
Ironic Documentation
Release 26.1.2.dev21

OpenStack Foundation

Feb 14, 2025

CONTENTS

1 Introduction 1

2 Installation Guide 3
2.1 Bare Metal Service Installation Guide . 3
2.2 Bare Metal Service Upgrade Guide . 98

3 User Guide 109
3.1 Bare Metal Service User Guide . 109
3.2 REST API Conceptual Guide . 128

4 Administrator Guide 147
4.1 Drivers, Hardware Types and Hardware Interfaces for Ironic 147
4.2 Bare Metal Service Features . 261
4.3 Configuration and Operation . 372
4.4 Administrator Command References . 436
4.5 Configuration Reference for Ironic . 441
4.6 Architecture and Implementation Details . 693
4.7 Administrators Guide . 697

5 Contributor Guide 699
5.1 Developers Guide . 699

Python Module Index 1433

Index 1437

i

ii

CHAPTER

ONE

INTRODUCTION

Ironic is an OpenStack project which provisions bare metal (as opposed to virtual) machines. It may
be used independently or as part of an OpenStack Cloud, and integrates with the OpenStack Identity
(keystone), Compute (nova), Network (neutron), Image (glance), and Object (swift) services.

The Bare Metal service manages hardware through both common (eg. PXE and IPMI) and vendor-
specific remote management protocols. It provides the cloud operator with a unified interface to a hetero-
geneous fleet of servers while also providing the Compute service with an interface that allows physical
servers to be managed as though they were virtual machines.

This documentation is continually updated and may not represent the state of the project at any specific
prior release. To access documentation for a previous release of ironic, append the OpenStack release
name to the URL; for example, the ocata release is available at https://docs.openstack.org/ironic/ocata/.

Found a bug in one of our projects? Please see Bug Reporting and Triaging Guide.

Would like to engage with the community? See Bare Metal Community.

1

https://docs.openstack.org/ironic/ocata/

Ironic Documentation, Release 26.1.2.dev21

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION GUIDE

2.1 Bare Metal Service Installation Guide

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Guides. It
contains the following sections:

2.1.1 Bare Metal service overview

The Bare Metal service, codenamed ironic, is a collection of components that provides support to
manage and provision physical machines.

Bare Metal service components

The Bare Metal service includes the following components:

ironic-api
A RESTful API that processes application requests by sending them to the ironic-conductor over
remote procedure call (RPC). Can be run through WSGI or as a separate process.

ironic-conductor
Adds/edits/deletes nodes; powers on/off nodes with IPMI or other vendor-specific protocol; provi-
sions/deploys/cleans bare metal nodes.

ironic-conductor uses drivers to execute operations on hardware.

ironic-python-agent
A python service which is run in a temporary ramdisk to provide ironic-conductor and ironic-
inspector services with remote access, in-band hardware control, and hardware introspection.

Additionally, the Bare Metal service has certain external dependencies, which are very similar to other
OpenStack services:

• A database to store hardware information and state. You can set the database back-end type and
location. A simple approach is to use the same database back end as the Compute service. An-
other approach is to use a separate database back-end to further isolate bare metal resources (and
associated metadata) from users.

3

https://docs.openstack.org/latest/install
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Ironic Documentation, Release 26.1.2.dev21

• An oslo.messaging compatible queue, such as RabbitMQ. It may use the same implementation
as that of the Compute service, but that is not a requirement. Used to implement RPC between
ironic-api and ironic-conductor.

Deployment architecture

The Bare Metal RESTful API service is used to enroll hardware that the Bare Metal service will manage.
A cloud administrator usually registers it, specifying their attributes such as MAC addresses and IPMI
credentials. There can be multiple instances of the API service.

The ironic-conductor process does the bulk of the work. For security reasons, it is advisable to place it
on an isolated host, since it is the only service that requires access to both the data plane and IPMI control
plane.

There can be multiple instances of the conductor service to support various class of drivers and also to
manage fail over. Instances of the conductor service should be on separate nodes. Each conductor can
itself run many drivers to operate heterogeneous hardware. This is depicted in the following figure.

The API exposes a list of supported drivers and the names of conductor hosts servicing them.

4 Chapter 2. Installation Guide

https://docs.openstack.org/oslo.messaging/2024.2/

Ironic Documentation, Release 26.1.2.dev21

Interaction with OpenStack components

The Bare Metal service may, depending upon configuration, interact with several other OpenStack ser-
vices. This includes:

• the OpenStack Telemetry module (ceilometer) for consuming the IPMI metrics

• the OpenStack Identity service (keystone) for request authentication and to locate other Open-
Stack services

• the OpenStack Image service (glance) from which to retrieve images and image meta-data

• the OpenStack Networking service (neutron) for DHCP and network configuration

• the OpenStack Compute service (nova) works with the Bare Metal service and acts as a user-
facing API for instance management, while the Bare Metal service provides the admin/operator API
for hardware management. The OpenStack Compute service also provides scheduling facilities
(matching flavors <-> images <-> hardware), tenant quotas, IP assignment, and other services
which the Bare Metal service does not, in and of itself, provide.

• the OpenStack Object Storage (swift) provides temporary storage for the configdrive, user images,
deployment logs and inspection data.

Logical architecture

The diagram below shows the logical architecture. It shows the basic components that form the Bare
Metal service, the relation of the Bare Metal service with other OpenStack services and the logical flow
of a boot instance request resulting in the provisioning of a physical server.

A users request to boot an instance is passed to the Compute service via the Compute API and the
Compute Scheduler. The Compute service uses the ironic virt driver to hand over this request to the
Bare Metal service, where the request passes from the Bare Metal API, to the Conductor, to a Driver to
successfully provision a physical server for the user.

Just as the Compute service talks to various OpenStack services like Image, Network, Object Store etc to
provision a virtual machine instance, here the Bare Metal service talks to the same OpenStack services
for image, network and other resource needs to provision a bare metal instance.

See Understanding Bare Metal Deployment for a more detailed breakdown of a typical deployment pro-
cess.

Associated projects

Optionally, one may wish to utilize the following associated projects for additional functionality:

python-ironicclient
A command-line interface (CLI) and python bindings for interacting with the Bare Metal service.

ironic-ui
Horizon dashboard, providing graphical interface (GUI) for the Bare Metal API.

ironic-inspector
An associated service which performs in-band hardware introspection by PXE booting unregis-
tered hardware into the ironic-python-agent ramdisk.

2.1. Bare Metal Service Installation Guide 5

https://docs.openstack.org/python-ironicclient/2024.2/
https://docs.openstack.org/ironic-ui/2024.2/
https://docs.openstack.org/ironic-inspector/2024.2/

Ironic Documentation, Release 26.1.2.dev21

6 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

diskimage-builder
A related project to help facilitate the creation of ramdisks and machine images, such as those
running the ironic-python-agent.

bifrost
A set of Ansible playbooks that automates the task of deploying a base image onto a set of known
hardware using ironic in a standalone mode.

2.1.2 Reference Deploy Architectures

This section covers the way we recommend the Bare Metal service to be deployed and managed. It is
assumed that a reader has already gone through Bare Metal Service User Guide. It may be also useful to
try Deploying Ironic with DevStack first to get better familiar with the concepts used in this guide.

Common Considerations

This section covers considerations that are equally important to all described architectures.

• Components

• Hardware and drivers

– Power and management interfaces

– Boot interface

– Hardware specifications

• Image types

• Networking

• HA and Scalability

– ironic-api

– ironic-conductor

∗ High availability

∗ Performance

∗ Disk space

– Other services

2.1. Bare Metal Service Installation Guide 7

https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/bifrost/2024.2/

Ironic Documentation, Release 26.1.2.dev21

Components

As explained in Bare Metal service overview, the Bare Metal service has three components.

• The Bare Metal API service (ironic-api) should be deployed in a similar way as the control
plane API services. The exact location will depend on the architecture used.

