Ironic Documentation
Release 19.0.1.dev90

OpenStack Foundation

Apr 12, 2023

CONTENTS

1 Introduction 1
2 Installation Guide 3
2.1 Bare Metal Service Installation Guide, 3
2.2 Bare Metal Service Upgrade Guide 107
3 User Guide 119
3.1 Bare Metal Service User Guide 119
4 Administrator Guide 137
4.1 Drivers, Hardware Types and Hardware Interfaces 137
4.2 Administrators Guide e 245
5 Configuration Guide 381
5.1 Configuration Reference 381
6 Bare Metal API References 559
6.1 REST API Conceptual Guide 559
7 Command References 575
7.1 Command References e 575
8 Contributor Guide 581
8.1 Developers Guide e e e e e 581
9 Release Notes 1179
Python Module Index 1181

Index 1185

CHAPTER
ONE

INTRODUCTION

Ironic is an OpenStack project which provisions bare metal (as opposed to virtual) machines. It may
be used independently or as part of an OpenStack Cloud, and integrates with the OpenStack Identity
(keystone), Compute (nova), Network (neutron), Image (glance), and Object (swift) services.

The Bare Metal service manages hardware through both common (eg. PXE and IPMI) and vendor-
specific remote management protocols. It provides the cloud operator with a unified interface to a hetero-
geneous fleet of servers while also providing the Compute service with an interface that allows physical
servers to be managed as though they were virtual machines.

This documentation is continually updated and may not represent the state of the project at any specific
prior release. To access documentation for a previous release of ironic, append the OpenStack release
name to the URL; for example, the ocata release is available at https://docs.openstack.org/ironic/ocata/.

Found a bug in one of our projects? Please see Bug Reporting and Triaging Guide.

Would like to engage with the community? See Bare Metal Community.

https://docs.openstack.org/ironic/ocata/

Ironic Documentation, Release 19.0.1.dev90

2 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION GUIDE

2.1 Bare Metal Service Installation Guide

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Guides. It
contains the following sections:

2.1.1 Bare Metal service overview

The Bare Metal service, codenamed ironic, is a collection of components that provides support to
manage and provision physical machines.

Bare Metal service components

The Bare Metal service includes the following components:

ironic-api A RESTful API that processes application requests by sending them to the ironic-conductor
over remote procedure call (RPC). Can be run through WSGI or as a separate process.

ironic-conductor Adds/edits/deletes nodes; powers on/off nodes with IPMI or other vendor-specific
protocol; provisions/deploys/cleans bare metal nodes.

ironic-conductor uses drivers to execute operations on hardware.

ironic-python-agent A python service which is run in a temporary ramdisk to provide ironic-conductor
and ironic-inspector services with remote access, in-band hardware control, and hardware intro-
spection.

Additionally, the Bare Metal service has certain external dependencies, which are very similar to other
OpenStack services:

* A database to store hardware information and state. You can set the database back-end type and
location. A simple approach is to use the same database back end as the Compute service. An-
other approach is to use a separate database back-end to further isolate bare metal resources (and
associated metadata) from users.

* An oslo.messaging compatible queue, such as RabbitMQ. It may use the same implementation
as that of the Compute service, but that is not a requirement. Used to implement RPC between
ironic-api and ironic-conductor.

https://docs.openstack.org/latest/install
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://docs.openstack.org/oslo.messaging/19.0/

Ironic Documentation, Release 19.0.1.dev90

Deployment architecture

The Bare Metal RESTful API service is used to enroll hardware that the Bare Metal service will manage.
A cloud administrator usually registers it, specifying their attributes such as MAC addresses and IPMI
credentials. There can be multiple instances of the API service.

The ironic-conductor process does the bulk of the work. For security reasons, it is advisable to place it
on an isolated host, since it is the only service that requires access to both the data plane and IPMI control
plane.

There can be multiple instances of the conductor service to support various class of drivers and also to
manage fail over. Instances of the conductor service should be on separate nodes. Each conductor can
itself run many drivers to operate heterogeneous hardware. This is depicted in the following figure.

Enrcll

Ironic RESTful API
Hardware

Cloud
Administrator

N
~

\I

Ironic Conductor(s)

Database

Drivers Drivers I'

The API exposes a list of supported drivers and the names of conductor hosts servicing them.

Interaction with OpenStack components
The Bare Metal service may, depending upon configuration, interact with several other OpenStack ser-
vices. This includes:

* the OpenStack Telemetry module (ceilometer) for consuming the IPMI metrics

* the OpenStack Identity service (keystone) for request authentication and to locate other Open-
Stack services

* the OpenStack Image service (glance) from which to retrieve images and image meta-data

* the OpenStack Networking service (neutron) for DHCP and network configuration

4 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

 the OpenStack Compute service (nova) works with the Bare Metal service and acts as a user-
facing API for instance management, while the Bare Metal service provides the admin/operator API
for hardware management. The OpenStack Compute service also provides scheduling facilities
(matching flavors <-> images <-> hardware), tenant quotas, IP assignment, and other services
which the Bare Metal service does not, in and of itself, provide.

* the OpenStack Object Storage (swift) provides temporary storage for the configdrive, user images,
deployment logs and inspection data.

Logical architecture

The diagram below shows the logical architecture. It shows the basic components that form the Bare
Metal service, the relation of the Bare Metal service with other OpenStack services and the logical flow
of a boot instance request resulting in the provisioning of a physical server.

Figure 1.2. Logical Architecture

Openstack Ironic Service

Ironic
API

Nova Neutron
Scheduler

Ironic
Conductor

Drivers

Ironic
DB

A users request to boot an instance is passed to the Compute service via the Compute API and the
Compute Scheduler. The Compute service uses the ironic virt driver to hand over this request to the
Bare Metal service, where the request passes from the Bare Metal API, to the Conductor, to a Driver to
successfully provision a physical server for the user.

Just as the Compute service talks to various OpenStack services like Image, Network, Object Store etc to
provision a virtual machine instance, here the Bare Metal service talks to the same OpenStack services
for image, network and other resource needs to provision a bare metal instance.

See Understanding Bare Metal Deployment for a more detailed breakdown of a typical deployment pro-
cess.

2.1. Bare Metal Service Installation Guide 5

Ironic Documentation, Release 19.0.1.dev90

Associated projects

Optionally, one may wish to utilize the following associated projects for additional functionality:

python-ironicclient A command-line interface (CLI) and python bindings for interacting with the Bare
Metal service.

ironic-ui Horizon dashboard, providing graphical interface (GUI) for the Bare Metal APL.

ironic-inspector An associated service which performs in-band hardware introspection by PXE booting
unregistered hardware into the ironic-python-agent ramdisk.

diskimage-builder A related project to help facilitate the creation of ramdisks and machine images,
such as those running the ironic-python-agent.

bifrost A set of Ansible playbooks that automates the task of deploying a base image onto a set of known
hardware using ironic in a standalone mode.

2.1.2 Reference Deploy Architectures
This section covers the way we recommend the Bare Metal service to be deployed and managed. It is

assumed that a reader has already gone through Bare Metal Service User Guide. It may be also useful to
try Deploying Ironic with DevStack first to get better familiar with the concepts used in this guide.

Common Considerations

This section covers considerations that are equally important to all described architectures.

* Components

* Hardware and drivers
— Power and management interfaces
— Boot interface
— Hardware specifications

* [mage types

* Local vs network boot

* Networking

HA and Scalability
— ironic-api
— ironic-conductor
* High availability
* Performance

% Disk space

— Other services

6 Chapter 2. Installation Guide

https://docs.openstack.org/python-ironicclient/19.0/
https://docs.openstack.org/ironic-ui/19.0/
https://docs.openstack.org/ironic-inspector/19.0/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/bifrost/19.0/

Ironic Documentation, Release 19.0.1.dev90

Components

As explained in Bare Metal service overview, the Bare Metal service has three components.

* The Bare Metal API service (ironic-api) should be deployed in a similar way as the control
plane API services. The exact location will depend on the architecture used.

* The Bare Metal conductor service (ironic-conductor) is where most of the provisioning logic
lives. The following considerations are the most important when deciding on the way to deploy it:

— The conductor manages a certain proportion of nodes, distributed to it via a hash ring. This

includes constantly polling these nodes for their current power state and hardware sensor data
(if enabled and supported by hardware, see Collecting sensor data for an example).

The conductor needs access to the management controller of each node it manages.

The conductor co-exists with TFTP (for PXE) and/or HTTP (for iPXE) services that provide
the kernel and ramdisk to boot the nodes. The conductor manages them by writing files to
their root directories.

If serial console is used, the conductor launches console processes locally. If the
nova-serialproxy service (part of the Compute service) is used, it has to be able to reach
the conductors. Otherwise, they have to be directly accessible by the users.

There must be mutual connectivity between the conductor and the nodes being deployed or
cleaned. See Networking for details.

* The provisioning ramdisk which runs the ironic-python-agent service on start up.

Warning: The ironic-python-agent service is not intended to be used or executed any-
where other than a provisioning/cleaning/rescue ramdisk.

Hardware and drivers

The Bare Metal service strives to provide the best support possible for a variety of hardware. However,
not all hardware is supported equally well. It depends on both the capabilities of hardware itself and
the available drivers. This section covers various considerations related to the hardware interfaces. See
Enabling drivers and hardware types for a detailed introduction into hardware types and interfaces before

proceeding.

Power and management interfaces

The minimum set of capabilities that the hardware has to provide and the driver has to support is as

follows:

1. getting and setting the power state of the machine
2. getting and setting the current boot device

3. booting an image provided by the Bare Metal service (in the simplest case, support booting using
PXE and/or iPXE)

2.1.

Bare Metal Service Installation Guide 7

https://en.wikipedia.org/wiki/Out-of-band_management
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/IPXE

Ironic Documentation, Release 19.0.1.dev90

Note: Strictly speaking, it is possible to make the Bare Metal service provision nodes without some of
these capabilities via some manual steps. It is not the recommended way of deployment, and thus it is
not covered in this guide.

Once you make sure that the hardware supports these capabilities, you need to find a suitable driver.
Most of enterprise-grade hardware has support for IPMI and thus can utilize /PMI driver. Some newer
hardware also supports Redfish driver. Several vendors provide more specific drivers that usually provide
additional capabilities. Check Drivers, Hardware Types and Hardware Interfaces to find the most suitable
one.

Boot interface

The boot interface of a node manages booting of both the deploy ramdisk and the user instances on
the bare metal node. The deploy interface orchestrates the deployment and defines how the image gets
transferred to the target disk.

The main alternatives are to use PXE/iPXE or virtual media - see Boot interfaces for a detailed expla-
nation. If a virtual media implementation is available for the hardware, it is recommended using it for
better scalability and security. Otherwise, it is recommended to use iPXE, when it is supported by target
hardware.

Hardware specifications

The Bare Metal services does not impose too many restrictions on the characteristics of hardware itself.
However, keep in mind that

* By default, the Bare Metal service will pick the smallest hard drive that is larger than 4 GiB for
deployment. Another hard drive can be used, but it requires setting root device hints.

Note: This device does not have to match the boot device set in BIOS (or similar firmware).

* The machines should have enough RAM to fit the deployment/cleaning ramdisk to run. The
minimum varies greatly depending on the way the ramdisk was built. For example, tinyipa, the
TinyCoreLinux-based ramdisk used in the CI, only needs 400 MiB of RAM, while ramdisks built
by diskimage-builder may require 3 GiB or more.

Image types

The Bare Metal service can deploy two types of images:

* Whole-disk images that contain a complete partitioning table with all necessary partitions and a
bootloader. Such images are the most universal, but may be harder to build.

 Partition images that contain only the root partition. The Bare Metal service will create the nec-
essary partitions and install a boot loader, if needed.

8 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

Ironic Documentation, Release 19.0.1.dev90

Warning: Partition images are only supported with GNU/Linux operating systems.

Warning: If you plan on using local boot, your partition images must contain GRUB2 boot-
loader tools to enable ironic to set up the bootloader during deploy.

Local vs network boot

The Bare Metal service supports booting user instances either using a local bootloader or using the drivers
boot interface (e.g. via PXE or iPXE protocol in case of the pxe interface).

Network boot cannot be used with certain architectures (for example, when no tenant networks have
access to the control plane).

Additional considerations are related to the pxe boot interface, and other boot interfaces based on it:

* Local boot makes nodes boot process independent of the Bare Metal conductor managing it. Thus,
nodes are able to reboot correctly, even if the Bare Metal TFTP or HTTP service is down.

* Network boot (and iPXE) must be used when booting nodes from remote volumes, if the driver
does not support attaching volumes out-of-band.

The default boot option for the cloud can be changed via the Bare Metal service configuration file, for
example:

This default can be overridden by setting the boot_option capability on a node. See Local boot with
partition images for details.

Note: Currently, local boot is used by default. Its safer to set the default_boot_option explicitly.

Networking

There are several recommended network topologies to be used with the Bare Metal service. They are
explained in depth in specific architecture documentation. However, several considerations are common
for all of them:

* There has to be a provisioning network, which is used by nodes during the deployment process.
If allowed by the architecture, this network should not be accessible by end users, and should not
have access to the internet.

* There has to be a cleaning network, which is used by nodes during the cleaning process.

* There should be a rescuing network, which is used by nodes during the rescue process. It can be
skipped if the rescue process is not supported.

2.1. Bare Metal Service Installation Guide 9

https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/IPXE

Ironic Documentation, Release 19.0.1.dev90

Note: In the majority of cases, the same network should be used for cleaning, provisioning and rescue
for simplicity.

Unless noted otherwise, everything in these sections apply to all three networks.

* The baremetal nodes must have access to the Bare Metal API while connected to the provision-
ing/cleaning/rescuing network.

Note: Only two endpoints need to be exposed there:

\

You may want to limit access from this network to only these endpoints, and make these endpoint
not accessible from other networks.

* If the pxe boot interface (or any boot interface based on it) is used, then the baremetal nodes should
have untagged (access mode) connectivity to the provisioning/cleaning/rescuing networks. It al-
lows PXE firmware, which does not support VLANS, to communicate with the services required
for provisioning.

Note: It depends on the network interface whether the Bare Metal service will handle it automat-
ically. Check the networking documentation for the specific architecture.

Sometimes it may be necessary to disable the spanning tree protocol delay on the switch - see
DHCP during PXE or iPXE is inconsistent or unreliable.

» The Baremetal nodes need to have access to any services required for provisioning/cleaning/rescue,
while connected to the provisioning/cleaning/rescuing network. This may include:

— a TFTP server for PXE boot and also an HTTP server when iPXE is enabled

— either an HTTP server or the Object Storage service in case of the direct deploy interface
and some virtual media boot interfaces

* The Baremetal Conductors need to have access to the booted baremetal nodes during provision-
ing/cleaning/rescue. A conductor communicates with an internal API, provided by ironic-python-
agent, to conduct actions on nodes.

HA and Scalability
ironic-api

The Bare Metal API service is stateless, and thus can be easily scaled horizontally. It is recommended
to deploy it as a WSGI application behind e.g. Apache or another WSGI container.

Note: This service accesses the ironic database for reading entities (e.g. in response to GET /v1/nodes
request) and in rare cases for writing.

10 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

ironic-conductor
High availability

The Bare Metal conductor service utilizes the active/active HA model. Every conductor manages a
certain subset of nodes. The nodes are organized in a hash ring that tries to keep the load spread more
or less uniformly across the conductors. When a conductor is considered offline, its nodes are taken over
by other conductors. As a result of this, you need at least 2 conductor hosts for an HA deployment.

Performance

Conductors can be resource intensive, so it is recommended (but not required) to keep all conductors
separate from other services in the cloud. The minimum required number of conductors in a deployment
depends on several factors:

* the performance of the hardware where the conductors will be running,

* the speed and reliability of the management controller of the bare metal nodes (for example, han-
dling slower controllers may require having less nodes per conductor),

* the frequency, at which the management controllers are polled by the Bare Metal service (see the
sync_power_state_interval option),

* the bare metal driver used for nodes (see Hardware and drivers above),
* the network performance,

* the maximum number of bare metal nodes that are provisioned simultaneously (see the
max_concurrent_builds option for the Compute service).

