guide 95

https://docs.openstack.org/kolla-ansible/xena/reference
https://docs.openstack.org/kolla-ansible/xena/admin/advanced-configuration.html#openstack-service-configuration-in-kolla
https://docs.openstack.org/kolla-ansible/xena/admin/advanced-configuration.html#openstack-service-configuration-in-kolla

kayobe Documentation, Release 11.8.1.dev24

Table 1 – continued from previous page
File Purpose
gnocchi/* Extended Gnocchi configuration.
grafana.ini Grafana configuration.
grafana/* Extended Grafana configuration.
haproxy/* Main HAProxy configuration.
haproxy-config/* Modular HAProxy configuration.
heat.conf Heat configuration.
heat/* Extended heat configuration.
horizon/* Extended horizon configuration.
influx* InfluxDB configuration.
ironic-inspector.conf Ironic inspector configuration.
ironic.conf Ironic configuration.
ironic/* Extended ironic configuration.
kafka.server.properties Kafka configuration.
kafka/* Extended Kafka configuration.
keepalived/* Extended keepalived configuration.
keystone.conf Keystone configuration.
keystone/* Extended keystone configuration.
magnum.conf Magnum configuration.
magnum/* Extended magnum configuration.
manila.conf Manila configuration.
manila/* Extended manila configuration.
mariadb/* Extended MariaDB configuration.
masakari.conf Masakari configuration.
masakari/* Extended masakari configuration.
monasca/* Extended Monasca configuration.
multipath.conf Multipathd configuration.
murano.conf Murano configuration.
murano/* Extended murano configuration.
neutron.conf Neutron configuration.
neutron/ml2_conf.ini Neutron ML2 configuration.
neutron/* Extended neutron configuration.
nova.conf Nova configuration.
nova/* Extended nova configuration.
octavia.conf Octavia configuration.
octavia/* Extended Octavia configuration.
placement.conf Placement configuration.
placement/* Extended Placement configuration.
prometheus/* Prometheus configuration.
sahara.conf Sahara configuration.
sahara/* Extended sahara configuration.
storm/* Extended Storm configuration.
swift/* Extended swift configuration.
zookeeper.cfg Zookeeper configuration.
zookeeper/* Extended Zookeeper configuration.

96 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Configuring an OpenStack Component

To provide custom configuration to be applied to all glance services, create $KAYOBE_CONFIG_PATH/
kolla/config/glance.conf. For example:

Listing 118: $KAYOBE_CONFIG_PATH/kolla/config/glance.
conf

[DEFAULT]
api_limit_max = 500

Configuring an OpenStack Service

To provide custom configuration for the glance API service, create $KAYOBE_CONFIG_PATH/kolla/
config/glance/glance-api.conf. For example:

Listing 119: $KAYOBE_CONFIG_PATH/kolla/config/glance/
glance-api.conf

[DEFAULT]
api_limit_max = 500

Bifrost

This section covers configuration of the Bifrost service that runs on the seed host. Bifrost configuration is
typically applied in ${KAYOBE_CONFIG_PATH}/bifrost.yml. Consult the Bifrost documentation for
further details of Bifrost usage and configuration.

Bifrost installation

Note: This section may be skipped if using an upstream Bifrost container image.

The following options are used if building the Bifrost container image locally.

kolla_bifrost_source_url URL of Bifrost source code repository. Default is https://opendev.org/
openstack/bifrost.

kolla_bifrost_source_version Version (branch, tag, etc.) of Bifrost source code repository. De-
fault is {{ openstack_branch }}, which is the same as the Kayobe upstream branch name.

For example, to install Bifrost from a custom git repository:

Listing 120: bifrost.yml

kolla_bifrost_source_url: https://git.example.com/bifrost
kolla_bifrost_source_version: downstream

3.6. Configuration Guide 97

https://docs.openstack.org/bifrost/xena/
https://opendev.org/openstack/bifrost
https://opendev.org/openstack/bifrost

kayobe Documentation, Release 11.8.1.dev24

Overcloud root disk image configuration

Bifrost uses Diskimage builder (DIB) to build a root disk image that is deployed to overcloud hosts when
they are provisioned. The following options configure how this image is built. Consult the Diskimage-
builder documentation for further information on building disk images.

The default configuration builds a CentOS 8 whole disk (partitioned) image with SELinux disabled and
a serial console enabled. Cloud-init is used to process the configuration drive built by Bifrost, rather than
the Bifrost default of simple-init.

kolla_bifrost_dib_os_element DIB base OS element. Default is {{ os_distribution }}.

kolla_bifrost_dib_os_release DIB image OS release. Default is {{ os_release }}.

kolla_bifrost_dib_elements_default Added in the Train release. Use
kolla_bifrost_dib_elements in earlier releases.

List of default DIB elements. Default is ["disable-selinux", "enable-serial-console",
"vm"] when os_distribution is centos, or ["enable-serial-console", "vm"] other-
wise. The vm element is poorly named, and causes DIB to build a whole disk image rather than a
single partition.

kolla_bifrost_dib_elements_extra Added in the Train release. Use kolla_bifrost_dib_elements
in earlier releases.

List of additional DIB elements. Default is none.

kolla_bifrost_dib_elements List of DIB elements. Default is a combination of
kolla_bifrost_dib_elements_default and kolla_bifrost_dib_elements_extra.

kolla_bifrost_dib_init_element DIB init element. Default is cloud-init-datasources.

kolla_bifrost_dib_env_vars_default Added in the Train release. Use
kolla_bifrost_dib_env_vars in earlier releases.

DIB default environment variables. Default is {DIB_BOOTLOADER_DEFAULT_CMDLINE: "nofb
nomodeset gfxpayload=text net.ifnames=1", "DIB_CLOUD_INIT_DATASOURCES":
"ConfigDrive"}.

kolla_bifrost_dib_env_vars_extra Added in the Train release. Use kolla_bifrost_dib_env_vars
in earlier releases.

DIB additional environment variables. Default is none.

kolla_bifrost_dib_env_vars DIB environment variables. Default is combination of
kolla_bifrost_dib_env_vars_default and kolla_bifrost_dib_env_vars_extra.

kolla_bifrost_dib_packages List of DIB packages to install. Default is to install no extra packages.

The disk image is built during the deployment of seed services. It is worth noting that currently, the
image will not be rebuilt if it already exists. To force rebuilding the image, it is necessary to remove the
file. On the seed:

docker exec bifrost_deploy rm /httpboot/deployment_image.qcow2

Then on the control host:

(kayobe) $ kayobe seed service deploy

98 Chapter 3. Contents

https://docs.openstack.org/diskimage-builder/xena/
https://docs.openstack.org/diskimage-builder/xena/
https://cloudinit.readthedocs.io/en/latest/
https://docs.openstack.org/diskimage-builder/xena/elements/simple-init/README

kayobe Documentation, Release 11.8.1.dev24

Example: Adding an element

In the following, we extend the list of DIB elements to add the growpart element:

Listing 121: bifrost.yml

kolla_bifrost_dib_elements_extra:
- "growpart"

Example: Building an XFS root filesystem image

By default, DIB will format the image as ext4. In some cases it might be useful to use XFS, for example
when using the overlay Docker storage driver which can reach the maximum number of hardlinks
allowed by ext4.

In DIB, we achieve this by setting the FS_TYPE environment variable to xfs.

Listing 122: bifrost.yml

kolla_bifrost_dib_env_vars_extra:
FS_TYPE: "xfs"

Example: Configuring a development user account

Warning: A development user account should not be used in production.

When debugging a failed deployment, it can sometimes be necessary to allow access to the image via a
preconfigured user account with a known password. This can be achieved via the devuser element.

This example shows how to add the devuser element, and configure a username and password for an
account that has passwordless sudo:

Listing 123: bifrost.yml

kolla_bifrost_dib_elements_extra:
- "devuser"

kolla_bifrost_dib_env_vars_extra:
DIB_DEV_USER_USERNAME: "devuser"
DIB_DEV_USER_PASSWORD: "correct horse battery staple"
DIB_DEV_USER_PWDLESS_SUDO: "yes"

Alternatively, the dynamic-login element can be used to authorize SSH keys by appending them to the
kernel arguments.

3.6. Configuration Guide 99

https://docs.openstack.org/diskimage-builder/xena/elements/devuser/README
https://docs.openstack.org/diskimage-builder/xena/elements/dynamic-login/README

kayobe Documentation, Release 11.8.1.dev24

Example: Installing a package

It can be necessary to install additional packages in the root disk image. Rather than needing to write a
custom DIB element, we can use the kolla_bifrost_dib_packages variable. For example, to install
the biosdevname package:

Listing 124: bifrost.yml

kolla_bifrost_dib_packages:
- "biosdevname"

Disk image deployment configuration

The name of the root disk image to deploy can be configured via the
kolla_bifrost_deploy_image_filename option, which defaults to deployment_image.qcow2. It
can be defined globally in ${KAYOBE_CONFIG_PATH}/bifrost.yml, or defined per-group or per-host
in the Kayobe inventory. This can be used to provision different images across the overcloud.

Note: Support for building multiple disk images is not yet available. Images can be manually renamed
before changing the Kayobe configuration to build a different image.

Ironic configuration

The following options configure the Ironic service in the bifrost-deploy container.

kolla_bifrost_enabled_hardware_types List of hardware types to enable for Bifrosts Ironic. De-
fault is ["ipmi"].

kolla_bifrost_extra_kernel_options List of extra kernel parameters for Bifrosts Ironic PXE
configuration. Default is none.

Ironic Inspector configuration

The following options configure the Ironic Inspector service in the bifrost-deploy container.

kolla_bifrost_inspector_processing_hooks List of of inspector processing plugins. Default is
{{ inspector_processing_hooks }}, defined in ${KAYOBE_CONFIG_PATH}/inspector.
yml.

kolla_bifrost_inspector_port_addition Which MAC addresses to add as ports during intro-
spection. One of all, active or pxe. Default is {{ inspector_add_ports }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_inspector_extra_kernel_options List of extra kernel parameters for the inspec-
tor default PXE configuration. Default is {{ inspector_extra_kernel_options }}, defined
in ${KAYOBE_CONFIG_PATH}/inspector.yml. When customising this variable, the default ex-
tra kernel parameters should be kept to retain full node inspection capabilities.

kolla_bifrost_inspector_rules List of introspection rules for Bifrosts Ironic Inspector service.
Default is {{ inspector_rules }}, defined in ${KAYOBE_CONFIG_PATH}/inspector.yml.

100 Chapter 3. Contents

https://docs.openstack.org/ironic/xena/admin/drivers
https://docs.openstack.org/ironic/xena/install/advanced.html#appending-kernel-parameters-to-boot-instances

kayobe Documentation, Release 11.8.1.dev24

kolla_bifrost_inspector_ipmi_username Ironic inspector IPMI username to set via an introspec-
tion rule. Default is {{ ipmi_username }}, defined in ${KAYOBE_CONFIG_PATH}/bmc.yml.

kolla_bifrost_inspector_ipmi_password Ironic inspector IPMI password to set via an introspec-
tion rule. Default is {{ ipmi_password }}, defined in ${KAYOBE_CONFIG_PATH}/bmc.yml.

kolla_bifrost_inspector_lldp_switch_port_interface Ironic inspector network interface
name on which to check for an LLDP switch port description to use as the nodes
name. Default is {{ inspector_lldp_switch_port_interface_default }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_inspector_deploy_kernel Ironic inspector deployment kernel location. Default
is http://{{ provision_oc_net_name | net_ip }}:8080/ipa.kernel.

kolla_bifrost_inspector_deploy_ramdisk Ironic inspector deployment ramdisk location. De-
fault is http://{{ provision_oc_net_name | net_ip }}:8080/ipa.initramfs.

kolla_bifrost_inspection_timeout Timeout of hardware inspection on overcloud
nodes, in seconds. Default is {{ inspector_inspection_timeout }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

Ironic Python Agent (IPA) configuration

Note: If building IPA images locally (ipa_build_images is true) this section can be skipped.

The following options configure the source of Ironic Python Agent images used by Bifrost for inspection
and deployment. Consult the Ironic Python Agent documentation for full details.

kolla_bifrost_ipa_kernel_upstream_url URL of Ironic Python Agent (IPA) ker-
nel image. Default is {{ inspector_ipa_kernel_upstream_url }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_kernel_checksum_url URL of checksum of Ironic Python Agent (IPA)
kernel image. Default is {{ inspector_ipa_kernel_checksum_url }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_kernel_checksum_algorithm Algorithm of checksum of Ironic Python
Agent (IPA) kernel image. Default is {{ inspector_ipa_kernel_checksum_algorithm }},
defined in ${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_ramdisk_upstream_url URL of Ironic Python Agent (IPA) ramdisk
image. Default is {{ inspector_ipa_ramdisk_upstream_url }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_ramdisk_checksum_url URL of checksum of Ironic Python Agent (IPA)
ramdisk image. Default is {{ inspector_ipa_ramdisk_checksum_url }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_ramdisk_checksum_algorithm Algorithm of checksum of Ironic Python
Agent (IPA) ramdisk image. Default is {{ inspector_ipa_ramdisk_checksum_algorithm
}}, defined in ${KAYOBE_CONFIG_PATH}/inspector.yml.

3.6. Configuration Guide 101

https://docs.openstack.org/ironic-python-agent/xena/

kayobe Documentation, Release 11.8.1.dev24

Inventory configuration

Note: This feature is currently not well tested. It is advisable to use autodiscovery of overcloud servers
instead.

The following option is used to configure a static inventory of servers for Bifrost.

kolla_bifrost_servers

Server inventory for Bifrost in the JSON file format.

Custom Configuration

Further configuration of arbitrary Ansible variables for Bifrost can be provided via the following files:

• ${KAYOBE_CONFIG_PATH}/kolla/config/bifrost/bifrost.yml

• ${KAYOBE_CONFIG_PATH}/kolla/config/bifrost/dib.yml

These are both passed as extra variables files to ansible-playbook, but the naming scheme provides a
separation of DIB image related variables from other variables. It may be necessary to inspect the Bifrost
source code for the full set of variables that may be configured.

For example, to configure debug logging for Ironic Inspector:

Listing 125: kolla/config/bifrost/bifrost.yml

inspector_debug: true

Ironic Python Agent (IPA)

This section covers configuration of Ironic Python Agent (IPA) which is used by Ironic and Ironic In-
spector to deploy and inspect bare metal nodes. This is used by the Bifrost services that run on the
seed host, and also by Ironic and Ironic Inspector services running in the overcloud for bare metal
compute, if enabled (kolla_enable_ironic is true). IPA configuration is typically applied in
${KAYOBE_CONFIG_PATH}/ipa.yml. Consult the IPA documentation for full details of IPA usage and
configuration.

Ironic Python Agent (IPA) image build configuration

Note: This section may be skipped if not building IPA images locally (ipa_build_images is false).

The following options cover building of IPA images via Diskimage-builder (DIB). Consult the
Diskimage-builder documentation for full details.

The default configuration builds a CentOS 8 ramdisk image which includes the upstream IPA source
code, and has a serial console enabled.

The images are built for Bifrost via kayobe seed deployment image build, and for Ironic in the
overcloud (if enabled) via kayobe overcloud deployment image build.

102 Chapter 3. Contents

https://docs.openstack.org/bifrost/xena/user/howto#json-file-format
https://opendev.org/openstack/bifrost
https://opendev.org/openstack/bifrost
https://docs.openstack.org/ironic-python-agent/xena/
https://docs.openstack.org/diskimage-builder/xena/

kayobe Documentation, Release 11.8.1.dev24

ipa_build_images Whether to build IPA images from source. Default is False.

ipa_build_source_url URL of IPA source repository. Default is https://opendev.org/openstack/
ironic-python-agent

ipa_build_source_version Version of IPA source repository. Default is {{ openstack_branch
}}.

ipa_builder_source_url URL of IPA builder source repository. Default is https://opendev.org/
openstack/ironic-python-agent-builder

ipa_builder_source_version Version of IPA builder source repository. Default is master.

ipa_build_dib_elements_default List of default Diskimage Builder (DIB) elements to
use when building IPA images. Default is ["centos", "enable-serial-console",
"ironic-python-agent-ramdisk"].

ipa_build_dib_elements_extra List of additional Diskimage Builder (DIB) elements to use when
building IPA images. Default is empty.

ipa_build_dib_elements List of Diskimage Builder (DIB) elements to use when build-
ing IPA images. Default is combination of ipa_build_dib_elements_default and
ipa_build_dib_elements_extra.

ipa_build_dib_env_default Dictionary of default environment variables to provide to Diskim-
age Builder (DIB) during IPA image build. Default is {"DIB_RELEASE": "8-stream",
"DIB_REPOLOCATION_ironic_python_agent": "{{ ipa_build_source_url }}",
"DIB_REPOREF_ironic_python_agent": "{{ ipa_build_source_version }}",
"DIB_REPOREF_requirements": "{{ openstack_branch }}"}.

ipa_build_dib_env_extra Dictionary of additional environment variables to provide to Diskimage
Builder (DIB) during IPA image build. Default is empty.

ipa_build_dib_env Dictionary of environment variables to provide to Diskimage Builder (DIB)
during IPA image build. Default is a combination of ipa_build_dib_env_default and
ipa_build_dib_env_extra.

ipa_build_dib_git_elements_default List of default git repositories containing Diskimage
Builder (DIB) elements. See stackhpc.os-images role for usage. Default is one item for IPA builder.

ipa_build_dib_git_elements_extra List of additional git repositories containing Diskimage
Builder (DIB) elements. See stackhpc.os-images role for usage. Default is none.

ipa_build_dib_git_elements List of git repositories containing Diskimage Builder
(DIB) elements. See stackhpc.os-images role for usage. Default is combination of
ipa_build_dib_git_elements_default and ipa_build_dib_git_elements_extra.

ipa_build_dib_packages List of DIB packages to install. Default is none.

ipa_build_upper_constraints_file Upper constraints file for installing packages in the virtual
environment used for building IPA images. Default is {{ pip_upper_constraints_file }}.

3.6. Configuration Guide 103

https://opendev.org/openstack/ironic-python-agent
https://opendev.org/openstack/ironic-python-agent
https://opendev.org/openstack/ironic-python-agent-builder
https://opendev.org/openstack/ironic-python-agent-builder
https://galaxy.ansible.com/stackhpc/os-images
https://galaxy.ansible.com/stackhpc/os-images
https://galaxy.ansible.com/stackhpc/os-images

kayobe Documentation, Release 11.8.1.dev24

Example: Building IPA images locally

To build IPA images locally:

Listing 126: ipa.yml

ipa_build_images: true

Example: Installing IPA from a custom git repository

To install IPA from a custom git repository:

Listing 127: ipa.yml

ipa_source_url: https://git.example.com/ironic-python-agent
ipa_source_version: downstream

Example: Adding an element

In the following example, we extend the list of DIB elements to add the mellanox element, which can be
useful for inspecting hardware with Mellanox InfiniBand NICs.

Listing 128: ipa.yml

ipa_build_dib_elements_extra:
- "mellanox"

Example: Configuring a development user account

Warning: A development user account should not be used in production.

When debugging a failed deployment, it can sometimes be necessary to allow access to the image via a
preconfigured user account with a known password. This can be achieved via the devuser element.