• The Bare Metal conductor service (ironic-conductor) is where most of the provisioning logic
lives. The following considerations are the most important when deciding on the way to deploy it:

– The conductor manages a certain proportion of nodes, distributed to it via a hash ring. This
includes constantly polling these nodes for their current power state and hardware sensor data
(if enabled and supported by hardware, see Collecting sensor data for an example).

– The conductor needs access to the management controller of each node it manages.

– The conductor co-exists with TFTP (for PXE) and/or HTTP (for HTTPBoot and iPXE) ser-
vices that provide the kernel and ramdisk to boot the nodes. The conductor manages them
by writing files to their root directories.

– If serial console is used, the conductor launches console processes locally. If the
nova-serialproxy service (part of the Compute service) is used, it has to be able to reach
the conductors. Otherwise, they have to be directly accessible by the users.

– There must be mutual connectivity between the conductor and the nodes being deployed or
cleaned. See Networking for details.

• The provisioning ramdisk which runs the ironic-python-agent service on start up.

Warning

The ironic-python-agent service is not intended to be used or executed anywhere other
than a provisioning/cleaning/rescue ramdisk.

Hardware and drivers

The Bare Metal service strives to provide the best support possible for a variety of hardware. However,
not all hardware is supported equally well. It depends on both the capabilities of hardware itself and
the available drivers. This section covers various considerations related to the hardware interfaces. See
Enabling drivers and hardware types for a detailed introduction into hardware types and interfaces before
proceeding.

Power and management interfaces

The minimum set of capabilities that the hardware has to provide and the driver has to support is as
follows:

1. getting and setting the power state of the machine

2. getting and setting the current boot device

3. booting an image provided by the Bare Metal service (in the simplest case, support booting using
PXE and/or iPXE)

8 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Out-of-band_management
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/IPXE

Ironic Documentation, Release 26.1.2.dev21

Note

Strictly speaking, it is possible to make the Bare Metal service provision nodes without some of these
capabilities via some manual steps. It is not the recommended way of deployment, and thus it is not
covered in this guide.

Once you make sure that the hardware supports these capabilities, you need to find a suitable driver.
Most of enterprise-grade hardware has support for IPMI and thus can utilize IPMI driver. Some newer
hardware also supports Redfish driver. Several vendors provide more specific drivers that usually provide
additional capabilities. Check Drivers, Hardware Types and Hardware Interfaces for Ironic to find the
most suitable one.

Boot interface

The boot interface of a node manages booting of both the deploy ramdisk and the user instances on
the bare metal node. The deploy interface orchestrates the deployment and defines how the image gets
transferred to the target disk.

The main alternatives are to use PXE/iPXE or virtual media - see Boot interfaces for a detailed expla-
nation. If a virtual media implementation is available for the hardware, it is recommended using it for
better scalability and security. Otherwise, it is recommended to use iPXE, when it is supported by target
hardware.

Hardware specifications

The Bare Metal services does not impose too many restrictions on the characteristics of hardware itself.
However, keep in mind that

• By default, the Bare Metal service will pick the smallest hard drive that is larger than 4 GiB for
deployment. Another hard drive can be used, but it requires setting root device hints.

Note

This device does not have to match the boot device set in BIOS (or similar firmware).

• The machines should have enough RAM to fit the deployment/cleaning ramdisk to run. The
minimum varies greatly depending on the way the ramdisk was built. For example, tinyipa, the
TinyCoreLinux-based ramdisk used in the CI, only needs 400 MiB of RAM, while ramdisks built
by diskimage-builder may require 3 GiB or more.

2.1. Bare Metal Service Installation Guide 9

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

Ironic Documentation, Release 26.1.2.dev21

Image types

The Bare Metal service can deploy two types of images:

• Whole-disk images that contain a complete partitioning table with all necessary partitions and a
bootloader. Such images are the most universal, but may be harder to build.

• Partition images that contain only the root partition. The Bare Metal service will create the nec-
essary partitions and install a boot loader, if needed.

Warning

Partition images are only supported with GNU/Linux operating systems.

For the Bare Metal service to set up the bootloader during deploy, your partition images must
container either GRUB2 bootloader or ready-to-use EFI artifacts.

Networking

There are several recommended network topologies to be used with the Bare Metal service. They are
explained in depth in specific architecture documentation. However, several considerations are common
for all of them:

• There has to be a provisioning network, which is used by nodes during the deployment process.
If allowed by the architecture, this network should not be accessible by end users, and should not
have access to the internet.

• There has to be a cleaning network, which is used by nodes during the cleaning process.

• There should be a rescuing network, which is used by nodes during the rescue process. It can be
skipped if the rescue process is not supported.

Note

In the majority of cases, the same network should be used for cleaning, provisioning and rescue for
simplicity.

Unless noted otherwise, everything in these sections apply to all three networks.

• The baremetal nodes must have access to the Bare Metal API while connected to the provision-
ing/cleaning/rescuing network.

Note

Only two endpoints need to be exposed there:

GET /v1/lookup
POST /v1/heartbeat/[a-z0-9\-]+

You may want to limit access from this network to only these endpoints, and make these end-
point not accessible from other networks.

10 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

• If the pxe boot interface (or any boot interface based on it) is used, then the baremetal nodes should
have untagged (access mode) connectivity to the provisioning/cleaning/rescuing networks. It al-
lows PXE firmware, which does not support VLANs, to communicate with the services required
for provisioning.

Note

It depends on the network interface whether the Bare Metal service will handle it automatically.
Check the networking documentation for the specific architecture.

Sometimes it may be necessary to disable the spanning tree protocol delay on the switch - see
DHCP during PXE or iPXE is inconsistent or unreliable.

• The Baremetal nodes need to have access to any services required for provisioning/cleaning/rescue,
while connected to the provisioning/cleaning/rescuing network. This may include:

– a TFTP server for PXE boot and also an HTTP server when iPXE is enabled

– either an HTTP server or the Object Storage service in case of the direct deploy interface
and some virtual media boot interfaces

• The Baremetal Conductors need to have access to the booted baremetal nodes during provision-
ing/cleaning/rescue. A conductor communicates with an internal API, provided by ironic-python-
agent, to conduct actions on nodes.

HA and Scalability

ironic-api

The Bare Metal API service is stateless, and thus can be easily scaled horizontally. It is recommended
to deploy it as a WSGI application behind e.g. Apache or another WSGI container.

Note

This service accesses the ironic database for reading entities (e.g. in response to GET /v1/nodes
request) and in rare cases for writing.

ironic-conductor

High availability

The Bare Metal conductor service utilizes the active/active HA model. Every conductor manages a
certain subset of nodes. The nodes are organized in a hash ring that tries to keep the load spread more
or less uniformly across the conductors. When a conductor is considered offline, its nodes are taken over
by other conductors. As a result of this, you need at least 2 conductor hosts for an HA deployment.

2.1. Bare Metal Service Installation Guide 11

Ironic Documentation, Release 26.1.2.dev21

Performance

Conductors can be resource intensive, so it is recommended (but not required) to keep all conductors
separate from other services in the cloud. The minimum required number of conductors in a deployment
depends on several factors:

• the performance of the hardware where the conductors will be running,

• the speed and reliability of the management controller of the bare metal nodes (for example, han-
dling slower controllers may require having less nodes per conductor),

• the frequency, at which the management controllers are polled by the Bare Metal service (see the
sync_power_state_interval option),

• the bare metal driver used for nodes (see Hardware and drivers above),

• the network performance,

• the maximum number of bare metal nodes that are provisioned simultaneously (see the
max_concurrent_builds option for the Compute service).

We recommend a target of 100 bare metal nodes per conductor for maximum reliability and performance.
There is some tolerance for a larger number per conductor. However, it was reported12 that reliability
degrades when handling approximately 300 bare metal nodes per conductor.

Disk space

Each conductor needs enough free disk space to cache images it uses. Depending on the combination of
the deploy interface and the boot option, the space requirements are different:

• The deployment kernel and ramdisk are always cached during the deployment.

• When agent.image_download_source is set to http and Glance is used, the conductor will
download instances images locally to serve them from its HTTP server. Use swift to publish
images using temporary URLs and convert them on the nodes side.