We recommend a target of 100 bare metal nodes per conductor for maximum reliability and performance.
There is some tolerance for a larger number per conductor. However, it was reported'” that reliability
degrades when handling approximately 300 bare metal nodes per conductor.

Disk space

Each conductor needs enough free disk space to cache images it uses. Depending on the combination of
the deploy interface and the boot option, the space requirements are different:

* The deployment kernel and ramdisk are always cached during the deployment.

* When [agent]image_download_source is set to http and Glance is used, the conductor will
download instances images locally to serve them from its HTTP server. Use swift to publish
images using temporary URLs and convert them on the nodes side.

When [agent]image_download_source issetto local, it will happen even for HTTP(s) URLSs.
For standalone case use http to avoid unnecessary caching of images.

In both cases a cached image is converted to raw if force_raw_images is True (the default).

! http://lists.openstack.org/pipermail/openstack-dev/2017-June/118033.html
2 http://lists.openstack.org/pipermail/openstack-dev/2017-June/118327.html

2.1. Bare Metal Service Installation Guide 11

https://en.wikipedia.org/wiki/Out-of-band_management
http://lists.openstack.org/pipermail/openstack-dev/2017-June/118033.html
http://lists.openstack.org/pipermail/openstack-dev/2017-June/118327.html

Ironic Documentation, Release 19.0.1.dev90

Note: image_download_source can also be provided in the nodes driver_info or
instance_info. See Deploy with custom HTTP servers.

* When network boot is used, the instance image kernel and ramdisk are cached locally while the
instance is active.

Note: All images may be stored for some time after they are no longer needed. This is done to
speed up simultaneous deployments of many similar images. The caching can be configured via the
image_cache_size and image_cache_ttl configuration options in the pxe group.

Other services

When integrating with other OpenStack services, more considerations may need to be applied. This is
covered in other parts of this guide.

Scenarios

Small cloud with trusted tenants
Story

As an operator I would like to build a small cloud with both virtual and bare metal instances or add bare
metal provisioning to my existing small or medium scale single-site OpenStack cloud. The expected
number of bare metal machines is less than 100, and the rate of provisioning and unprovisioning is
expected to be low. All users of my cloud are trusted by me to not conduct malicious actions towards
each other or the cloud infrastructure itself.

As a user I would like to occasionally provision bare metal instances through the Compute API by se-
lecting an appropriate Compute flavor. I would like to be able to boot them from images provided by the
Image service or from volumes provided by the Volume service.

Components

This architecture assumes an OpenStack installation with the following components participating in the
bare metal provisioning:

* The Compute service manages bare metal instances.
* The Networking service provides DHCP for bare metal instances.
* The Image service provides images for bare metal instances.
The following services can be optionally used by the Bare Metal service:
* The Volume service provides volumes to boot bare metal instances from.

* The Bare Metal Introspection service simplifies enrolling new bare metal machines by conducting
in-band introspection.

12 Chapter 2. Installation Guide

https://docs.openstack.org/arch-design/use-cases/use-case-general-compute.html
https://docs.openstack.org/nova/19.0/
https://docs.openstack.org/neutron/19.0/
https://docs.openstack.org/glance/19.0/
https://docs.openstack.org/cinder/19.0/
https://docs.openstack.org/ironic-inspector/19.0/

Ironic Documentation, Release 19.0.1.dev90

Node roles

An OpenStack installation in this guide has at least these three types of nodes:
* A controller node hosts the control plane services.

* A compute node runs the virtual machines and hosts a subset of Compute and Networking com-
ponents.

* A block storage node provides persistent storage space for both virtual and bare metal nodes.

The compute and block storage nodes are configured as described in the installation guides of the Com-
pute service and the Volume service respectively. The controller nodes host the Bare Metal service
components.

Networking

The networking architecture will highly depend on the exact operating requirements. This guide expects
the following existing networks: control plane, storage and public. Additionally, two more networks will
be needed specifically for bare metal provisioning: bare metal and management.

Control plane network

The control plane network is the network where OpenStack control plane services provide their public
APL.

The Bare Metal API will be served to the operators and to the Compute service through this network.

Public network

The public network is used in a typical OpenStack deployment to create floating IPs for outside access
to instances. Its role is the same for a bare metal deployment.

Note: Since, as explained below, bare metal nodes will be put on a flat provider network, it is also
possible to organize direct access to them, without using floating IPs and bypassing the Networking
service completely.

Bare metal network

The Bare metal network is a dedicated network for bare metal nodes managed by the Bare Metal service.

This architecture uses flat bare metal networking, in which both tenant traffic and technical traffic related
to the Bare Metal service operation flow through this one network. Specifically, this network will serve
as the provisioning, cleaning and rescuing network. It will also be used for introspection via the Bare
Metal Introspection service. See common networking considerations for an in-depth explanation of the
networks used by the Bare Metal service.

DHCP and boot parameters will be provided on this network by the Networking services DHCP agents.

For booting from volumes this network has to have a route to the storage network.

2.1. Bare Metal Service Installation Guide 13

https://docs.openstack.org/nova/19.0/
https://docs.openstack.org/nova/19.0/
https://docs.openstack.org/cinder/19.0/

Ironic Documentation, Release 19.0.1.dev90

Management network

Management network is an independent network on which BMCs of the bare metal nodes are located.

The ironic-conductor process needs access to this network. The tenants of the bare metal nodes must
not have access to it.

Note: The direct deploy interface and certain Drivers, Hardware Types and Hardware Interfaces require
the management network to have access to the Object storage service backend.

Controllers

A controller hosts the OpenStack control plane services as described in the control plane design guide.
While this architecture allows using controllers in a non-HA configuration, it is recommended to have at
least three of them for HA. See HA and Scalability for more details.

Bare Metal services

The following components of the Bare Metal service are installed on a controller (see components of the
Bare Metal service):

* The Bare Metal API service either as a WSGI application or the ironic-api process. Typically,
a load balancer, such as HAProxy, spreads the load between the API instances on the controllers.

The API has to be served on the control plane network. Additionally, it has to be exposed to the
bare metal network for the ramdisk callback API.

* The ironic-conductor process. These processes work in active/active HA mode as explained
in HA and Scalability, thus they can be installed on all controllers. Each will handle a subset of
bare metal nodes.

The ironic-conductor processes have to have access to the following networks:
— control plane for interacting with other services
— management for contacting nodes BMCs
— bare metal for contacting deployment, cleaning or rescue ramdisks

* TFTP and HTTP service for booting the nodes. Each ironic-conductor process has to have a
matching TFTP and HTTP service. They should be exposed only to the bare metal network and
must not be behind a load balancer.

* The nova-compute process (from the Compute service). These processes work in active/active
HA mode when dealing with bare metal nodes, thus they can be installed on all controllers. Each
will handle a subset of bare metal nodes.

Note: There is no 1-1 mapping between ironic-conductor and nova-compute processes, as
they communicate only through the Bare Metal API service.

14 Chapter 2. Installation Guide

https://docs.openstack.org/arch-design/design-control-plane.html

Ironic Documentation, Release 19.0.1.dev90

* The networking-baremetal ML2 plugin should be loaded into the Networking service to assist with
binding bare metal ports.

The ironic-neutron-agent service should be started as well.

* If the Bare Metal introspection is used, its ironic-inspector process has to be installed on all
controllers. Each such process works as both Bare Metal Introspection API and conductor service.
A load balancer should be used to spread the API load between controllers.

The API has to be served on the control plane network. Additionally, it has to be exposed to the
bare metal network for the ramdisk callback API.

Shared services

A controller also hosts two services required for the normal operation of OpenStack:

* Database service (MySQL/MariaDB is typically used, but other enterprise-grade database solu-
tions can be used as well).

All Bare Metal service components need access to the database service.

* Message queue service (RabbitMQ is typically used, but other enterprise-grade message queue
brokers can be used as well).

Both Bare Metal API (WSGI application or ironic-api process) and the ironic-conductor
processes need access to the message queue service. The Bare Metal Introspection service does
not need it.

Note: These services are required for all OpenStack services. If youre adding the Bare Metal service to
your cloud, you may reuse the existing database and messaging queue services.

Bare metal nodes

Each bare metal node must be capable of booting from network, virtual media or other boot technology
supported by the Bare Metal service as explained in Boot interface. Each node must have one NIC on the
bare metal network, and this NIC (and only it) must be configured to be able to boot from network. This
is usually done in the BIOS setup or a similar firmware configuration utility. There is no need to alter the
boot order, as it is managed by the Bare Metal service. Other NICs, if present, will not be managed by
OpenStack.

The NIC on the bare metal network should have untagged connectivity to it, since PXE firmware usually
does not support VLANS - see Networking for details.

2.1. Bare Metal Service Installation Guide 15

https://docs.openstack.org/networking-baremetal/19.0/
https://docs.openstack.org/ironic-neutron-agent/19.0/

Ironic Documentation, Release 19.0.1.dev90

Storage

If your hardware and its bare metal driver support booting from remote volumes, please check the driver
documentation for information on how to enable it. It may include routing management and/or bare
metal networks to the storage network.

In case of the standard PXE boot, booting from remote volumes is done via iPXE. In that case, the
Volume storage backend must support iSCSI protocol, and the bare metal network has to have a route to
the storage network. See Boot From Volume for more details.

2.1.3 Install and configure the Bare Metal service

This section describes how to install and configure the Bare Metal service, code-named ironic.

Note that installation and configuration vary by distribution.

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Bare Metal service for Red Hat Enterprise Linux
8 and CentOS 8.

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

1. In MySQL, create an ironic database that is accessible by the ironic user. Replace
TIRONIC_DBPASSWORD with a suitable password:

mysql -u root -p

16 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/ISCSI

Ironic Documentation, Release 19.0.1.dev90

Install and configure components

1. Install from packages (using dnf)

dnf install openstack-ironic-api openstack-ironic-conductor python3-
—ironicclient

2. Enable services

systemctl openstack-ironic-api openstack-ironic-conductor
systemctl start openstack-ironic-api openstack-ironic-conductor

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But
the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
TRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following
option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

2.1. Bare Metal Service Installation Guide 17

Ironic Documentation, Release 19.0.1.dev90

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_IP with the public IP of the Identity server, PRIVATE_IDENTITY_IP with
the private IP of the Identity server and replace IRONIC_PASSWORD with the password you chose
for the ironic user in the Identity service:

(continues on next page)

18 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

4. Create the Bare Metal service database tables:

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note: This is optional, the ironic APIs can be run using independent scripts that provide HTTP servers.
But it is generally considered more performant and flexible to run them using a generic HT TP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHELS8/CentOSS:

2.1. Bare Metal Service Installation Guide 19

Ironic Documentation, Release 19.0.1.dev90

Debian/Ubuntu:

SUSE:

. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache

sites:

Fedora/RHELS&/CentOSS:

Debian/Ubuntu:

SUSE:

. Edit the recently copied <apache-configuration-dir>/ironic.conf:

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in JRONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.

Apach will fail to start:
Fedora/RHELS8/CentOS8/SUSE:

Debian/Ubuntu:

. Enable the apache ironic in site and reload:

Fedora/RHEL8/CentOS8:

20

Chapter 2. Installation Guide

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 19.0.1.dev90

Debian/Ubuntu:

SUSE:

Note: The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN
directory. It should not be modified.

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

If you want to pass a configuration file, use:

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

Note: If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same
network as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace IRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

2.1. Bare Metal Service Installation Guide 21

Ironic Documentation, Release 19.0.1.dev90

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

22 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

You can optionally change the host and the port the JSON RPC service will bind to, for example:

Warning: Hostnames of ironic-conductor machines must be resolvable by ironic-api services
when JSON RPC is used.

4. Configure credentials for accessing other OpenStack services.

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

* [neutron] - to access the OpenStack Networking service

* [glance] - to access the OpenStack Image service

* [swift] - to access the OpenStack Object Storage service

* [cinder] - to access the OpenStack Block Storage service

* [inspector] - to access the OpenStack Bare Metal Introspection service

* [service_catalog] - a special section holding credentials the Bare Metal service will use
to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

» Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

* HTTPS connection with specific CA SSL certificate when making requests
* the same service user as configured for ironic-api service

* dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

— replace IDENTITY_IP with the IP of the Identity server, and replace IRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

(continues on next page)

2.1. Bare Metal Service Installation Guide 23

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

5. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must
be installed and configured, see Configure the Image service for temporary URLs. Ceph

24

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

6. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning
from the admin guide.

7. Restart the ironic-conductor service:

Fedora/RHEL7/CentOS7/SUSE:

Ubuntu:

Install and configure for Ubuntu

This section describes how to install and configure the Bare Metal service for Ubuntu 14.04 (LTS).

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

1. In MySQL, create an ironic database that is accessible by the ironic user. Replace
TRONIC_DBPASSWORD with a suitable password:

mysql -u root -p

2.1. Bare Metal Service Installation Guide 25

Ironic Documentation, Release 19.0.1.dev90

Install and configure components

1. Install from packages (using apt-get)

apt-get install ironic-api ironic-conductor python3-ironicclient

2. Enable services
Services are enabled by default on Ubuntu.

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But
the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
TRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following
option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

(continues on next page)

26 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_TIP with the public IP of the Identity server, PRIVATE_IDENTITY_IP with
the private IP of the Identity server and replace IRONIC_PASSWORD with the password you chose
for the ironic user in the Identity service:

(continues on next page)

2.1. Bare Metal Service Installation Guide 27

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

4. Create the Bare Metal service database tables:

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

Fedora/RHELS&/CentOS8/SUSE:

Ubuntu:

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note: This is optional, the ironic APIs can be run using independent scripts that provide HTTP servers.
But it is generally considered more performant and flexible to run them using a generic HT TP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHEL8/CentOS8:

Debian/Ubuntu:

28 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

SUSE:

2. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache
sites:

Fedora/RHEL8/CentOS8:

Debian/Ubuntu:

SUSE:

3. Edit the recently copied <apache-configuration-dir>/ironic.conf:

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in IRONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

4. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.
Apach will fail to start:

Fedora/RHEL8/CentOS8/SUSE:

Debian/Ubuntu:

5. Enable the apache ironic in site and reload:

Fedora/RHELS8/CentOS8:

Debian/Ubuntu:

SUSE:

2.1. Bare Metal Service Installation Guide 29

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 19.0.1.dev90

Note: The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN
directory. It should not be modified.

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

If you want to pass a configuration file, use:

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

Note: If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same
network as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace TRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

30 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

You can optionally change the host and the port the JSON RPC service will bind to, for example:

Warning: Hostnames of ironic-conductor machines must be resolvable by ironic-api services
when JSON RPC is used.

4. Configure credentials for accessing other OpenStack services.

2.1. Bare Metal Service Installation Guide 31

Ironic Documentation, Release 19.0.1.dev90

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

* [neutron] - to access the OpenStack Networking service

* [glance] - to access the OpenStack Image service

* [swift] - to access the OpenStack Object Storage service

* [cinder] - to access the OpenStack Block Storage service

* [inspector] - to access the OpenStack Bare Metal Introspection service

* [service_catalog] - a special section holding credentials the Bare Metal service will use
to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

* Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

* HTTPS connection with specific CA SSL certificate when making requests
* the same service user as configured for ironic-api service

* dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

— replace IDENTITY_IP with the IP of the Identity server, and replace IRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

(continues on next page)

32

Chapter 2. Installation Guide

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must
be installed and configured, see Configure the Image service for temporary URLs. Ceph
Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning

from the admin guide.

. Restart the ironic-conductor service:

Fedora/RHEL7/CentOS7/SUSE:

Ubuntu:

2.1.

Bare Metal Service Installation Guide 33

Ironic Documentation, Release 19.0.1.dev90

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Bare Metal service for openSUSE Leap 42.2 and
SUSE Linux Enterprise Server 12 SP2.

Note: Installation of the Bare Metal service on openSUSE and SUSE Linux Enterprise Server is not
officially supported. Nevertheless, installation should be possible.