This example shows how to add the devuser element, and configure a username and password for an
account that has passwordless sudo:

Listing 129: ipa.yml

ipa_build_dib_elements_extra:
- "devuser"

ipa_build_dib_env_extra:
DIB_DEV_USER_USERNAME: "devuser"
DIB_DEV_USER_PASSWORD: "correct horse battery staple"
DIB_DEV_USER_PWDLESS_SUDO: "yes"

104 Chapter 3. Contents

https://docs.openstack.org/diskimage-builder/xena/elements/mellanox/README
https://docs.openstack.org/diskimage-builder/xena/elements/devuser/README

kayobe Documentation, Release 11.8.1.dev24

Alternatively, the dynamic-login element can be used to authorize SSH keys by appending them to the
kernel arguments.

Further information on troubleshooting IPA can be found here.

Example: Configuring custom DIB elements

Sometimes it is useful to use custom DIB elements that are not shipped with DIB itself. This can be done
by sharing them in a git repository.

Listing 130: ipa.yml

ipa_build_dib_elements_extra:
- "my-element"

ipa_build_dib_git_elements:
- repo: "https://git.example.com/custom-dib-elements"
local: "{{ source_checkout_path }}/custom-dib-elements"
version: "master"
elements_path: "elements"

In this example the master branch of https://git.example.com/custom-dib-elements would have a top
level elements directory, containing a my-element directory for the element.

Example: Installing a package

It can be necessary to install additional packages in the IPA image. Rather than needing to write a
custom DIB element, we can use the ipa_build_dib_packages variable. For example, to install the
biosdevname package:

Listing 131: ipa.yml

ipa_build_dib_packages:
- "biosdevname"

Ironic Python Agent (IPA) images configuration

Note: If building IPA images locally (ipa_build_images is true) this section can be skipped.

The following options configure the source of Ironic Python Agent images for inspection and deployment.
Consult the Ironic Python Agent documentation for full details.

ipa_images_upstream_url_suffix Suffix of upstream Ironic deployment image files. Default is
based on {{ openstack_branch }}.

ipa_images_kernel_name Name of Ironic deployment kernel image to register in Glance. Default is
ipa.kernel.

3.6. Configuration Guide 105

https://docs.openstack.org/diskimage-builder/xena/elements/dynamic-login/README
https://docs.openstack.org/ironic-python-agent/xena/admin/troubleshooting
https://git.example.com/custom-dib-elements
https://docs.openstack.org/ironic-python-agent/xena/

kayobe Documentation, Release 11.8.1.dev24

ipa_kernel_upstream_url URL of Ironic deployment kernel image to download. Default is
https://tarballs.openstack.org/ironic-python-agent/dib/files/ipa-centos8{{
ipa_images_upstream_url_suffix }}.kernel.

ipa_kernel_checksum_url URL of checksum of Ironic deployment kernel image. Default is {{
ipa_kernel_upstream_url }}.{{ ipa_kernel_checksum_algorithm }}.

ipa_kernel_checksum_algorithm Algorithm of checksum of Ironic deployment kernel image. De-
fault is sha256.

ipa_images_ramdisk_name Name of Ironic deployment ramdisk image to register in Glance. Default
is ipa.initramfs.

ipa_ramdisk_upstream_url URL of Ironic deployment ramdisk image to download. Default is
https://tarballs.openstack.org/ironic-python-agent/dib/files/ipa-centos8{{
ipa_images_upstream_url_suffix }}.initramfs.

ipa_ramdisk_checksum_url URL of checksum of Ironic deployment ramdisk image. Default is {{
ipa_ramdisk_upstream_url }}.{{ ipa_ramdisk_checksum_algorithm }}.

ipa_ramdisk_checksum_algorithm Algorithm of checksum of Ironic deployment ramdisk image.
Default is sha256.

Ironic Python Agent (IPA) deployment configuration

The following options configure how IPA operates during deployment and inspection.

ipa_collect_lldp Whether to enable collection of LLDP TLVs. Default is True.

ipa_collectors_default

Note: extra-hardware is not currently included as it requires a ramdisk with the hardware
python module installed.

List of default inspection collectors to run. Default is ["default", "logs",
"pci-devices"].

ipa_collectors_extra List of additional inspection collectors to run. Default is none.

ipa_collectors List of inspection collectors to run. Default is a combination of
ipa_collectors_default and ipa_collectors_extra.

ipa_benchmarks_default List of default inspection benchmarks to run. Default is ["cpu",
"disk", "ram"].

ipa_benchmarks_extra List of extra inspection benchmarks to run. Default is none.

ipa_benchmarks

Note: The extra-hardware collector must be enabled in order to execute benchmarks during
inspection.

List of inspection benchmarks to run. Default is a combination of ipa_benchmarks_default
and ipa_benchmarks_extra.

106 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

ipa_kernel_options_default List of default kernel parameters for Ironic python
agent. Default includes ipa-collect-lldp, ipa-inspection-collectors and
ipa-inspection-benchmarks, with arguments taken from ipa_collect_lldp,
ipa_collectors and ipa_benchmarks.

ipa_kernel_options_extra List of additional kernel parameters for Ironic python agent. Default is
none.

ipa_kernel_options List of kernel parameters for Ironic python agent. Default is a combination of
ipa_kernel_options_default and ipa_kernel_options_extra.

Example: Adding the extra-hardware collector

The extra-hardware collector may be used to collect additional information about hardware during
inspection. It is also a requirement for running benchmarks. This collector depends on the Python
hardware package, which is not installed in IPA images by default.

The following example enables the extra-hardware collector:

Listing 132: ipa.yml

ipa_collectors_extra:
- "extra-hardware"

The ironic-python-agent-builder repository provides an extra-hardware element which may be
used to install this package. It may be used as follows if building an IPA image locally:

Listing 133: ipa.yml

ipa_build_dib_elements_extra:
- "extra-hardware"

Example: Passing additional kernel arguments to IPA

The following example shows how to pass additional kernel arguments to IPA:

Listing 134: ipa.yml

ipa_kernel_options_extra:
- "foo=bar"

Docker registry

This section covers configuration of the Docker registry that may be deployed, by default on the seed host.
Docker registry configuration is typically applied in ${KAYOBE_CONFIG_PATH}/docker-registry.
yml. Consult the Docker registry documentation for further details of registry usage and configuration.

The registry is deployed during the kayobe seed host configure command.

3.6. Configuration Guide 107

https://pypi.org/project/hardware/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html#ironic-python-agent-ipa-extra-hardware
https://docs.docker.com/registry/

kayobe Documentation, Release 11.8.1.dev24

Configuring the registry

docker_registry_enabled Whether a docker registry is enabled. Default is false. When set to
true, the Docker registry is deployed on all hosts in the docker-registry group. By default
this includes the seed host.

docker_registry_env Dict of environment variables to provide to the docker registry container. This
allows to configure the registry by overriding specific configuration options, as described at https:
//docs.docker.com/registry/configuration/ For example, the registry can be configured as a pull
through cache to Docker Hub by setting REGISTRY_PROXY_REMOTEURL to https://registry-1.
docker.io. Note that it is not possible to push to a registry configured as a pull through cache.
Default is {}.

docker_registry_network_mode The network mode used for the docker registry container. Default
is host. When set to bridge, port mapping is configured to expose the registry through port
docker_registry_port.

docker_registry_port The port on which the docker registry server should listen. Default is 4000.
When docker_registry_network_mode is set to host, configures the port used by the registry
server inside the container. When docker_registry_network_mode is set to bridge, config-
ures the overlay network port.

docker_registry_datadir_volume Name or path to use as the volume for the docker registry. De-
fault is docker_registry.

TLS

It is recommended to enable TLS for the registry.

docker_registry_enable_tls Whether to enable TLS for the registry. Default is false.

docker_registry_cert_path Path to a TLS certificate to use when TLS is enabled. Default is none.

docker_registry_key_path Path to a TLS key to use when TLS is enabled. Default is none.

For example, the certificate and key could be stored with the Kayobe configuration, under
${KAYOBE_CONFIG_PATH}/docker-registry/. These files may be encrypted via Ansible Vault.

Listing 135: docker-registry.yml

docker_registry_enable_tls: true
docker_registry_cert_path: "{{ kayobe_config_path }}/docker-registry/cert.pem"
docker_registry_key_path: "{{ kayobe_config_path }}/docker-registry/key.pem"

Basic authentication

It is recommended to enable HTTP basic authentication for the registry. This needs to be done in con-
junction with enabling TLS for the registry: using basic authentication over unencrypted HTTP is not
supported.

docker_registry_enable_basic_auth Whether to enable basic authentication for the registry. De-
fault is false.

108 Chapter 3. Contents

https://docs.docker.com/registry/configuration/
https://docs.docker.com/registry/configuration/
https://registry-1.docker.io
https://registry-1.docker.io
https://docs.docker.com/registry/deploying/#native-basic-auth
https://docs.docker.com/registry/deploying/#native-basic-auth

kayobe Documentation, Release 11.8.1.dev24

docker_registry_basic_auth_htpasswd_path Path to a htpasswd formatted password store for
the registry. Default is none.

The password store uses a htpasswd format. The following example shows how to generate a password
and add it to the kolla user in the password store. The password store may be stored with the Kayobe
configuration, under ${KAYOBE_CONFIG_PATH}/docker-registry/. The file may be encrypted via
Ansible Vault.

uuidgen | tr -d '\n' > registry-password
cat registry-password | docker run --rm -i --entrypoint htpasswd httpd:latest␣
↪→-niB kolla > $KAYOBE_CONFIG_PATH/docker-registry/htpasswd

Next we configure Kayobe to enable basic authentication for the registry, and specify the path to the
password store.

Listing 136: docker-registry.yml

docker_registry_enable_basic_auth: true
docker_registry_basic_auth_htpasswd_path: "{{ kayobe_config_path }}/docker-
↪→registry/htpasswd"

Using the registry

Enabling the registry does not automatically set the configuration for Docker engine to use it. This should
be done via the docker_registry variable.

TLS

If the registry is using a privately signed TLS certificate, it is necessary to configure Docker engine with
the CA certificate.

If TLS is enabled, Docker engine should be configured to use HTTPS to communicate with it:

Listing 137: kolla/globals.yml

docker_registry_insecure: false

Basic authentication

If basic authentication is enabled, Kolla Ansible needs to be configured with the username and password.

3.6. Configuration Guide 109

https://httpd.apache.org/docs/2.4/programs/htpasswd.html

kayobe Documentation, Release 11.8.1.dev24

Listing 138: kolla.yml

kolla_docker_registry_username: <registry username>
kolla_docker_registry_password: <registry password>

Seed custom containers

This section covers configuration of the user-defined containers deployment functionality that runs on
the seed host.

Configuration

For example, to deploy a squid container image:

Listing 139: seed.yml

seed_containers:
squid:
image: "stackhpc/squid:3.5.20-1"
pre: "{{ kayobe_env_config_path }}/containers/squid/pre.yml"
post: "{{ kayobe_env_config_path }}/containers/squid/post.yml"

Please notice the optional pre and post Ansible task files - those need to be created in kayobe-config
path and will be run before and after particular container deployment.

Possible options for container deployment:

seed_containers:
containerA:
capabilities:
command:
comparisons:
detach:
env:
network_mode:
image:
init:
ipc_mode:
pid_mode:
ports:
privileged:
restart_policy:
shm_size:
sysctls:
tag:
ulimits:
user:
volumes:

For a detailed explanation of each option - please see Ansible docker_container module page.

110 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/modules/docker_container_module.html

kayobe Documentation, Release 11.8.1.dev24

List of Kayobe applied defaults to required docker_container variables:

deploy_containers_defaults:
comparisons:
image: strict
env: strict
volumes: strict

detach: True
network_mode: "host"
init: True
privileged: False
restart_policy: "unless-stopped"

deploy_containers_docker_api_timeout: 120

Infrastructure VMs

Kayobe can deploy infrastructure VMs to the seed-hypervisor. These can be used to provide supplemen-
tary services that do not run well within a containerised environment or are dependencies of the control
plane.

Configuration

To deploy an infrastructure VM, add a new host to the the infra-vms group in the inventory:

Listing 140: $KAYOBE_CONFIG_PATH/inventory/infra-vms

[infra-vms]
an-example-vm

The configuration of the virtual machine should be done using host_vars. These override the
group_vars defined for the infra-vms group. Most variables have sensible defaults defined, but there
are a few variables which must be set.

Mandatory variables

All networks must have an interface defined, as described in Per-host Network Configuration. By default
the VMs are attached to the admin overcloud network. If, for example, admin_oc_net_name was set
to example_net, you would need to define example_net_interface. It is possible to change the
list of networks that a VM is attached to by modifying infra_vm_network_interfaces. Additional
interfaces can be added by setting infra_vm_network_interfaces_extra.

List of Kayobe applied defaults to required docker_container variables. Any of these variables can be
overridden with a host_var.

##
↪→#

(continues on next page)

3.6. Configuration Guide 111

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

Infrastructure VM configuration.

Name of the infra VM.
infra_vm_name: "{{ inventory_hostname }}"

Memory in MB.
infra_vm_memory_mb: "{{ 16 * 1024 }}"

Number of vCPUs.
infra_vm_vcpus: 4

List of volumes.
infra_vm_volumes:

- "{{ infra_vm_root_volume }}"
- "{{ infra_vm_data_volume }}"

Root volume.
infra_vm_root_volume:
name: "{{ infra_vm_name }}-root"
pool: "{{ infra_vm_pool }}"
capacity: "{{ infra_vm_root_capacity }}"
format: "{{ infra_vm_root_format }}"
image: "{{ infra_vm_root_image }}"

Data volume.
infra_vm_data_volume:
name: "{{ infra_vm_name }}-data"
pool: "{{ infra_vm_pool }}"
capacity: "{{ infra_vm_data_capacity }}"
format: "{{ infra_vm_data_format }}"

Name of the storage pool for the infra VM volumes.
infra_vm_pool: default

Capacity of the infra VM root volume.
infra_vm_root_capacity: 50G

Format of the infra VM root volume.
infra_vm_root_format: qcow2

Base image for the infra VM root volume. Default is
"https://cloud-images.ubuntu.com/focal/current/focal-server-cloudimg-amd64.
↪→img"
when os_distribution is "ubuntu", or
https://dl.rockylinux.org/pub/rocky/8/images/x86_64/Rocky-8-GenericCloud.
↪→latest.x86_64.qcow2
when os_distribution is "rocky",
or
"https://cloud.centos.org/centos/8-stream/x86_64/images/CentOS-Stream-
↪→GenericCloud-8-20220913.0.x86_64.qcow2" (continues on next page)

112 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

otherwise.
infra_vm_root_image: >-

{%- if os_distribution == 'ubuntu' %}
https://cloud-images.ubuntu.com/focal/current/focal-server-cloudimg-amd64.

↪→img
{%- elif os_distribution == 'rocky' %}
https://dl.rockylinux.org/pub/rocky/8/images/x86_64/Rocky-8-GenericCloud.

↪→latest.x86_64.qcow2
{%- else -%}
https://cloud.centos.org/centos/8-stream/x86_64/images/CentOS-Stream-

↪→GenericCloud-8-20220913.0.x86_64.qcow2
{%- endif %}

Capacity of the infra VM data volume.
infra_vm_data_capacity: 100G

Format of the infra VM data volume.
infra_vm_data_format: qcow2

List of network interfaces to attach to the infra VM.
infra_vm_interfaces: "{{ network_interfaces | sort | map('net_libvirt_vm_
↪→network') | list }}"

Hypervisor that the VM runs on.
infra_vm_hypervisor: "{{ groups['seed-hypervisor'] | first }}"

Customise ansible_ssh_extra_args for the test that checks SSH connectivity
after provisioning. Defaults to disabling ssh host key checking.
infra_vm_wait_connection_ssh_extra_args: '-o StrictHostKeyChecking=no'

OS family. Needed for config drive generation.
infra_vm_os_family: "{{ 'RedHat' if os_distribution == 'centos' else 'Debian'␣
↪→}}"

##
↪→#
Infrastructure VM node configuration.

User with which to access the infrastructure vm via SSH during bootstrap, in
order to setup the Kayobe user account. Default is {{ os_distribution }}.
infra_vm_bootstrap_user: "{{ os_distribution }}"

##
↪→#
Infrastructure VM network interface configuration.

List of networks to which infrastructure vm nodes are attached.
infra_vm_network_interfaces: >

{{ (infra_vm_default_network_interfaces +

(continues on next page)

3.6. Configuration Guide 113

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

infra_vm_extra_network_interfaces) | select | unique | list }}

List of default networks to which infrastructure vm nodes are attached.
infra_vm_default_network_interfaces: >

{{ [admin_oc_net_name] | select | unique | list }}

List of extra networks to which infrastructure vm nodes are attached.
infra_vm_extra_network_interfaces: []

##
↪→#
Infrastructure VM node software RAID configuration.

List of software RAID arrays. See mrlesmithjr.mdadm role for format.
infra_vm_mdadm_arrays: []

##
↪→#
Infrastructure VM node encryption configuration.

List of block devices to encrypt. See stackhpc.luks role for format.
infra_vm_luks_devices: []

##
↪→#
Infrastructure VM node LVM configuration.

List of infrastructure vm volume groups. See mrlesmithjr.manage_lvm role for
format.
infra_vm_lvm_groups: "{{ infra_vm_lvm_groups_default + infra_vm_lvm_groups_
↪→extra }}"

Default list of infrastructure vm volume groups. See mrlesmithjr.manage_lvm
role for format.
infra_vm_lvm_groups_default: "{{ [infra_vm_lvm_group_data] if infra_vm_lvm_
↪→group_data_enabled | bool else [] }}"

Additional list of infrastructure vm volume groups. See mrlesmithjr.manage_
↪→lvm
role for format.
infra_vm_lvm_groups_extra: []

Whether a 'data' LVM volume group should exist on the infrastructure vm. By
default this contains a 'docker-volumes' logical volume for Docker volume
storage. It will also be used for Docker container and image storage if
'docker_storage_driver' is set to 'devicemapper'. Default is true if
'docker_storage_driver' is set to 'devicemapper', or false otherwise.
infra_vm_lvm_group_data_enabled: "{{ docker_storage_driver == 'devicemapper' }
↪→}"

(continues on next page)

114 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

Infrastructure VM LVM volume group for data. See mrlesmithjr.manage_lvm role
for format.
infra_vm_lvm_group_data:
vgname: data
disks: "{{ infra_vm_lvm_group_data_disks }}"
create: True
lvnames: "{{ infra_vm_lvm_group_data_lvs }}"

List of disks for use by infrastructure vm LVM data volume group. Default to
an invalid value to require configuration.
infra_vm_lvm_group_data_disks:

- changeme

List of LVM logical volumes for the data volume group.
infra_vm_lvm_group_data_lvs:

- "{{ infra_vm_lvm_group_data_lv_docker_volumes }}"

Docker volumes LVM backing volume.
infra_vm_lvm_group_data_lv_docker_volumes:
lvname: docker-volumes
size: "{{ infra_vm_lvm_group_data_lv_docker_volumes_size }}"
create: True
filesystem: "{{ infra_vm_lvm_group_data_lv_docker_volumes_fs }}"
mount: True
mntp: /var/lib/docker/volumes

Size of docker volumes LVM backing volume.
infra_vm_lvm_group_data_lv_docker_volumes_size: 75%VG

Filesystem for docker volumes LVM backing volume. ext4 allows for shrinking.
infra_vm_lvm_group_data_lv_docker_volumes_fs: ext4

##
↪→#
Infrastructure VM node sysctl configuration.

Dict of sysctl parameters to set.
infra_vm_sysctl_parameters: {}

##
↪→#
Infrastructure VM node tuned configuration.

Builtin tuned profile to use. Format is same as that used by giovtorres.
↪→tuned
role. Default is virtual-guest.
infra_vm_tuned_active_builtin_profile: "virtual-guest"

(continues on next page)

3.6. Configuration Guide 115

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

##
↪→#
Infrastructure VM node user configuration.

List of users to create. This should be in a format accepted by the
singleplatform-eng.users role.
infra_vm_users: "{{ users_default }}"

##
↪→#
Infrastructure VM node firewalld configuration.

Whether to install and enable firewalld.
infra_vm_firewalld_enabled: false

A list of zones to create. Each item is a dict containing a 'zone' item.
infra_vm_firewalld_zones: []

A firewalld zone to set as the default. Default is unset, in which case the
default zone will not be changed.
infra_vm_firewalld_default_zone:

A list of firewall rules to apply. Each item is a dict containing arguments
to pass to the firewalld module. Arguments are omitted if not provided, with
the following exceptions:
- offline: true
- permanent: true
- state: enabled
infra_vm_firewalld_rules: []

Customisations

Examples of common customisations are shown below.