When agent.image_download_source is set to local, it will happen even for HTTP(s) URLs.
For standalone case use http to avoid unnecessary caching of images.

In both cases a cached image is converted to raw if force_raw_images is True (the default).

See Deploy with custom HTTP servers and Streaming raw images for more details.

• When network boot is used, the instance image kernel and ramdisk are cached locally while the
instance is active.

Note

All images may be stored for some time after they are no longer needed. This is done to speed
up simultaneous deployments of many similar images. The caching can be configured via the
image_cache_size and image_cache_ttl configuration options in the pxe group.

1 http://lists.openstack.org/pipermail/openstack-dev/2017-June/118033.html
2 http://lists.openstack.org/pipermail/openstack-dev/2017-June/118327.html

12 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Out-of-band_management
http://lists.openstack.org/pipermail/openstack-dev/2017-June/118033.html
http://lists.openstack.org/pipermail/openstack-dev/2017-June/118327.html

Ironic Documentation, Release 26.1.2.dev21

Other services

When integrating with other OpenStack services, more considerations may need to be applied. This is
covered in other parts of this guide.

Scenarios

Small cloud with trusted tenants

Story

As an operator I would like to build a small cloud with both virtual and bare metal instances or add bare
metal provisioning to my existing small or medium scale single-site OpenStack cloud. The expected
number of bare metal machines is less than 100, and the rate of provisioning and unprovisioning is
expected to be low. All users of my cloud are trusted by me to not conduct malicious actions towards
each other or the cloud infrastructure itself.

As a user I would like to occasionally provision bare metal instances through the Compute API by se-
lecting an appropriate Compute flavor. I would like to be able to boot them from images provided by the
Image service or from volumes provided by the Volume service.

Components

This architecture assumes an OpenStack installation with the following components participating in the
bare metal provisioning:

• The Compute service manages bare metal instances.

• The Networking service provides DHCP for bare metal instances.

• The Image service provides images for bare metal instances.

The following services can be optionally used by the Bare Metal service:

• The Volume service provides volumes to boot bare metal instances from.

• The Bare Metal Introspection service simplifies enrolling new bare metal machines by conducting
in-band introspection.

Node roles

An OpenStack installation in this guide has at least these three types of nodes:

• A controller node hosts the control plane services.

• A compute node runs the virtual machines and hosts a subset of Compute and Networking com-
ponents.

• A block storage node provides persistent storage space for both virtual and bare metal nodes.

The compute and block storage nodes are configured as described in the installation guides of the Com-
pute service and the Volume service respectively. The controller nodes host the Bare Metal service
components.

2.1. Bare Metal Service Installation Guide 13

https://docs.openstack.org/arch-design/use-cases/use-case-general-compute.html
https://docs.openstack.org/nova/2024.2/
https://docs.openstack.org/neutron/2024.2/
https://docs.openstack.org/glance/2024.2/
https://docs.openstack.org/cinder/2024.2/
https://docs.openstack.org/ironic-inspector/2024.2/
https://docs.openstack.org/nova/2024.2/
https://docs.openstack.org/nova/2024.2/
https://docs.openstack.org/cinder/2024.2/

Ironic Documentation, Release 26.1.2.dev21

Networking

The networking architecture will highly depend on the exact operating requirements. This guide expects
the following existing networks: control plane, storage and public. Additionally, two more networks will
be needed specifically for bare metal provisioning: bare metal and management.

Control plane network

The control plane network is the network where OpenStack control plane services provide their public
API.

The Bare Metal API will be served to the operators and to the Compute service through this network.

Public network

The public network is used in a typical OpenStack deployment to create floating IPs for outside access
to instances. Its role is the same for a bare metal deployment.

Note

Since, as explained below, bare metal nodes will be put on a flat provider network, it is also possible
to organize direct access to them, without using floating IPs and bypassing the Networking service
completely.

Bare metal network

The Bare metal network is a dedicated network for bare metal nodes managed by the Bare Metal service.

This architecture uses flat bare metal networking, in which both tenant traffic and technical traffic related
to the Bare Metal service operation flow through this one network. Specifically, this network will serve
as the provisioning, cleaning and rescuing network. It will also be used for introspection via the Bare
Metal Introspection service. See common networking considerations for an in-depth explanation of the
networks used by the Bare Metal service.

DHCP and boot parameters will be provided on this network by the Networking services DHCP agents.

For booting from volumes this network has to have a route to the storage network.

Management network

Management network is an independent network on which BMCs of the bare metal nodes are located.

The ironic-conductor process needs access to this network. The tenants of the bare metal nodes must
not have access to it.

14 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Note

The direct deploy interface and certain Drivers, Hardware Types and Hardware Interfaces for Ironic
require the management network to have access to the Object storage service backend.

Controllers

A controller hosts the OpenStack control plane services as described in the control plane design guide.
While this architecture allows using controllers in a non-HA configuration, it is recommended to have at
least three of them for HA. See HA and Scalability for more details.

Bare Metal services

The following components of the Bare Metal service are installed on a controller (see components of the
Bare Metal service):

• The Bare Metal API service either as a WSGI application or the ironic-api process. Typically,
a load balancer, such as HAProxy, spreads the load between the API instances on the controllers.

The API has to be served on the control plane network. Additionally, it has to be exposed to the
bare metal network for the ramdisk callback API.

• The ironic-conductor process. These processes work in active/active HA mode as explained
in HA and Scalability, thus they can be installed on all controllers. Each will handle a subset of
bare metal nodes.

The ironic-conductor processes have to have access to the following networks:

– control plane for interacting with other services

– management for contacting nodes BMCs

– bare metal for contacting deployment, cleaning or rescue ramdisks

• TFTP and HTTP service for booting the nodes. Each ironic-conductor process has to have a
matching TFTP and HTTP service. They should be exposed only to the bare metal network and
must not be behind a load balancer.

• The nova-compute process (from the Compute service). These processes work in active/active
HA mode when dealing with bare metal nodes, thus they can be installed on all controllers. Each
will handle a subset of bare metal nodes.

Note

There is no 1-1 mapping between ironic-conductor and nova-compute processes, as they
communicate only through the Bare Metal API service.

• The networking-baremetal ML2 plugin should be loaded into the Networking service to assist with
binding bare metal ports.

The ironic-neutron-agent service should be started as well.

2.1. Bare Metal Service Installation Guide 15

https://docs.openstack.org/arch-design/design-control-plane.html
https://docs.openstack.org/networking-baremetal/2024.2/
https://docs.openstack.org/ironic-neutron-agent/2024.2/

Ironic Documentation, Release 26.1.2.dev21

• If the Bare Metal introspection is used, its ironic-inspector process has to be installed on all
controllers. Each such process works as both Bare Metal Introspection API and conductor service.
A load balancer should be used to spread the API load between controllers.

The API has to be served on the control plane network. Additionally, it has to be exposed to the
bare metal network for the ramdisk callback API.

Shared services

A controller also hosts two services required for the normal operation of OpenStack:

• Database service (MySQL/MariaDB is typically used, but other enterprise-grade database solu-
tions can be used as well).

All Bare Metal service components need access to the database service.

• Message queue service (RabbitMQ is typically used, but other enterprise-grade message queue
brokers can be used as well).

Both Bare Metal API (WSGI application or ironic-api process) and the ironic-conductor
processes need access to the message queue service. The Bare Metal Introspection service does
not need it.

Note

These services are required for all OpenStack services. If youre adding the Bare Metal service to your
cloud, you may reuse the existing database and messaging queue services.

Bare metal nodes

Each bare metal node must be capable of booting from network, virtual media or other boot technology
supported by the Bare Metal service as explained in Boot interface. Each node must have one NIC on the
bare metal network, and this NIC (and only it) must be configured to be able to boot from network. This
is usually done in the BIOS setup or a similar firmware configuration utility. There is no need to alter the
boot order, as it is managed by the Bare Metal service. Other NICs, if present, will not be managed by
OpenStack.