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

1. In MySQL, create an ironic database that is accessible by the ironic user. Replace
TRONIC_DBPASSWORD with a suitable password:

mysql -u root -p

Install and configure components

1. Install from packages

zypper install openstack-ironic-api openstack-ironic-conductor python3-
—ironicclient

2. Enable services

systemctl openstack-ironic-api openstack-ironic-conductor
systemctl start openstack-ironic-api openstack-ironic-conductor

34 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But
the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
IRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following

option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

(continues on next page)

2.1. Bare Metal Service Installation Guide 35

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_TIP with the public IP of the Identity server, PRIVATE_IDENTITY_TIP with
the private IP of the Identity server and replace IRONIC_PASSWORD with the password you chose
for the ironic user in the Identity service:

(continues on next page)

36

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

4. Create the Bare Metal service database tables:

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note: This is optional, the ironic APIs can be run using independent scripts that provide HTTP servers.
But it is generally considered more performant and flexible to run them using a generic HT TP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHELS8/CentOSS:

Debian/Ubuntu:

SUSE:

2. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache
sites:

Fedora/RHEL8/CentOS8:

2.1. Bare Metal Service Installation Guide 37

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 19.0.1.dev90

Debian/Ubuntu:

SUSE:

3. Edit the recently copied <apache-configuration-dir>/ironic.conf:

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in I[RONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

4. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.
Apach will fail to start:

Fedora/RHELS8/CentOS8/SUSE:

Debian/Ubuntu:

5. Enable the apache ironic in site and reload:

Fedora/RHEL8/CentOS8:

Debian/Ubuntu:

SUSE:

Note: The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN
directory. It should not be modified.

38 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

If you want to pass a configuration file, use:

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

Note: If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same
network as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace TRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

2.1. Bare Metal Service Installation Guide 39

Ironic Documentation, Release 19.0.1.dev90

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

You can optionally change the host and the port the JSON RPC service will bind to, for example:

Warning: Hostnames of ironic-conductor machines must be resolvable by ironic-api services
when JSON RPC is used.

4. Configure credentials for accessing other OpenStack services.

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

* [neutron] - to access the OpenStack Networking service

40 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

* [glance] - to access the OpenStack Image service

* [swift] - to access the OpenStack Object Storage service

* [cinder] - to access the OpenStack Block Storage service

* [inspector] - to access the OpenStack Bare Metal Introspection service

* [service_catalog] - a special section holding credentials the Bare Metal service will use
to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

» Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

* HTTPS connection with specific CA SSL certificate when making requests
* the same service user as configured for ironic-api service

* dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

— replace IDENTITY_TIP with the IP of the Identity server, and replace IRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

(continues on next page)

2.1. Bare Metal Service Installation Guide 41

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must
be installed and configured, see Configure the Image service for temporary URLs. Ceph
Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning

from the admin guide.

. Restart the ironic-conductor service:

Fedora/RHEL7/CentOS7/SUSE:

Ubuntu:

42

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

2.1.4 Building or downloading a deploy ramdisk image

Ironic depends on having an image with the ironic-python-agent (IPA) service running on it for controlling
and deploying bare metal nodes.

Two kinds of images are published on every commit from every branch of ironic-python-agent (IPA)

e DIB images are suitable for production usage and can be downloaded from https://tarballs.

openstack.org/ironic-python-agent/dib/files/.
— For Train and older use CentOS 7 images.

— For Ussuri and newer use CentOS 8 images.

Warning: CentOS 7 master images are no longer updated and must not be used.

Warning: The published images will not work for dhcp-less deployments since the simple-init
element is not present. Check the DIB documentation to see how to build the image.

» TinyIPA images are suitable for CI and testing environments and can be downloaded from https:

/ltarballs.openstack.org/ironic-python-agent/tinyipa/files/.

Building from source

Check the ironic-python-agent-builder project for information on how to build ironic-python-agent
ramdisks.

2.1.5 Integration with other OpenStack services

Configure the Identity service for the Bare Metal service

1.

Create the Bare Metal service user (for example, ironic). The service uses this to authenticate
with the Identity service. Use the service tenant and give the user the admin role:

openstack user create --password IRONIC_PASSWORD
--email ironic@example.com ironic
openstack role add --project service --user ironic admin

. You must register the Bare Metal service with the Identity service so that other OpenStack services

can locate it. To register the service:

openstack service create --name ironic --description
baremetal

. Use the id property that is returned from the Identity service when registering the service (above),

to create the endpoint, and replace IRONIC_NODE with your Bare Metal services API node:

2.1.

Bare Metal Service Installation Guide 43

https://docs.openstack.org/ironic-python-agent/19.0/
https://docs.openstack.org/ironic-python-agent/19.0/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://docs.openstack.org/ironic-python-agent-builder/latest/

Ironic Documentation, Release 19.0.1.dev90

openstack endpoint create --region RegionOne
baremetal admin http:// 16385

openstack endpoint create --region RegionOne
baremetal public http:// 16385

openstack endpoint create --region RegionOne
baremetal internal http:// 16385

4. You may delegate limited privileges related to the Bare Metal service to your Users by creat-
ing Roles with the OpenStack Identity service. By default, the Bare Metal service expects the
baremetal_admin and baremetal_observer Roles to exist, in addition to the default admin Role.
There is no negative consequence if you choose not to create these Roles. They can be created
with the following commands:

openstack role create baremetal_admin
openstack role create baremetal_observer

If you choose to customize the names of Roles used with the Bare Metal service, do so by changing
the is_member, is_observer, and is_admin policy settings in /etc/ironic/policy.yaml.

More complete documentation on managing Users and Roles within your OpenStack deployment
are outside the scope of this document, but may be found here.

5. You can further restrict access to the Bare Metal service by creating a separate baremetal Project,
so that Bare Metal resources (Nodes, Ports, etc) are only accessible to members of this Project:

openstack project create baremetal

At this point, you may grant read-only access to the Bare Metal service API without granting any
other access by issuing the following commands:

openstack user create
--domain default --project-domain default --project baremetal
--password PASSWORD USERNAME

openstack role add
--user-domain default --project-domain default --project baremetal
--user USERNAME baremetal_observer

6. Further documentation is available elsewhere for the openstack command-line client and the
Identity service. A policy.yaml.sample file, which enumerates the services default policies, is
provided for your convenience with the Bare Metal Service.

Configure the Compute service to use the Bare Metal service

The Compute service needs to be configured to use the Bare Metal services driver. The configuration
file for the Compute service is typically located at /etc/nova/nova.conf.

Note: As of the Newton release, it is possible to have multiple nova-compute services running the ironic
virtual driver (in nova) to provide redundancy. Bare metal nodes are mapped to the services via a hash
ring. If a service goes down, the available bare metal nodes are remapped to different services.

44 Chapter 2. Installation Guide

https://docs.openstack.org/keystone/19.0/admin/identity-concepts.html#user-management
https://docs.openstack.org/python-openstackclient/19.0/cli/authentication.html
https://docs.openstack.org/keystone/19.0/admin/cli-manage-projects-users-and-roles.html

Ironic Documentation, Release 19.0.1.dev90

Once active, a node will stay mapped to the same nova-compute even when it goes down. The node is
unable to be managed through the Compute API until the service responsible returns to an active state.

The following configuration file must be modified on the Compute services controller nodes and compute
nodes.

1. Change these configuration options in the Compute service configuration file (for example, /etc/
nova/nova.conf):

Note: The alternative to setting the discover_hosts_in_cells_interval option is to run the
following command on any Compute controller node after each node is enrolled:

2. Consider enabling the following option on controller nodes:

(continues on next page)

2.1. Bare Metal Service Installation Guide 45

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

Enabling this option is beneficial as it reduces re-scheduling events
for ironic nodes when scheduling is based on resource classes,

especially for mixed hypervisor case with host_subset_size = 1.

However enabling it will also make packing of VMs on hypervisors

less dense even when scheduling weights are completely disabled.
#shuffle_best_same_weighed _hosts = false

. Carefully consider the following option:

[compute]

This option will cause nova-compute to set itself to a disabled state
if a certain number of consecutive build failures occur. This will
prevent the scheduler from continuing to send builds to a compute
service that is consistently failing. In the case of bare metal
provisioning, however, a compute service is rarely the cause of build
failures. Furthermore, bare metal nodes, managed by a disabled
compute service, will be remapped to a different one. That may cause
the second compute service to also be disabled, and so on, until no
compute services are active.

If this is not the desired behavior, consider increasing this value or
setting it to 0 to disable this behavior completely.
#consecutive_build_service_disable_threshold = 10

O W R T W R W K R W

. Change these configuration options in the ironic section. Replace:

* TRONIC_PASSWORD with the password you chose for the ironic user in the Identity Service
» TRONIC_NODE with the hostname or IP address of the ironic-api node
e IDENTITY_IP with the IP of the Identity server

[ironic]

Ironic authentication type
auth_type=password

Keystone API endpoint
auth_url=http://IDENTITY_IP:5000/v3

Ironic keystone project name
project_name=service

Ironic keystone admin name
username=ironic

Ironic keystone admin password
password=IRONIC_PASSWORD

Ironic keystone project domain
or set project_domain_id

(continues on next page)

46

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

5. On the Compute services controller nodes, restart the nova-scheduler process:

6. On the Compute services compute nodes, restart the nova-compute process:

Configure the Networking service for bare metal provisioning

You need to configure Networking so that the bare metal server can communicate with the Networking
service for DHCP, PXE boot and other requirements. This section covers configuring Networking for a
single flat network for bare metal provisioning.

It is recommended to use the baremetal ML2 mechanism driver and L2 agent for proper integration
with the Networking service. Documentation regarding installation and configuration of the baremetal
mechanism driver and L2 agent is available here.

For use with routed networks the baremetal MLL2 components are required.

Note: When the baremetal ML2 components are not used, ports in the Networking service will have
status: DOWN, and binding_vif type: binding_failed. This was always the status for Bare Metal service
flat network interface ports prior to the introduction of the baremetal ML2 integration. For a non-routed
network, bare metal servers can still be deployed and are functional, despite this port binding state in the
Networking service.

You will also need to provide Bare Metal service with the MAC address(es) of each node that it is provi-
sioning; Bare Metal service in turn will pass this information to Networking service for DHCP and PXE
boot configuration. An example of this is shown in the Enrollment section.

1. Install the networking-baremetal ML2 mechanism driver and L2 agent in the Networking service.

2. Edit /etc/neutron/plugins/ml2/ml2_conf.ini and modify these:

(continues on next page)

2.1. Bare Metal Service Installation Guide 47

https://docs.openstack.org/networking-baremetal/19.0/index.html
https://docs.openstack.org/neutron/19.0/admin/config-routed-networks

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

3. Restart the neutron-server service, to load the new configuration.

4. Create and edit /etc/neutron/plugins/ml2/ironic_neutron_agent.ini and add the re-

quired configuration. For example:

. Make sure the ironic-neutron-agent service is started.

. If neutron-openvswitch-agent runs with ovs_neutron_plugin.ini as the input config-file, edit

ovs_neutron_plugin.ini to configure the bridge mappings by adding the [ovs] section de-
scribed in the previous step, and restart the neutron-openvswitch-agent.

. Add the integration bridge to Open vSwitch:

ovs-vsctl add-br br-int

. Create the br-eth2 network bridge to handle communication between the OpenStack services (and

the Bare Metal services) and the bare metal nodes using eth2. Replace eth2 with the interface on
the network node which you are using to connect to the Bare Metal service:

ovs-vsctl add-br br-eth2
ovs-vsctl add-port br-eth2 eth2

. Restart the Open vSwitch agent:

service neutron-plugin-openvswitch-agent restart

48

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

10. On restarting the Networking service Open vSwitch agent, the veth pair between the bridges br-int
and br-eth2 is automatically created.

Your Open vSwitch bridges should look something like this after following the above steps:

ovs-vsctl show

11. Create the flat network on which you are going to launch the instances:

openstack network create --project sharednetl --share
--provider-network-type flat --provider-physical-network physnetl

12. Create the subnet on the newly created network:

openstack subnet create --network sharednetl
--subnet-range --ip-version 4 --gateway
--allocation-pool ,end --dhcp

2.1. Bare Metal Service Installation Guide 49

Ironic Documentation, Release 19.0.1.dev90

Configuring services for bare metal provisioning using IPv6

Use of IPv6 addressing for baremetal provisioning requires additional configuration. This page covers
the IPv6 specifics only. Please refer to Configure tenant networks and Configure the Networking service
for bare metal provisioning for general networking configuration.

Configure ironic PXE driver for provisioning using IPv6 addressing

The PXE drivers operate in such a way that they are able to utilize both IPv4 and IPv6 addresses based
upon the deployments operating state and configuration. Internally, the drivers attempt to prepare config-
uration options for both formats, which allows ports which are IPv6 only to automatically receieve boot
parameters. As a result of this, it is critical that the [DEFAULT Jmy_ipv6 configuration parameter is set
to the conductors IPv6 address. This option is unique per conductor, and due to the nature of automatic
address assignment, it cannot be guessed by the software.

Provisioning with IPv6 stateless addressing

When using stateless addressing DHCPv6 does not provide addresses to the client. DHCPv6 however
provides other configuration via DHCPv6 options such as the bootfile-url and bootfile-parameters.

Once the PXE driver is set to operate in IPv6 mode no further configuration is required in the Baremetal
Service.

Creating networks and subnets in the Networking Service

When creating the Baremetal Service network(s) and subnet(s) in the Networking Services, subnets
should have ipv6-address-mode set to dhcpv6-stateless and ip-version set to 6. Depending
on whether a router in the Networking Service is providing RAs (Router Advertisements) or not, the
ipv6-ra-mode for the subnet(s) should either be set to dhcpv6-stateless or be left unset.

Note: If ipv6-ra-mode is left unset, an external router on the network is expected to provide RAs with
the appropriate flags set for automatic addressing and other configuration.

Provisioning with IPv6 stateful addressing

When using stateful addressing DHCPv6 is providing both addresses and other configuration via
DHCPv6 options such as the bootfile-url and bootfile- parameters.

The identity-association (IA) construct used by DHCPv6 is challenging when booting over the network.
Firmware, and ramdisks typically end up using different DUID/IAID combinations and it is not always
possible for one chain- booting stage to release its address before giving control to the next step. In case
the DHCPv6 server is configured with static reservations only the result is that booting will fail because
the DHCPv6 server has no addresses available. To get past this issue either configure the DHCPv6 server
with multiple address reservations for each host, or use a dynamic range.

50 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Note: Support for multiple address reservations requires dnsmasq version 2.81 or later. Some distribu-
tions may backport this feature to earlier dnsmasq version as part of the packaging, check the distributions
release notes.

If a different (not dnsmasq) DHCPv6 server backend is used with the Networking service, use of multiple
address reservations might not work.

Using the flat network interface

Due to the identity-association challenges with DHCPv6 provisioning using the flat network interface
is not recommended. When ironic operates with the flat network interface the server instance port
is used for provisioning and other operations. Ironic will not use multiple address reservations in this
scenario. Because of this it will not work in most cases.

Using the neutron network interface

When using the neutron network interface the Baremetal Service will allocate multiple IPv6 ad-
dresses (4 addresses per port by default) on the service networks used for provisioning, cleaning, res-
cue and introspection. The number of addresses allocated can be controlled via the [neutron]/
dhcpv6_stateful_address_count option in the Bare Metal Services configuration file (/etc/
ironic/ironic.conf). Using multiple address reservations ensures that the DHCPv6 server can lease
addresses to each step.

To enable IPv6 provisioning on neutron flat provider networks with no switch management,
the local_link_connection field of baremetal ports must be set to {'network_type':
'"unmanaged'}. The following example shows how to set the local_link_connection for operation on
unmanaged networks:

The use of multiple IPv6 addresses must also be enabled in the Networking Services dhcp
agent configuration (/etc/neutron/dhcp_agent.ini) by setting the option [DEFAULT]/
dnsmasq_enable_addr6_list to True (default False in Ussuri release).

Note: Support for multiple IPv6 address reservations in the dnsmasq backend was added to the Net-
working Service Ussuri release. It was also backported to the stable Train release.

2.1. Bare Metal Service Installation Guide 51

Ironic Documentation, Release 19.0.1.dev90

Creating networks and subnets in the Networking Service

When creating the ironic service network(s) and subnet(s) in the Networking Service, subnets should
have ipv6-address-mode set to dhcpv6-stateful and ip-version set to 6. Depending on whether
a router in the Networking Service is providing RAs (Router Advertisements) or not, the ipv6-ra-mode
for the subnet(s) should be set to either dhcpv6-stateful or be left unset.