By default the Ansible inventory name is used as the name of the VM. This may be overridden via
infra_vm_name:

Listing 141: $KAYOBE_CONFIG_PATH/inventory/host_vars/
an-example-vm

Name of the infra VM.
infra_vm_name: "the-special-one"

By default the VM has 16G of RAM. This may be changed via infra_vm_memory_mb:

Listing 142: $KAYOBE_CONFIG_PATH/inventory/host_vars/
an-example-vm

Memory in MB. Defaults to 16GB.
infra_vm_memory_mb: "{{ 8 * 1024 }}"

116 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

The default network configuration attaches infra VMs to the admin network. If this is not appropriate,
modify infra_vm_network_interfaces. At a minimum the network interface name for the network
should be defined.

Listing 143: $KAYOBE_CONFIG_PATH/inventory/host_vars/
an-example-vm

Network interfaces that the VM is attached to.
infra_vm_network_interfaces:

- aio

Mandatory: All networks must have an interface defined.
aio_interface: eth0

By default kayobe will connect to a host via ``admin_oc_net``.
As we have not attached this VM to this network, we must override
ansible_host.
ansible_host: "{{ 'aio' | net_ip }}"

Configuration for all VMs can be set using extra_vars defined in $KAYOBE_CONFIG_PATH/
infra-vms.yml. Note that normal Ansible precedence rules apply and the variables will override any
host_vars. If you need to override the defaults, but still maintain per-host settings, use group_vars
instead.

Deploying the virtual machine

Once the initial configuration has been done follow the steps in Infrastructure VMs.

Nova cells

In the Train release, Kolla Ansible gained full support for the Nova cells v2 scale out feature. Whilst
configuring Nova cells is documented in Kolla Ansible, implementing that configuration in Kayobe is
documented here.

In Kolla Ansible, Nova cells are configured via group variables. In Kayobe, these group variables can be
set via Kayobe configuration. For example, to configure cell0001 the following file could be created:

Listing 144: $KAYOBE_CONFIG_PATH/kolla/inventory/
group_vars/cell0001/all

nova_cell_name: cell0001
nova_cell_novncproxy_group: cell0001-vnc
nova_cell_conductor_group: cell0001-control
nova_cell_compute_group: cell0001-compute

After defining the cell group_vars the Kayobe inventory can be configured. In Kayobe, cell controllers
and cell compute hosts become part of the existing controllers and compute Kayobe groups because
typically they will need to be provisioned in the same way. In Kolla Ansible, to prevent non-cell services
being mapped to cell controllers, the controllers group must be split into two. The inventory file

3.6. Configuration Guide 117

https://docs.openstack.org/kolla-ansible/xena/reference/compute/nova-cells-guide
https://docs.openstack.org/kolla-ansible/xena/reference/compute/nova-cells-guide#groups

kayobe Documentation, Release 11.8.1.dev24

should also include the cell definitions. The following groups and hosts files give an example of how this
may be achieved:

Listing 145: $KAYOBE_CONFIG_PATH/inventory/groups

Kayobe groups inventory file. This file should generally not be modified.
If declares the top-level groups and sub-groups.

###
↪→##
Seed groups.

[seed]
Empty group to provide declaration of seed group.

[seed-hypervisor]
Empty group to provide declaration of seed-hypervisor group.

[container-image-builders:children]
Build container images on the seed by default.
seed

###
↪→##
Overcloud groups.

[controllers]
Empty group to provide declaration of controllers group.

[network:children]
Add controllers to network group by default for backwards compatibility,
although they could be separate hosts.
top-level-controllers

[monitoring]
Empty group to provide declaration of monitoring group.

[storage]
Empty group to provide declaration of storage group.

[compute]
Empty group to provide declaration of compute group.

Empty group to provide declaration of top-level controllers.
[top-level-controllers]

[overcloud:children]
controllers
network
monitoring
storage

(continues on next page)

118 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

compute

###
↪→##
Docker groups.

[docker:children]
Hosts in this group will have Docker installed.
seed
controllers
network
monitoring
storage
compute

[docker-registry:children]
Hosts in this group will have a Docker Registry deployed. This group should
generally contain only a single host, to avoid deploying multiple␣
↪→independent
registries which may become unsynchronized.
seed

###
↪→##
Baremetal compute node groups.

[baremetal-compute]
Empty group to provide declaration of baremetal-compute group.

###
↪→##
Networking groups.

[mgmt-switches]
Empty group to provide declaration of mgmt-switches group.

[ctl-switches]
Empty group to provide declaration of ctl-switches group.

[hs-switches]
Empty group to provide declaration of hs-switches group.

[switches:children]
mgmt-switches
ctl-switches
hs-switches

3.6. Configuration Guide 119

kayobe Documentation, Release 11.8.1.dev24

Listing 146: $KAYOBE_CONFIG_PATH/inventory/hosts

Kayobe hosts inventory file. This file should be modified to define the␣
↪→hosts
and their top-level group membership.

This host acts as the configuration management Ansible control host. This␣
↪→must be
localhost.
localhost ansible_connection=local

[seed-hypervisor]
Add a seed hypervisor node here if required. This host will run a seed node
Virtual Machine.

[seed]
operator

[controllers:children]
top-level-controllers
cell-controllers

[top-level-controllers]
control01

[cell-controllers:children]
cell01-control
cell02-control

[compute:children]
cell01-compute
cell02-compute

[cell01:children]
cell01-control
cell01-compute
cell01-vnc

[cell01-control]
control02

[cell01-vnc]
control02

[cell01-compute]
compute01

[cell02:children]
cell02-control
cell02-compute

(continues on next page)

120 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

cell02-vnc

[cell02-control]
control03

[cell02-vnc]
control03

[cell02-compute]
compute02
compute03

##################################

[mgmt-switches]
Add management network switches here if required.

[ctl-switches]
Add control and provisioning switches here if required.

[hs-switches]
Add high speed switches here if required.

Having configured the Kayobe inventory, the Kolla Ansible inventory can be configured. Currently this
can be done via the kolla_overcloud_inventory_top_level_group_map variable. For example, to
configure the two cells defined in the Kayobe inventory above, the variable could be set to the following:

Listing 147: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_overcloud_inventory_top_level_group_map:
control:
groups:

- top-level-controllers
network:
groups:

- network
compute:
groups:

- compute
monitoring:
groups:

- monitoring
cell-control:
groups:

- cell-controllers
cell0001:
groups:

- cell01
cell0001-control:
groups:

(continues on next page)

3.6. Configuration Guide 121

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

- cell01-control
cell0001-compute:
groups:

- cell01-compute
cell0001-vnc:
groups:

- cell01-vnc
cell0002:
groups:

- cell02
cell0002-control:
groups:

- cell02-control
cell0002-compute:
groups:

- cell02-compute
cell0002-vnc:
groups:

- cell02-vnc

Finally, Nova cells can be enabled in Kolla Ansible:

Listing 148: $KAYOBE_CONFIG_PATH/kolla/globals.yml

enable_cells: True

3.7 Deployment

This section describes usage of Kayobe to install an OpenStack cloud onto a set of bare metal servers.
We assume access is available to a node which will act as the hypervisor hosting the seed node in a VM.
We also assume that this seed hypervisor has access to the bare metal nodes that will form the OpenStack
control plane. Finally, we assume that the control plane nodes have access to the bare metal nodes that
will form the workload node pool.

See also:

Information on the configuration of a Kayobe environment is available here.

3.7.1 Ansible Control Host

Before starting deployment we must bootstrap the Ansible control host. Tasks performed here include:

• Install required Ansible roles from Ansible Galaxy.

• Generate an SSH key if necessary and add it to the current users authorised keys.

• Install Kolla Ansible locally at the configured version.

To bootstrap the Ansible control host:

122 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(kayobe) $ kayobe control host bootstrap

3.7.2 Physical Network

The physical network can be managed by Kayobe, which uses Ansibles network modules. Currently
Dell Network OS 6 and Dell Network OS 9 switches are supported but this could easily be extended. To
provision the physical network:

(kayobe) $ kayobe physical network configure --group <group> [--enable-
↪→discovery]

The --group argument is used to specify an Ansible group containing the switches to be configured.

The --enable-discovery argument enables a one-time configuration of ports attached to baremetal
compute nodes to support hardware discovery via ironic inspector.

It is possible to limit the switch interfaces that will be configured, either by interface name or interface
description:

(kayobe) $ kayobe physical network configure --group <group> --interface-
↪→limit <interface names>
(kayobe) $ kayobe physical network configure --group <group> --interface-
↪→description-limit <interface descriptions>

The names or descriptions should be separated by commas. This may be useful when adding compute
nodes to an existing deployment, in order to avoid changing the configuration interfaces in use by active
nodes.

The --display argument will display the candidate switch configuration, without actually applying it.

See also:

Information on configuration of physical network devices is available here.

3.7.3 Seed Hypervisor

Note: It is not necessary to run the seed services in a VM. To use an existing bare metal host or a VM
provisioned outside of Kayobe, this section may be skipped.

Host Configuration

To configure the seed hypervisors host OS, and the Libvirt/KVM virtualisation support:

(kayobe) $ kayobe seed hypervisor host configure

See also:

Information on configuration of hosts is available here.

3.7. Deployment 123

kayobe Documentation, Release 11.8.1.dev24

3.7.4 Seed

VM Provisioning

Note: It is not necessary to run the seed services in a VM. To use an existing bare metal host or a VM
provisioned outside of Kayobe, this step may be skipped. Ensure that the Ansible inventory contains a
host for the seed.

The seed hypervisor should have CentOS or Rocky or Ubuntu with libvirt installed. It should have
libvirt networks configured for all networks that the seed VM needs access to and a libvirt storage
pool available for the seed VMs volumes. To provision the seed VM:

(kayobe) $ kayobe seed vm provision

When this command has completed the seed VM should be active and accessible via SSH. Kayobe will
update the Ansible inventory with the IP address of the VM.

Host Configuration

To configure the seed host OS:

(kayobe) $ kayobe seed host configure

Note: If the seed host uses disks that have been in use in a previous installation, it may be necessary
to wipe partition and LVM data from those disks. To wipe all disks that are not mounted during host
configuration:

(kayobe) $ kayobe seed host configure --wipe-disks

See also:

Information on configuration of hosts is available here.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Quay.io. In this
case, this step can be skipped.

It is possible to use prebuilt container images from an image registry such as Quay.io. In some cases it
may be necessary to build images locally either to apply local image customisation or to use a downstream
version of kolla. Images are built by hosts in the container-image-builders group, which by default
includes the seed.

To build container images:

(kayobe) $ kayobe seed container image build

124 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

It is possible to build a specific set of images by supplying one or more image name regular expressions:

(kayobe) $ kayobe seed container image build bifrost-deploy

In order to push images to a registry after they are built, add the --push argument.

See also:

Information on configuration of Kolla for building container images is available here.

Deploying Containerised Services

At this point the seed services need to be deployed on the seed VM. These services are deployed in the
bifrost_deploy container.

This command will also build the Operating System image that will be used to deploy the overcloud
nodes using Disk Image Builder (DIB).

Note: If you are using Rocky Linux - building of the Operating System image needs to be done outside
of Kayobe (no support for diskimage-builder containerfile element based builds in bifrost container).

To deploy the seed services in containers:

(kayobe) $ kayobe seed service deploy

After this command has completed the seed services will be active.

See also:

Information on configuration of Kolla Ansible is available here. See here for information about configur-
ing Bifrost. Overcloud root disk image configuration provides information on configuring the root disk
image build process. See here for information about deploying additional, custom services (containers)
on a seed node.

Building Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True.

To build images locally:

(kayobe) $ kayobe seed deployment image build

If images have been built previously, they will not be rebuilt. To force rebuilding images, use the
--force-rebuild argument.

3.7. Deployment 125

https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 11.8.1.dev24

See also:

See here for information on how to configure the IPA image build process.

Accessing the Seed via SSH (Optional)

For SSH access to the seed, first determine the seeds IP address. We can use the kayobe
configuration dump command to inspect the seeds IP address:

(kayobe) $ kayobe configuration dump --host seed --var-name ansible_host

The kayobe_ansible_user variable determines which user account will be used by Kayobe when
accessing the machine via SSH. By default this is stack. Use this user to access the seed:

$ ssh <kayobe ansible user>@<seed VM IP>

To see the active Docker containers:

$ docker ps

Leave the seed VM and return to the shell on the Ansible control host:

$ exit

3.7.5 Infrastructure VMs

Warning: Support for infrastructure VMs is considered experimental: its design may change in
future versions without a deprecation period.

Note: It necessary to perform some configuration before these steps can be followed. Please see Infras-
tructure VMs.

VM Provisioning

The hypervisor used to host a VM is controlled via the infra_vm_hypervisor variable. It defaults
to use the seed hypervisor. All hypervisors should have CentOS or Ubuntu with libvirt installed. It
should have libvirt networks configured for all networks that the VM needs access to and a libvirt
storage pool available for the VMs volumes. The steps needed for for the seed and the seed hypervisor
can be found above.

To provision the infra VMs:

(kayobe) $ kayobe infra vm provision

When this command has completed the infra VMs should be active and accessible via SSH. Kayobe will
update the Ansible inventory with the IP address of the VM.

126 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Host Configuration

To configure the infra VM host OS:

(kayobe) $ kayobe infra vm host configure

Note: If the infra VM host uses disks that have been in use in a previous installation, it may be necessary
to wipe partition and LVM data from those disks. To wipe all disks that are not mounted during host
configuration:

(kayobe) $ kayobe infra vm host configure --wipe-disks

See also:

Information on configuration of hosts is available here.

Using Hooks to deploy services on the VMs

A no-op service deployment command is provided to perform additional configuration. The intention is
for users to define hooks to custom playbooks that define any further configuration or service deployment
necessary.

To trigger the hooks:

(kayobe) $ kayobe infra vm service deploy

Example

In this example we have an infra VM host called dns01 that provides DNS services. The host could be
added to a dns-servers group in the inventory:

Listing 149: $KAYOBE_CONFIG_PATH/inventory/infra-vms

[dns-servers]
an-example-vm

[infra-vms:children]
dns-servers

We have a custom playbook targeting the dns-servers group that sets up the DNS server:

Listing 150: $KAYOBE_CONFIG_PATH/ansible/dns-server.
yml

- name: Deploy DNS servers
hosts: dns-servers
tasks:
- name: Install bind packages

(continues on next page)

3.7. Deployment 127

kayobe Documentation, Release 11.8.1.dev24

(continued from previous page)

package:
name:
- bind
- bind-utils

become: true

Finally, we add a symlink to set up the playbook as a hook for the kayobe infra vm service deploy
command:

(kayobe) $ mkdir -p ${KAYOBE_CONFIG_PATH}/hooks/infra-vm-host-configure/post.d
(kayobe) $ cd ${KAYOBE_CONFIG_PATH}/hooks/infra-vm-host-configure/post.d
(kayobe) $ ln -s ../../../ansible/dns-server.yml 50-dns-serveryml

3.7.6 Overcloud

Discovery

Note: If discovery of the overcloud is not possible, a static inventory of servers using the
bifrost servers.yml file format may be configured using the kolla_bifrost_servers variable in
${KAYOBE_CONFIG_PATH}/bifrost.yml.

Discovery of the overcloud is supported by the ironic inspector service running in the bifrost_deploy
container on the seed. The service is configured to PXE boot unrecognised MAC addresses with an IPA
ramdisk for introspection. If an introspected node does not exist in the ironic inventory, ironic inspector
will create a new entry for it.

Discovery of the overcloud is triggered by causing the nodes to PXE boot using a NIC attached to the
overcloud provisioning network. For many servers this will be the factory default and can be performed
by powering them on.

On completion of the discovery process, the overcloud nodes should be registered with the ironic service
running in the seed hosts bifrost_deploy container. The node inventory can be viewed by executing
the following on the seed:

$ docker exec -it bifrost_deploy bash
(bifrost_deploy) $ export OS_CLOUD=bifrost
(bifrost_deploy) $ baremetal node list

In order to interact with these nodes using Kayobe, run the following command to add them to the Kayobe
and Kolla-Ansible inventories:

(kayobe) $ kayobe overcloud inventory discover

See also:

This blog post provides a case study of the discovery process, including automatically naming Ironic
nodes via switch port descriptions, Ironic Inspector and LLDP.

128 Chapter 3. Contents

https://www.stackhpc.com/ironic-idrac-ztp.html

kayobe Documentation, Release 11.8.1.dev24

Saving Hardware Introspection Data

If ironic inspector is in use on the seed host, introspection data will be stored in the local nginx service.
This data may be saved to the control host:

(kayobe) $ kayobe overcloud introspection data save

--output-dir may be used to specify the directory in which introspection data files will be saved.
--output-format may be used to set the format of the files.

BIOS and RAID Configuration

Note: BIOS and RAID configuration may require one or more power cycles of the hardware to complete
the operation. These will be performed automatically.

Note: Currently, BIOS and RAID configuration of overcloud hosts is supported for Dell servers only.

Configuration of BIOS settings and RAID volumes is currently performed out of band as a separate task
from hardware provisioning. To configure the BIOS and RAID:

(kayobe) $ kayobe overcloud bios raid configure

After configuring the nodes RAID volumes it may be necessary to perform hardware inspection of the
nodes to reconfigure the ironic nodes scheduling properties and root device hints. To perform manual
hardware inspection:

(kayobe) $ kayobe overcloud hardware inspect

There are currently a few limitations to configuring BIOS and RAID:

• The Ansible control host must be able to access the BMCs of the servers being configured.

• The Ansible control host must have the python-dracclient Python module available to the
Python interpreter used by Ansible. The path to the Python interpreter is configured via
ansible_python_interpreter.