The NIC on the bare metal network should have untagged connectivity to it, since PXE firmware usually
does not support VLANs - see Networking for details.

Storage

If your hardware and its bare metal driver support booting from remote volumes, please check the driver
documentation for information on how to enable it. It may include routing management and/or bare
metal networks to the storage network.

In case of the standard PXE boot, booting from remote volumes is done via iPXE. In that case, the
Volume storage backend must support iSCSI protocol, and the bare metal network has to have a route to
the storage network. See Boot From Volume for more details.

16 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/ISCSI

Ironic Documentation, Release 26.1.2.dev21

2.1.3 Install and configure the Bare Metal service

This section describes how to install and configure the Bare Metal service, code-named ironic, manually
from packages on one of the three popular families of Linux distributions.

Alternatively, you can use one of the numerous projects that install ironic. One of them is provided by
the bare metal team:

• Bifrost installs ironic in the standalone mode (without the rest of OpenStack).

More installation projects are developed by other OpenStack teams:

• Kolla can install ironic in containers as part of OpenStack.

• OpenStack-Ansible has a role to install ironic.

• TripleO uses ironic for provisioning bare metal nodes and can also be used to install ironic.

Install and configure for Red Hat Enterprise Linux and CentOS

The contents has been migrated to the common location - see Install and configure the Bare Metal service.

Install and configure for Ubuntu

The contents has been migrated to the common location - see Install and configure the Bare Metal service.

Install and configure for openSUSE and SUSE Linux Enterprise

The contents has been migrated to the common location - see Install and configure the Bare Metal service.

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

In MySQL, create an ironic database that is accessible by the ironic user. Replace
IRONIC_DBPASSWORD with a suitable password:

mysql -u root -p
mysql> CREATE DATABASE ironic CHARACTER SET utf8mb3;
mysql> GRANT ALL PRIVILEGES ON ironic.* TO 'ironic'@'localhost' \

IDENTIFIED BY 'IRONIC_DBPASSWORD';
mysql> GRANT ALL PRIVILEGES ON ironic.* TO 'ironic'@'%' \

IDENTIFIED BY 'IRONIC_DBPASSWORD';

2.1. Bare Metal Service Installation Guide 17

https://docs.openstack.org/bifrost/latest/
https://docs.openstack.org/kolla-ansible/latest/reference/bare-metal/ironic-guide.html
https://docs.openstack.org/openstack-ansible-os_ironic/latest/
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/baremetal_overcloud.html

Ironic Documentation, Release 26.1.2.dev21

Note

When creating the database to house Ironic, specifically on MySQL/MariaDB, the character set can-
not be 4 byte Unicode characters. This is due to an internal structural constraint. UTF8, in these
database platforms, has traditionally meant utf8mb3, short for UTF-8, 3 byte encoding, however the
platforms are expected to move to utf8mb4 which is incompatible with Ironic.

Running on SQLite

It is possible to run the Bare Metal service with SQLite as the database backend. However, take into
account the following limitations:

• You have to run Ironic in the all-in-one mode (see configuring single-process ironic). You cannot
have multiple conductors this way.

• You should use WAL mode for the database. Ironic will try to enable it for you, but it can only be
done for a fresh database.

• Even in the WAL mode, SQLite has limited write concurrency. If you experience database is
locked errors, try reducing the frequency of periodic tasks. If that still does not help, you may
need to use a server-based database.

• Not all database migrations are supported on SQLite. You may need to re-create the database on
upgrades.

To use SQLite, configure your connection like this:

[database]
connection = sqlite:////full/path/to/ironic.sqlite

Note

This is not a typo! A full path requires 4 slashes.

If in doubt, use MySQL/MariaDB instead.

Install and configure components

Using DNF on RHEL/CentOS Stream and RDO packages:

dnf install openstack-ironic-api openstack-ironic-conductor python3-
↪→ironicclient

On Ubuntu/Debian:

apt-get install ironic-api ironic-conductor python3-ironicclient

On openSUSE/SLES:

zypper install openstack-ironic-api openstack-ironic-conductor python3-
↪→ironicclient

18 Chapter 2. Installation Guide

https://www.sqlite.org
https://www.sqlite.org/wal.html
https://www.rdoproject.org/
https://docs.openstack.org/install-guide/environment-packages-ubuntu.html

Ironic Documentation, Release 26.1.2.dev21

Warning

Support for SUSE systems is best effort, it is not tested in the CI.

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But
the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
IRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

[database]

The SQLAlchemy connection string used to connect to the
database (string value)
connection=mysql+pymysql://ironic:IRONIC_DBPASSWORD@DB_IP/ironic?
↪→charset=utf8

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following
option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

[DEFAULT]

A URL representing the messaging driver to use and its full
configuration. (string value)
transport_url = rabbit://RPC_USER:RPC_PASSWORD@RPC_HOST:RPC_PORT/

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

[DEFAULT]

rpc_transport = json-rpc

[json_rpc]

Authentication type to load (string value)
auth_type = password

(continues on next page)

2.1. Bare Metal Service Installation Guide 19

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

Authentication URL (string value)
auth_url=https://IDENTITY_IP:5000/

Username (string value)
username=ironic

User's password (string value)
password=IRONIC_PASSWORD

Project name to scope to (string value)
project_name=service

Domain ID containing project (string value)
project_domain_id=default

User's domain id (string value)
user_domain_id=default

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

[json_rpc]
port = 9999

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_IP with the public IP of the Identity server, PRIVATE_IDENTITY_IP with
the private IP of the Identity server, replace IRONIC_PASSWORD with the password you chose for
the ironic user in the Identity service and replace MEMCACHED_SERVER with the hostname of the
memcached server:

[DEFAULT]

Authentication strategy used by ironic-api: one of
"keystone" or "noauth". "noauth" should not be used in a
production environment because all authentication will be
disabled. (string value)
auth_strategy=keystone

[keystone_authtoken]

Authentication type to load (string value)
auth_type=password

Complete public Identity API endpoint (string value)
www_authenticate_uri=http://PUBLIC_IDENTITY_IP:5000

Complete admin Identity API endpoint. (string value)
auth_url=http://PRIVATE_IDENTITY_IP:5000

Service username. (string value)
(continues on next page)

20 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

username=ironic

Service account password. (string value)
password=IRONIC_PASSWORD

Service tenant name. (string value)
project_name=service

Domain name containing project (string value)
project_domain_name=Default

User's domain name (string value)
user_domain_name=Default

memcached setting (string value)
memcached_servers=MEMCACHED_SERVER:11211

4. Create the Bare Metal service database tables:

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

RHEL/CentOS/SUSE:

sudo systemctl restart openstack-ironic-api

Ubuntu/Debian:

sudo service ironic-api restart

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note

This is optional, the ironic APIs can be run using independent scripts that provide HTTP servers. But
it is generally considered more performant and flexible to run them using a generic HTTP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHEL8/CentOS8:

sudo dnf install httpd

Debian/Ubuntu:

2.1. Bare Metal Service Installation Guide 21

Ironic Documentation, Release 26.1.2.dev21

apt-get install apache2

SUSE:

zypper install apache2

2. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache
sites:

Fedora/RHEL8/CentOS8:

sudo cp etc/apache2/ironic /etc/httpd/conf.d/ironic.conf

Debian/Ubuntu:

sudo cp etc/apache2/ironic /etc/apache2/sites-available/ironic.conf

SUSE:

sudo cp etc/apache2/ironic /etc/apache2/vhosts.d/ironic.conf

3. Edit the recently copied <apache-configuration-dir>/ironic.conf:

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in IRONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

4. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.
Apache will fail to start:

Fedora/RHEL8/CentOS8/SUSE:

sudo systemctl stop openstack-ironic-api
sudo systemctl disable openstack-ironic-api

Debian/Ubuntu:

sudo service ironic-api stop
sudo service ironic-api disable

5. Enable the apache ironic in site and reload:

Fedora/RHEL8/CentOS8:

sudo systemctl reload httpd

Debian/Ubuntu:

22 Chapter 2. Installation Guide

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 26.1.2.dev21

sudo a2ensite ironic
sudo service apache2 reload

SUSE:

sudo systemctl reload apache2

Note

The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN di-
rectory. It should not be modified.