Note: If ipv6-ra-mode is left unset, an external router on the network is expected to provide RAs with
the appropriate flags set for managed addressing and other configuration.

Configure the Image service for temporary URLs

Some drivers of the Baremetal service (in particular, any drivers using Direct deploy or Ansible deploy
interfaces, and some virtual media drivers) require target user images to be available over clean HTTP(S)
URL with no authentication involved (neither username/password-based, nor token-based).

When using the Baremetal service integrated in OpenStack, this can be achieved by specific configuration
of the Image service and Object Storage service as described below.

1. Configure the Image service to have object storage as a backend for storing images. For more
details, please refer to the Image service configuration guide.

Note: When using Ceph+RadosGW for Object Storage service, images stored in Image service
must be available over Object Storage service as well.

2. Enable TempURLSs for the Object Storage account used by the Image service for storing images in
the Object Storage service.

1. Check if TempURLS are enabled:

$ openstack object store account show

o e +
Field Value

o B T e +
Account AUTH_bc39£1d9dcf9486899088007789ae643
Bytes
Containers
Objects
properties | Temp-Url-Key

o - B T +

2. If property Temp-Url-Key is set, note its value.

3. If property Temp-Url-Key is not set, you have to configure it (secret is used in the example
below for the value):

$ openstack object store account --property Temp-Url-Key secret

52 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

3. Optionally, configure the ironic-conductor service. The default configuration assumes that:
1. the Object Storage service is implemented by swift,
2. the Object Storage service URL is available from the service catalog,

3. the project, used by the Image service to access the Object Storage, is the same as the project,
used by the Bare Metal service to access it,

4. the container, used by the Image service, is called glance.

If any of these assumptions do not hold, you may want to change your configuration file (typically
located at /etc/ironic/ironic.conf), for example:

4. (Re)start the ironic-conductor service.

Enabling HTTPS

Enabling HTTPS in Swift

The drivers using virtual media use swift for storing boot images and node configuration information
(contains sensitive information for Ironic conductor to provision bare metal hardware). By default,
HTTPS is not enabled in swift. HTTPS is required to encrypt all communication between swift and
Ironic conductor and swift and bare metal (via virtual media). It can be enabled in one of the following
ways:

* Using an SSL termination proxy

* Using native SSL support in swift (recommended only for testing purpose by swift).

Enabling HTTPS in Image service

Ironic drivers usually use Image service during node provisioning. By default, image service does not
use HTTPS, but it is required for secure communication. It can be enabled by making the following
changes to /etc/glance/glance-api.conft:

1. Configuring SSL support

2. Restart the glance-api service:

See the Glance documentation, for more details on the Image service.

2.1. Bare Metal Service Installation Guide 53

https://docs.openstack.org/swift/19.0/
https://docs.openstack.org/security-guide/secure-communication/tls-proxies-and-http-services.html
https://docs.openstack.org/swift/19.0/deployment_guide.html
https://docs.openstack.org/glance/19.0/configuration/configuring.html#configuring-ssl-support
https://docs.openstack.org/glance/19.0/

Ironic Documentation, Release 19.0.1.dev90

Enabling HTTPS communication between Image service and Object storage

This section describes the steps needed to enable secure HTTPS communication between Image service
and Object storage when Object storage is used as the Backend.

To enable secure HTTPS communication between Image service and Object storage follow these steps:
1. Enabling HTTPS in Swift
2. Configure Swift Storage Backend
3. Enabling HTTPS in Image service

Enabling HTTPS communication between Image service and Bare Metal service

This section describes the steps needed to enable secure HTTPS communication between Image service
and Bare Metal service.

To enable secure HTTPS communication between Bare Metal service and Image service follow these
steps:

1. Edit /etc/ironic/ironic.conf:

Note: glance_cafile is an optional path to a CA certificate bundle to be used to validate the SSL
certificate served by Image service.

2. If not using the keystone service catalog for the Image service API endpoint discovery, also
edit the endpoint_override option to point to HTTPS URL of image service (replace
<GLANCE_API_ADDRESS> with hostname[:port][path] of the Image service endpoint):

3. Restart ironic-conductor service:

54 Chapter 2. Installation Guide

https://docs.openstack.org/glance/19.0/configuration/configuring.html#configuring-the-swift-storage-backend

Ironic Documentation, Release 19.0.1.dev90

Configure the Bare Metal service for cleaning

Note: If you configured the Bare Metal service to do Automated cleaning (which is enabled by default),
you will need to set the cleaning_network configuration option.

1. Note the network UUID (the id field) of the network you created in Configure the Networking
service for bare metal provisioning or another network you created for cleaning:

openstack network list

2. Configure the cleaning network UUID via the cleaning_network option in the Bare Metal ser-
vice configuration file (/etc/ironic/ironic.conf). In the following, replace NETWORK_UUID
with the UUID you noted in the previous step:

3. Restart the Bare Metal services ironic-conductor:

Configure tenant networks

Below is an example flow of how to set up the Bare Metal service so that node provisioning will happen
in a multi-tenant environment (which means using the neutron network interface as stated above):

1. Network interfaces can be enabled on ironic-conductor by adding them to the
enabled_network_interfaces configuration option under the default section of the
configuration file:

Keep in mind that, ideally, all ironic-conductors should have the same list of enabled network
interfaces, but it may not be the case during ironic-conductor upgrades. This may cause problems
if one of the ironic-conductors dies and some node that is taken over is mapped to an ironic-
conductor that does not support the nodes network interface. Any actions that involve calling the
nodes driver will fail until that network interface is installed and enabled on that ironic-conductor.

2. It is recommended to set the default network interface via the default_network_interface
configuration option under the default section of the configuration file:

2.1. Bare Metal Service Installation Guide 55

Ironic Documentation, Release 19.0.1.dev90

This default value will be used for all nodes that dont have a network interface explicitly specified
in the creation request.

If this configuration option is not set, the default network interface is determined by looking at the
[dhcpldhcp_provider configuration option value. If it is neutron, then flat network interface
becomes the default, otherwise noop is the default.

. Define a provider network in the Networking service, which we shall refer to as the provision-

ing network. Using the neutron network interface requires that provisioning_network and
cleaning_network configuration options are set to valid identifiers (UUID or name) of networks
in the Networking service. If these options are not set correctly, cleaning or provisioning will fail
to start. There are two ways to set these values:

* Under the neutron section of ironic configuration file:

e Under provisioning network and cleaning_network keys of the nodes
driver_info field as driver_info['provisioning_network'] and
driver_info['cleaning_network'] respectively.

Note: If these provisioning_network and cleaning_network values are not specified in
nodes driver_info then ironic falls back to the configuration in the neutron section.

Please refer to Configure the Bare Metal service for cleaning for more information about cleaning.

Warning: Please make sure that the Bare Metal service has exclusive access to the provi-
sioning and cleaning networks. Spawning instances by non-admin users in these networks and
getting access to the Bare Metal services control plane is a security risk. For this reason, the
provisioning and cleaning networks should be configured as non-shared networks in the admin
tenant.

Note: When using the flat network interface, bare metal instances are normally spawned onto
the provisioning network. This is not supported with the neutron interface and the deployment
will fail. Please ensure a different network is chosen in the Networking service when a bare metal
instance is booted from the Compute service.

Note: The provisioning and cleaning networks may be the same network or distinct networks.
To ensure that communication between the Bare Metal service and the deploy ramdisk works, it is
important to ensure that security groups are disabled for these networks, or that the default security
groups allow:

* DHCP
» TFTP

 egress port used for the Bare Metal service (6385 by default)

56

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

* ingress port used for ironic-python-agent (9999 by default)

* if using Direct deploy, the egress port used for the Object Storage service or the local HTTP
server (typically 80 or 443)

* if using iPXE, the egress port used for the HTTP server running on the ironic-conductor
nodes (typically 80).

4. This step is optional and applicable only if you want to use security groups during provisioning
and/or cleaning of the nodes. If not specified, default security groups are used.

1. Define security groups in the Networking service, to be used for provisioning and/or cleaning
networks.

2. Add the list of these security group UUIDs under the neutron section of ironic-conductors
configuration file as shown below:

[neutron]

cleaning_network=$CLEAN_UUID_OR_NAME
cleaning_network_security_groups=[$LIST_OF_CLEAN_SECURITY_GROUPS]
provisioning_network=$PROVISION_UUID_OR_NAME

provisioning _network_security_groups=[$LIST_OF_PROVISION_SECURITY_
—GROUPS]

Multiple security groups may be applied to a given network, hence, they are specified as a
list. The same security group(s) could be used for both provisioning and cleaning networks.

Warning: If security groups are configured as described above, do not set the
port_security_enabled flag to False for the corresponding Networking services network or port.
This will cause the deploy to fail.

For example: if provisioning_network_security_groups configuration option is used,
ensure that port_security_enabled flag for the provisioning network is set to True. This flag is
set to True by default; make sure not to override it by manually setting it to False.

5. Install and configure a compatible ML2 mechanism driver which supports bare metal provisioning
for your switch. See ML2 plugin configuration manual for details.

6. Restart the ironic-conductor and ironic-api services after the modifications:

* Fedora/RHELS8/CentOS8:

Ubuntu:

7. Make sure that the ironic-conductor is reachable over the provisioning network by trying to down-
load a file from a TFTP server on it, from some non-control-plane server in that network:

2.1. Bare Metal Service Installation Guide 57

https://docs.openstack.org/neutron/19.0/admin/config-ml2.html

Ironic Documentation, Release 19.0.1.dev90

tftp $TFTP_IP -c get $FILENAME

where FILENAME is the file located at the TFTP server.

See Multi-tenancy in the Bare Metal service for required node configuration.

Add images to the Image service

1. Build or download the user images as described in Creating instance images.
2. Add the user images to the Image service

Load all the images created in the below steps into the Image service, and note the image UUIDs
in the Image service for each one as it is generated.

For partition images:

* Add the kernel and ramdisk images to the Image service:

openstack image create my-kernel --public
--disk-format aki --container-format aki --file my-image.vmlinuz

Store the image uuid obtained from the above step as MY_VMLINUZ_UUID.

openstack image create my-image.initrd --public
--disk-format ari --container-format ari --file my-image.initrd

Store the image UUID obtained from the above step as MY_INITRD_UUID.

* Add the my-image to the Image service which is going to be the OS that the user is going to
run. Also associate the above created images with this OS image. These two operations can
be done by executing the following command:

openstack image create my-image --public

--disk-format gcow2 --container-format bare --property
--property
--file my-image.qgcow2

For whole disk images, skip uploading and configuring kernel and ramdisk images completely,
proceed directly to uploading the main image:

openstack image create my-whole-disk-image --public
--disk-format gcow2 --container-format bare
--file my-whole-disk-image.qcow2

Warning: The kernel/initramfs pair must not be set for whole disk images, otherwise theyll
be mistaken for partition images.

3. Build or download the deploy images

The deploy images are used initially for preparing the server (creating disk partitions) before the
actual OS can be deployed.

58 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

There are several methods to build or download deploy images, please read the Building or down-
loading a deploy ramdisk image section.

4. Add the deploy images to the Image service

Add the deployment kernel and ramdisk images to the Image service:

openstack image create deploy-vmlinuz --public
--disk-format aki --container-format aki
--file ironic-python-agent.vmlinuz

Store the image UUID obtained from the above step as DEPLOY_VMLINUZ_UUID.

openstack image create deploy-initrd --public
--disk-format ari --container-format ari
--file ironic-python-agent.initramfs

Store the image UUID obtained from the above step as DEPLOY_INITRD_UUID.

Create flavors for use with the Bare Metal service

Youll need to create a special bare metal flavor in the Compute service. The flavor is mapped to the bare
metal node through the nodes resource_class field (available starting with Bare Metal API version
1.21). A flavor can request exactly one instance of a bare metal resource class.

Note that when creating the flavor, its useful to add the RAM_MB and CPU properties as a convenience to
users, although they are not used for scheduling. The DISK_GB property is also not used for scheduling,
but is still used to determine the root partition size.

1. Change these to match your hardware:

2. Create the bare metal flavor by executing the following command:

openstack flavor create --ram --vcpus --disk
my-baremetal-flavor

Note: You can add --id <id> to specify an ID for the flavor.

See the docs on this command for other options that may be specified.

After creation, associate each flavor with one custom resource class. The name of a custom resource
class that corresponds to a nodes resource class (in the Bare Metal service) is:

* the bare metal nodes resource class all upper-cased
* prefixed with CUSTOM_
* all punctuation replaced with an underscore

For example, if the resource class is named baremetal-small, associate the flavor with this custom
resource class via:

2.1. Bare Metal Service Installation Guide 59

https://docs.openstack.org/python-openstackclient/19.0/cli/command-objects/flavor.html#flavor-create

Ironic Documentation, Release 19.0.1.dev90

openstack flavor --property resources:CUSTOM_BAREMETAL_SMALL 1 my-
—baremetal-flavor

Another set of flavor properties must be used to disable scheduling based on standard properties for a
bare metal flavor:

openstack flavor --property resources:VCPU 0 my-baremetal-flavor

openstack flavor --property resources:MEMORY_MB 0 my-baremetal-flavor

openstack flavor --property resources:DISK_GB 0 my-baremetal-flavor
Example

If you want to define a class of nodes called baremetal .with-GPU, start with tagging some nodes with
it:

baremetal node <node> --resource-class baremetal.with-GPU

Warning: It is possible to add a resource class to active nodes, but it is not possible to replace
an existing resource class on them.

Then you can update your flavor to request the resource class instead of the standard properties:

openstack flavor --property resources:CUSTOM_BAREMETAL_WITH_GPU 1 my-
—baremetal-flavor

openstack flavor --property resources:VCPU (0 my-baremetal-flavor

openstack flavor --property resources:MEMORY_MB 0 my-baremetal-flavor

openstack flavor --property resources:DISK_GB 0 my-baremetal-flavor

Note how Dbaremetal.with-GPU in the nodes resource_class field becomes
CUSTOM_BAREMETAL_WITH_GPU in the flavors properties.

Scheduling based on traits

Starting with the Queens release, the Compute service supports scheduling based on qualitative attributes
using traits. Starting with Bare Metal REST API version 1.37, it is possible to assign a list of traits to
each bare metal node. Traits assigned to a bare metal node will be assigned to the corresponding resource
provider in the Compute service placement APL.

When creating a flavor in the Compute service, required traits may be specified via flavor properties. The
Compute service will then schedule instances only to bare metal nodes with all of the required traits.

Traits can be either standard or custom. Standard traits are listed in the os_traits library. Custom traits
must meet the following requirements:

* prefixed with CUSTOM_
* contain only upper case characters A to Z, digits O to 9, or underscores

* no longer than 255 characters in length

60 Chapter 2. Installation Guide

https://docs.openstack.org/os-traits/latest/

Ironic Documentation, Release 19.0.1.dev90

A bare metal node can have a maximum of 50 traits.

Example

To add the standard trait HW_CPU_X86_VMX and a custom trait CUSTOM_TRAIT1 to a node:

baremetal node add trait <node> CUSTOM_TRAIT1 HW_CPU_X86_VMX

Then, update the flavor to require these traits:

openstack flavor --property trait:CUSTOM_TRAIT1 required my-baremetal-
—flavor

openstack flavor --property trait:HW_CPU_X86_VMX required my-baremetal-
—flavor

2.1.6 Set up the drivers for the Bare Metal service

Enabling drivers and hardware types

Introduction

The Bare Metal service delegates actual hardware management to drivers. Drivers, also called hard-
ware types, consist of hardware interfaces: sets of functionality dealing with some aspect of bare metal
provisioning in a vendor-specific way. There are generic hardware types (eg. redfish and ipmi), and
vendor-specific ones (eg. ilo and irmc).

Note: Starting with the Rocky release, the terminologies driver, dynamic driver, and hardware type
have the same meaning in the scope of Bare Metal service.

Enabling hardware types

Hardware types are enabled in the configuration file of the ironic-conductor service by setting the
enabled_hardware_types configuration option, for example:

Due to the drivers dynamic nature, they also require configuring enabled hardware interfaces.

Note: All available hardware types and interfaces are listed in setup.cfg file in the source code tree.