Provisioning

Note: There is a cloud-init issue which prevents Ironic nodes without names from being accessed via
SSH after provisioning. To avoid this issue, ensure that all Ironic nodes in the Bifrost inventory are
named. This may be achieved via autodiscovery, or manually, e.g. from the seed:

$ docker exec -it bifrost_deploy bash
(bifrost_deploy) $ export OS_CLOUD=bifrost
(bifrost_deploy) $ baremetal node set ee77b4ca-8860-4003-a18f-b00d01295bda --
↪→name controller0

3.7. Deployment 129

https://storyboard.openstack.org/#!/story/2006832

kayobe Documentation, Release 11.8.1.dev24

Provisioning of the overcloud is performed by the ironic service running in the bifrost container on the
seed. To provision the overcloud nodes:

(kayobe) $ kayobe overcloud provision

After this command has completed the overcloud nodes should have been provisioned with an OS image.
The command will wait for the nodes to become active in ironic and accessible via SSH.

Host Configuration

To configure the overcloud hosts OS:

(kayobe) $ kayobe overcloud host configure

Note: If the controller hosts use disks that have been in use in a previous installation, it may be necessary
to wipe partition and LVM data from those disks. To wipe all disks that are not mounted during host
configuration:

(kayobe) $ kayobe overcloud host configure --wipe-disks

See also:

Information on configuration of hosts is available here.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Quay.io. In this
case, this step can be skipped.

In some cases it may be necessary to build images locally either to apply local image customisation or
to use a downstream version of kolla. Images are built by hosts in the container-image-builders
group, which by default includes the seed. If no seed host is in use, for example in an all-in-one controller
development environment, this group may be modified to cause containers to be built on the controllers.

To build container images:

(kayobe) $ kayobe overcloud container image build

It is possible to build a specific set of images by supplying one or more image name regular expressions:

(kayobe) $ kayobe overcloud container image build ironic- nova-api

In order to push images to a registry after they are built, add the --push argument.

See also:

Information on configuration of Kolla for building container images is available here.

130 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Pulling Container Images

Note: It is possible to build container images locally avoiding the need for an image registry such as
Quay.io. In this case, this step can be skipped.

In most cases suitable prebuilt kolla images will be available on Quay.io. The openstack.kolla organisa-
tion provides image repositories suitable for use with kayobe and will be used by default. To pull images
from the configured image registry:

(kayobe) $ kayobe overcloud container image pull

Building Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

Note: Deployment images are only required for the overcloud when Ironic is in use. Otherwise, this
step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True.

To build images locally:

(kayobe) $ kayobe overcloud deployment image build

If images have been built previously, they will not be rebuilt. To force rebuilding images, use the
--force-rebuild argument.

See also:

See here for information on how to configure the IPA image build process.

Building Swift Rings

Note: This section can be skipped if Swift is not in use.

Swift uses ring files to control placement of data across a cluster. These files can be generated automat-
ically using the following command:

(kayobe) $ kayobe overcloud swift rings generate

3.7. Deployment 131

https://quay.io/organization/openstack.kolla
https://quay.io/organization/openstack.kolla
https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 11.8.1.dev24

Deploying Containerised Services

To deploy the overcloud services in containers:

(kayobe) $ kayobe overcloud service deploy

Once this command has completed the overcloud nodes should have OpenStack services running in
Docker containers.

See also:

Information on configuration of Kolla Ansible is available here.

Interacting with the Control Plane

Kolla-ansible writes out an environment file that can be used to access the OpenStack admin endpoints
as the admin user:

$ source ${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh

Kayobe also generates an environment file that can be used to access the OpenStack public endpoints as
the admin user which may be required if the admin endpoints are not available from the Ansible control
host:

$ source ${KOLLA_CONFIG_PATH:-/etc/kolla}/public-openrc.sh

Performing Post-deployment Configuration

To perform post deployment configuration of the overcloud services:

(kayobe) $ source ${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh
(kayobe) $ kayobe overcloud post configure

This will perform the following tasks:

• Register Ironic Python Agent (IPA) images with glance

• Register introspection rules with ironic inspector

• Register a provisioning network and subnet with neutron

• Configure Grafana organisations, dashboards and datasources

3.8 Upgrading

This section describes how to upgrade from one OpenStack release to another.

132 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

3.8.1 CentOS Stream 8

The Wallaby release adds support for CentOS Stream 8 as a host operating system. CentOS Stream 8
support will also be added to a Victoria stable release. CentOS Linux users upgrading from Victoria
should first migrate hosts and container images from CentOS Linux to CentOS Stream before upgrading
to Wallaby.

3.8.2 Preparation

Before you start, be sure to back up any local changes, configuration, and data.

Migrating Kayobe Configuration

Kayobe configuration options may be changed between releases of kayobe. Ensure that all site local
configuration is migrated to the target version format. If using the kayobe-config git repository to manage
local configuration, this process can be managed via git. For example, to fetch version 1.0.0 of the
configuration from the origin remote and merge it into the current branch:

$ git fetch origin 1.0.0
$ git merge 1.0.0

The configuration should be manually inspected after the merge to ensure that it is correct. Any new
configuration options may be set at this point. In particular, the following options may need to be changed
if not using their default values:

• kolla_openstack_release

• kolla_tag

• kolla_sources

• kolla_build_blocks

• kolla_build_customizations

Once the configuration has been migrated, it is possible to view the global variables for all hosts:

(kayobe) $ kayobe configuration dump

The output of this command is a JSON object mapping hosts to their configuration. The output of the
command may be restricted using the --host, --hosts, --var-name and --dump-facts options.

If using the kayobe-env environment file in kayobe-config, this should also be inspected for changes
and modified to suit the local ansible control host environment if necessary. When ready, source the
environment file:

$ source kayobe-env

The Kayobe release notes provide information on each new release. In particular, the Upgrade Notes and
Deprecation Notes sections provide information that might affect the configuration migration.

All changes made to the configuration should be committed and pushed to the hosting git repository.

3.8. Upgrading 133

https://opendev.org/openstack/kayobe-config
https://docs.openstack.org/releasenotes/kayobe/

kayobe Documentation, Release 11.8.1.dev24

3.8.3 Updating Kayobe Configuration

Ensure that the Kayobe configuration is checked out at the required commit.

First, ensure that there are no uncommitted local changes to the repository:

$ cd <base_path>/src/kayobe-config/
$ git status

Pull down changes from the hosting repository. For example, to fetch changes from the master branch
of the origin remote:

$ git checkout master
$ git pull --ff-only origin master

Adjust this procedure to suit your environment.

3.8.4 Upgrading Kayobe

If a new, suitable version of kayobe is available, it should be installed. As described in Installation,
Kayobe can be installed via the released Python packages on PyPI, or from source. Installation from a
Python package is supported from Kayobe 5.0.0 onwards.

Upgrading from PyPI

This section describes how to upgrade Kayobe from a Python package in a virtualenv. This is supported
from Kayobe 5.0.0 onwards.

Ensure that the virtualenv is activated:

$ source <base_path>/venvs/kayobe/bin/activate

Update the pip package:

(kayobe) $ pip install -U pip

Note: When updating Ansible above version 2.9.x, first uninstall it with pip uninstall ansible.
A newer version will be installed with the next command, as a Kayobe dependency. If Ansible 2.10.x
was installed and you want to use a newer version, also uninstall the ansible-base package with pip
uninstall ansible-base.

If upgrading to the latest version of Kayobe:

(kayobe) $ pip install -U kayobe

Alternatively, to upgrade to a specific release of Kayobe:

(kayobe) $ pip install kayobe==5.0.0

134 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Upgrading from source

This section describes how to install Kayobe from source in a virtualenv.

First, check out the required version of the Kayobe source code. This may be done by pulling down the
new version from opendev.org. Make sure that any local changes to kayobe are committed and merged
with the new upstream code as necessary. For example, to pull version 5.0.0 from the origin remote:

$ cd <base_path>/src/kayobe
$ git pull origin 5.0.0

Ensure that the virtualenv is activated:

$ source <base_path>/venvs/kayobe/bin/activate

Update the pip package:

(kayobe) $ pip install -U pip

If using a non-editable install of Kayobe:

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install -U .

Alternatively, if using an editable install of Kayobe (version 5.0.0 onwards, see Editable source installa-
tion for details):

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install -U -e .

3.8.5 Upgrading the Ansible Control Host

Before starting the upgrade we must upgrade the Ansible control host. Tasks performed here include:

• Install updated Ansible role dependencies from Ansible Galaxy.

• Generate an SSH key if necessary and add it to the current users authorised keys.

• Upgrade Kolla Ansible locally to the configured version.

To upgrade the Ansible control host:

(kayobe) $ kayobe control host upgrade

3.8. Upgrading 135

kayobe Documentation, Release 11.8.1.dev24

3.8.6 Upgrading the Seed Hypervisor

Currently, upgrading the seed hypervisor services is not supported. It may however be necessary to
upgrade host packages and some host services.

Upgrading Host Packages

Prior to upgrading the seed hypervisor, it may be desirable to upgrade system packages on the seed
hypervisor host.

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe seed hypervisor host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe seed hypervisor host package update --packages "*" --
↪→security

Upgrading Host Services

It may be necessary to upgrade some host services:

(kayobe) $ kayobe seed hypervisor host upgrade

Note that this will not perform full configuration of the host, and will instead perform a targeted upgrade
of specific services where necessary.

3.8.7 Upgrading the Seed

The seed services are upgraded in two steps. First, new container images should be obtained either
by building them locally or pulling them from an image registry. Second, the seed services should be
replaced with new containers created from the new container images.

Upgrading Host Packages

Prior to upgrading the seed, it may be desirable to upgrade system packages on the seed host.

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe seed host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe seed host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

136 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Building Ironic Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True. To build images locally:

(kayobe) $ kayobe seed deployment image build

To overwrite existing images, add the --force-rebuild argument.

Upgrading Host Services

It may be necessary to upgrade some host services:

(kayobe) $ kayobe seed host upgrade

Note that this will not perform full configuration of the host, and will instead perform a targeted upgrade
of specific services where necessary.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Quay.io. In this
case, this step can be skipped.

In some cases it may be necessary to build images locally either to apply local image customisation or to
use a downstream version of kolla. To build images locally:

(kayobe) $ kayobe seed container image build

In order to push images to a registry after they are built, add the --push argument.

Upgrading Containerised Services

Containerised seed services may be upgraded by replacing existing containers with new containers using
updated images which have been pulled from a registry or built locally.

To upgrade the containerised seed services:

(kayobe) $ kayobe seed service upgrade

3.8. Upgrading 137

https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 11.8.1.dev24

3.8.8 Upgrading the Overcloud

The overcloud services are upgraded in two steps. First, new container images should be obtained either
by building them locally or pulling them from an image registry. Second, the overcloud services should
be replaced with new containers created from the new container images.

Upgrading Host Packages

Prior to upgrading the OpenStack control plane, it may be desirable to upgrade system packages on the
overcloud hosts.

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe overcloud host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe overcloud host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Upgrading Host Services

Prior to upgrading the OpenStack control plane, the overcloud host services should be upgraded:

(kayobe) $ kayobe overcloud host upgrade

Note that this will not perform full configuration of the host, and will instead perform a targeted upgrade
of specific services where necessary.

Building Ironic Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True. To build images locally:

(kayobe) $ kayobe overcloud deployment image build

To overwrite existing images, add the --force-rebuild argument.

138 Chapter 3. Contents

https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 11.8.1.dev24

Upgrading Ironic Deployment Images

Prior to upgrading the OpenStack control plane you should upgrade the deployment images. If you are
using prebuilt images, update the following variables in etc/kayobe/ipa.yml accordingly:

• ipa_kernel_upstream_url

• ipa_kernel_checksum_url

• ipa_kernel_checksum_algorithm

• ipa_ramdisk_upstream_url

• ipa_ramdisk_checksum_url

• ipa_ramdisk_checksum_algorithm

Alternatively, you can update the files that the URLs point to. If building the images locally, follow the
process outlined in Building Ironic Deployment Images.

To get Ironic to use an updated set of overcloud deployment images, you can run:

(kayobe) $ kayobe baremetal compute update deployment image

This will register the images in Glance and update the deploy_ramdisk and deploy_kernel properties
of the Ironic nodes.

Before rolling out the update to all nodes, it can be useful to test the image on a limited subset. To do this,
you can use the baremetal-compute-limit option. See Update Deployment Image for more details.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Quay.io. In this
case, this step can be skipped.

In some cases it may be necessary to build images locally either to apply local image customisation or to
use a downstream version of kolla. To build images locally:

(kayobe) $ kayobe overcloud container image build

It is possible to build a specific set of images by supplying one or more image name regular expressions:

(kayobe) $ kayobe overcloud container image build ironic- nova-api

In order to push images to a registry after they are built, add the --push argument.

3.8. Upgrading 139

kayobe Documentation, Release 11.8.1.dev24

Pulling Container Images

Note: It is possible to build container images locally avoiding the need for an image registry such as
Quay.io. In this case, this step can be skipped.

In most cases suitable prebuilt kolla images will be available on Quay.io. The openstack.kolla organisa-
tion provides image repositories suitable for use with kayobe and will be used by default. To pull images
from the configured image registry:

(kayobe) $ kayobe overcloud container image pull

Saving Overcloud Service Configuration

It is often useful to be able to save the configuration of the control plane services for inspection or com-
parison with another configuration set prior to a reconfiguration or upgrade. This command will gather
and save the control plane configuration for all hosts to the Ansible control host:

(kayobe) $ kayobe overcloud service configuration save

The default location for the saved configuration is $PWD/overcloud-config, but this can be changed
via the output-dir argument. To gather configuration from a directory other than the default /etc/
kolla, use the node-config-dir argument.

Generating Overcloud Service Configuration

Prior to deploying, reconfiguring, or upgrading a control plane, it may be useful to generate the configura-
tion that will be applied, without actually applying it to the running containers. The configuration should
typically be generated in a directory other than the default configuration directory of /etc/kolla, to
avoid overwriting the active configuration:

(kayobe) $ kayobe overcloud service configuration generate --node-config-dir /
↪→path/to/generated/config

The configuration will be generated remotely on the overcloud hosts in the specified directory, with
one subdirectory per container. This command may be followed by kayobe overcloud service
configuration save to gather the generated configuration to the Ansible control host.

Upgrading Containerised Services

Containerised control plane services may be upgraded by replacing existing containers with new con-
tainers using updated images which have been pulled from a registry or built locally.

To upgrade the containerised control plane services:

(kayobe) $ kayobe overcloud service upgrade

It is possible to specify tags for Kayobe and/or kolla-ansible to restrict the scope of the upgrade:

140 Chapter 3. Contents

https://quay.io/organization/openstack.kolla
https://quay.io/organization/openstack.kolla

kayobe Documentation, Release 11.8.1.dev24

(kayobe) $ kayobe overcloud service upgrade --tags config --kolla-tags␣
↪→keystone

3.9 Administration

This section describes how to use kayobe to simplify post-deployment administrative tasks.

3.9.1 General Administration

Updating the Control Host

There are several pieces of software and configuration that must be installed and synchronised on the
Ansible Control host:

• Kayobe configuration

• Kayobe Python package

• Ansible Galaxy roles

• Kolla Ansible Python package

A change to the configuration may require updating the Kolla Ansible Python package. Updating the
Kayobe Python package may require updating the Ansible Galaxy roles. Its not always easy to know
which of these are required, so the simplest option is to apply all of the following steps when any of the
above are changed.

1. Update Kayobe configuration to the required commit

2. Upgrade the Kayobe Python package to the required version

3. Upgrade the Ansible control host to synchronise the Ansible Galaxy roles and Kolla Ansible
Python package.

Running Kayobe Playbooks on Demand

In some situations it may be necessary to run an individual Kayobe playbook. Playbooks are stored in
<kayobe repo>/ansible/*.yml. To run an arbitrary Kayobe playbook:

(kayobe) $ kayobe playbook run <playbook> [<playbook>]

Running Kolla-ansible Commands

To execute a kolla-ansible command:

(kayobe) $ kayobe kolla ansible run <command>

3.9. Administration 141

kayobe Documentation, Release 11.8.1.dev24

Dumping Kayobe Configuration

The Ansible configuration space is quite large, and it can be hard to determine the final values of Ansible
variables. We can use Kayobes configuration dump command to view individual variables or the
variables for one or more hosts. To dump Kayobe configuration for one or more hosts:

(kayobe) $ kayobe configuration dump

The output is a JSON-formatted object mapping hosts to their hostvars.

We can use the --var-name argument to inspect a particular variable or the --host or --hosts argu-
ments to view a variable or variables for a specific host or set of hosts.

Checking Network Connectivity

In complex networking environments it can be useful to be able to automatically check network connec-
tivity and diagnose networking issues. To perform some simple connectivity checks:

(kayobe) $ kayobe network connectivity check

Note that this will run on the seed, seed hypervisor, and overcloud hosts. If any of these hosts are not
expected to be active (e.g. prior to overcloud deployment), the set of target hosts may be limited using
the --limit argument.

3.9.2 Seed Administration

Deprovisioning The Seed VM

Note: This step will destroy the seed VM and its data volumes.

To deprovision the seed VM:

(kayobe) $ kayobe seed vm deprovision

Updating Packages

It is possible to update packages on the seed host.

Package Repositories

If using custom DNF package repositories on CentOS or Rocky, it may be necessary to update these prior
to running a package update. To do this, update the configuration in ${KAYOBE_CONFIG_PATH}/dnf.
yml and run the following command:

(kayobe) $ kayobe seed host configure --tags dnf --kolla-tags none

142 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Package Update

To update one or more packages:

(kayobe) $ kayobe seed host package update --packages <package1>,<package2>

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe seed host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe seed host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Packages can also be updated on the seed hypervisor host, if one is in use:

(kayobe) $ kayobe seed hypervisor package update --packages <package1>,
↪→<package2>

Kernel Updates

If the kernel has been updated, you will probably want to reboot the seed host to boot into the new kernel.
This can be done using a command such as the following:

(kayobe) $ kayobe seed host command run --command "shutdown -r" --become

Examining the Bifrost Container

The seed host runs various services required for a standalone Ironic deployment. These all run in a single
bifrost_deploy container.

It can often be helpful to execute a shell in the bifrost container for diagnosing operational issues:

$ docker exec -it bifrost_deploy bash

Services are run via Systemd:

(bifrost_deploy) systemctl

Logs are stored in /var/log/kolla/, which is mounted to the kolla_logs Docker volume.

3.9. Administration 143

kayobe Documentation, Release 11.8.1.dev24

Accessing the Seed Services

The Ironic and Ironic inspector APIs can be accessed via the baremetal command line interface:

(bifrost_deploy) $ export OS_CLOUD=bifrost
(bifrost_deploy) $ baremetal node list
(bifrost_deploy) $ baremetal introspection list

Backup & Restore

There are two main approaches to backing up and restoring data on the seed. A backup may be taken of
the Ironic databases. Alternatively, a Virtual Machine backup may be used if running the seed services in
a VM. The former will consume less storage. Virtual Machine backups are not yet covered here, neither
is scheduling of backups. Any backup and restore procedure should be tested in advance.