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

gunicorn -b 0.0.0.0:6385 'ironic.api.wsgi:initialize_wsgi_app(argv=[])'

If you want to pass a configuration file, use:

gunicorn -b 0.0.0.0:6385 \
'ironic.api.wsgi:initialize_wsgi_app(argv=["ironic-api", "--config-file=/

↪→path/to/_ironic.conf"])'

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

[DEFAULT]

IP address of this host. If unset, will determine the IP
programmatically. If unable to do so, will use "127.0.0.1".
(string value)
my_ip=HOST_IP

Note

If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same network
as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace IRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

2.1. Bare Metal Service Installation Guide 23

Ironic Documentation, Release 26.1.2.dev21

[database]

The SQLAlchemy connection string to use to connect to the
database. (string value)
connection=mysql+pymysql://ironic:IRONIC_DBPASSWORD@DB_IP/ironic?
↪→charset=utf8

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

[DEFAULT]

A URL representing the messaging driver to use and its full
configuration. (string value)
transport_url = rabbit://RPC_USER:RPC_PASSWORD@RPC_HOST:RPC_PORT/

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

[DEFAULT]

rpc_transport = json-rpc

[keystone_authtoken]

Authentication type to load (string value)
auth_type=password

Complete public Identity API endpoint (string value)
www_authenticate_uri=http://PUBLIC_IDENTITY_IP:5000

Complete admin Identity API endpoint. (string value)
auth_url=http://PRIVATE_IDENTITY_IP:5000

Service username. (string value)
username=ironic

Service account password. (string value)
password=IRONIC_PASSWORD

Service tenant name. (string value)
project_name=service

Domain name containing project (string value)
project_domain_name=Default

User's domain name (string value)
user_domain_name=Default

24 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

You can optionally change the host and the port the JSON RPC service will bind to, for example:

[json_rpc]
host_ip = 192.168.0.10
port = 9999

Warning

Hostnames of ironic-conductor machines must be resolvable by ironic-api services when JSON
RPC is used.

4. Configure credentials for accessing other OpenStack services.

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

• [neutron] - to access the OpenStack Networking service

• [glance] - to access the OpenStack Image service

• [swift] - to access the OpenStack Object Storage service

• [cinder] - to access the OpenStack Block Storage service

• [inspector] - to access the OpenStack Bare Metal Introspection service

• [service_catalog] - a special section holding credentials the Bare Metal service will use
to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

• Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

• HTTPS connection with specific CA SSL certificate when making requests

• the same service user as configured for ironic-api service

• dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

– replace IDENTITY_IPwith the IP of the Identity server, and replace IRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

2.1. Bare Metal Service Installation Guide 25

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 26.1.2.dev21

[neutron]

Authentication type to load (string value)
auth_type = password

Authentication URL (string value)
auth_url=https://IDENTITY_IP:5000/

Username (string value)
username=ironic

User's password (string value)
password=IRONIC_PASSWORD

Project name to scope to (string value)
project_name=service

Domain ID containing project (string value)
project_domain_id=default

User's domain id (string value)
user_domain_id=default

PEM encoded Certificate Authority to use when verifying
HTTPs connections. (string value)
cafile=/opt/stack/data/ca-bundle.pem

The default region_name for endpoint URL discovery. (string
value)
region_name = RegionTwo

List of interfaces, in order of preference, for endpoint
URL. (list value)
valid_interfaces=public

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

[neutron]
...
endpoint_override = <NEUTRON_API_ADDRESS>

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

5. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must

26 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

be installed and configured, see Configure the Image service for temporary URLs. Ceph
Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

6. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning
from the admin guide.

7. Restart the ironic-conductor service:

RHEL/CentOS/SUSE:

sudo systemctl restart openstack-ironic-conductor

Ubuntu/Debian:

sudo service ironic-conductor restart

Configuring single-process ironic

As an alternative to starting separate API and conductor instances, you can start ironic services that
combine an API and a conductor in the same process. This may be particularly beneficial in environments
with limited resources and low number of nodes to handle.

Note

This feature is available starting with the Yoga release series.

1. Start with setting up the environment as described in both Configuring ironic-api service and Con-
figuring ironic-conductor service, but do not start any services. Merge configuration options into
a single configuration file.

Note

Any RPC settings will only take effect if you have more than one combined service started or
if you have additional conductors.

If you dont plan to have more than one conductor, you can disable the RPC completely:

[DEFAULT]
rpc_transport = none

2. Stop existing services if they are already started:

RHEL/CentOS/SUSE:

sudo systemctl stop openstack-ironic-api
sudo systemctl stop openstack-ironic-conductor

Ubuntu/Debian:

sudo service ironic-api stop
sudo service ironic-conductor stop

2.1. Bare Metal Service Installation Guide 27

Ironic Documentation, Release 26.1.2.dev21

3. Start or restart the ironic service:

RHEL/CentOS/SUSE:

sudo systemctl restart openstack-ironic

Ubuntu/Debian:

sudo service ironic restart

2.1.4 Building or downloading a deploy ramdisk image

Ironic depends on having an image with the ironic-python-agent (IPA) service running on it for controlling
and deploying bare metal nodes.

Two kinds of images are published on every commit from every branch of ironic-python-agent (IPA)

• DIB images are suitable for production usage and can be downloaded from https://tarballs.
openstack.org/ironic-python-agent/dib/files/.

– For Train and older use CentOS 7 images.

– For Ussuri and up to Yoga use CentOS 8 images.

– For Zed and newer use CentOS 9 images.

Warning

CentOS 7 master images are no longer updated and must not be used.

Warning

The published images will not work for dhcp-less deployments since the simple-init element is
not present. Check the DIB documentation to see how to build the image.

• TinyIPA images are suitable for CI and testing environments and can be downloaded from https:
//tarballs.openstack.org/ironic-python-agent/tinyipa/files/.

Building from source

Check the ironic-python-agent-builder project for information on how to build ironic-python-agent
ramdisks.

28 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-python-agent/2024.2/
https://docs.openstack.org/ironic-python-agent/2024.2/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://docs.openstack.org/ironic-python-agent-builder/latest/

Ironic Documentation, Release 26.1.2.dev21

2.1.5 Integration with other OpenStack services

Configure the Identity service for the Bare Metal service

1. Create the Bare Metal service user (for example, ironic). The service uses this to authenticate
with the Identity service. Use the service tenant and give the user the admin role:

$ openstack user create --password IRONIC_PASSWORD \
--email ironic@example.com ironic

$ openstack role add --project service --user ironic admin

2. You must register the Bare Metal service with the Identity service so that other OpenStack services
can locate it. To register the service:

$ openstack service create --name ironic --description \
"Ironic baremetal provisioning service" baremetal

3. Use the id property that is returned from the Identity service when registering the service (above),
to create the endpoint, and replace IRONIC_NODE with your Bare Metal services API node:

$ openstack endpoint create --region RegionOne \
baremetal admin http://$IRONIC_NODE:6385

$ openstack endpoint create --region RegionOne \
baremetal public http://$IRONIC_NODE:6385

$ openstack endpoint create --region RegionOne \
baremetal internal http://$IRONIC_NODE:6385

4. You may delegate limited privileges related to the Bare Metal service to your Users by creat-
ing Roles with the OpenStack Identity service. By default, the Bare Metal service expects the
baremetal_admin and baremetal_observer Roles to exist, in addition to the default admin Role.
There is no negative consequence if you choose not to create these Roles. They can be created
with the following commands:

$ openstack role create baremetal_admin
$ openstack role create baremetal_observer

If you choose to customize the names of Roles used with the Bare Metal service, do so by changing
the is_member, is_observer, and is_admin policy settings in /etc/ironic/policy.yaml.

More complete documentation on managing Users and Roles within your OpenStack deployment
are outside the scope of this document, but may be found here.