2.1. Bare Metal Service Installation Guide 61

https://opendev.org/openstack/ironic/src/branch/master/setup.cfg

Ironic Documentation, Release 19.0.1.dev90

Enabling hardware interfaces

There are several types of hardware interfaces:

bios manages configuration of the BIOS settings of a bare metal node. This interface is vendor-specific
and can be enabled via the enabled_bios_interfaces option:

See BIOS Configuration for details.

boot manages booting of both the deploy ramdisk and the user instances on the bare metal node. See
Boot interfaces for details.

Boot interface implementations are often vendor specific, and can be enabled via the
enabled_boot_interfaces option:

Boot interfaces with pxe in their name require Configuring PXE and iPXE. There are also a few
hardware-specific boot interfaces - see Drivers, Hardware Types and Hardware Interfaces for their
required configuration.

console manages access to the serial console of a bare metal node. See Configuring Web or Serial
Console for details.

deploy defines how the image gets transferred to the target disk. See Deploy Interfaces for an explanation
of the difference between supported deploy interfaces.

The deploy interfaces can be enabled as follows:

Note: The direct deploy interface requires the Object Storage service or an HTTP service

inspect implements fetching hardware information from nodes. Can be implemented out-of-band (via
contacting the nodes BMC) or in-band (via booting a ramdisk on a node). The latter implementa-
tion is called inspector and uses a separate service called ironic-inspector. Example:

See Hardware Inspection for more details.

management provides additional hardware management actions, like getting or setting boot devices.
This interface is usually vendor-specific, and its name often matches the name of the hardware
type (with ipmitool being a notable exception). For example:

62 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-inspector/19.0/

Ironic Documentation, Release 19.0.1.dev90

Using ipmitool requires Configuring IPMI support. See Drivers, Hardware Types and Hardware
Interfaces for the required configuration of each driver.

network connects/disconnects bare metal nodes to/from virtual networks. See Configure tenant net-
works for more details.

power runs power actions on nodes. Similar to the management interface, it is usually vendor-specific,
and its name often matches the name of the hardware type (with ipmitool being again an excep-
tion). For example:

Using ipmitool requires Configuring IPMI support. See Drivers, Hardware Types and Hardware
Interfaces for the required configuration of each driver.

raid manages building and tearing down RAID on nodes. Similar to inspection, it can be implemented
either out-of-band or in-band (via agent implementation). See RAID Configuration for details.
For example:

storage manages the interaction with a remote storage subsystem, such as the Block Storage service,
and helps facilitate booting from a remote volume. This interface ensures that volume target and
connector information is updated during the lifetime of a deployed instance. See Boot From Volume
for more details.

This interface defaults to a noop driver as it is considered an opt-in interface which requires addi-
tional configuration by the operator to be usable.

For example:

vendor is a place for vendor extensions to be exposed in API. See Vendor Methods for details.

Here is a complete configuration example, enabling two generic protocols, IPMI and Redfish, with a few
additional features:

(continues on next page)

2.1. Bare Metal Service Installation Guide 63

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

Note that some interfaces have implementations named no-<TYPE> where <TYPE> is the interface type.
These implementations do nothing and return errors when used from API.

Hardware interfaces in multi-conductor environments

When enabling hardware types and their interfaces, make sure that for every enabled hardware type,
the whole set of enabled interfaces matches for all conductors. However, different conductors can have
different hardware types enabled.

For example, you can have two conductors with the following configuration respectively:

But you cannot have two conductors with the following configuration respectively:

This is because the redfish hardware type will have different enabled deploy interfaces on these conduc-
tors. It would have been fine, if the second conductor had enabled_deploy_interfaces = direct

64 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

instead of ansible.

This situation is not detected by the Bare Metal service, but it can cause inconsistent behavior in the API,
when node functionality will depend on which conductor it gets assigned to.

Note: We dont treat this as an error, because such femporary inconsistency is inevitable during a rolling
upgrade or a configuration update.

Configuring interface defaults

When an operator does not provide an explicit value for one of the interfaces (when creating a node
or updating its driver), the default value is calculated as described in Defaults for hardware inter-
Jaces. It is also possible to override the defaults for any interfaces by setting one of the options named
default_<IFACE>_interface, where <IFACE> is the interface name. For example:

This configuration forces the default deploy interface to be direct and the default network interface to
be neutron for all hardware types.

The defaults are calculated and set on a node when creating it or updating its hardware type. Thus,
changing these configuration options has no effect on existing nodes.

Warning: The default interface implementation must be configured the same way across all conduc-
tors in the cloud, except maybe for a short period of time during an upgrade or configuration update.
Otherwise the default implementation will depend on which conductor handles which node, and this
mapping is not predictable or even persistent.

Warning: These options should be used with care. If a hardware type does not support the provided
default implementation, its users will have to always provide an explicit value for this interface when
creating a node.

Configuring PXE and iPXE

DHCP server setup

A DHCP server is required by PXE/iPXE client. You need to follow steps below.

1. Setthe [dhcp] /dhcp_provider to neutron in the Bare Metal Services configuration file (/etc/
ironic/ironic.conf):

Note: Refer Configure tenant networks for details. The dhcp_provider configuration is already
set by the configuration defaults, and when you create subnet, DHCP is also enabled if you do not

2.1. Bare Metal Service Installation Guide 65

Ironic Documentation, Release 19.0.1.dev90

add any dhcp options at openstack subnet create command.

2. Enable DHCP in the subnet of PXE network.
3. Set the ip address range in the subnet for DHCP.

Note: Refer Configure the Networking service for bare metal provisioning for details about the
two precedent steps.

4. Connect the openstack DHCP agent to the external network through the OVS bridges and the in-
terface eth2.

Note: Refer Configure the Networking service for bare metal provisioning for details. You do not
require this part if br-int, br-eth2 and eth?2 are already connected.

5. Configure the host ip at br-eth2. If it locates at eth2, do below:

Note: Replace eth2 with the interface on the network node which you are using to connect to the
Bare Metal service.

TFTP server setup

In order to deploy instances via PXE, a TFTP server needs to be set up on the Bare Metal service nodes
which run the ironic-conductor.

1. Make sure the tftp root directory exist and can be written to by the user the ironic-conductor
is running as. For example:

2. Install tftp server:

Ubuntu:

RHELS/CentOS8/Fedora:

SUSE:

66 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

3. Using xinetd to provide a tftp server setup to serve /tftpboot. Create or edit /etc/xinetd.d/
tftp as below:

and restart the xinetd service:

Ubuntu:

Fedora/RHELS8/CentOS8/SUSE:

Note: In certain environments the networks MTU may cause TFTP UDP packets to get frag-
mented. Certain PXE firmwares struggle to reconstruct the fragmented packets which can cause
significant slow down or even prevent the server from PXE booting. In order to avoid this, TFTPd
provides an option to limit the packet size so that it they do not get fragmented. To set this additional
option in the server_args above:

4. Create a map file in the tftp boot directory (/tftpboot):

2.1. Bare Metal Service Installation Guide 67

Ironic Documentation, Release 19.0.1.dev90

UEFI PXE - Grub setup

In order to deploy instances with PXE on bare metal nodes which support UEFI, perform these additional
steps on the ironic conductor node to configure the PXE UEFI environment.

1. Install Grub2 and shim packages:
Ubuntu (18.04LTS and later):

RHELS&/CentOS8/Fedora:

SUSE:

2. Copy grub and shim boot loader images to /tftpboot directory:
Ubuntu (18.04LTS and later):

Fedora:

RHELS8/CentOSS8:

SUSE:

3. Create master grub.cfg:

Ubuntu: Create grub.cfg under /tftpboot/grub directory:

Fedora: Create grub.cfg under /tftpboot/EFI/fedora directory:

RHELS8/CentOSS8: Create grub.cfg under /tftpboot/EFI/centos directory:

68 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

SUSE: Create grub.cfg under /tftpboot/boot/grub directory:

Create directory GRUB_DIR:

sudo mkdir -p $GRUB_DIR

This file is used to redirect grub to baremetal node specific config file. It redirects it to specific
grub config file based on DHCP IP assigned to baremetal node.

set default=master
set timeout=>5
set hidden_timeout_quiet=false

menuentry "master" {
configfile /tftpboot/$net_default_mac.conf
3

Change the permission of grub.cfg:

sudo chmod 644 $GRUB_DIR/grub.cfg

. Update the bare metal node with boot_mode :uefi capability in nodes properties field. See Boor

mode support for details.

. Make sure that bare metal node is configured to boot in UEFI boot mode and boot device is set to

network/pxe.

Note: Some drivers, e.g. ilo, irmc and redfish, support automatic setting of the boot mode
during deployment. This step is not required for them. Please check Drivers, Hardware Types and
Hardware Interfaces for information on whether your driver requires manual UEFI configuration.

Legacy BIOS - Syslinux setup

In order to deploy instances with PXE on bare metal using Legacy BIOS boot mode, perform these
additional steps on the ironic conductor node.

1. Install the syslinux package with the PXE boot images:

Ubuntu (16.04LTS and later):

RHELS8/CentOS8/Fedora:

SUSE:

2.1.

Bare Metal Service Installation Guide 69

Ironic Documentation, Release 19.0.1.dev90

2. Copy the PXE image to /tftpboot. The PXE image might be found at':
Ubuntu (16.04LTS and later):

RHELS/CentOS8/SUSE:

3. If whole disk images need to be deployed via PXE-netboot, copy the chain.c32 image to /
tftpboot to support it:

Ubuntu (16.04LTS and later):

Fedora:

RHELS8/CentOS8/SUSE:

4. If the version of syslinux is greater than 4 we also need to make sure that we copy the library
modules into the /tftpboot directory’'. For example, for Ubuntu run:

5. Update the bare metal node with boot_mode :bios capability in nodes properties field. See Boor
mode support for details.

6. Make sure that bare metal node is configured to boot in Legacy BIOS boot mode and boot device
is set to network/pxe.

iPXE setup

If you will be using iPXE to boot instead of PXE, iPXE needs to be set up on the Bare Metal service
node(s) where ironic-conductor is running.

1. Make sure these directories exist and can be written to by the user the ironic-conductor is
running as. For example:

(continues on next page)

! On Fedora/RHEL the syslinux-tftpboot package already installs the library modules and PXE image at /tftpboot.
If the TFTP server is configured to listen to a different directory you should copy the contents of /tftpboot to the configured
directory

2 http://www.syslinux.org/wiki/index.php/Library_modules

70 Chapter 2. Installation Guide

http://www.syslinux.org/wiki/index.php/Library_modules

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

2. Create a map file in the tftp boot directory (/tftpboot):

3. Setup TFTP and HTTP servers.

These servers should be running and configured to use the local /tftpboot and /httpboot directories
respectively, as their root directories. (Setting up these servers is outside the scope of this install
guide.)

These root directories need to be mounted locally to the ironic-conductor services, so that the
services can access them.

The Bare Metal services configuration file (/etc/ironic/ironic.conf) should be edited accordingly to
specify the TFTP and HTTP root directories and server addresses. For example:

See also: Deploying outside of the provisioning network.
4. Install the iPXE package with the boot images:
Ubuntu:

RHELS&/CentOS8/Fedora:

Note: SUSE does not provide a package containing iPXE boot images. If you are using SUSE
or if the packaged version of the iPXE boot image doesnt work, you can download a prebuilt one

2.1. Bare Metal Service Installation Guide 71

Ironic Documentation, Release 19.0.1.dev90

from http://boot.ipxe.org or build one image from source, see http://ipxe.org/download for more
information.

. Copy the iPXE boot image (undionly.kpxe for BIOS and ipxe.efi for UEFI) to /tftpboot.

The binary might be found at:

Ubuntu:

Fedora/RHELS8/CentOSS:

Note: snponly variants may not be available for all distributions.

. Enable/Configure iPXE overrides in the Bare Metal Services configuration file if required

(/etc/ironic/ironic.conf):

Note: Most UEFI systems have integrated networking which means the
[pxe]uefi_ipxe_bootfile_name setting should be set to snponly.efi or
ipxe-snponly-x86_64.efi if its available for your distribution.

Note: Setting the iPXE parameters noted in the code block above to no value, in other words
setting a line to something like ipxe_bootfile_name= will result in ironic falling back to the
default values of the non-iPXE PXE settings. This is for backwards compatability.

. Ensure iPXE is the default PXE, if applicable.

In earlier versions of ironic, a [pxe]ipxe_enabled setting allowing operators to declare the be-
havior of the conductor to exclusively operate as if only iPXE was to be used. As time moved on,
iPXE functionality was moved to its own ipxe boot interface.

If you want to emulate that same hehavior, set the following in the configuration file
(/etc/ironic/ironic.conf):

72

Chapter 2. Installation Guide

http://boot.ipxe.org
http://ipxe.org/download

Ironic Documentation, Release 19.0.1.dev90

Note: The [DEFAULT]enabled_boot_interfaces setting may be exclusively set to ipxe, how-
ever ironic has multiple interfaces available depending on the hardware types available for use.

8. Itis possible to configure the Bare Metal service in such a way that nodes will boot into the deploy
image directly from Object Storage. Doing this avoids having to cache the images on the ironic-
conductor host and serving them via the ironic-conductors HTTP server. This can be done if:

1. the Image Service is used for image storage;
2. the images in the Image Service are internally stored in Object Storage;

3. the Object Storage supports generating temporary URLs for accessing objects stored in it.
Both the OpenStack Swift and RADOS Gateway provide support for this.

* See Ceph Object Gateway support on how to configure the Bare Metal Service with
RADOS Gateway as the Object Storage.

Configure this by setting the [pxe]/ipxe_use_swift configuration option to True as follows:

Although the HTTP server still has to be deployed and configured (as it will serve iPXE boot
script and boot configuration files for nodes), such configuration will shift some load from ironic-
conductor hosts to the Object Storage service which can be scaled horizontally.

Note that when SSL is enabled on the Object Storage service you have to ensure that iPXE firmware
on the nodes can indeed boot from generated temporary URLs that use HTTPS protocol.

9. Restart the ironic-conductor process:

Fedora/RHEL8/CentOS8/SUSE:

Ubuntu:

2.1. Bare Metal Service Installation Guide 73

Ironic Documentation, Release 19.0.1.dev90

PXE multi-architecture setup

It is possible to deploy servers of different architecture by one conductor. To use this feature,
architecture-specific boot and template files must be configured using the configuration options
[pxe]pxe_bootfile_name_by_arch and [pxe]pxe_config_template_by_arch respectively, in
the Bare Metal services configuration file (/etc/ironic/ironic.conf).

These two options are dictionary values; the key is the architecture and the value is the boot (or
config template) file. A nodes cpu_arch property is used as the key to get the appropriate boot
file and template file. If the nodes cpu_arch is not in the dictionary, the configuration options
(in [pxe] group) pxe_bootfile_name, pxe_config_template, uefi_pxe_bootfile_name and
uefi_pxe_config_template will be used instead.

In the following example, since x86 and x86_64 keys are not in the pxe_bootfile_name_by_arch or
pxe_config_template_by_arch options, x86 and x86_64 nodes will be deployed by pxelinux.0 or
bootx64.efi, depending on the nodes boot_mode capability (bios or uefi). However, aarch64 nodes will
be deployed by grubaa64.efi, and ppc64 nodes by bootppc64:

[pxe]

Bootfile DHCP parameter. (string value)
pxe_bootfile_name=pxelinux.®

On ironic-conductor node, template file for PXE
configuration. (string value)
pxe_config_template = $pybasedir/drivers/modules/pxe_config.template

Bootfile DHCP parameter for UEFI boot mode. (string value)
uefi_pxe_bootfile_name=bootx64.efi

On ironic-conductor node, template file for PXE
configuration for UEFI boot loader. (string value)
uefi_pxe_config_template=$pybasedir/drivers/modules/pxe_grub_config.template

Bootfile DHCP parameter per node architecture. (dict value)
pxe_bootfile_name_by_arch=aarch64:grubaa64.efi,ppc64:bootppc64

On ironic-conductor node, template file for PXE

configuration per node architecture. For example:

aarch64:/opt/share/grubaa64_pxe_config.template (dict value)
pxe_config_template_by_arch=aarch64:pxe_grubaa64_config.template,ppc6b4:pxe_
—ppc6b4_config.template

Note: The grub implementation may vary on different architecture, you may need to tweak the pxe
config template for a specific arch. For example, grubaa64.efi shipped with CentoOS7 does not support
linuxefi and initrdefi commands, youll need to switch to use 1inux and initrd command instead.