Database Backup & Restore

A backup may be taken of the database, using one of the many tools that exist for backing up MariaDB
databases.

A simple approach that should work for the typically modestly sized seed database is mysqldump. The
following commands should all be executed on the seed.

Backup

It should be safe to keep services running during the backup, but for maximum safety they may optionally
be stopped:

docker exec -it bifrost_deploy \
systemctl stop ironic-api ironic-conductor ironic-inspector

Then, to perform the backup:

docker exec -it bifrost_deploy \
mysqldump --all-databases --single-transaction --routines --triggers > seed-
↪→backup.sql

If the services were stopped prior to the backup, start them again:

docker exec -it bifrost_deploy \
systemctl start ironic-api ironic-conductor ironic-inspector

144 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Restore

Prior to restoring the database, the Ironic and Ironic Inspector services should be stopped:

docker exec -it bifrost_deploy \
systemctl stop ironic-api ironic-conductor ironic-inspector

The database may then safely be restored:

docker exec -i bifrost_deploy \
mysql < seed-backup.sql

Finally, start the Ironic and Ironic Inspector services again:

docker exec -it bifrost_deploy \
systemctl start ironic-api ironic-conductor ironic-inspector

Running Commands

It is possible to run a command on the seed host:

(kayobe) $ kayobe seed host command run --command "<command>"

For example:

(kayobe) $ kayobe seed host command run --command "service docker restart"

Commands can also be run on the seed hypervisor host, if one is in use:

(kayobe) $ kayobe seed hypervisor host command run --command "<command>"

To execute the command with root privileges, add the --become argument. Adding the --verbose
argument allows the output of the command to be seen.

3.9.3 Infra VM Administration

Deprovisioning Infrastructure VMs

Note: This step will destroy the infrastructure VMs and associated data volumes. Make sure you backup
any data you want to keep.

To deprovision all VMs:

(kayobe) $ kayobe infra vm deprovision

This can be limited to a subset of the nodes using the --limit option:

(kayobe) $ kayobe infra vm deprovision --limit example-vm-1

3.9. Administration 145

kayobe Documentation, Release 11.8.1.dev24

Updating Packages

It is possible to update packages on the infrastructure VMs.

Package Repositories

If using custom DNF package repositories on CentOS or Rocky, it may be necessary to update these prior
to running a package update. To do this, update the configuration in ${KAYOBE_CONFIG_PATH}/dnf.
yml and run the following command:

(kayobe) $ kayobe infra vm host configure --tags dnf

Package Update

To update one or more packages:

(kayobe) $ kayobe infra vm host package update --packages <package1>,
↪→<package2>

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe infra vm host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe infra vm host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Kernel Updates

If the kernel has been updated, you will probably want to reboot the host to boot into the new kernel.
This can be done using a command such as the following:

(kayobe) $ kayobe infra vm host command run --command "shutdown -r" --become

Running Commands

It is possible to run a command on the host:

(kayobe) $ kayobe infra vm host command run --command "<command>"

For example:

(kayobe) $ kayobe infra vm host command run --command "service docker restart"

Commands can also be run on the seed hypervisor host, if one is in use:

146 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

(kayobe) $ kayobe seed hypervisor host command run --command "<command>"

To execute the command with root privileges, add the --become argument. Adding the --verbose
argument allows the output of the command to be seen.

3.9.4 Overcloud Administration

Updating Packages

It is possible to update packages on the overcloud hosts.

Package Repositories

If using custom DNF package repositories on CentOS or Rocky, it may be necessary to update these prior
to running a package update. To do this, update the configuration in ${KAYOBE_CONFIG_PATH}/dnf.
yml and run the following command:

(kayobe) $ kayobe overcloud host configure --tags dnf --kolla-tags none

Package Update

To update one or more packages:

(kayobe) $ kayobe overcloud host package update --packages <package1>,
↪→<package2>

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe overcloud host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe overcloud host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Kernel Updates

If the kernel has been updated, you will probably want to reboot the hosts to boot into the new kernel.
This can be done using a command such as the following:

(kayobe) $ kayobe overcloud host command run --command "shutdown -r" --become

It is normally best to apply this to control plane hosts in batches to avoid clustered services from losing
quorum. This can be achieved using the --limit argument, and ensuring services are fully up after
rebooting before proceeding with the next batch.

3.9. Administration 147

kayobe Documentation, Release 11.8.1.dev24

Running Commands

It is possible to run a command on the overcloud hosts:

(kayobe) $ kayobe overcloud host command run --command "<command>"

For example:

(kayobe) $ kayobe overcloud host command run --command "service docker restart
↪→"

To execute the command with root privileges, add the --become argument. Adding the --verbose
argument allows the output of the command to be seen.

Reconfiguring Containerised Services

When configuration is changed, it is necessary to apply these changes across the system in an automated
manner. To reconfigure the overcloud, first make any changes required to the configuration on the Ansible
control host. Next, run the following command:

(kayobe) $ kayobe overcloud service reconfigure

In case not all services configuration have been modified, performance can be improved by specifying
Ansible tags to limit the tasks run in kayobe and/or kolla-ansibles playbooks. This may require knowledge
of the inner workings of these tools but in general, kolla-ansible tags the play used to configure each
service by the name of that service. For example: nova, neutron or ironic. Use -t or --tags to
specify kayobe tags and -kt or --kolla-tags to specify kolla-ansible tags. For example:

(kayobe) $ kayobe overcloud service reconfigure --tags config --kolla-tags␣
↪→nova,ironic

Deploying Updated Container Images

A common task is to deploy updated container images, without configuration changes. This might be to
roll out an updated container OS or to pick up some package updates. This should be faster than a full
deployment or reconfiguration.

To deploy updated container images:

(kayobe) $ kayobe overcloud service deploy containers

Note that if there are configuration changes, these will not be applied using this command so if in doubt,
use a normal kayobe overcloud service deploy.

In case not all services containers have been modified, performance can be improved by specifying Ansi-
ble tags to limit the tasks run in kayobe and/or kolla-ansibles playbooks. This may require knowledge of
the inner workings of these tools but in general, kolla-ansible tags the play used to configure each service
by the name of that service. For example: nova, neutron or ironic. Use -t or --tags to specify
kayobe tags and -kt or --kolla-tags to specify kolla-ansible tags. For example:

(kayobe) $ kayobe overcloud service deploy containers --kolla-tags nova,ironic

148 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Upgrading Containerised Services

Containerised control plane services may be upgraded by replacing existing containers with new con-
tainers using updated images which have been pulled from a registry or built locally. If using an updated
version of Kayobe or upgrading from one release of OpenStack to another, be sure to follow the kayobe
upgrade guide. It may be necessary to upgrade one or more services within a release, for example to
apply a patch or minor release.

To upgrade the containerised control plane services:

(kayobe) $ kayobe overcloud service upgrade

As for the reconfiguration command, it is possible to specify tags for Kayobe and/or kolla-ansible:

(kayobe) $ kayobe overcloud service upgrade --tags config --kolla-tags␣
↪→keystone

Running Prechecks

Sometimes it may be useful to run prechecks without deploying services:

(kayobe) $ kayobe overcloud service prechecks

As for other similar commands, it is possible to specify tags for Kayobe and/or kolla-ansible:

(kayobe) $ kayobe overcloud service upgrade --tags config --kolla-tags␣
↪→keystone

Stopping the Overcloud Services

Note: This step will stop all containers on the overcloud hosts.

To stop the overcloud services:

(kayobe) $ kayobe overcloud service stop --yes-i-really-really-mean-it

It should be noted that this state is persistent - containers will remain stopped after a reboot of the host
on which they are running.

It is possible to limit the operation to particular hosts via --kolla-limit, or to particular services via
--kolla-tags. It is also possible to avoid stopping the common containers via --kolla-skip-tags
common. For example:

(kayobe) $ kayobe overcloud service stop kolla-tags glance,nova kolla-skip-tags common

3.9. Administration 149

kayobe Documentation, Release 11.8.1.dev24

Destroying the Overcloud Services

Note: This step will destroy all containers, container images, volumes and data on the overcloud hosts.

To destroy the overcloud services:

(kayobe) $ kayobe overcloud service destroy --yes-i-really-really-mean-it

Deprovisioning The Cloud

Note: This step will power down the overcloud hosts and delete their nodes instance state from the seeds
ironic service.

To deprovision the overcloud:

(kayobe) $ kayobe overcloud deprovision

Saving Overcloud Service Configuration

It is often useful to be able to save the configuration of the control plane services for inspection or com-
parison with another configuration set prior to a reconfiguration or upgrade. This command will gather
and save the control plane configuration for all hosts to the Ansible control host:

(kayobe) $ kayobe overcloud service configuration save

The default location for the saved configuration is $PWD/overcloud-config, but this can be changed
via the output-dir argument. To gather configuration from a directory other than the default /etc/
kolla, use the node-config-dir argument.

Generating Overcloud Service Configuration

Prior to deploying, reconfiguring, or upgrading a control plane, it may be useful to generate the configura-
tion that will be applied, without actually applying it to the running containers. The configuration should
typically be generated in a directory other than the default configuration directory of /etc/kolla, to
avoid overwriting the active configuration:

(kayobe) $ kayobe overcloud service configuration generate --node-config-dir /
↪→path/to/generated/config

The configuration will be generated remotely on the overcloud hosts in the specified directory, with
one subdirectory per container. This command may be followed by kayobe overcloud service
configuration save to gather the generated configuration to the Ansible control host.

150 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Performing Database Backups

Database backups can be performed using the underlying support in Kolla Ansible.

In order to enable backups, enable Mariabackup in ${KAYOBE_CONFIG_PATH}/kolla.yml:

kolla_enable_mariabackup: true

To apply this change, use the kayobe overcloud service reconfigure command.

To perform a full backup, run the following command:

kayobe overcloud database backup

Or to perform an incremental backup, run the following command:

kayobe overcloud database backup --incremental

Further information on backing up and restoring the database is available in the Kolla Ansible documen-
tation.

Performing Database Recovery

Recover a completely stopped MariaDB cluster using the underlying support in Kolla Ansible.

To perform recovery run the following command:

kayobe overcloud database recover

Or to perform recovery on specified host, run the following command:

kayobe overcloud database recover --force-recovery-host <host>

By default the underlying kolla-ansible will automatically determine which host to use, and this option
should not be used.

Gathering Facts

The following command may be used to gather facts for all overcloud hosts, for both Kayobe and Kolla
Ansible:

kayobe overcloud facts gather

This may be useful to populate a fact cache in advance of other operations.

3.9. Administration 151

https://docs.openstack.org/kolla-ansible/xena/admin/mariadb-backup-and-restore.html
https://docs.openstack.org/kolla-ansible/xena/admin/mariadb-backup-and-restore.html

kayobe Documentation, Release 11.8.1.dev24

3.9.5 Baremetal Compute Node Management

When enrolling new hardware or performing maintenance, it can be useful to be able to manage many
bare metal compute nodes simultaneously.

In all cases, commands are delegated to one of the controller hosts, and executed concurrently. Note
that ansibles forks configuration option, which defaults to 5, may limit the number of nodes configured
concurrently.

By default these commands wait for the state transition to complete for each node. This
behavior can be changed by overriding the variable baremetal_compute_wait via -e
baremetal_compute_wait=False

Manage

A node may need to be set to the manageable provision state in order to perform certain management
operations, or when an enrolled node is transitioned into service. In order to manage a node, it must be
in one of these states: enroll, available, cleaning, clean failed, adopt failed or inspect
failed. To move the baremetal compute nodes to the manageable provision state:

(kayobe) $ kayobe baremetal compute manage

Provide

In order for nodes to be scheduled by nova, they must be available. To move the baremetal compute
nodes from the manageable state to the available provision state:

(kayobe) $ kayobe baremetal compute provide

Inspect

Nodes must be in one of the following states: manageable, inspect failed, or available. To trigger
hardware inspection on the baremetal compute nodes:

(kayobe) $ kayobe baremetal compute inspect

Rename

Once nodes have been discovered, it is helpful to associate them with a name to make them easier to work
with. If you would like the nodes to be named according to their inventory host names, you can run the
following command:

(kayobe) $ kayobe baremetal compute rename

This command will use the ipmi_address host variable from the inventory to map the inventory host
name to the correct node.

152 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Update Deployment Image

When the overcloud deployment images have been rebuilt or there has been a change to one of the fol-
lowing variables:

• ipa_kernel_upstream_url

• ipa_ramdisk_upstream_url

either by changing the url, or if the image to which they point has been changed, you need to update the
deploy_ramdisk and deploy_kernel properties on the Ironic nodes. To do this you can run:

(kayobe) $ kayobe baremetal compute update deployment image

You can optionally limit the nodes in which this affects by setting baremetal-compute-limit:

(kayobe) $ kayobe baremetal compute update deployment image --baremetal-
↪→compute-limit sand-6-1

which should take the form of an ansible host pattern. This is matched against the Ironic node name.

Ironic Serial Console

To access the baremetal nodes from within Horizon you need to enable the serial console. For this to work
the you must set kolla_enable_nova_serialconsole_proxy to true in etc/kayobe/kolla.yml:

kolla_enable_nova_serialconsole_proxy: true

The console interface on the Ironic nodes is expected to be ipmitool-socat, you can check this with:

openstack baremetal node show <node_id> --fields console_interface

where <node_id> should be the UUID or name of the Ironic node you want to check.

If you have set kolla_ironic_enabled_console_interfaces in etc/kayobe/ironic.yml, it
should include ipmitool-socat in the list of enabled interfaces.

The playbook to enable the serial console currently only works if the Ironic node name matches the
inventory hostname.

Once these requirements have been satisfied, you can run:

(kayobe) $ kayobe baremetal compute serial console enable

This will reserve a TCP port for each node to use for the serial console interface. The alloca-
tions are stored in ${KAYOBE_CONFIG_PATH}/console-allocation.yml. The current implemen-
tation uses a global pool, which is specified by ironic_serial_console_tcp_pool_start and
ironic_serial_console_tcp_pool_end; these variables can set in etc/kayobe/ironic.yml.

To disable the serial console you can use:

(kayobe) $ kayobe baremetal compute serial console disable

The port allocated for each node is retained and must be manually removed from
${KAYOBE_CONFIG_PATH}/console-allocation.yml if you want it to be reused by another
Ironic node with a different name.

3.9. Administration 153

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html

kayobe Documentation, Release 11.8.1.dev24

You can optionally limit the nodes targeted by setting baremetal-compute-limit:

(kayobe) $ kayobe baremetal compute serial console enable --baremetal-compute-
↪→limit sand-6-1

which should take the form of an ansible host pattern.

Serial console auto-enable

To enable the serial consoles automatically on kayobe overcloud post configure, you can set
ironic_serial_console_autoenable in etc/kayobe/ironic.yml:

ironic_serial_console_autoenable: true

3.10 Resources

This section contains links to external Kayobe resources.

3.10.1 A Universe From Nothing

Note: The A Universe From Nothing deployment guide is intended for educational & testing purposes
only. It is not production ready.

Originally created as a workshop, A Universe From Nothing is an example guide for the deployment of
Kayobe on virtual hardware. You can find it on GitHub here.

The repository contains a configuration suitable for deploying containerised OpenStack using Kolla,
Ansible and Kayobe. The guide makes use of Tenks to provision a virtual baremetal environment running
on a single hypervisor.

To complete the walkthrough you will require a baremetal or VM hypervisor running CentOS 8 or Ubuntu
Focal 20.04 (since Wallaby 10.0.0) with at least 32GB RAM & 80GB disk space. Preparing the deploy-
ment can take some time - where possible it is beneficial to snapshot the hypervisor. We advise making a
snapshot after creating the initial seed VM as this will make additional deployments significantly faster.

3.11 Advanced Documentation

3.11.1 Control Plane Service Placement

Note: This is an advanced topic and should only be attempted when familiar with kayobe and OpenStack.

The default configuration in kayobe places all control plane services on a single set of servers described
as controllers. In some cases it may be necessary to introduce more than one server role into the control
plane, and control which services are placed onto the different server roles.

154 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html
https://github.com/stackhpc/a-universe-from-nothing/
https://opendev.org/openstack/tenks

kayobe Documentation, Release 11.8.1.dev24

Configuration

Overcloud Inventory Discovery

If using a seed host to enable discovery of the control plane services, it is necessary to configure how
the discovered hosts map into kayobe groups. This is done using the overcloud_group_hosts_map
variable, which maps names of kayobe groups to a list of the hosts to be added to that group.

This variable will be used during the command kayobe overcloud inventory discover. An in-
ventory file will be generated in ${KAYOBE_CONFIG_PATH}/inventory/overcloud with discovered
hosts added to appropriate kayobe groups based on overcloud_group_hosts_map.

Kolla-ansible Inventory Mapping

Once hosts have been discovered and enrolled into the kayobe inventory, they must be added to the kolla-
ansible inventory. This is done by mapping from top level kayobe groups to top level kolla-ansible groups
using the kolla_overcloud_inventory_top_level_group_map variable. This variable maps from
kolla-ansible groups to lists of kayobe groups, and variables to define for those groups in the kolla-ansible
inventory.

Variables For Custom Server Roles

Certain variables must be defined for hosts in the overcloud group. For hosts in the controllers
group, many variables are mapped to other variables with a controller_ prefix in files under ansible/
group_vars/controllers/. This is done in order that they may be set in a global extra variables
file, typically controllers.yml, with defaults set in ansible/group_vars/all/controllers. A
similar scheme is used for hosts in the monitoring group.

Table 2: Overcloud host variables
Variable Purpose
ansible_user Username with which to access the host via SSH.
bootstrap_user Username with which to access the host before ansible_user is configured.
lvm_groups List of LVM volume groups to configure. See mrlesmithjr.manage_lvm role

for format.
mdadm_arrays List of software RAID arrays. See mrlesmithjr.mdadm role for format.
network_interfacesList of names of networks to which the host is connected.
sysctl_parameters Dict of sysctl parameters to set.
users List of users to create. See singleplatform-eng.users role

If configuring BIOS and RAID via kayobe overcloud bios raid configure, the following vari-
ables should also be defined:

Table 3: Overcloud BIOS & RAID host variables
Variable Purpose
bios_config Dict mapping BIOS configuration options to their required values. See stackhpc.drac

role for format.
raid_config List of RAID virtual disks to configure. See stackhpc.drac role for format.

3.11. Advanced Documentation 155

https://galaxy.ansible.com/mrlesmithjr/manage_lvm/
https://galaxy.ansible.com/mrlesmithjr/mdadm/
https://galaxy.ansible.com/singleplatform-eng/users/
https://galaxy.ansible.com/stackhpc/drac/
https://galaxy.ansible.com/stackhpc/drac/
https://galaxy.ansible.com/stackhpc/drac/

kayobe Documentation, Release 11.8.1.dev24

These variables can be defined in inventory host or group variables files, under
${KAYOBE_CONFIG_PATH}/inventory/host_vars/<host> or ${KAYOBE_CONFIG_PATH}/
inventory/group_vars/<group> respectively.

Custom Kolla-ansible Inventories

As an advanced option, it is possible to fully customise the content of the kolla-ansible inventory, at
various levels. To facilitate this, kayobe breaks the kolla-ansible inventory into three separate sections.