5. You can further restrict access to the Bare Metal service by creating a separate baremetal Project,
so that Bare Metal resources (Nodes, Ports, etc) are only accessible to members of this Project:

$ openstack project create baremetal

At this point, you may grant read-only access to the Bare Metal service API without granting any
other access by issuing the following commands:

$ openstack user create \
--domain default --project-domain default --project baremetal \
--password PASSWORD USERNAME

(continues on next page)

2.1. Bare Metal Service Installation Guide 29

https://docs.openstack.org/keystone/2024.2/admin/identity-concepts.html#user-management

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

$ openstack role add \
--user-domain default --project-domain default --project baremetal \
--user USERNAME baremetal_observer

6. Further documentation is available elsewhere for the openstack command-line client and the
Identity service. A policy.yaml.sample file, which enumerates the services default policies, is
provided for your convenience with the Bare Metal Service.

Configure the Compute service to use the Bare Metal service

The Compute service needs to be configured to use the Bare Metal services driver. The configuration
file for the Compute service is typically located at /etc/nova/nova.conf.

Note

As of the Newton release, it is possible to have multiple nova-compute services running the ironic
virtual driver (in nova) to provide redundancy. Bare metal nodes are mapped to the services via a
hash ring. If a service goes down, the available bare metal nodes are remapped to different services.

Once active, a node will stay mapped to the same nova-compute even when it goes down. The node
is unable to be managed through the Compute API until the service responsible returns to an active
state.

The following configuration file must be modified on the Compute services controller nodes and compute
nodes.

1. Change these configuration options in the Compute service configuration file (for example, /etc/
nova/nova.conf):

[default]

Defines which driver to use for controlling virtualization.
Enable the ironic virt driver for this compute instance.
compute_driver=ironic.IronicDriver

Amount of memory in MB to reserve for the host so that it is always
available to host processes.
It is impossible to reserve any memory on bare metal nodes, so set
this to zero.
reserved_host_memory_mb=0

[filter_scheduler]

Enables querying of individual hosts for instance information.
Not possible for bare metal nodes, so set it to False.
track_instance_changes=False

[scheduler]

(continues on next page)

30 Chapter 2. Installation Guide

https://docs.openstack.org/python-openstackclient/2024.2/cli/authentication.html
https://docs.openstack.org/keystone/2024.2/admin/cli-manage-projects-users-and-roles.html

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

This value controls how often (in seconds) the scheduler should
attempt to discover new hosts that have been added to cells.
If negative (the default), no automatic discovery will occur.
As each bare metal node is represented by a separate host, it has
to be discovered before the Compute service can deploy on it.
The value here has to be carefully chosen based on a compromise
between the enrollment speed and the load on the Compute scheduler.
The recommended value of 2 minutes matches how often the Compute
service polls the Bare Metal service for node information.
discover_hosts_in_cells_interval=120

Note

The alternative to setting the discover_hosts_in_cells_interval option is to run the
following command on any Compute controller node after each node is enrolled:

nova-manage cell_v2 discover_hosts --by-service

2. Consider enabling the following option on controller nodes:

[filter_scheduler]

Enabling this option is beneficial as it reduces re-scheduling events
for ironic nodes when scheduling is based on resource classes,
especially for mixed hypervisor case with host_subset_size = 1.
However enabling it will also make packing of VMs on hypervisors
less dense even when scheduling weights are completely disabled.
#shuffle_best_same_weighed_hosts = false

3. Carefully consider the following option:

[compute]

This option will cause nova-compute to set itself to a disabled state
if a certain number of consecutive build failures occur. This will
prevent the scheduler from continuing to send builds to a compute
service that is consistently failing. In the case of bare metal
provisioning, however, a compute service is rarely the cause of build
failures. Furthermore, bare metal nodes, managed by a disabled
compute service, will be remapped to a different one. That may cause
the second compute service to also be disabled, and so on, until no
compute services are active.
If this is not the desired behavior, consider increasing this value or
setting it to 0 to disable this behavior completely.
#consecutive_build_service_disable_threshold = 10

4. Change these configuration options in the ironic section. Replace:

• IRONIC_PASSWORD with the password you chose for the ironic user in the Identity Service

• IRONIC_NODE with the hostname or IP address of the ironic-api node

2.1. Bare Metal Service Installation Guide 31

Ironic Documentation, Release 26.1.2.dev21

• IDENTITY_IP with the IP of the Identity server

[ironic]

Ironic authentication type
auth_type=password

Keystone API endpoint
auth_url=http://IDENTITY_IP:5000/v3

Ironic keystone project name
project_name=service

Ironic keystone admin name
username=ironic

Ironic keystone admin password
password=IRONIC_PASSWORD

Ironic keystone project domain
or set project_domain_id
project_domain_name=Default

Ironic keystone user domain
or set user_domain_id
user_domain_name=Default

5. On the Compute services controller nodes, restart the nova-scheduler process:

Fedora/RHEL8/CentOS8/SUSE:
sudo systemctl restart openstack-nova-scheduler

Ubuntu:
sudo service nova-scheduler restart

6. On the Compute services compute nodes, restart the nova-compute process:

Fedora/RHEL8/CentOS8/SUSE:
sudo systemctl restart openstack-nova-compute

Ubuntu:
sudo service nova-compute restart

32 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Configure the Networking service for bare metal provisioning

You need to configure Networking so that the bare metal server can communicate with the Networking
service for DHCP, PXE/HTTP boot and other requirements. This section covers configuring Networking
for a single flat network for bare metal provisioning. In more advanced configurations, we typically refer
to the network upon which nodes undergo deployment as the provisioning network, as the underlying
resources to provision the node must be available for successful operations.

Warning

This documentation is geared for use of OVS with Neutron along with the neutron-dhcp-agent. It
is possible to use OVN with neutron-dhcp-agent, and depending on version of OVN and Neutron,
OVNs own DHCP service for IPv4 clients, but that is considered an advanced topic, and we encourage
operators interested in use of OVN to fully understand its capabilities and state before attempting to
utilize such a configuration. Please see Use of OVN Networking for more details.

It is recommended to use the baremetal ML2 mechanism driver and L2 agent for proper integration
with the Networking service. Documentation regarding installation and configuration of the baremetal
mechanism driver and L2 agent is available here.

For use with routed networks the baremetal ML2 components are required.

Note

When the baremetal ML2 components are not used, ports in the Networking service will have status:
DOWN, and binding_vif_type: binding_failed. This was always the status for Bare Metal service
flat network interface ports prior to the introduction of the baremetal ML2 integration. For a non-
routed network, bare metal servers can still be deployed and are functional, despite this port binding
state in the Networking service.

You will also need to provide Bare Metal service with the MAC address(es) of each node that it is provi-
sioning; Bare Metal service in turn will pass this information to Networking service for DHCP and PXE
boot configuration. An example of this is shown in the Enrolling hardware with Ironic section.

1. Install the networking-baremetal ML2 mechanism driver and L2 agent in the Networking service.

2. Edit /etc/neutron/plugins/ml2/ml2_conf.ini and modify these:

[ml2]
type_drivers = flat
tenant_network_types = flat
mechanism_drivers = openvswitch,baremetal

[ml2_type_flat]
flat_networks = physnet1

[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.
↪→OVSHybridIptablesFirewallDriver
enable_security_group = True

(continues on next page)

2.1. Bare Metal Service Installation Guide 33

https://docs.openstack.org/networking-baremetal/2024.2/index.html
https://docs.openstack.org/neutron/2024.2/admin/config-routed-networks

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

[ovs]
bridge_mappings = physnet1:br-eth2
Replace eth2 with the interface on the neutron node which you
are using to connect to the bare metal server

3. Restart the neutron-server service, to load the new configuration.

4. Create and edit /etc/neutron/plugins/ml2/ironic_neutron_agent.ini and add the re-
quired configuration. For example:

[ironic]
project_domain_name = Default
project_name = service
user_domain_name = Default
password = password
username = ironic
auth_url = http://identity-server.example.com/identity
auth_type = password
region_name = RegionOne

5. Make sure the ironic-neutron-agent service is started.

6. If neutron-openvswitch-agent runs with ovs_neutron_plugin.ini as the input config-file, edit
ovs_neutron_plugin.ini to configure the bridge mappings by adding the [ovs] section de-
scribed in the previous step, and restart the neutron-openvswitch-agent.