Note: A [pxel]ipxe_bootfile_name_by_arch setting is available for multi-arch iPXE based deploy-
ment, and defaults to the same behavior as the comperable [pxe]pxe_bootfile_by_arch setting for

74 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

standard PXE.

PXE timeouts tuning

Because of its reliance on UDP-based protocols (DHCP and TFTP), PXE is particularly vulnerable to
random failures during the booting stage. If the deployment ramdisk never calls back to the bare metal
conductor, the build will be aborted, and the node will be moved to the deploy failed state, after the de-
ploy callback timeout. This timeout can be changed via the conductor.deploy_callback_timeout
configuration option.

Starting with the Train release, the Bare Metal service can retry PXE boot if it takes too long. The timeout
is defined via pxe.boot_retry_timeout and must be smaller than the deploy_callback_timeout,
otherwise it will have no effect.

For example, the following configuration sets the overall timeout to 60 minutes, allowing two retries after
20 minutes:

PXE artifacts

Ironic features the capability to load PXE artifacts into the conductor startup, minimizing the need for
external installation and configuration management tooling from having to do additional work to facili-
tate.

While this is an advanced feature, and destination file names must match existing bootloader configured
filenames.

For example, if using iPXE and GRUB across interfaces, you may desire a configuration similar to this
example.

If you choose to use relative paths as part of your destination, those paths will be created using config-
uration parameter [pxe]dir_permission where as actual files copied are set with the configuration
parameter [pxe]file_permission. Absolute destination paths are not supported and will result in
ironic failing to start up as it is a misconfiguration of the deployment.

2.1. Bare Metal Service Installation Guide 75

Ironic Documentation, Release 19.0.1.dev90

Configuring IPMI support

Installing ipmitool command

To enable one of the drivers that use IPMI protocol for power and management actions (for example,
ipmi), the ipmitool command must be present on the service node(s) where ironic-conductor is
running. On most distros, it is provided as part of the ipmitool package. Source code is available at
http://ipmitool.sourceforge.net/.

Warning: Certain distros, notably Mac OS X and SLES, install openipmi instead of ipmitool
by default. This driver is not compatible with openipmi as it relies on error handling options not
provided by this tool.

Please refer to the /PMI driver for information on how to configure and use IPMlItool-based drivers.

Configuring hardware

IPMI is a relatively old protocol and may require additional set up on the hardware side that the Bare
Metal service cannot do automatically:

1. Make sure IPMI is enabled and the account you use have the permissions to change power and boot
devices. By default the adminstrator rights are expected, you can change it: see Using a different
privilege level.

2. Make sure the cipher suites are configured for maximum security. Suite 17 is recommended, 3 can
be used if its not available. Cipher suite 0 must be disabled as it provides unauthenticated access
to the BMC.

See also:
Cipher suites

3. Make sure the boot mode correspond to the expected boot mode on the node (see Boot mode
support). Some hardware is able to change the boot mode to the requested by Ironic, some does
not.

Validation and troubleshooting

Check that you can connect to, and authenticate with, the [IPMI controller in your bare metal server by
running ipmitool:

where <ip-address> is the IP of the IPMI controller you want to access. This is not the bare metal
nodes main IP. The IPMI controller should have its own unique IP.

If the above command doesnt return the power status of the bare metal server, check that
e ipmitool is installed and is available via the $PATH environment variable.

* The IPMI controller on your bare metal server is turned on.

76 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://ipmitool.sourceforge.net/

Ironic Documentation, Release 19.0.1.dev90

* The IPMI controller credentials and IP address passed in the command are correct.

* The conductor node has a route to the IPMI controller. This can be checked by just pinging the
IPMI controller IP from the conductor node.

IPMI configuration

If there are slow or unresponsive BMCs in the environment, the min_command_interval configuration
option in the [ipmi] section may need to be raised. The default is fairly conservative, as setting this
timeout too low can cause older BMCs to crash and require a hard-reset.

Collecting sensor data

Bare Metal service supports sending IPMI sensor data to Telemetry with certain hardware types, such as
ipmi, ilo and irmc. By default, support for sending IPMI sensor data to Telemetry is disabled. If you
want to enable it, you should make the following two changes in ironic.conf:

If you want to customize the sensor types which will be sent to Telemetry, change the
send_sensor_data_types option. For example, the below settings will send information about tem-
perature, fan, voltage from sensors to the Telemetry service:

Supported sensor types are defined by the Telemetry service, currently these are Temperature, Fan,
Voltage, Current. Special value A11 (the default) designates all supported sensor types.

2.1.7 Enrollment

After all the services have been properly configured, you should enroll your hardware with the Bare Metal
service, and confirm that the Compute service sees the available hardware. The nodes will be visible to
the Compute service once they are in the available provision state.

Note: After enrolling nodes with the Bare Metal service, the Compute service will not be immediately
notified of the new resources. The Compute services resource tracker syncs periodically, and so any
changes made directly to the Bare Metal services resources will become visible in the Compute service
only after the next run of that periodic task. More information is in the Troubleshooting section.

Note: Any bare metal node that is visible to the Compute service may have a workload scheduled to it,
if both the power and management interfaces pass the validate check. If you wish to exclude a node
from the Compute services scheduler, for instance so that you can perform maintenance on it, you can
set the node to maintenance mode. For more information see the Maintenance mode section.

2.1. Bare Metal Service Installation Guide 77

Ironic Documentation, Release 19.0.1.dev90

Choosing a driver

When enrolling a node, the most important information to supply is driver. See Enabling drivers and
hardware types for a detailed explanation of bare metal drivers, hardware types and interfaces. The
driver list command can be used to list all drivers enabled on all hosts:

The specific driver to use should be picked based on actual hardware capabilities and expected features.
See Drivers, Hardware Types and Hardware Interfaces for more hints on that.

Each driver has a list of driver properties that need to be specified via the nodes driver_info field, in
order for the driver to operate on node. This list consists of the properties of the hardware interfaces that
the driver uses. These driver properties are available with the driver property list command:

baremetal driver property list ipmi

The properties marked as required must be supplied either during node creation or shortly after. Some
properties may only be required for certain features.

78 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Note on API versions
Starting with API version 1.11, the Bare Metal service added a new initial provision state of enroll to
its state machine. When this or later API version is used, new nodes get this state instead of available.

Existing automation tooling that use an API version lower than 1.11 are not affected, since the initial pro-
vision state is still available. However, using API version 1.11 or above may break existing automation
tooling with respect to node creation.

The default API version used by (the most recent) python-ironicclient is 1.9, but it may change in the
future and should not be relied on.

In the examples below we will use version 1.11 of the Bare metal API. This gives us the following
advantages:

» Explicit power credentials validation before leaving the enroll state.
* Running node cleaning before entering the available state.
* Not exposing half-configured nodes to the scheduler.

To set the API version for all commands, you can set the environment variable TRONIC_API_VERSION.
For the OpenStackClient baremetal plugin, set the OS_BAREMETAL_API_VERSION variable to the same
value. For example:

.11
.11

Enroliment process

Creating a node

This section describes the main steps to enroll a node and make it available for provisioning. Some steps
are shown separately for illustration purposes, and may be combined if desired.

1. Create a node in the Bare Metal service with the node create command. At a minimum, you
must specify the driver name (for example, ipmi).

This command returns the node UUID along with other information about the node. The nodes
provision state will be enroll:

.11
baremetal node create --driver ipmi

(continues on next page)

2.1. Bare Metal Service Installation Guide 79

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

baremetal node show dfc6189f-ad83-4261-9bda-b27258eb1987

A node may also be referred to by a logical name as well as its UUID. A name can be assigned to
the node during its creation by adding the -n option to the node create command or by updating
an existing node with the node set command. See Logical Names for examples.

. Starting with API version 1.31 (and python-ironicclient 1.13), you can pick which hard-

ware interface to use with nodes that use hardware types. Each interface is represented by a node
field called <IFACE>_interface where <IFACE> in the interface type, e.g. boot. See Enabling
drivers and hardware types for details on hardware interfaces.

An interface can be set either separately:

baremetal node --deploy-interface direct --raid-
—interface agent

or set during node creation:

baremetal node create --driver ipmi
--deploy-interface direct
--raid-interface agent

If no value is provided for some interfaces, Defaults for hardware interfaces are used instead.

. Update the node driver_info with the required driver properties, so that the Bare Metal service

can manage the node:

baremetal node
--driver-info

(continues on next page)

80

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

--driver-info
--driver-info

Note: If IPMI is running on a port other than 623 (the default). The port must be added to
driver_info by specifying the ipmi_port value. Example:

baremetal node --driver-info

You may also specify all driver_info parameters during node creation by passing the driver-info
option multiple times:

baremetal node create --driver ipmi
--driver-info
--driver-info
--driver-info

See Choosing a driver above for details on driver properties.

Specify a deploy kernel and ramdisk compatible with the nodes driver, for example:

baremetal node
--driver-info
--driver-info

See Add images to the Image service for details.

. Optionally you can specify the provisioning and/or cleaning network UUID or name in the nodes

driver_info. The neutron network interface requires both provisioning_network and
cleaning_network, while the flat network interface requires the cleaning_network to be
set either in the configuration or on the nodes. For example:

baremetal node
--driver-info
--driver-info

See Configure tenant networks for details.

. You must also inform the Bare Metal service of the network interface cards which are part of the

node by creating a port with each NICs MAC address. These MAC addresses are passed to the
Networking service during instance provisioning and used to configure the network appropriately:

baremetal port create --node

Note: When it is time to remove the node from the Bare Metal service, the command used to
remove the port is baremetal port delete <port uuid>. When doing so, it is important to
ensure that the baremetal node is not in maintenance as guarding logic to prevent orphaning
Neutron Virtual Interfaces (VIFs) will be overridden.

2.1.

Bare Metal Service Installation Guide 81

Ironic Documentation, Release 19.0.1.dev90

Adding scheduling information

1. Assign a resource class to the node. A resource class should represent a class of hardware in your
data center, that corresponds to a Compute flavor.

For example, lets split hardware into these three groups:
1. nodes with a lot of RAM and powerful CPU for computational tasks,
2. nodes with powerful GPU for OpenCL computing,
3. smaller nodes for development and testing.

We can define three resource classes to reflect these hardware groups, named large-cpu,
large-gpu and small respectively. Then, for each node in each of the hardware groups, well
set their resource_class appropriately via:

baremetal node --resource-class

The --resource-class argument can also be used when creating a node:

baremetal node create --driver --resource-class

To use resource classes for scheduling you need to update your flavors as described in Create flavors
for use with the Bare Metal service.

Note: This is not required for standalone deployments, only for those using the Compute service
for provisioning bare metal instances.

2. Update the nodes properties to match the actual hardware of the node:

baremetal node
--property
--property
--property

As above, these can also be specified at node creation by passing the property option to node
create multiple times:

baremetal node create --driver ipmi
--driver-info
--driver-info
--driver-info
--property
--property
--property

These values can also be discovered during Hardware Inspection.

Warning: The value provided for the local_gb property must match the size of the root
device youre going to deploy on. By default ironic-python-agent picks the smallest disk which
is not smaller than 4 GiB.

82 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

If you override this logic by using root device hints (see Specifying the disk for deployment
(root device hints)), the local_gb value should match the size of picked target disk.

3. If you wish to perform more advanced scheduling of the instances based on hardware capabilities,

you may add metadata to each node that will be exposed to the Compute scheduler (see: Compute-
CapabilitiesFilter). A full explanation of this is outside of the scope of this document. It can be
done through the special capabilities member of node properties:

baremetal node
--property keyl:vall,key2:val2

Some capabilities can also be discovered during Hardware Inspection.

. If you wish to perform advanced scheduling of instances based on qualitative attributes of bare

metal nodes, you may add traits to each bare metal node that will be exposed to the Compute sched-
uler (see: Scheduling based on traits for a more in-depth discussion of traits in the Bare Metal ser-
vice). For example, to add the standard trait HW_CPU_X86_VMX and a custom trait CUSTOM_TRAIT1
to a node:

baremetal node add trait
CUSTOM_TRAIT1 HW_CPU_X86_VMX

Validating node information

. To check if Bare Metal service has the minimum information necessary for a nodes driver to be

functional, you may validate it:

baremetal node validate

If the node fails validation, each driver interface will return information as to why it failed:

baremetal node validate

—

{continues on next page)
N

2.1.

Bare Metal Service Installation Guide 83

https://docs.openstack.org/nova/19.0/user/filter-scheduler.html
https://docs.openstack.org/nova/19.0/user/filter-scheduler.html

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

When using the Compute Service with the Bare Metal service, it is safe to ignore the deploy inter-
faces validation error due to lack of image information. You may continue the enrollment process.
This information will be set by the Compute Service just before deploying, when an instance is
requested:

baremetal node validate

(continues on next page)

84

Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

—

Making node available for deployment

In order for nodes to be available for deploying workloads on them, nodes must be in the available
provision state. To do this, nodes created with API version 1.11 and above must be moved from the
enroll state to the manageable state and then to the available state. This section can be safely
skipped, if API version 1.10 or earlier is used (which is the case by default).

After creating a node and before moving it from its initial provision state of enroll, basic power and
port information needs to be configured on the node. The Bare Metal service needs this information
because it verifies that it is capable of controlling the node when transitioning the node from enroll to
manageable state.

To move a node from enroll to manageable provision state:

baremetal node manage
baremetal node show

(continues on next page)

2.1. Bare Metal Service Installation Guide 85

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

—

Note: Since it is an asynchronous call, the response for baremetal node manage will not indicate
whether the transition succeeded or not. You can check the status of the operation via baremetal node
show. If it was successful, provision_state will be in the desired state. If it failed, there will be
information in the nodes last_error.

When a node is moved from the manageable to available provision state, the node will go through
automated cleaning if configured to do so (see Configure the Bare Metal service for cleaning).

To move a node from manageable to available provision state:

baremetal node provide
baremetal node show

For more details on the Bare Metal services state machine, see the Bare Metal State Machine documen-
tation.

86 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Mapping nodes to Compute cells

If the Compute service is used for scheduling, and the discover_hosts_in_cells_interval was
not set as described in Configure the Compute service to use the Bare Metal service, then log into any
controller node and run the following command to map the new node(s) to Compute cells:

Logical names

A node may also be referred to by a logical name as well as its UUID. Names can be assigned either
during its creation by adding the -n option to the node create command or by updating an existing
node with the node set command.

Node names must be unique, and conform to:
e 1fc952
e rfcl123
e wiki_hostname

The node is named example in the following examples:

baremetal node create --driver ipmi --name example

or

baremetal node --name example

Once assigned a logical name, a node can then be referred to by name or UUID interchangeably:

baremetal node create --driver ipmi --name example

baremetal node show example

(continues on next page)

2.1. Bare Metal Service Installation Guide 87

https://tools.ietf.org/html/rfc952
https://tools.ietf.org/html/rfc1123
https://en.wikipedia.org/wiki/Hostname

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

Defaults for hardware interfaces

For hardware types, users can request one of enabled implementations when creating or updating a node
as explained in Creating a node.

When no value is provided for a certain interface when creating a node, or changing a nodes hardware
type, the default value is used. You can use the driver details command to list the current enabled and
default interfaces for a hardware type (for your deployment):

baremetal driver show ipmi

The defaults are calculated as follows:

1. If the default_<IFACE>_interface configuration option (where <IFACE> is the interface
name) is set, its value is used as the default.

If this implementation is not compatible with the nodes hardware type, an error is returned to a
user. An explicit value has to be provided for the nodes <IFACE>_interface field in this case.

2. Otherwise, the first supported implementation that is enabled by an operator is used as the default.

88 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

A list of supported implementations is calculated by taking the intersection between the im-
plementations supported by the nodes hardware type and implementations enabled by the
enabled_<IFACE>_interfaces option (where <IFACE> is the interface name). The calcula-
tion preserves the order of items, as provided by the hardware type.

If the list of supported implementations is not empty, the first one is used. Otherwise, an error is
returned to a user. In this case, an explicit value has to be provided for the <IFACE>_interface
field.

See Enabling drivers and hardware types for more details on configuration.