Top level groups define the roles of hosts, e.g. controller or compute, and it is to these groups that
hosts are mapped directly.

Components define groups of services, e.g. nova or ironic, which are mapped to top level groups.

Services define single containers, e.g. nova-compute or ironic-api, which are mapped to compo-
nents.

The default top level inventory is generated from kolla_overcloud_inventory_top_level_group_map.
Kayobes component- and service-level inventory for kolla-ansible is static, and taken from the kolla-
ansible example multinode inventory. The complete inventory is generated by concatenating these
inventories.

Each level may be separately overridden by setting the following variables:

Table 4: Custom kolla-ansible inventory variables
Variable Purpose
kolla_overcloud_inventory_custom_top_levelOvercloud inventory containing a mapping from top level

groups to hosts.
kolla_overcloud_inventory_custom_componentsOvercloud inventory containing a mapping from compo-

nents to top level groups.
kolla_overcloud_inventory_custom_servicesOvercloud inventory containing a mapping from services

to components.
kolla_overcloud_inventory_custom Full overcloud inventory contents.

Examples

Example 1: Adding Network Hosts

This example walks through the configuration that could be applied to enable the use of separate
hosts for neutron network services and load balancing. The control plane consists of three con-
trollers, controller-[0-2], and two network hosts, network-[0-1]. All file paths are relative to
${KAYOBE_CONFIG_PATH}.

First, we must make the network group separate from controllers:

Listing 151: inventory/groups

[controllers]
Empty group to provide declaration of controllers group.

[network]
Empty group to provide declaration of network group.

156 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Then, we must map the hosts to kayobe groups.

Listing 152: overcloud.yml

overcloud_group_hosts_map:
controllers:
- controller-0
- controller-1
- controller-2

network:
- network-0
- network-1

Next, we must map these groups to kolla-ansible groups.

Listing 153: kolla.yml

kolla_overcloud_inventory_top_level_group_map:
control:
groups:

- controllers
network:
groups:

- network

Finally, we create a group variables file for hosts in the network group, providing the necessary variables
for a control plane host.

Listing 154: inventory/group_vars/network

ansible_user: "{{ kayobe_ansible_user }}"
bootstrap_user: "{{ controller_bootstrap_user }}"
lvm_groups: "{{ controller_lvm_groups }}"
mdadm_arrays: "{{ controller_mdadm_arrays }}"
network_interfaces: "{{ controller_network_host_network_interfaces }}"
sysctl_parameters: "{{ controller_sysctl_parameters }}"
users: "{{ controller_users }}"

Here we are using the controller-specific values for some of these variables, but they could equally be
different.

Example 2: Overriding the Kolla-ansible Inventory

This example shows how to override one or more sections of the kolla-ansible inventory. All file paths
are relative to ${KAYOBE_CONFIG_PATH}.

It is typically best to start with an inventory template taken from the Kayobe source code, and then
customize it. The templates can be found in ansible/roles/kolla-ansible/templates, e.g. com-
ponents template is overcloud-components.j2.

First, create a file containing the customised inventory section. Well use the components section in this
example.

3.11. Advanced Documentation 157

kayobe Documentation, Release 11.8.1.dev24

Listing 155: kolla/inventory/overcloud-components.j2

[nova]
control

[ironic]
{% if kolla_enable_ironic | bool %}
control
{% endif %}

...

Next, we must configure kayobe to use this inventory template.

Listing 156: kolla.yml

kolla_overcloud_inventory_custom_components: "{{ lookup('template', kayobe_
↪→env_config_path ~ '/kolla/inventory/overcloud-components.j2') }}"

Here we use the template lookup plugin to render the Jinja2-formatted inventory template.

3.11.2 Custom Ansible Playbooks

Kayobe supports running custom Ansible playbooks located outside of the kayobe project. This provides
a flexible mechanism for customising a control plane. Access to the kayobe variables is possible, ensuring
configuration does not need to be repeated.

Kayobe Custom Playbook API

Explicitly allowing users to run custom playbooks with access to the kayobe variables elevates the vari-
able namespace and inventory to become an interface. This raises questions about the stability of this
interface, and the guarantees it provides.

The following guidelines apply to the custom playbook API:

• Only variables defined in the kayobe configuration files under etc/kayobe are supported.

• The groups defined in etc/kayobe/inventory/groups are supported.

• Any change to a supported variable (rename, schema change, default value change, or removal) or
supported group (rename or removal) will follow a deprecation period of one release cycle.

• Kayobes internal roles may not be used.

Note that these are guidelines, and exceptions may be made where appropriate.

158 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Running Custom Ansible Playbooks

Run one or more custom ansible playbooks:

(kayobe) $ kayobe playbook run <playbook>[, <playbook>...]

Playbooks do not by default have access to the Kayobe playbook group variables, filter plugins, and test
plugins, since these are relative to the current playbooks directory. This can be worked around by creating
symbolic links to the Kayobe repository from the Kayobe configuration.

Packaging Custom Playbooks With Configuration

The kayobe project encourages its users to manage configuration for a cloud using version control, based
on the kayobe-config repository. Storing custom Ansible playbooks in this repository makes a lot of
sense, and kayobe has special support for this.

It is recommended to store custom playbooks in $KAYOBE_CONFIG_PATH/ansible/. Roles located in
$KAYOBE_CONFIG_PATH/ansible/roles/ will be automatically available to playbooks in this direc-
tory.

With this directory layout, the following commands could be used to create symlinks that allow access
to Kayobes filter plugins, group variables and test plugins:

cd ${KAYOBE_CONFIG_PATH}/ansible/
ln -s ../../../../kayobe/ansible/filter_plugins/ filter_plugins
ln -s ../../../../kayobe/ansible/group_vars/ group_vars
ln -s ../../../../kayobe/ansible/test_plugins/ test_plugins

These symlinks can even be committed to the kayobe-config Git repository.

Note: These symlinks rely on having a kayobe source checkout at the same level as the kayobe-config
repository checkout, as described in Installation from source.

Ansible Galaxy

Ansible Galaxy provides a means for sharing Ansible roles and collections. Kayobe configuration may
provide a Galaxy requirements file that defines roles and collections to be installed from Galaxy. These
roles and collections may then be used by custom playbooks.

Galaxy dependencies may be defined in $KAYOBE_CONFIG_PATH/ansible/requirements.yml.
These roles and collections will be installed in $KAYOBE_CONFIG_PATH/ansible/roles/ and
$KAYOBE_CONFIG_PATH/ansible/collections when bootstrapping the Ansible control host:

(kayobe) $ kayobe control host bootstrap

And updated when upgrading the Ansible control host:

(kayobe) $ kayobe control host upgrade

3.11. Advanced Documentation 159

https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 11.8.1.dev24

Example: roles

The following example adds a foo.yml playbook to a set of kayobe configuration. The playbook uses a
Galaxy role, bar.baz.

Here is the kayobe configuration repository structure:

etc/kayobe/
ansible/

foo.yml
requirements.yml
roles/

bifrost.yml
...

Here is the playbook, ansible/foo.yml:

- hosts: controllers

roles:
- name: bar.baz

Here is the Galaxy requirements file, ansible/requirements.yml:

roles:

- bar.baz

We should first install the Galaxy role dependencies, to download the bar.baz role:

(kayobe) $ kayobe control host bootstrap

Then, to run the foo.yml playbook:

(kayobe) $ kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/foo.yml

Example: collections

The following example adds a foo.yml playbook to a set of kayobe configuration. The playbook uses a
role from a Galaxy collection, bar.baz.qux.

Here is the kayobe configuration repository structure:

etc/kayobe/
ansible/

collections/
foo.yml
requirements.yml

bifrost.yml
...

Here is the playbook, ansible/foo.yml:

160 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

- hosts: controllers

roles:
- name: bar.baz.qux

Here is the Galaxy requirements file, ansible/requirements.yml:

collections:

- bar.baz

We should first install the Galaxy dependencies, to download the bar.baz collection:

(kayobe) $ kayobe control host bootstrap

Then, to run the foo.yml playbook:

(kayobe) $ kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/foo.yml

Hooks

Warning: Hooks are an experimental feature and the design could change in the future. You may
have to update your config if there are any changes to the design. This warning will be removed when
the design has been stabilised.

Hooks allow you to automatically execute custom playbooks at certain points during the execution of a
kayobe command. The point at which a hook is run is referred to as a target. Please see the list of
available targets.

Hooks are created by symlinking an existing playbook into the the relevant directory under
$KAYOBE_CONFIG_PATH/hooks. Kayobe will search the hooks directory for sub-directories matching
<command>.<target>.d, where command is the name of a kayobe command with any spaces replaced
with dashes, and target is one of the supported targets for the command.

For example, when using the command:

(kayobe) $ kayobe control host bootstrap

kayobe will search the paths:

• $KAYOBE_CONFIG_PATH/hooks/control-host-bootstrap/pre.d

• $KAYOBE_CONFIG_PATH/hooks/control-host-bootstrap/post.d

Any playbooks listed under the pre.d directory will be run before kayobe executes its own playbooks
and any playbooks under post.d will be run after. You can affect the order of the playbooks by prefixing
the symlink with a sequence number. The sequence number must be separated from the hook name with
a dash. Playbooks with smaller sequence numbers are run before playbooks with larger ones. Any ties
are broken by alphabetical ordering.

For example to run the playbook foo.yml after kayobe overcloud host configure, you could do
the following:

3.11. Advanced Documentation 161

kayobe Documentation, Release 11.8.1.dev24

(kayobe) $ mkdir -p ${KAYOBE_CONFIG_PATH}/hooks/overcloud-host-configure/post.
↪→d
(kayobe) $ cd ${KAYOBE_CONFIG_PATH}/hooks/overcloud-host-configure/post.d
(kayobe) $ ln -s ../../../ansible/foo.yml 10-foo.yml

The sequence number for the foo.yml playbook is 10.

Failure handling

If the exit status of any playbook, including built-in playbooks and custom hooks, is non-zero, kayobe
will not run any subsequent hooks or built-in kayobe playbooks. Ansible provides several methods for
preventing a task from producing a failure. Please see the Ansible documentation for more details. Below
is an example showing how you can use the ignore_errors option to prevent a task from causing the
playbook to report a failure:

- name: Failure example

hosts: localhost
tasks:
- name: Deliberately fail

fail:
ignore_errors: true

A failure in the Deliberately fail task would not prevent subsequent tasks, hooks, and playbooks
from running.

Targets

The following targets are available for all commands:

Table 5: all commands
Tar-
get

Description

preRuns before a kayobe command has start executing
postRuns after a kayobe command has finished executing

3.11.3 Multiple Environments

Warning: Support for multiple Kayobe environments is considered experimental: its design may
change in future versions without a deprecation period.

Sometimes it can be useful to support deployment of multiple environments from a single Kayobe con-
figuration. Most commonly this is to support a deployment pipeline, such as the traditional development,
test, staging and production combination. Since the Wallaby release, it is possible to include multiple en-
vironments within a single Kayobe configuration, each providing its own Ansible inventory and variables.
This section describes how to use multiple environments with Kayobe.

162 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/user_guide/playbooks_error_handling.html

kayobe Documentation, Release 11.8.1.dev24

Defining Kayobe Environments

By default, a Kayobe configuration directory contains a single environment, represented by
the Ansible inventory located at $KAYOBE_CONFIG_PATH/inventory, extra variables files
($KAYOBE_CONFIG_PATH/*.yml), custom Ansible playbooks and hooks, and Kolla configuration.

Supporting multiple environments is done through a $KAYOBE_CONFIG_PATH/environments direc-
tory, under which each directory represents a different environment. Each environment contains its own
Ansible inventory, extra variable files, and Kolla configuration. The following layout shows two environ-
ments called staging and production within a single Kayobe configuration.

$KAYOBE_CONFIG_PATH/
environments/
ăă production/
ăă ăă inventory/
ăă ăă ăă groups
ăă ăă ăă group_vars/
ăă ăă ăă hosts
ăă ăă ăă host_vars/
ăă ăă ăă overcloud
ăă ăă kolla/
ăă ăă ăă config/
ăă ăă ăă globals.yml
ăă ăă ăă passwords.yml
ăă ăă network-allocation.yml
ăă ăă networks.yml
ăă ăă overcloud.yml
ăă staging/
ăă inventory/
ăă ăă groups
ăă ăă group_vars/
ăă ăă hosts
ăă ăă host_vars/
ăă ăă overcloud
ăă kolla/
ăă ăă config/
ăă ăă globals.yml
ăă ăă passwords.yml
ăă network-allocation.yml
ăă networks.yml
ăă overcloud.yml

3.11. Advanced Documentation 163

kayobe Documentation, Release 11.8.1.dev24

Ansible Inventories

Each environment can include its own inventory, which overrides any variable declaration done in the
shared inventory. Typically, a shared inventory may be used to define groups and group variables, while
hosts and host variables would be set in environment inventories. The following layout (ignoring non-
inventory files) shows an example of multiple inventories.

$KAYOBE_CONFIG_PATH/
environments/
ăă production/
ăă ăă inventory/
ăă ăă ăă hosts
ăă ăă ăă host_vars/
ăă ăă ăă overcloud
ăă staging/
ăă inventory/
ăă ăă hosts
ăă ăă host_vars/
ăă ăă overcloud
inventory/

groups
group_vars/

Shared Extra Variables Files

All of the extra variables files in the Kayobe configuration directory ($KAYOBE_CONFIG_PATH/*.yml)
are shared between all environments. Each environment can override these extra variables through
environment-specific extra variables files ($KAYOBE_CONFIG_PATH/environments/<environment>/
*.yml).

This means that all configuration in shared extra variable files must apply to all environments. Where
configuration differs between environments, move the configuration to extra variables files under each
environment.

For example, to add environment-specific DNS configuration for variables in dns.yml, set these variables
in $KAYOBE_CONFIG_PATH/environments/<environment>/dns.yml:

$KAYOBE_CONFIG_PATH/
dns.yml
environments/
ăă production/
ăă ăă dns.yml
ăă staging/
ăă ăă dns.yml

164 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Network Configuration

Networking is an area in which configuration is typically specific to an environment. There are two main
global configuration files that need to be considered: networks.yml and network-allocation.yml.

Move the environment-specific parts of this configuration to environment-specific extra variables files:

• networks.yml -> $KAYOBE_CONFIG_PATH/environments/<environment>/networks.yml

• network-allocation.yml -> $KAYOBE_CONFIG_PATH/environments/<environment>/
network-allocation.yml

Other network configuration that may differ between environments includes:

• DNS (dns.yml)

• network interface names, which may be set via group variables in environment inventories

Other Configuration

Typically it is necessary to customise overcloud_group_hosts_map in each environment. This is done
via the overcloud.yml file documented in Control Plane Service Placement.

When using baremetal compute nodes, allocation of TCP ports for serial console functionality is typically
specific to an environment (console-allocation.yml). This file is automatically managed by Kayobe,
like the network-allocation.yml file.

Kolla Configuration

In the Wallaby release, Kolla configuration was independent in each environment.

As of the Xena release, the following files support combining the environment-specific and shared con-
figuration file content:

• kolla/config/bifrost/bifrost.yml

• kolla/config/bifrost/dib.yml

• kolla/config/bifrost/servers.yml

• kolla/globals.yml

• kolla/kolla-build.conf

• kolla/repos.yml or kolla/repos.yaml

Options in the environment-specific files take precedence over those in the shared files.

3.11. Advanced Documentation 165

kayobe Documentation, Release 11.8.1.dev24

Managing Independent Environment Files

For files that are independent in each environment, i.e. they do not support combining the environment-
specific and shared configuration file content, there are some techniques that may be used to avoid dupli-
cation.

For example, symbolic links can be used to share common variable definitions. It is advised to avoid
sharing credentials between environments by making each Kolla passwords.yml file unique.

Custom Ansible Playbooks and Hooks

The following files and directories are currently shared across all environments:

• Ansible playbooks, roles and requirements file under $KAYOBE_CONFIG_PATH/ansible

• Ansible configuration at $KAYOBE_CONFIG_PATH/ansible.cfg and $KAYOBE_CONFIG_PATH/
kolla/ansible.cfg

• Hooks under $KAYOBE_CONFIG_PATH/hooks

Dynamic Variable Definitions

It may be beneficial to define variables in a file shared by multiple environments, but still set vari-
ables to different values based on the environment. The Kayobe environment in use can be re-
trieved within Ansible via the kayobe_environment variable. For example, some variables from
$KAYOBE_CONFIG_PATH/networks.yml could be shared in the following way:

Listing 157: $KAYOBE_CONFIG_PATH/networks.yml

external_net_fqdn: "{{ kayobe_environment }}-api.example.com"

This would configure the external FQDN for the staging environment at staging-api.example.com,
while the production external FQDN would be at production-api.example.com.

Final Considerations

While its clearly desirable to keep staging functionally as close to production, this is not always possible
due to resource constraints and other factors. Test and development environments can deviate further,
perhaps only providing a subset of the functionality available in production, in a substantially different
environment. In these cases it will clearly be necessary to use environment-specific configuration in a
number of files. We cant cover all the cases here, but hopefully weve provided a set of techniques that
can be used.

166 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Using Kayobe Environments

Once environments are defined, Kayobe can be instructed to manage them with the
$KAYOBE_ENVIRONMENT environment variable or the --environment command-line argument:

(kayobe) $ kayobe control host bootstrap --environment staging

(kayobe) $ export KAYOBE_ENVIRONMENT=staging
(kayobe) $ kayobe control host bootstrap

The kayobe-env environment file in kayobe-config can also take an --environment argument,
which exports the KAYOBE_ENVIRONMENT environment variable.

(kayobe) $ source kayobe-env --environment staging
(kayobe) $ kayobe control host bootstrap

Finally, an environment name can be specified under $KAYOBE_CONFIG_ROOT/.environment, which
will be used by the kayobe-env script if no --environment argument is used. This is particularly
useful when using a separate branch for each environment.

(kayobe) $ echo "staging" > .environment
(kayobe) $ source kayobe-env
(kayobe) $ kayobe control host bootstrap

Warning: The locations of the Kolla Ansible source code and Python virtual environment remain
the same for all environments when using the kayobe-env file. When using the same control host to
manage multiple environments with different versions of Kolla Ansible, clone the Kayobe configura-
tion in different locations, so that Kolla Ansible source repositories and Python virtual environments
will not conflict with each other. The generated Kolla Ansible configuration is also shared: Kayobe
will store the name of the active environment under $KOLLA_CONFIG_PATH/.environment and
produce a warning if a conflict is detected.

Migrating to Kayobe Environments

Kayobe users already managing multiple environments will already have multiple Kayobe configurations,
whether in separate repositories or in different branches of the same repository. Kayobe provides the
kayobe environment create command to help migrating to a common repository and branch with
multiple environments. For example, the following commands will create two new environments for
production and staging based on existing Kayobe configurations.

(kayobe) $ kayobe environment create --source-config-path ~/kayobe-config-
↪→prod/etc/kayobe \

--environment production
(kayobe) $ kayobe environment create --source-config-path ~/kayobe-config-
↪→staging/etc/kayobe \

--environment staging

This command recursively copies files and directories (except the environments directory if one exists)
under the existing configuration to a new environment. Merging shared configuration must be done
manually.