7. Add the integration bridge to Open vSwitch:

$ ovs-vsctl add-br br-int

8. Create the br-eth2 network bridge to handle communication between the OpenStack services (and
the Bare Metal services) and the bare metal nodes using eth2. Replace eth2 with the interface on
the network node which you are using to connect to the Bare Metal service:

$ ovs-vsctl add-br br-eth2
$ ovs-vsctl add-port br-eth2 eth2

9. Restart the Open vSwitch agent:

service neutron-plugin-openvswitch-agent restart

10. On restarting the Networking service Open vSwitch agent, the veth pair between the bridges br-int
and br-eth2 is automatically created.

Your Open vSwitch bridges should look something like this after following the above steps:

$ ovs-vsctl show

Bridge br-int
fail_mode: secure
Port "int-br-eth2"

Interface "int-br-eth2"
(continues on next page)

34 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

type: patch
options: {peer="phy-br-eth2"}

Port br-int
Interface br-int

type: internal
Bridge "br-eth2"

Port "phy-br-eth2"
Interface "phy-br-eth2"

type: patch
options: {peer="int-br-eth2"}

Port "eth2"
Interface "eth2"

Port "br-eth2"
Interface "br-eth2"

type: internal
ovs_version: "2.3.0"

11. Create the flat network on which you are going to launch the instances:

$ openstack network create --project $TENANT_ID sharednet1 --share \
--provider-network-type flat --provider-physical-network physnet1

12. Create the subnet on the newly created network:

$ openstack subnet create $SUBNET_NAME --network sharednet1 \
--subnet-range $NETWORK_CIDR --ip-version 4 --gateway $GATEWAY_IP \
--allocation-pool start=$START_IP,end=$END_IP --dhcp

Configuring services for bare metal provisioning using IPv6

Use of IPv6 addressing for baremetal provisioning requires additional configuration. This page covers
the IPv6 specifics only. Please refer to Configure tenant networks and Configure the Networking service
for bare metal provisioning for general networking configuration.

Configure ironic PXE driver for provisioning using IPv6 addressing

The PXE drivers operate in such a way that they are able to utilize both IPv4 and IPv6 addresses based
upon the deployments operating state and configuration. Internally, the drivers attempt to prepare con-
figuration options for both formats, which allows ports which are IPv6 only to automatically receive boot
parameters. As a result of this, it is critical that the DEFAULT.my_ipv6 configuration parameter is set
to the conductors IPv6 address. This option is unique per conductor, and due to the nature of automatic
address assignment, it cannot be guessed by the software.

2.1. Bare Metal Service Installation Guide 35

Ironic Documentation, Release 26.1.2.dev21

Provisioning with IPv6 stateless addressing

When using stateless addressing DHCPv6 does not provide addresses to the client. DHCPv6 however
provides other configuration via DHCPv6 options such as the bootfile-url and bootfile-parameters.

Once the PXE driver is set to operate in IPv6 mode no further configuration is required in the Baremetal
Service.

Creating networks and subnets in the Networking Service

When creating the Baremetal Service network(s) and subnet(s) in the Networking Services, subnets
should have ipv6-address-mode set to dhcpv6-stateless and ip-version set to 6. Depending
on whether a router in the Networking Service is providing RAs (Router Advertisements) or not, the
ipv6-ra-mode for the subnet(s) should either be set to dhcpv6-stateless or be left unset.

Note

If ipv6-ra-mode is left unset, an external router on the network is expected to provide RAs with the
appropriate flags set for automatic addressing and other configuration.

Provisioning with IPv6 stateful addressing

When using stateful addressing DHCPv6 is providing both addresses and other configuration via
DHCPv6 options such as the bootfile-url and bootfile- parameters.

The identity-association (IA) construct used by DHCPv6 is challenging when booting over the network.
Firmware, and ramdisks typically end up using different DUID/IAID combinations and it is not always
possible for one chain- booting stage to release its address before giving control to the next step. In case
the DHCPv6 server is configured with static reservations only the result is that booting will fail because
the DHCPv6 server has no addresses available. To get past this issue either configure the DHCPv6 server
with multiple address reservations for each host, or use a dynamic range.

Note

Support for multiple address reservations requires dnsmasq version 2.81 or later. Some distributions
may backport this feature to earlier dnsmasq version as part of the packaging, check the distributions
release notes.

If a different (not dnsmasq) DHCPv6 server backend is used with the Networking service, use of
multiple address reservations might not work.

36 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Using the flat network interface

Due to the identity-association challenges with DHCPv6 provisioning using the flat network interface
is not recommended. When ironic operates with the flat network interface the server instance port
is used for provisioning and other operations. Ironic will not use multiple address reservations in this
scenario. Because of this it will not work in most cases.

Using the neutron network interface

When using the neutron network interface the Baremetal Service will allocate multiple IPv6 ad-
dresses (4 addresses per port by default) on the service networks used for provisioning, cleaning, res-
cue and introspection. The number of addresses allocated can be controlled via the [neutron]/
dhcpv6_stateful_address_count option in the Bare Metal Services configuration file (/etc/
ironic/ironic.conf). Using multiple address reservations ensures that the DHCPv6 server can lease
addresses to each step.

To enable IPv6 provisioning on neutron flat provider networks with no switch management,
the local_link_connection field of baremetal ports must be set to {'network_type':
'unmanaged'}. The following example shows how to set the local_link_connection for operation on
unmanaged networks:

baremetal port set \
--local-link-connection network_type=unmanaged <port-uuid>

The use of multiple IPv6 addresses must also be enabled in the Networking Services dhcp
agent configuration (/etc/neutron/dhcp_agent.ini) by setting the option [DEFAULT]/
dnsmasq_enable_addr6_list to True (default False in Ussuri release).

Note

Support for multiple IPv6 address reservations in the dnsmasq backend was added to the Networking
Service Ussuri release. It was also backported to the stable Train release.

Creating networks and subnets in the Networking Service

When creating the ironic service network(s) and subnet(s) in the Networking Service, subnets should
have ipv6-address-mode set to dhcpv6-stateful and ip-version set to 6. Depending on whether
a router in the Networking Service is providing RAs (Router Advertisements) or not, the ipv6-ra-mode
for the subnet(s) should be set to either dhcpv6-stateful or be left unset.

Note

If ipv6-ra-mode is left unset, an external router on the network is expected to provide RAs with the
appropriate flags set for managed addressing and other configuration.

2.1. Bare Metal Service Installation Guide 37

Ironic Documentation, Release 26.1.2.dev21

Configure the Image service for temporary URLs

Some drivers of the Baremetal service (in particular, any drivers using Direct deploy or Ansible deploy
interfaces, and some virtual media drivers) require target user images to be available over clean HTTP(S)
URL with no authentication involved (neither username/password-based, nor token-based).

When using the Baremetal service integrated in OpenStack, this can be achieved by specific configuration
of the Image service and Object Storage service as described below.

1. Configure the Image service to have object storage as a backend for storing images. For more
details, please refer to the Image service configuration guide.

Note

When using Ceph+RadosGW for Object Storage service, images stored in Image service must
be available over Object Storage service as well.

2. Enable TempURLs for the Object Storage account used by the Image service for storing images in
the Object Storage service.

1. Check if TempURLs are enabled:

executed under credentials of the user used by Image service
to access Object Storage service
$ openstack object store account show
+------------+---------------------------------------+
| Field | Value |
+------------+---------------------------------------+
Account	AUTH_bc39f1d9dcf9486899088007789ae643
Bytes	536661727
Containers	1
Objects	19
properties	Temp-Url-Key='secret'
+------------+---------------------------------------+

2. If property Temp-Url-Key is set, note its value.

3. If property Temp-Url-Key is not set, you have to configure it (secret is used in the example
below for the value):

$ openstack object store account set --property Temp-Url-Key=secret

3. Optionally, configure the ironic-conductor service. The default configuration assumes that:

1. the Object Storage service is implemented by swift,

2. the Object Storage service URL is available from the service catalog,

3. the project, used by the Image service to access the Object Storage, is the same as the project,
used by the Bare Metal service to access it,

4. the container, used by the Image service, is called glance.