Example

Consider the following configuration (shortened for simplicity):

A new node is created with the ipmi driver and no interfaces specified:

.31
baremetal node create --driver ipmi

Then the defaults for the interfaces that will be used by the node in this example are calculated as follows:
deploy An explicit value of ansible is provided for default_deploy_interface, so it is used.

power No default is configured. @ The ipmi hardware type supports only ipmitool power.
The intersection between supported power interfaces and values provided in the
enabled_power_interfaces option has only one item: ipmitool. It is used.

console No default is configured. The ipmi hardware type supports the following console interfaces:
ipmitool-socat, ipmitool-shellinabox and no-console (in this order). Of these three,
only two are enabled: no-console and ipmitool-shellinabox (order does not matter). The
intersection contains ipmitool-shellinabox and no-console. The first item is used, and it is
ipmitool-shellinabox.

management Following the same calculation as power, the ipmitool management interface is used.

2.1. Bare Metal Service Installation Guide 89

Ironic Documentation, Release 19.0.1.dev90

Hardware Inspection

The Bare Metal service supports hardware inspection that simplifies enrolling nodes - please see Hard-
ware Inspection for details.

Tenant Networks and Port Groups

See Multi-tenancy in the Bare Metal service and Port groups support.

2.1.8 Using Bare Metal service as a standalone service
This guide explains how to configure and use the Bare Metal service standalone, i.e. without other

OpenStack services. In this mode users are interacting with the bare metal API directly, not though
OpenStack Compute.

Configuration

This guide covers manual configuration of the Bare Metal service in the standalone mode. Alternatively,
Bifrost can be used for automatic configuration.

Service settings

It is possible to use the Bare Metal service without other OpenStack services. You should make the
following changes to /etc/ironic/ironic.conf:

1. Choose an authentication strategy which supports standalone, one option is noauth:

Another option is ht tp_basic where the credentials are stored in an Apache htpasswd format file:

Only the bcrypt format is supported, and the Apache hfpasswd utility can be used to populate the
file with entries, for example:

htpasswd -nbB myName myPassword >> /etc/ironic/htpasswd

2. If you want to disable the Networking service, you should have your network pre-configured to
serve DHCP and TFTP for machines that youre deploying. To disable it, change the following
lines:

920 Chapter 2. Installation Guide

https://docs.openstack.org/bifrost/latest/
https://httpd.apache.org/docs/current/misc/password_encryptions.html

Ironic Documentation, Release 19.0.1.dev90

Note: If you disabled the Networking service and the driver that you use is supported by at most
one conductor, PXE boot will still work for your nodes without any manual config editing. This
is because you know all the DHCP options that will be used for deployment and can set up your
DHCEP server appropriately.

If you have multiple conductors per driver, it would be better to use Networking since it will do all
the dynamically changing configurations for you.

3. If you want to disable using a messaging broker between conductor and API processes, switch to
JSON RPC instead:

JSON RPC also has its own authentication strategy. If it is not specified then the stategy defaults
to [DEFAULT] auth_strategy. The following will set JSON RPC to noauth:

For http_basic the conductor server needs a credentials file to validate requests:

The API server also needs client-side credentials to be specified:

4. Starting with the Yoga release series, you can use a combined API+conductor service and com-
pletely disable the RPC. Set

and use the ironic executable to start the combined service.

Note: The combined service also works with RPC enabled, which can be useful for some deploy-
ments, but may not be advisable for all security models.

2.1. Bare Metal Service Installation Guide 91

Ironic Documentation, Release 19.0.1.dev90

Using CLI

To use the baremetal CLI, set up these environment variables. If the noauth authentication strategy
is being used, the value none must be set for OS_AUTH_TYPE. OS_ENDPOINT is the URL of the
ironic-api process. For example:

none
http://localhost:6385/

If the http_basic authentication strategy is being used, the value http_basic must be set for
OS_AUTH_TYPE. For example:

http_basic
http://localhost:6385/
myUser
myPassword

Enroliment
Preparing images

If you dont use Image service, its possible to provide images to Bare Metal service via a URL.

At the moment, only two types of URLSs are acceptable instead of Image service UUIDs: HTTP(S) URLs
(for example, http://my.server.net/images/img) and file URLs (file:///images/img).

There are however some limitations for different hardware interfaces:

* If youre using Direct deploy with HTTP(s) URLSs, you have to provide the Bare Metal service with
the a checksum of your instance image.

MDS is used by default for backward compatibility reasons. To compute an MDS5 checksum, you
can use the following command:

md5sum image.qgcow?2

Alternatively, use a SHA256 checksum or any other algorithm supported by the Pythons hashlib,
e.g.:

sha256sum image.gcow?2

* Direct deploy started supporting file:// images in the Victoria release cycle, before that only
HTTP(s) had been supported.

Warning: File images must be accessible to every conductor! Use a shared file system if
you have more than one conductor. The ironic CLI tool will not transfer the file from a local
machine to the conductor(s).

92 Chapter 2. Installation Guide

https://docs.openstack.org/python-ironicclient/19.0/cli/osc_plugin_cli.html
http://my.server.net/images/img
file:///images/img
https://docs.python.org/3/library/hashlib.html

Ironic Documentation, Release 19.0.1.dev90

Note: The Bare Metal service tracks content changes for non-Glance images by checking their modifi-
cation date and time. For example, for HTTP image, if Last-Modified header value from response to a
HEAD request to http://my.server.net/images/deploy.ramdisk is greater than cached image modification
time, Ironic will re-download the content. For file:// images, the file system modification time is used.

If the HTTP server does not provide the last modification date and time, the image will be redownloaded
every time it is used.

Enrolling nodes

1. Create a node in Bare Metal service. At minimum, you must specify the driver name (for example,
ipmi). You can also specify all the required driver parameters in one command. This will return

the node UUID:
baremetal node create --driver ipmi
--driver-info ipmi.server.net
--driver-info user
--driver-info pass
--driver-info file:///images/deploy.vmlinuz
--driver-info http://my.server.net/images/deploy.
—ramdisk
.
o
o
o
o
o

Note that here deploy_kernel and deploy_ramdisk contain links to images instead of Image service

2.1. Bare Metal Service Installation Guide 93

http://my.server.net/images/deploy.ramdisk
file://

Ironic Documentation, Release 19.0.1.dev90

UUIDs.

2. As in case of Compute service, you can also provide capabilities to node properties, but they
will be used only by Bare Metal service (for example, boot mode). Although you dont need to add
properties like memory_mb, cpus etc. as Bare Metal service will require UUID of a node youre
going to deploy.

3. Then create a port to inform Bare Metal service of the network interface cards which are part of
the node by creating a port with each NICs MAC address. In this case, theyre used for naming of
PXE configs for a node:

baremetal port create --node

Once the installation is done, please see Deploying with Bare Metal service for information on how to
deploy bare metal machines.

Deploying

The content has been migrated, please see Deploying with Bare Metal service.

2.1.9 Enabling the configuration drive (configdrive)

The Bare Metal service supports exposing a configuration drive image to the instances.

The configuration drive is used to store instance-specific metadata and is present to the instance as a
disk partition labeled config-2. The configuration drive has a maximum size of 64MB. One use case
for using the configuration drive is to expose a networking configuration when you do not use DHCP to
assign IP addresses to instances.

The configuration drive is usually used in conjunction with the Compute service, but the Bare Metal
service also offers a standalone way of using it. The following sections will describe both methods.

When used with Compute service

To enable the configuration drive for a specific request, pass --config-drive true parameter to the
nova boot command, for example:

Its also possible to enable the configuration drive automatically on all instances by configuring the
OpenStack Compute service to always create a configuration drive by setting the following option
in the /etc/nova/nova. conf file, for example:

In some cases, you may wish to pass a user customized script when deploying an instance. To do this,
pass --user-data /path/to/file to the nova boot command.

94 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

When used standalone

When used without the Compute service, the operator needs to create a configuration drive and provide
the file or HTTP URL to the Bare Metal service. See Deploying with a config drive for details.

Configuration drive storage in an object store

Under normal circumstances, the configuration drive can be stored in the Bare Metal service when the
size is less than 64KB. Optionally, if the size is larger than 64KB there is support to store it in a swift
endpoint. Both swift and radosgw use swift-style APIs.

The following option in /etc/ironic/ironic.conf enables swift as an object store backend to store
config drive. This uses the Identity service to establish a session between the Bare Metal service and the
Object Storage service.

Use the following options in /etc/ironic/ironic.conf to enable radosgw. Credentials in the swift
section are needed because radosgw will not use the Identity service and relies on radosgws username
and password authentication instead.

If the Direct deploy is being used, edit /etc/glance/glance-api.conf to store the instance images
in respective object store (radosgw or swift) as well:

2.1. Bare Metal Service Installation Guide 95

Ironic Documentation, Release 19.0.1.dev90

Accessing the configuration drive data

When the configuration drive is enabled, the Bare Metal service will create a partition on the instance
disk and write the configuration drive image onto it. The configuration drive must be mounted before
use. This is performed automatically by many tools, such as cloud-init and cloudbase-init. To mount it
manually on a Linux distribution that supports accessing devices by labels, simply run the following:

If the guest OS doesnt support accessing devices by labels, you can use other tools such as blkid to
identify which device corresponds to the configuration drive and mount it, for example:

CONFIG_DEV=$(blkid -t LABEL="config-2" -odevice)
mkdir -p /mnt/config
mount $CONFIG_DEV /mnt/config

Cloud-init integration
The configuration drive can be especially useful when used with cloud-init, but in order to use it we
should follow some rules:

* Cloud-init data should be organized in the expected format.

* Since the Bare Metal service uses a disk partition as the configuration drive, it will only work with
cloud-init version >= 0.7.5.

* Cloud-init has a collection of data source modules, so when building the image with disk-image-
builder we have to define DIB_CLOUD_INIT_DATASOURCES environment variable and set the ap-
propriate sources to enable the configuration drive, for example:

For more information see how to configure cloud-init data sources.

2.1.10 Advanced features
Local boot with partition images
The Bare Metal service supports local boot with partition images, meaning that after the deployment the

nodes subsequent reboots wont happen via PXE or Virtual Media. Instead, it will boot from a local boot
loader installed on the disk.

Note: Whole disk images, on the contrary, support only local boot, and use it by default.

Its important to note that in order for this to work the image being deployed with Bare Metal service
must contain grub?2 installed within it.

Enabling the local boot is different when Bare Metal service is used with Compute service and without
it. The following sections will describe both methods.

96 Chapter 2. Installation Guide

http://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html
https://docs.openstack.org/nova/latest/user/vendordata.html
https://github.com/cloud-init/cloud-init/blob/2d6e4219db73e80c135efd83753f9302f778f08d/ChangeLog
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/elements/cloud-init-datasources/README.html

Ironic Documentation, Release 19.0.1.dev90

Enabling local boot with Compute service

To enable local boot we need to set a capability on the bare metal node, for example:

Nodes having boot_option set to local may be requested by adding an extra_spec to the Compute
service flavor, for example:

Note: If the node is configured to use UEFI, Bare Metal service will create an EFT partition on the
disk and switch the partition table format to gpt. The EFI partition will be used later by the boot
loader (which is installed from the deploy ramdisk).

Enabling local boot without Compute

Since adding capabilities to the nodes properties is only used by the nova scheduler to perform more
advanced scheduling of instances, we need a way to enable local boot when Compute is not present. To
do that we can simply specify the capability via the instance_info attribute of the node, for example:

Specifying the disk for deployment (root device hints)
The Bare Metal service supports passing hints to the deploy ramdisk about which disk it should pick for
the deployment. The list of supported hints is:

¢ model (STRING): device identifier

* vendor (STRING): device vendor

e serial (STRING): disk serial number

« size (INT): size of the device in GiB

Note: A nodes local_gb property is often set to a value 1 GiB less than the actual disk size to
account for partitioning (this is how DevStack, TripleO and Ironic Inspector work, to name a few).
However, in this case size should be the actual size. For example, for a 128 GiB disk local_gb
will be 127, but size hint will be 128.

* wwn (STRING): unique storage identifier
» wwn_with_extension (STRING): unique storage identifier with the vendor extension appended

* wwn_vendor_extension (STRING): unique vendor storage identifier

2.1. Bare Metal Service Installation Guide 97

Ironic Documentation, Release 19.0.1.dev90

* rotational (BOOLEAN): whether its a rotational device or not. This hint makes it easier to distin-
guish HDDs (rotational) and SSDs (not rotational) when choosing which disk Ironic should deploy
the image onto.

* hctl (STRING): the SCSI address (Host, Channel, Target and Lun), e.g 1:0:0:0

* by_path (STRING): the alternate device name corresponding to a particular PCI or iSCSI path, e.g
/dev/disk/by-path/pci-0000:00

* name (STRING): the device name, e.g /dev/md0

Warning: The root device hint name should only be used for devices with constant names
(e.g RAID volumes). For SATA, SCSI and IDE disk controllers this hint is not recommended
because the order in which the device nodes are added in Linux is arbitrary, resulting in devices
like /dev/sda and /dev/sdb switching around at boot time.

To associate one or more hints with a node, update the nodes properties with a root_device key, for
example:

That will guarantee that Bare Metal service will pick the disk device that has the wwn equal to the specified
wwhn value, or fail the deployment if it can not be found.

Note: Starting with the Ussuri release, root device hints can be specified per-instance, see Using Bare
Metal service as a standalone service.

The hints can have an operator at the beginning of the value string. If no operator is specified the default
is == (for numerical values) and s== (for string values). The supported operators are:

* For numerical values:
— =equal to or greater than. This is equivalent to >= and is supported for legacy reasons
— ==equal to
— !=not equal to
— >= greater than or equal to
— > greater than
— <= less than or equal to
— <less than
* For strings (as python comparisons):

— s==equal to

s!=not equal to

s>= greater than or equal to

s> greater than

s<= less than or equal to

98 Chapter 2. Installation Guide

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/persistent_naming.html
https://docs.openstack.org/nova/latest/user/filter-scheduler.html#filtering

Ironic Documentation, Release 19.0.1.dev90

— s<less than
— <in> substring
* For collections:
— <all-in> all elements contained in collection
— <or> find one of these
Examples are:

* Finding a disk larger or equal to 60 GiB and non-rotational (SSD):

Finding a disk whose vendor is samsung or winsys:

Note: If multiple hints are specified, a device must satisfy all the hints.

Appending kernel parameters to boot instances

The Bare Metal service supports passing custom kernel parameters to boot instances to fit users require-
ments. The way to append the kernel parameters is depending on how to boot instances.

Network boot

Currently, the Bare Metal service supports assigning unified kernel parameters to PXE booted instances
by:

* Modifying the [pxe]/kernel_append_params configuration option, for example:

Note: The option was called pxe_append_params before the Xena cycle.

* Copying a template from shipped templates to another place, for example:

Making the modifications and pointing to the custom template via the configuration options:
[pxe]/pxe_config_template and [pxe]/uefi_pxe_config_template.

2.1. Bare Metal Service Installation Guide 99

Ironic Documentation, Release 19.0.1.dev90

Local boot

For local boot instances, users can make use of configuration drive (see Enabling the configuration drive
(configdrive)) to pass a custom script to append kernel parameters when creating an instance. This is
more flexible and can vary per instance. Here is an example for grub2 with ubuntu, users can customize
it to fit their use case:

Console

In order to change default console configuration in the Bare Metal service configuration file ([pxe]
section in /etc/ironic/ironic.conf), include the serial port terminal and serial speed. Serial speed
must be the same as the serial configuration in the BIOS settings, so that the operating system boot process
can be seen in the serial console or web console. Following examples represent possible parameters for
serial and web console respectively.

* Node serial console. The console parameter console=ttyS®, 115200n8 uses ttySO for console
output at 115200bps, 8bit, non-parity,e.g.:

(continues on next page)

100 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

* For node web console configuration is similar with the addition of ttyX parameter, see example:

For detailed information on how to add consoles see the reference documents kernel params and serial
console. In case of local boot the Bare Metal service is not able to control kernel boot parameters. To
configure console locally, follow Local boot section above.

Boot mode support

Some of the bare metal hardware types (namely, redfish, ilo and generic ipmi) support setting boot
mode (Legacy BIOS or UEFI).

Note: Setting boot mode support in generic ipmi driver is coupled with setting boot device. That makes
boot mode support in the ipmi driver incomplete.