3.11. Advanced Documentation 167

kayobe Documentation, Release 11.8.1.dev24

3.12 Contributor Guide

3.12.1 Contributor Guide

This guide is for contributors of the Kayobe project. It includes information on proposing your first patch
and how to participate in the community. It also covers responsibilities of core reviewers and the Project
Team Lead (PTL), and information about development processes.

We welcome everyone to join our project!

So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Kayobe.

Basics

The source repository for this project can be found at:

https://opendev.org/openstack/kayobe

Communication

Kayobe shares communication channels with Kolla.

IRC Channel #openstack-kolla (channel logs) on OFTC

Weekly Meetings On Wednesdays at 15:00 UTC in the IRC channel (meetings logs)

Mailing list (prefix subjects with [kolla]) http://lists.openstack.org/pipermail/openstack-discuss/

Meeting Agenda https://wiki.openstack.org/wiki/Meetings/Kolla

Whiteboard (etherpad) Keeping track of CI gate status, release status, stable backports, planning and
feature development status. https://etherpad.openstack.org/p/KollaWhiteBoard

Contacting the Core Team

The list in alphabetical order (on first name):

Name IRC nick Email address
Doug Szumski dougsz doug@stackhpc.com
John Garbutt johnthetubaguy john@johngarbutt.com
Kevin Tibi ktibi kevintibi@hotmail.com
Mark Goddard mgoddard mark@stackhpc.com
Pierre Riteau priteau pierre@stackhpc.com
Will Szumski jovial will@stackhpc.com

168 Chapter 3. Contents

https://docs.openstack.org/contributors/
https://opendev.org/openstack/kayobe
http://eavesdrop.openstack.org/irclogs/%23openstack-kolla/
http://oftc.net
http://eavesdrop.openstack.org/meetings/kolla/
http://lists.openstack.org/pipermail/openstack-discuss/
https://wiki.openstack.org/wiki/Meetings/Kolla
https://etherpad.openstack.org/p/KollaWhiteBoard
mailto:doug@stackhpc.com
mailto:john@johngarbutt.com
mailto:kevintibi@hotmail.com
mailto:mark@stackhpc.com
mailto:pierre@stackhpc.com
mailto:will@stackhpc.com

kayobe Documentation, Release 11.8.1.dev24

The current effective list is also available from Gerrit: https://review.opendev.org/#/admin/groups/1875,
members

New Feature Planning

New features are discussed via IRC or mailing list (with [kolla] prefix). Kayobe project keeps RFEs in
Launchpad. Please use [RFE] prefix in the bug subject. Note this is the same place as for bugs. Specs
are welcome but not strictly required.

Task Tracking

Kayobe project tracks tasks in Launchpad. Note this is the same place as for bugs.

A more lightweight task tracking is done via etherpad - Whiteboard.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad. Note this is
the same place as for tasks.

Getting Your Patch Merged

Most changes proposed to Kayobe require two +2 votes from core reviewers before +W. A release note
is required on most changes as well. Release notes policy is described in its own section.

Significant changes should have documentation and testing provided with them.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide. Release tasks are described in the Kayobe
releases guide.

Development

Source Code Orientation

There are a number of layers to Kayobe, so here we provide a few pointers to the major parts.

3.12. Contributor Guide 169

https://review.opendev.org/#/admin/groups/1875,members
https://review.opendev.org/#/admin/groups/1875,members
https://bugs.launchpad.net/kayobe
https://bugs.launchpad.net/kayobe
https://etherpad.openstack.org/p/KollaWhiteBoard
https://bugs.launchpad.net/kayobe
https://docs.openstack.org/project-team-guide/ptl.html

kayobe Documentation, Release 11.8.1.dev24

CLI

The Command Line Interface (CLI) is built using the cliff library. Commands are exposed as Python entry
points in setup.cfg. These entry points map to classes in kayobe/cli/commands.py. The helper modules
kayobe/ansible.py and kayobe/kolla_ansible.py are used to execute Kayobe playbooks and Kolla Ansible
commands respectively.

Ansible

Kayobes Ansible playbooks live in ansible/*.yml, and these typically execute roles in ansible/roles/.
Global variable defaults are defined in group variable files in ansible/group_vars/all/ and these typically
map to commented out variables in the configuration files in etc/kayobe/*.yml. A number of custom
Jinja filters exist in ansible/filter_plugins/*.py. Kayobe depends on roles and collections hosted on An-
sible Galaxy, and these and their version requirements are defined in requirements.yml.

Ansible Galaxy

Kayobe uses a number of Ansible roles and collections hosted on Ansible Galaxy. The role dependencies
are tracked in requirements.yml, and specify required versions. The process for changing a Galaxy
role or collection is as follows:

1. If required, develop changes for the role or collection. This may be done outside of Kayobe, or
by modifying the code in place during development. If upstream changes to the code have already
been made, this step can be skipped.

2. Commit changes to the role or collection, typically via a Github pull request.

3. Request that a tagged release of the role or collection be made, or make one if you have the neces-
sary privileges.

4. Ensure that automatic imports are configured for the repository using e.g. a webhook notification,
or perform a manual import of the role on Ansible Galaxy.

5. Modify the version in requirements.yml to match the new release of the role or collection.

Vagrant

Kayobe provides a Vagrantfile that can be used to bring up a virtual machine for use as a development
environment. The VM is based on the centos/8 CentOS 8 image, and supports the following providers:

• VirtualBox

• VMWare Fusion

The VM is configured with 4GB RAM and a 20GB HDD. It has a single private network in addition to
the standard Vagrant NAT network.

170 Chapter 3. Contents

https://pypi.org/project/cliff/
https://opendev.org/openstack/kayobe/src/branch/master/setup.cfg
https://opendev.org/openstack/kayobe/src/branch/master/kayobe/cli/commands.py
https://opendev.org/openstack/kayobe/src/branch/master/kayobe/ansible.py
https://opendev.org/openstack/kayobe/src/branch/master/kayobe/kolla_ansible.py
https://opendev.org/openstack/kayobe/src/branch/master/ansible
https://opendev.org/openstack/kayobe/src/branch/master/ansible/roles
https://opendev.org/openstack/kayobe/src/branch/master/ansible/group_vars/
https://opendev.org/openstack/kayobe/src/branch/master/etc/kayobe/
https://opendev.org/openstack/kayobe/src/branch/master/ansible/filter_plugins
https://opendev.org/openstack/kayobe/src/branch/master/requirements.yml
https://app.vagrantup.com/centos/boxes/8

kayobe Documentation, Release 11.8.1.dev24

Preparation

First, ensure that Vagrant is installed and correctly configured to use the required provider. Also install
the following vagrant plugins:

vagrant plugin install vagrant-reload vagrant-disksize

If using the VirtualBox provider, install the following vagrant plugin:

vagrant plugin install vagrant-vbguest

Note: if using Ubuntu 16.04 LTS, you may be unable to install any plugins. To work around this install
the upstream version from www.virtualbox.org.

Usage

Later sections in the development guide cover in more detail how to use the development VM in different
configurations. These steps cover bringing up and accessing the VM.

Clone the kayobe repository:

git clone https://opendev.org/openstack/kayobe.git -b stable/xena

Change the current directory to the kayobe repository:

cd kayobe

Inspect kayobes Vagrantfile, noting the provisioning steps:

less Vagrantfile

Bring up a virtual machine:

vagrant up

Wait for the VM to boot, then SSH in:

vagrant ssh

Manual Setup

This section provides a set of manual steps to set up a development environment for an OpenStack con-
troller in a virtual machine using Vagrant and Kayobe.

For a more automated and flexible procedure, see Automated Setup.

3.12. Contributor Guide 171

https://www.vagrantup.com/

kayobe Documentation, Release 11.8.1.dev24

Preparation

Follow the steps in Vagrant to prepare your environment for use with Vagrant and bring up a Vagrant
VM.

Manual Installation

Sometimes the best way to learn a tool is to ditch the scripts and perform a manual installation.

SSH into the controller VM:

vagrant ssh

Source the kayobe virtualenv activation script:

source kayobe-venv/bin/activate

Change the current directory to the Vagrant shared directory:

cd /vagrant

Source the kayobe environment file:

source kayobe-env

Bootstrap the kayobe Ansible control host:

kayobe control host bootstrap

Configure the controller host:

kayobe overcloud host configure

At this point, container images must be acquired. They can either be built locally or pulled from an image
repository if appropriate images are available.

Either build container images:

kayobe overcloud container image build

Or pull container images:

kayobe overcloud container image pull

Deploy the control plane services:

kayobe overcloud service deploy

Source the OpenStack environment file:

source ${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh

Perform post-deployment configuration:

172 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

kayobe overcloud post configure

Next Steps

The OpenStack control plane should now be active. Try out the following:

• register a user

• create an image

• upload an SSH keypair

• access the horizon dashboard

The cloud is your oyster!

To Do

Create virtual baremetal nodes to be managed by the OpenStack control plane.

Automated Setup

This section provides information on the development tools provided by Kayobe to automate the deploy-
ment of various development environments.

For a manual procedure, see Manual Setup.

Overview

The Kayobe development environment automation tooling is built using simple shell scripts. Some min-
imal configuration can be applied by setting the environment variables in dev/config.sh. Control plane
configuration is typically provided via the kayobe-config-dev repository, although it is also possible to
use your own Kayobe configuration. This allows us to build a development environment that is as close
to production as possible.

Environments

The following development environments are supported:

• Overcloud (single OpenStack controller)

• Seed

The Universe from Nothing workshop may be of use for more advanced testing scenarios involving a
seed hypervisor, seed VM, and separate control and compute nodes.

3.12. Contributor Guide 173

https://opendev.org/openstack/kayobe-config-dev
https://github.com/stackhpc/a-universe-from-nothing/

kayobe Documentation, Release 11.8.1.dev24

Overcloud

Preparation

Clone the Kayobe repository:

git clone https://opendev.org/openstack/kayobe.git -b stable/xena

Change the current directory to the Kayobe repository:

cd kayobe

Clone the kayobe-config-dev repository to config/src/kayobe-config

mkdir -p config/src
git clone https://opendev.org/openstack/kayobe-config-dev.git config/src/
↪→kayobe-config -b stable/xena

Inspect the Kayobe configuration and make any changes necessary for your environment.

If using Vagrant, follow the steps in Vagrant to prepare your environment for use with Vagrant and bring
up a Vagrant VM.

If not using Vagrant, the default development configuration expects the presence of a bridge
interface on the OpenStack controller host to carry control plane traffic. The bridge should
be named breth1 with a single port eth1, and an IP address of 192.168.33.3/24. This
can be modified by editing config/src/kayobe-config/etc/kayobe/inventory/group_vars/
controllers/network-interfaces.

This can be added using the following commands:

sudo ip l add breth1 type bridge
sudo ip l set breth1 up
sudo ip a add 192.168.33.3/24 dev breth1
sudo ip l add eth1 type dummy
sudo ip l set eth1 up
sudo ip l set eth1 master breth1

Usage

If using Vagrant, SSH into the Vagrant VM and change to the shared directory:

vagrant ssh
cd /vagrant

If not using Vagrant, run the dev/install-dev.sh script to install Kayobe and its dependencies in a
Python virtual environment:

./dev/install-dev.sh

Note: This will create an editable install. It is also possible to install Kayobe in a non-editable way, such

174 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

that changes will not been seen until you reinstall the package. To do this you can run ./dev/install.
sh.

Run the dev/overcloud-deploy.sh script to deploy the OpenStack control plane:

./dev/overcloud-deploy.sh

Upon successful completion of this script, the control plane will be active.

Testing

Scripts are provided for testing the creation of virtual and bare metal instances.

Virtual Machines

The control plane can be tested by running the dev/overcloud-test-vm.sh script. This will run the
init-runonce setup script provided by Kolla Ansible that registers images, networks, flavors etc. It
will then deploy a virtual server instance, and delete it once it becomes active:

./dev/overcloud-test-vm.sh

Bare Metal Compute

For a control plane with Ironic enabled, a bare metal instance can be deployed. We can use the Tenks
project to create fake bare metal nodes.

Clone the tenks repository:

git clone https://opendev.org/openstack/tenks.git

Optionally, edit the Tenks configuration file, dev/tenks-deploy-config-compute.yml.

Run the dev/tenks-deploy-compute.sh script to deploy Tenks:

./dev/tenks-deploy-compute.sh ./tenks

Check that Tenks has created VMs called tk0 and tk1:

sudo virsh -c qemu+unix:///system?socket=/var/run/libvirt-tenks/libvirt-sock␣
↪→list --all

Verify that VirtualBMC is running:

~/tenks-venv/bin/vbmc list

Configure the firewall to allow the baremetal nodes to access OpenStack services:

./dev/configure-firewall.sh

3.12. Contributor Guide 175

https://tenks.readthedocs.io/en/latest/

kayobe Documentation, Release 11.8.1.dev24

On Ubuntu, the nova_libvirt image does not contain the qemu-utils package necessary for image
operations used by Tenks. Install it as follows:

sudo docker exec -u root nova_libvirt bash -c 'apt update && apt -y install␣
↪→qemu-utils'

We are now ready to run the dev/overcloud-test-baremetal.sh script. This will run the
init-runonce setup script provided by Kolla Ansible that registers images, networks, flavors etc. It
will then deploy a bare metal server instance, and delete it once it becomes active:

./dev/overcloud-test-baremetal.sh

The machines and networking created by Tenks can be cleaned up via dev/tenks-teardown-compute.
sh:

./dev/tenks-teardown-compute.sh ./tenks

Upgrading

It is possible to test an upgrade from a previous release by running the dev/overcloud-upgrade.sh
script:

./dev/overcloud-upgrade.sh

Seed

These instructions cover deploying the seed services directly rather than in a VM.

Preparation

Clone the Kayobe repository:

git clone https://opendev.org/openstack/kayobe.git -b stable/xena

Change to the kayobe directory:

cd kayobe

Clone the kayobe-config-dev repository to config/src/kayobe-config:

mkdir -p config/src
git clone https://opendev.org/openstack/kayobe-config-dev.git config/src/
↪→kayobe-config -b stable/xena

Inspect the Kayobe configuration and make any changes necessary for your environment.

The default development configuration expects the presence of a bridge interface on the seed host to
carry provisioning traffic. The bridge should be named breth1 with a single port eth1, and an IP
address of 192.168.33.5/24. This can be modified by editing config/src/kayobe-config/etc/
kayobe/inventory/group_vars/seed/network-interfaces. Alternatively, this can be added us-
ing the following commands:

176 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

sudo ip l add breth1 type bridge
sudo ip l set breth1 up
sudo ip a add 192.168.33.5/24 brd 192.168.33.255 dev breth1
sudo ip l add eth1 type dummy
sudo ip l set eth1 up
sudo ip l set eth1 master breth1

Usage

Run the dev/install.sh script to install Kayobe and its dependencies in a Python virtual environment:

./dev/install.sh

Run the dev/seed-deploy.sh script to deploy the seed services:

export KAYOBE_SEED_VM_PROVISION=0
./dev/seed-deploy.sh

Upon successful completion of this script, the seed will be active.

Testing

The seed services may be tested using the Tenks project to create fake bare metal nodes.

If your seed has a non-standard MTU, you should set it via aio_mtu in etc/kayobe/networks.yml.

Clone the tenks repository:

git clone https://opendev.org/openstack/tenks.git

Optionally, edit the Tenks configuration file, dev/tenks-deploy-config-overcloud.yml.

Run the dev/tenks-deploy-overcloud.sh script to deploy Tenks:

./dev/tenks-deploy-overcloud.sh ./tenks

Check that Tenks has created a VM called controller0:

sudo virsh list --all

Verify that VirtualBMC is running:

~/tenks-venv/bin/vbmc list

It is now possible to discover, inspect and provision the controller VM:

source dev/environment-setup.sh
kayobe overcloud inventory discover
kayobe overcloud hardware inspect
kayobe overcloud provision

3.12. Contributor Guide 177

https://tenks.readthedocs.io/en/latest/

kayobe Documentation, Release 11.8.1.dev24

The controller VM is now accessible via SSH as the bootstrap user (centos or ubuntu) at 192.168.
33.3.

The machines and networking created by Tenks can be cleaned up via dev/
tenks-teardown-overcloud.sh:

./dev/tenks-teardown-overcloud.sh ./tenks

Upgrading

It is possible to test an upgrade by running the dev/seed-upgrade.sh script:

./dev/seed-upgrade.sh

Testing

Kayobe has a number of test suites covering different areas of code. Many tests are run in virtual envi-
ronments using tox.

Preparation

System Prerequisites

The following packages should be installed on the development system prior to running kayobes tests.

• Ubuntu/Debian:

sudo apt-get install build-essential python3-dev libssl-dev python3-pip␣
↪→git

• Fedora or CentOS/Rocky 8/RHEL 8:

sudo dnf install python3-devel openssl-devel python3-pip git gcc

• OpenSUSE/SLE 12:

sudo zypper install python3-devel python3-pip libopenssl-devel git

Python Prerequisites

If your distro has at least tox 1.8, use your system package manager to install the python-tox package.
Otherwise install this on all distros:

sudo pip install -U tox

You may need to explicitly upgrade virtualenv if youve installed the one from your OS distribution
and it is too old (tox will complain). You can upgrade it individually, if you need to:

178 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

sudo pip install -U virtualenv

Running Unit Tests Locally

If you havent already, the kayobe source code should be pulled directly from git:

from your home or source directory
cd ~
git clone https://opendev.org/openstack/kayobe.git -b stable/xena
cd kayobe

Running Unit and Style Tests

Kayobe defines a number of different tox environments in tox.ini. The default environments may be
displayed:

tox -list

To run all default environments:

tox

To run one or more specific environments, including any of the non-default environments:

tox -e <environment>[,<environment>]

Environments

The following tox environments are provided:

alint Run Ansible linter.

ansible Run Ansible tests for some ansible roles using Ansible playbooks.

ansible-syntax Run a syntax check for all Ansible files.

docs Build Sphinx documentation.

molecule Run Ansible tests for some Ansible roles using the molecule test framework.

pep8 Run style checks for all shell, python and documentation files.

py3 Run python unit tests for kayobe python module.

3.12. Contributor Guide 179

kayobe Documentation, Release 11.8.1.dev24

Writing Tests

Unit Tests

Unit tests follow the lead of OpenStack, and use unittest. One difference is that tests are run using
the discovery functionality built into unittest, rather than ostestr/stestr. Unit tests are found in
kayobe/tests/unit/, and should be added to cover all new python code.

Ansible Role Tests

Two types of test exist for Ansible roles - pure Ansible and molecule tests.

Pure Ansible Role Tests

These tests exist for the kolla-ansible role, and are found in ansible/<role>/tests/*.yml. The
role is exercised using an ansible playbook.

Molecule Role Tests

Molecule is an Ansible role testing framework that allows roles to be tested in isolation, in a stable
environment, under multiple scenarios. Kayobe uses Docker engine to provide the test environment, so
this must be installed and running on the development system.

Molecule scenarios are found in ansible/<role>/molecule/<scenario>, and defined by the config
file ansible/<role>/molecule/<scenario>/molecule.yml Tests are written in python using the
pytest framework, and are found in ansible/<role>/molecule/<scenario>/tests/test_*.py.

Molecule tests currently exist for the kolla-openstack role, and should be added for all new roles
where practical.

Release notes

Kayobe (just like Kolla) uses the following release notes sections:

• features for new features or functionality; these should ideally refer to the blueprint being im-
plemented;

• fixes for fixes closing bugs; these must refer to the bug being closed;

• upgrade for notes relevant when upgrading from previous version; these should ideally be added
only between major versions; required when the proposed change affects behaviour in a non-
backwards compatible way or generally changes something impactful;

• deprecations to track deprecated features; relevant changes may consist of only the commit
message and the release note;

• prelude filled in by the PTL before each release or RC.

Other release note types may be applied per common sense. Each change should include a release note
unless being a TrivialFix change or affecting only docs or CI. Such changes should not include a
release note to avoid confusion. Remember release notes are mostly for end users which, in case of

180 Chapter 3. Contents

https://molecule.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/

kayobe Documentation, Release 11.8.1.dev24

Kolla, are OpenStack administrators/operators. In case of doubt, the core team will let you know what is
required.

To add a release note, run the following command:

tox -e venv -- reno new <summary-line-with-dashes>

All release notes can be inspected by browsing releasenotes/notes directory.

To generate release notes in HTML format in releasenotes/build, run:

tox -e releasenotes

Note this requires the release note to be tracked by git so you have to at least add it to the gits staging
area.

Releases

This guide is intended to complement the OpenStack releases site, and the project team guides section
on release management.

Team members make themselves familiar with the release schedule for the current release, for example
https://releases.openstack.org/train/schedule.html.

Release Model

As a deployment project, Kayobes release model differs from many other OpenStack projects. Kayobe
follows the cycle-trailing release model, to allow time after the OpenStack coordinated release to wait
for distribution packages and support new features. This gives us three months after the final release to
prepare our final releases. Users are typically keen to try out the new release, so we should aim to release
as early as possible while ensuring we have confidence in the release.

Release Schedule

While we dont wish to repeat the OpenStack release documentation, we will point out the high level
schedule, and draw attention to areas where our process is different.

Milestones

At each of the various release milestones, pay attention to what other projects are doing.

3.12. Contributor Guide 181

https://releases.openstack.org/
https://docs.openstack.org/project-team-guide/release-management.html
https://releases.openstack.org/train/schedule.html
https://docs.openstack.org/project-team-guide/release-management.html#trailing-the-common-cycle

kayobe Documentation, Release 11.8.1.dev24

Feature Freeze

As with projects following the common release model, Kayobe uses a feature freeze period to allow the
code to stabilise prior to release. There is no official feature freeze date for the cycle-trailing model, but
we typically freeze around three weeks after the common feature freeze. During this time, no features
should be merged to the master branch.

Before RC1

Prior to creating a release candidate and stable branch, the following tasks should be performed.

Testing

Test the code and fix at a minimum all critical issues.

Synchronise with Kolla Ansible feature flags

Clone the Kolla Ansible repository, and run the Kayobe tools/kolla-feature-flags.sh script:

tools/kolla-feature-flags.sh <path to kolla-ansible source>

Copy the output of the script, and replace the kolla_feature_flags list in ansible/roles/
kolla-ansible/vars/main.yml.

The kolla.yml configuration file should be updated to match:

tools/feature-flags.py

Copy the output of the script, and replace the list of kolla_enable_* flags in etc/kayobe/kolla.yml.

Synchronise with Kolla Ansible inventory

Clone the Kolla Ansible repository, and copy across any relevant changes. The Kayobe inventory is based
on the ansible/inventory/multinode inventory, but split into 3 parts - top-level, components and
services.

Top level

The top level inventory template is ansible/roles/kolla-ansible/templates/
overcloud-top-level.j2. It is heavily templated, and does not typically need to be changed.
Look out for changes in the multinode inventory before the [baremetal] group.

182 Chapter 3. Contents

kayobe Documentation, Release 11.8.1.dev24

Components

The components inventory template is ansible/roles/kolla-ansible/templates/
overcloud-components.j2.

This includes groups in the multinode inventory from the [baremetal] group down to the following
text:

Additional control implemented here. These groups allow you to control which
services run on which hosts at a per-service level.

Services

The services inventory template is ansible/roles/kolla-ansible/templates/
overcloud-services.j2.

This includes groups in the multinode inventory from the following text to the end of the file:

Additional control implemented here. These groups allow you to control which
services run on which hosts at a per-service level.

There are some small changes in this section which should be maintained.

Update dependencies to upcoming release

Prior to the release, we update the dependencies and upper constraints on the master branch to use the
upcoming release. This is now quite easy to do, following the introduction of the openstack_release
variable. This is done prior to creating a release candidate. For example, see https://review.opendev.org/
#/c/694616/.

Synchronise kayobe-config

Ensure that configuration defaults in kayobe-config are in sync with those under etc/kayobe in
kayobe. This can be done via:

cp -aR kayobe/etc/kayobe/* kayobe-config/etc/kayobe

Commit the changes and submit for review.

Synchronise kayobe-config-dev

Ensure that configuration defaults in kayobe-config-dev are in sync with those in kayobe-config.
This requires a little more care, since some configuration options have been changed from the defaults.
Choose a method to suit you and be careful not to lose any configuration.

Commit the changes and submit for review.

3.12. Contributor Guide 183

https://review.opendev.org/#/c/694616/
https://review.opendev.org/#/c/694616/

kayobe Documentation, Release 11.8.1.dev24

Prepare release notes

Its possible to add a prelude to the release notes for a particular release using a prelude section in a
reno note.

Ensure that release notes added during the release cycle are tidy and consistent. The following command
is useful to list release notes added this cycle:

git diff --name-only origin/stable/<previous release> -- releasenotes/

RC1

Prior to cutting a stable branch, the master branch should be tagged as a release candidate. This allows
the reno tool to determine where to stop searching for release notes for the next release. The tag should
take the following form: <release tag>.0rc$n, where $n is the release candidate number.

This should be done for each deliverable using the releases tooling. A release candidate and sta-
ble branch defintitions should be added for each Kayobe deliverable (kayobe, kayobe-config,
kayobe-config-dev). These are defined in deliverables/<release name>/kayobe.yaml. Cur-
rently the same version is used for each deliverable.

The changes should be proposed to the releases repository. For example: https://review.opendev.org/#/
c/700174.

After RC1

The OpenStack proposal bot will propose changes to the new branch and the master branch. These need
to be approved.

After the stable branch has been cut, the master branch can be unfrozen and development on features for
the next release can begin. At this point it will still be using dependencies and upper constraints from the
release branch, so revert the patch created in Update dependencies to upcoming release. For example,
see https://review.opendev.org/701747.

Finally, set the previous release used in upgrade jobs to the new release. For example, see https://review.
opendev.org/709145.

RC2+

Further release candidates may be created on the stable branch as necessary in a similar manner to RC1.

184 Chapter 3. Contents

https://opendev.org/openstack/releases
https://review.opendev.org/#/c/700174
https://review.opendev.org/#/c/700174
https://review.opendev.org/701747
https://review.opendev.org/709145
https://review.opendev.org/709145

kayobe Documentation, Release 11.8.1.dev24

Final Releases

A release candidate may be promoted to a final release if it has no critical bugs against it.

Tags should be created for each deliverable (kayobe, kayobe-config, kayobe-config-dev). Cur-
rently the same version is used for each.

The changes should be proposed to the releases repository. For example: https://review.opendev.org/
701724.

Post-release activites

An email will be sent to the release-announce mailing list about the new release.

Continuing Development

Search for TODOs in the codebases describing tasks to be performed during the next release cycle.

Stable Releases

Stable branch releases should be made periodically for each supported stable branch, no less than once
every 45 days.

3.12. Contributor Guide 185

https://review.opendev.org/701724
https://review.opendev.org/701724

	Overview
	Kayobe
	Features
	Documentation
	Release Notes
	Bugs
	Community
	License

	Contents
	Getting Started
	Architecture
	Hosts in the System
	Cloud Hosts

	Networks

	Support Matrix
	Supported Operating Systems
	Supported container images

	Installation
	Prerequisites
	Local directory structure
	Installation from PyPI
	Installation from source
	Editable source installation

	Usage
	Command Line Interface
	Working with Ansible Vault
	Limiting Hosts
	Tags
	Check and diff mode

	Configuration Guide
	Configuration Scenarios
	All in one scenario
	Prerequisites
	Overview
	Contents
	Overcloud
	Preparation
	Installation
	Configuration
	Deployment
	Testing

	Configuration Reference
	Kayobe Configuration
	Configuration Location
	Configuration Directory Layout
	Configuration Patterns
	Configuring Kayobe
	Inventory
	Site Localisation and Customisation
	Configuration of Ansible
	Encryption of Secrets
	Location of data files

	Ansible
	SSH pipelining
	Forks
	Fact caching
	Example

	Fact gathering
	Fact filtering
	Fact gathering subsets

	OS Distribution
	Example: using Ubuntu
	Example: using Rocky

	Physical Network Configuration
	Adding Devices to the Inventory
	Network Device Configuration
	Common Configuration Variables
	Device-specific Configuration Variables
	Cumulus Linux (with NCLU)
	SSH configuration
	Dell OS6 and OS9
	Provider
	Dell PowerConnect
	Provider
	Juniper Junos OS
	Provider
	Mellanox MLNX OS
	Provider

	Network Configuration
	Global Network Configuration
	Configuring an IP Subnet
	Configuring an IP Gateway
	Configuring an API Virtual IP Address
	Configuring an API Fully Qualified Domain Name
	Configuring Static IP Routes
	Configuring a VLAN

	IP Address Allocation
	Configuring Dynamic IP Address Allocation
	Configuring Static IP Address Allocation
	Advanced: Policy-Based Routing
	Configuring IP Routing Tables
	Configuring IP Routing Policy Rules
	CentOS/Rocky
	Ubuntu
	Configuring IP Routes on Specific Tables

	Per-host Network Configuration
	IP Addresses
	Configuring Ethernet Interfaces
	Configuring Bridge Interfaces
	Configuring Bond Interfaces
	Configuring VLAN Interfaces
	Bridges and VLANs

	Domain Name Service (DNS) Resolver Configuration
	Network Role Configuration
	Configuring Network Roles
	Overcloud Admin Network
	Overcloud Provisioning Network
	Workload Cleaning Network
	Workload Provisioning Network
	Workload Inspection Network

	Neutron Networking
	Network to Host Mapping
	Seed
	Seed Hypervisor
	Infra VMs
	Controllers
	Network Hosts
	Monitoring Hosts
	Storage Hosts
	Virtualised Compute Hosts
	Other Hosts

	Complete Example

	Routed Control Plane Networks
	Concept
	Limitations
	Configuration
	Example
	Inventory
	Kolla API addresses
	Network names
	Networks
	Network interfaces

	Alternative approach

	Host Configuration
	Configuration Location
	Paths
	SSH Known Hosts
	Kayobe User Bootstrapping
	PyPI Mirror and proxy
	Kayobe Remote Virtual Environment
	Disk Wiping
	Users and Groups
	DNF Package Repositories
	Configuration of dnf.conf
	CentOS/Rocky and EPEL Mirrors
	Custom DNF Repositories
	Disabling EPEL
	DNF Automatic

	Apt
	Apt cache
	Apt proxy
	Apt configuration
	Apt repositories
	Apt keys

	Development tools
	SELinux
	Network Configuration
	Firewalld
	Tuned
	Sysctls
	IP routing and Source NAT
	Disable cloud-init
	Disable Glean
	Timezone
	NTP
	Variables

	Software RAID
	Encryption
	LVM
	LVM for libvirt
	LVM for Docker
	Custom LVM

	Kolla-Ansible bootstrap-servers
	Kolla-Ansible Remote Virtual Environment
	Docker Engine

	Kolla Configuration
	Container Image Build Host
	Kolla Installation
	Global Configuration
	Seed Images
	Overcloud Images
	Image Customisation
	Overriding Jinja2 blocks
	Overriding Jinja2 variables
	Source code locations
	Plugins & additions

	Kolla Ansible Configuration
	Configuration of Ansible
	Kolla Ansible Installation
	Example: custom git repository
	Virtual Environment Extra Requirements

	Local environment
	Global Configuration
	Kolla Images
	Ansible
	Context: Remote Execution Environment
	User account creation
	OpenStack Logging
	Example: enabling debug logging
	API Addresses
	TLS Encryption of APIs
	Example: enabling TLS for the public API
	Example: enabling TLS for the internal API
	Other certificates
	Example: adding a trusted custom CA certificate to containers
	Example: adding certificates for backend TLS
	Custom Global Variables
	Example: use a specific tag for each image
	Example: debug logging per-service
	Host variables
	Example: pass through an additional host variable
	Custom Group Variables
	Example: configure a Nova cell
	Passwords
	Configuring Custom Passwords

	Control Plane Services
	Enabling Services
	Example: enabling a service
	Service Configuration
	Configuring an OpenStack Component
	Configuring an OpenStack Service

	Bifrost
	Bifrost installation
	Overcloud root disk image configuration
	Example: Adding an element
	Example: Building an XFS root filesystem image
	Example: Configuring a development user account
	Example: Installing a package

	Disk image deployment configuration
	Ironic configuration
	Ironic Inspector configuration
	Ironic Python Agent (IPA) configuration
	Inventory configuration
	Custom Configuration

	Ironic Python Agent (IPA)
	Ironic Python Agent (IPA) image build configuration
	Example: Building IPA images locally
	Example: Installing IPA from a custom git repository
	Example: Adding an element
	Example: Configuring a development user account
	Example: Configuring custom DIB elements
	Example: Installing a package

	Ironic Python Agent (IPA) images configuration
	Ironic Python Agent (IPA) deployment configuration
	Example: Adding the extra-hardware collector
	Example: Passing additional kernel arguments to IPA

	Docker registry
	Configuring the registry
	TLS
	Basic authentication

	Using the registry
	TLS
	Basic authentication

	Seed custom containers
	Configuration

	Infrastructure VMs
	Configuration
	Mandatory variables
	Customisations

	Deploying the virtual machine

	Nova cells

	Deployment
	Ansible Control Host
	Physical Network
	Seed Hypervisor
	Host Configuration

	Seed
	VM Provisioning
	Host Configuration
	Building Container Images
	Deploying Containerised Services
	Building Deployment Images
	Accessing the Seed via SSH (Optional)

	Infrastructure VMs
	VM Provisioning
	Host Configuration
	Using Hooks to deploy services on the VMs
	Example

	Overcloud
	Discovery
	Saving Hardware Introspection Data
	BIOS and RAID Configuration
	Provisioning
	Host Configuration
	Building Container Images
	Pulling Container Images
	Building Deployment Images
	Building Swift Rings
	Deploying Containerised Services
	Interacting with the Control Plane
	Performing Post-deployment Configuration

	Upgrading
	CentOS Stream 8
	Preparation
	Migrating Kayobe Configuration

	Updating Kayobe Configuration
	Upgrading Kayobe
	Upgrading from PyPI
	Upgrading from source

	Upgrading the Ansible Control Host
	Upgrading the Seed Hypervisor
	Upgrading Host Packages
	Upgrading Host Services

	Upgrading the Seed
	Upgrading Host Packages
	Building Ironic Deployment Images
	Upgrading Host Services
	Building Container Images
	Upgrading Containerised Services

	Upgrading the Overcloud
	Upgrading Host Packages
	Upgrading Host Services
	Building Ironic Deployment Images
	Upgrading Ironic Deployment Images
	Building Container Images
	Pulling Container Images
	Saving Overcloud Service Configuration
	Generating Overcloud Service Configuration
	Upgrading Containerised Services

	Administration
	General Administration
	Updating the Control Host
	Running Kayobe Playbooks on Demand
	Running Kolla-ansible Commands
	Dumping Kayobe Configuration
	Checking Network Connectivity

	Seed Administration
	Deprovisioning The Seed VM
	Updating Packages
	Package Repositories
	Package Update
	Kernel Updates

	Examining the Bifrost Container
	Accessing the Seed Services
	Backup & Restore
	Database Backup & Restore
	Backup
	Restore

	Running Commands

	Infra VM Administration
	Deprovisioning Infrastructure VMs
	Updating Packages
	Package Repositories
	Package Update
	Kernel Updates

	Running Commands

	Overcloud Administration
	Updating Packages
	Package Repositories
	Package Update
	Kernel Updates

	Running Commands
	Reconfiguring Containerised Services
	Deploying Updated Container Images
	Upgrading Containerised Services
	Running Prechecks
	Stopping the Overcloud Services
	Destroying the Overcloud Services
	Deprovisioning The Cloud
	Saving Overcloud Service Configuration
	Generating Overcloud Service Configuration
	Performing Database Backups
	Performing Database Recovery
	Gathering Facts

	Baremetal Compute Node Management
	Manage
	Provide
	Inspect
	Rename
	Update Deployment Image
	Ironic Serial Console
	Serial console auto-enable

	Resources
	A Universe From Nothing

	Advanced Documentation
	Control Plane Service Placement
	Configuration
	Overcloud Inventory Discovery
	Kolla-ansible Inventory Mapping
	Variables For Custom Server Roles
	Custom Kolla-ansible Inventories

	Examples
	Example 1: Adding Network Hosts
	Example 2: Overriding the Kolla-ansible Inventory

	Custom Ansible Playbooks
	Kayobe Custom Playbook API
	Running Custom Ansible Playbooks
	Packaging Custom Playbooks With Configuration
	Ansible Galaxy

	Example: roles
	Example: collections
	Hooks
	Failure handling
	Targets

	Multiple Environments
	Defining Kayobe Environments
	Ansible Inventories
	Shared Extra Variables Files
	Network Configuration
	Other Configuration

	Kolla Configuration
	Managing Independent Environment Files

	Custom Ansible Playbooks and Hooks
	Dynamic Variable Definitions
	Final Considerations

	Using Kayobe Environments
	Migrating to Kayobe Environments

	Contributor Guide
	Contributor Guide
	So You Want to Contribute…
	Basics
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Development
	Source Code Orientation
	CLI
	Ansible

	Ansible Galaxy

	Vagrant
	Preparation
	Usage

	Manual Setup
	Preparation
	Manual Installation
	Next Steps
	To Do

	Automated Setup
	Overview
	Environments
	Overcloud
	Preparation
	Usage
	Testing
	Virtual Machines
	Bare Metal Compute
	Upgrading

	Seed
	Preparation
	Usage
	Testing
	Upgrading

	Testing
	Preparation
	System Prerequisites
	Python Prerequisites

	Running Unit Tests Locally
	Running Unit and Style Tests
	Environments

	Writing Tests
	Unit Tests
	Ansible Role Tests
	Pure Ansible Role Tests
	Molecule Role Tests

	Release notes
	Releases
	Release Model
	Release Schedule
	Milestones
	Feature Freeze

	Before RC1
	Testing
	Synchronise with Kolla Ansible feature flags
	Synchronise with Kolla Ansible inventory
	Top level
	Components
	Services
	Update dependencies to upcoming release
	Synchronise kayobe-config
	Synchronise kayobe-config-dev
	Prepare release notes

	RC1
	After RC1
	RC2+
	Final Releases
	Post-release activites

	Continuing Development
	Stable Releases