Note: In this chapter we will distinguish ironic node from bare metal node. The difference is that ironic
node refers to a logical node, as it is configured in ironic, while bare metal node indicates the hardware
machine that ironic is managing.

The following rules apply in order when ironic manages node boot mode:

* If the hardware type (or bare metal node) does not implement reading current boot mode of the
bare metal node, then ironic assumes that boot mode is not set on the bare metal node

 If boot mode is not set on ironic node and bare metal node boot mode is unknown (not set, cant be
read etc.), ironic node boot mode is set to the value of the [deploy]/default_boot_mode option

¢ If boot mode is set on a bare metal node, but is not set on ironic node, bare metal node boot mode
is set on ironic node

* If boot mode is set on ironic node, but is not set on the bare metal node, ironic node boot mode is
attempted to be set on the bare metal node (failure to set boot mode on the bare metal node will
not fail ironic node deployment)

* If different boot modes appear on to be set ironic node and on the bare metal node, ironic node
boot mode is attempted to be set on the bare metal node (failure to set boot mode on the bare metal
node will fail ironic node deployment)

Warning: If a bare metal node does not support setting boot mode, then the operator needs to make
sure that boot mode configuration is consistent between ironic node and the bare metal node.

2.1. Bare Metal Service Installation Guide 101

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html

Ironic Documentation, Release 19.0.1.dev90

The boot modes can be configured in the Bare Metal service in the following way:
* Only one boot mode (either uefi or bios) can be configured for the node.

* If the operator wants a node to boot always in uefi mode or bios mode, then they may use
capabilities parameter within properties field of an bare metal node. The operator must
manually set the appropriate boot mode on the bare metal node.

To configure a node in uefi mode, then set capabilities as below:

Conversely, to configure a node in bios mode, then set the capabilities as below:

Note:

The Ironic project changed the default boot mode setting for nodes from bios to uefi during
the Yoga development cycle.

Nodes having boot_mode set to uefi may be requested by adding an extra_spec to the Compute
service flavor:

If capabilities is used in extra_spec as above, nova scheduler (ComputeCapabilitiesFilter)
will match only bare metal nodes which have the boot_mode set appropriately in properties/
capabilities. It will filter out rest of the nodes.

The above facility for matching in the Compute service can be used in heterogeneous environments where
there is a mix of uefi and bios machines, and operator wants to provide a choice to the user regarding
boot modes. If the flavor doesnt contain boot_mode and boot_mode is configured for bare metal nodes,
then nova scheduler will consider all nodes and user may get either bios or uefi machine.

Some hardware support setting secure boot mode, see UEFI secure boot mode for details.

Choosing the disk label

Note: The term disk label is historically used in Ironic and was taken from parted. Apparently
everyone seems to have a different word for disk label - these are all the same thing: disk type, partition
table, partition map and so on

Ironic allows operators to choose which disk label they want their bare metal node to be deployed with
when Ironic is responsible for partitioning the disk; therefore choosing the disk label does not apply when
the image being deployed is a whole disk image.

There are some edge cases where someone may want to choose a specific disk label for the images being
deployed, including but not limited to:

102 Chapter 2. Installation Guide

https://www.gnu.org/software/parted

Ironic Documentation, Release 19.0.1.dev90

* For machines in bios boot mode with disks larger than 2 terabytes its recommended to use a
gpt disk label. Thats because a capacity beyond 2 terabytes is not addressable by using the MBR
partitioning type. But, although GPT claims to be backward compatible with legacy BIOS systems
thats not always the case.

* Operators may want to force the partitioning to be always MBR (even if the machine is deployed
with boot mode uefi) to avoid breakage of applications and tools running on those instances.

The disk label can be configured in two ways; when Ironic is used with the Compute service or in stan-
dalone mode. The following bullet points and sections will describe both methods:

* When no disk label is provided Ironic will configure it according to the boot mode (see Boot mode
support); bios boot mode will use msdos and uefi boot mode will use gpt.

* Only one disk label - either msdos or gpt - can be configured for the node.

When used with Compute service

When Ironic is used with the Compute service the disk label should be set to nodes properties/
capabilities field and also to the flavor which will request such capability, for example:

As for the flavor:

When used in standalone mode

When used without the Compute service, the disk label should be set directly to the nodes
instance_info field, as below:

Notifications

The Bare Metal service supports the emission of notifications, which are messages sent on a message
broker (like RabbitMQ or anything else supported by the oslo messaging library) that indicate various
events which occur, such as when a node changes power states. These can be consumed by an exter-
nal service reading from the message bus. For example, Searchlight is an OpenStack service that uses
notifications to index (and make searchable) resources from the Bare Metal service.

Notifications are disabled by default. For a complete list of available notifications and instructions for
how to enable them, see the Notifications.

2.1. Bare Metal Service Installation Guide 103

http://www.rodsbooks.com/gdisk/bios.html
https://docs.openstack.org/oslo.messaging/latest/reference/notifier.html
https://wiki.openstack.org/wiki/Searchlight

Ironic Documentation, Release 19.0.1.dev90

Configuring node web console

See Configuring Web or Serial Console.

2.1.11 Troubleshooting

Once all the services are running and configured properly, and a node has been enrolled with the Bare
Metal service and is in the available provision state, the Compute service should detect the node as an
available resource and expose it to the scheduler.

Note: There is a delay, and it may take up to a minute (one periodic task cycle) for the Compute service
to recognize any changes in the Bare Metal services resources (both additions and deletions).

In addition to watching nova-compute log files, you can see the available resources by looking at the list
of Compute hypervisors. The resources reported therein should match the bare metal node properties,

and the Compute service flavor.

Here is an example set of commands to compare the resources in Compute service and Bare Metal service:

$ baremetal node list

R bt it e e e T tomm e +-—m— -
R T +

| UUID | Instance UUID | Power State |.
—Provisioning State | Maintenance |

e o e e T B
Cpmm—m—m - Fomm - +

| 86a2blbb-8b29-4964-a817-£f90031debddb | None | power off [o
—available | False |

e T e TR o - e
pmmm—mmm— - Fommm - +

e et T T T
G m - +
| Property | Value
o I
e T
e +

| instance_uuid

= I
| properties
—~'local_gb': u'1e',
I

< |

| None
| {u'memory_mb': u'1024',

| u'cpus': u'l'}

u'cpu_arch': u'x86_64', u

| maintenance | False o
I%driver_info I | { [SNIP] } o
I%extra ! | {3 o
— | (continues on next page)
104 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

| last_error
o
| created_at

—

| target_provision_state

.
| driver

4

| updated_at

.

| instance_info
.

| chassis_uuid

None
2014-11-20T23:57:03+00:00
None
ipmi
2014-11-21T00:47:34+00:00

{}

7b49bbc5-2eb7-4269-b6ea-3£f1a51448a59

—

| provision_state available

o I

| reservation None

o I

| power_state power off

o I

| console_enabled False

o I

| uuid 86a2b1bb-8b29-4964-a817-£90031debddb

= |

Tt T T -
mm e +

$ nova hypervisor-list

e et s B et e it e
G —————— Fmmm————— +

| ID | Hypervisor hostname

| State | Status |

e et e e e e B et e e
G ————— o ———— - +

| 584cfdc8-9afd-4fbb-82ef-9ff25elad3f3 | 86a2blbb-8b29-4964-a817-f90031debddb..
—| up | enabled |

- -
F--————- +o—m - +

$ nova hypervisor-show 584cfdc8-9afd-4fbb-82ef-9ff25elad3f3

+ _________________________

| Property

+ _________________________

cpu_info
current_workload

disk_available_least

free_ram_mb

I

|

I

| free_disk_gb
I

| host_ip

| Value

| baremetal cpu
|

ittt Tt T e +

oo +

(continues on next page)

2.1. Bare Metal Service Installation Guide

105

Ironic Documentation, Release 19.0.1.dev90

(continued from previous page)

hypervisor_hostname 86a2b1lbb-8b29-4964-a817-190031debddb |

hypervisor_type ironic
hypervisor_version 1
id 1
local_gb 10
local_gb_used 0
memory_mb 1024

0
running_vms 0

|
I
|
I
|
I
I
| memory_mb_used
I
|
I
|
I
|
I
|

I
I
I
I
I
I
I
I
I
service_disabled_reason | -
I
|
I
I
I
I
+

service_host my-test-host
service_id 6
state up
status enabled
vcpus 1
vcpus_used 0
T T +

Maintenance mode

Maintenance mode may be used if you need to take a node out of the resource pool. Putting a node in
maintenance mode will prevent Bare Metal service from executing periodic tasks associated with the
node. This will also prevent Compute service from placing a tenant instance on the node by not exposing
the node to the nova scheduler. Nodes can be placed into maintenance mode with the following command.

$ baremetal node maintenance set $NODE_UUID

A maintenance reason may be included with the optional --reason command line option. This is a free
form text field that will be displayed in the maintenance_reason section of the node show command.

$ baremetal node maintenance set $UUID --reason "Need to add ram."

$ baremetal node show $UUID

e e +
| Property | Value [
e e +
| target_power_state | None

| extra | {} I
| last_error | None

| updated_at | 2015-04-27T15:43:58+00:00

| maintenance_reason | Need to add ram.

| ... | ... |
| maintenance | True

I I I
e e +

To remove maintenance mode and clear any maintenance_reason use the following command.

106 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

$ baremetal node maintenance unset $NODE_UUID

2.1.12 Next steps

Your OpenStack environment now includes the Bare Metal service.

2.1.13 Create user images for the Bare Metal service

The content has been migrated, please see Creating instance images.

2.2 Bare Metal Service Upgrade Guide

This document outlines various steps and notes for operators to consider when upgrading their ironic-
driven clouds from previous versions of OpenStack.

The Bare Metal (ironic) service is tightly coupled with the ironic driver that is shipped with the Compute
(nova) service. Some special considerations must be taken into account when upgrading your cloud.

Both offline and rolling upgrades are supported.

2.2.1 Plan your upgrade

Rolling upgrades are available starting with the Pike release; that is, when upgrading from Ocata.
This means that it is possible to do an upgrade with minimal to no downtime of the Bare Metal
APL

Upgrades are only supported between two consecutive named releases. This means that you cannot
upgrade Ocata directly into Queens; you need to upgrade into Pike first.

The release notes should always be read carefully when upgrading the Bare Metal service. Specific
upgrade steps and considerations are documented there.

The Bare Metal service should always be upgraded before the Compute service.

Note: The ironic virt driver in nova always uses a specific version of the ironic REST API. This
API version may be one that was introduced in the same development cycle, so upgrading nova
first may result in nova being unable to use the Bare Metal API.

Make a backup of your database. Ironic does not support downgrading of the database. Hence, in
case of upgrade failure, restoring the database from a backup is the only choice.

Before starting your upgrade, it is best to ensure that all nodes have reached, or are in, a stable
provision_state. Nodes in states with long running processes such as deploying or cleaning,
may fail, and may require manual intervention to return them to the available hardware pool. This
is most likely in cases where a timeout has occurred or a service was terminated abruptly. For a
visual diagram detailing states and possible state transitions, please see Bare Metal State Machine.

2.2.

Bare Metal Service Upgrade Guide 107

https://docs.openstack.org/releasenotes/ironic/

Ironic Documentation, Release 19.0.1.dev90

2.2.2 Offline upgrades
In an offline (or cold) upgrade, the Bare Metal service is not available during the upgrade, because all
the services have to be taken down.
When upgrading the Bare Metal service, the following steps should always be taken in this order:
1. upgrade the ironic-python-agent image
2. update ironic code, without restarting services
3. run database schema migrations via ironic-dbsync upgrade
4. restart ironic-conductor and ironic-api services
Once the above is done, do the following:

* update any applicable configuration options to stop using any deprecated features or options, and
perform any required work to transition to alternatives. All the deprecated features and options will
be supported for one release cycle, so should be removed before your next upgrade is performed.

» upgrade python-ironicclient along with any other services connecting to the Bare Metal service as
a client, such as nova-compute

* run the ironic-dbsync online_data_migrations command to make sure that data migra-
tions are applied. The command lets you limit the impact of the data migrations with the
--max-count option, which limits the number of migrations executed in one run. You should
complete all of the migrations as soon as possible after the upgrade.

Warning: You will not be able to start an upgrade to the release after this one, until this has
been completed for the current release. For example, as part of upgrading from Ocata to Pike,
you need to complete Pikes data migrations. If this not done, you will not be able to upgrade
to Queens it will not be possible to execute Queens database schema updates.

2.2.3 Rolling upgrades
To Reduce downtime, the services can be upgraded in a rolling fashion, meaning to upgrade one or a few
services at a time to minimize impact.

Rolling upgrades are available starting with the Pike release. This feature makes it possible to upgrade
between releases, such as Ocata to Pike, with minimal to no downtime of the Bare Metal API.

Requirements

To facilitate an upgrade in a rolling fashion, you need to have a highly-available deployment consisting
of at least two ironic-api and two ironic-conductor services. Use of a load balancer to balance requests
across the ironic-api services is recommended, as it allows for a minimal impact to end users.

108 Chapter 2. Installation Guide

Ironic Documentation, Release 19.0.1.dev90

Concepts

There are four aspects of the rolling upgrade process to keep in mind:
* API and RPC version pinning, and versioned object backports
* online data migrations
* graceful service shutdown

* API load balancer draining

API & RPC version pinning and versioned object backports

Through careful RPC versioning, newer services are able to talk to older services (and vice-versa). The
[DEFAULT] /pin_release_version configuration option is used for this. It should be set (pinned) to
the release version that the older services are using. The newer services will backport RPC calls and
objects to their appropriate versions from the pinned release. If the IncompatibleObjectVersion ex-
ception occurs, it is most likely due to an incorrect or unspecified [DEFAULT] /pin_release_version
configuration value. For example, when [DEFAULT]/pin_release_version is not set to the older
release version, no conversion will happen during the upgrade.

For the ironic-api service, the API version is pinned via the same [DEFAULT]/pin_release_version
configuration option as above. When pinned, the new ironic-api services will not service any API requests
with Bare Metal API versions that are higher than what the old ironic-api services support. HTTP status
code 406 is returned for such requests. This prevents new features (available in new API versions) from
being used until after the upgrade has been completed.

Online data migrations

To make database schema migrations less painful to execute, we have implemented process changes to
facilitate upgrades.

* All data migrations are banned from schema migration scripts.
* Schema migration scripts only update the database schema.

» Data migrations must be done at the end of the rolling upgrade process, after the schema migration
and after the services have been upgraded to the latest release.

All data migrations are performed using the ironic-dbsync online_data_migrations command.
It can be run as a background process so that it does not interrupt running services; however it must be
run to completion for a cold upgrade if the intent is to make use of new features immediately.

(You would also execute the same command with services turned off if you are doing a cold upgrade).

This data migration must be completed. If not, you will not be able to upgrade to future releases. For
example, if you had upgraded from Ocata to Pike but did not do the data migrations, you will not be
able to upgrade from Pike to Queens. (More precisely, you will not be able to apply Queens schema
migrations.)

2.2. Bare Metal Service Upgrade Guide 109

Ironic Documentation, Release 19.0.1.dev90

Graceful conductor service shutdown

The ironic-conductor service is a Python process listening for messages on a message queue. When
the operator sends the SIGTERM signal to the process, the service stops consuming messages from the
queue, so that no additional work is picked up. It completes any outstanding work and then terminates.
During this process, messages can be left on the queue and will be processed after the Python process
starts back up. This gives us a way to shutdown a service using older code, and start up a service using
newer code with minimal impact.

Note: This was tested with RabbitMQ messaging backend and may vary with other backends.

Nodes that are being acted upon by an ironic-conductor process, which are not in a stable state, may
encounter failures. Node failures that occur during an upgrade are likely due to timeouts, resulting from
delays involving messages being processed and acted upon by a conductor during long running, multi-
step processes such as deployment or cleaning.

API load balancer draining

If you are using a load balancer for the ironic-api services, we recommend that you redirect requests to
the new API services and drain off of the ironic-api services that have not yet been upgraded.

Rolling upgrade process

Before maintenance window

* Upgrade the ironic-python-agent image

» Using the new release (ironic code), execute the required database schema updates by running the
database upgrade command: ironic-dbsync upgrade. These schema change operations should
have minimal or no effect on performance, and shoul