If any of these assumptions do not hold, you may want to change your configuration file (typically
located at /etc/ironic/ironic.conf), for example:

38 Chapter 2. Installation Guide

https://docs.openstack.org/swift/2024.2/

Ironic Documentation, Release 26.1.2.dev21

[glance]

swift_endpoint_url = http://openstack/swift
swift_account = AUTH_bc39f1d9dcf9486899088007789ae643
swift_container = glance
swift_temp_url_key = secret

4. (Re)start the ironic-conductor service.

Enabling HTTPS

Enabling HTTPS in Swift

The drivers using virtual media use swift for storing boot images and node configuration information
(contains sensitive information for Ironic conductor to provision bare metal hardware). By default,
HTTPS is not enabled in swift. HTTPS is required to encrypt all communication between swift and
Ironic conductor and swift and bare metal (via virtual media). It can be enabled in one of the following
ways:

• Using an SSL termination proxy

• Using native SSL support in swift (recommended only for testing purpose by swift).

Enabling HTTPS in Image service

Ironic drivers usually use Image service during node provisioning. By default, image service does not
use HTTPS, but it is required for secure communication. It can be enabled by making the following
changes to /etc/glance/glance-api.conf:

1. Configuring SSL support

2. Restart the glance-api service:

Fedora/RHEL8/CentOS8/SUSE:
sudo systemctl restart openstack-glance-api

Debian/Ubuntu:
sudo service glance-api restart

See the Glance documentation, for more details on the Image service.

Enabling HTTPS communication between Image service and Object storage

This section describes the steps needed to enable secure HTTPS communication between Image service
and Object storage when Object storage is used as the Backend.

To enable secure HTTPS communication between Image service and Object storage follow these steps:

1. Enabling HTTPS in Swift

2. Configure Swift Storage Backend

2.1. Bare Metal Service Installation Guide 39

https://docs.openstack.org/security-guide/secure-communication/tls-proxies-and-http-services.html
https://docs.openstack.org/swift/2024.2/deployment_guide.html
https://docs.openstack.org/glance/2024.2/configuration/configuring.html#configuring-ssl-support
https://docs.openstack.org/glance/2024.2/
https://docs.openstack.org/glance/2024.2/configuration/configuring.html#configuring-the-swift-storage-backend

Ironic Documentation, Release 26.1.2.dev21

3. Enabling HTTPS in Image service

Enabling HTTPS communication between Image service and Bare Metal service

This section describes the steps needed to enable secure HTTPS communication between Image service
and Bare Metal service.

To enable secure HTTPS communication between Bare Metal service and Image service follow these
steps:

1. Edit /etc/ironic/ironic.conf:

[glance]
...
glance_cafile=/path/to/certfile

Note

glance_cafile is an optional path to a CA certificate bundle to be used to validate the SSL
certificate served by Image service.

2. If not using the keystone service catalog for the Image service API endpoint discovery, also
edit the endpoint_override option to point to HTTPS URL of image service (replace
<GLANCE_API_ADDRESS> with hostname[:port][path] of the Image service endpoint):

[glance]
...
endpoint_override = https://<GLANCE_API_ADDRESS>

3. Restart ironic-conductor service:

Fedora/RHEL8/CentOS8/SUSE:
sudo systemctl restart openstack-ironic-conductor

Debian/Ubuntu:
sudo service ironic-conductor restart

Configure the Bare Metal service for cleaning

Note

If you configured the Bare Metal service to do Automated cleaning (which is enabled by default), you
will need to set the cleaning_network configuration option.

1. Note the network UUID (the id field) of the network you created in Configure the Networking
service for bare metal provisioning or another network you created for cleaning:

$ openstack network list

40 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

2. Configure the cleaning network UUID via the cleaning_network option in the Bare Metal ser-
vice configuration file (/etc/ironic/ironic.conf). In the following, replace NETWORK_UUID
with the UUID you noted in the previous step:

[neutron]
cleaning_network = NETWORK_UUID

3. Restart the Bare Metal services ironic-conductor:

Fedora/RHEL8/CentOS8/SUSE:
sudo systemctl restart openstack-ironic-conductor

Ubuntu:
sudo service ironic-conductor restart

Configure tenant networks

Below is an example flow of how to set up the Bare Metal service so that node provisioning will happen
in a multi-tenant environment (which means using the neutron network interface as stated above):

1. Network interfaces can be enabled on ironic-conductor by adding them to the
enabled_network_interfaces configuration option under the default section of the
configuration file:

[DEFAULT]
...
enabled_network_interfaces=noop,flat,neutron

Keep in mind that, ideally, all ironic-conductors should have the same list of enabled network
interfaces, but it may not be the case during ironic-conductor upgrades. This may cause problems
if one of the ironic-conductors dies and some node that is taken over is mapped to an ironic-
conductor that does not support the nodes network interface. Any actions that involve calling the
nodes driver will fail until that network interface is installed and enabled on that ironic-conductor.

2. It is recommended to set the default network interface via the default_network_interface
configuration option under the default section of the configuration file:

[DEFAULT]
...
default_network_interface=neutron

This default value will be used for all nodes that dont have a network interface explicitly specified
in the creation request.

If this configuration option is not set, the default network interface is determined by looking at the
dhcp.dhcp_provider configuration option value. If it is neutron, then flat network interface
becomes the default, otherwise noop is the default.

3. Define a provider network in the Networking service, which we shall refer to as the provision-
ing network. Using the neutron network interface requires that provisioning_network and
cleaning_network configuration options are set to valid identifiers (UUID or name) of networks
in the Networking service. If these options are not set correctly, cleaning or provisioning will fail
to start. There are two ways to set these values:

2.1. Bare Metal Service Installation Guide 41

Ironic Documentation, Release 26.1.2.dev21

• Under the neutron section of ironic configuration file:

[neutron]
cleaning_network = $CLEAN_UUID_OR_NAME
provisioning_network = $PROVISION_UUID_OR_NAME

• Under provisioning_network and cleaning_network keys of the nodes
driver_info field as driver_info['provisioning_network'] and
driver_info['cleaning_network'] respectively.

Note

If these provisioning_network and cleaning_network values are not specified in nodes
driver_info then ironic falls back to the configuration in the neutron section.

Please refer to Configure the Bare Metal service for cleaning for more information about cleaning.

Warning

Please make sure that the Bare Metal service has exclusive access to the provisioning and clean-
ing networks. Spawning instances by non-admin users in these networks and getting access to
the Bare Metal services control plane is a security risk. For this reason, the provisioning and
cleaning networks should be configured as non-shared networks in the admin tenant.

Note

When using the flat network interface, bare metal instances are normally spawned onto the
provisioning network. This is not supported with the neutron interface and the deployment
will fail. Please ensure a different network is chosen in the Networking service when a bare
metal instance is booted from the Compute service.

Note

The provisioning and cleaning networks may be the same network or distinct networks. To
ensure that communication between the Bare Metal service and the deploy ramdisk works, it
is important to ensure that security groups are disabled for these networks, or that the default
security groups allow:

• DHCP

• TFTP

• egress port used for the Bare Metal service (6385 by default)

• ingress port used for ironic-python-agent (9999 by default)

• if using Direct deploy, the egress port used for the Object Storage service or the local
HTTP server (typically 80 or 443)

• if using iPXE, the egress port used for the HTTP server running on the ironic-conductor
nodes (typically 80).

42 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

4. This step is optional and applicable only if you want to use security groups during provisioning
and/or cleaning of the nodes. If not specified, default security groups are used.

1. Define security groups in the Networking service, to be used for provisioning and/or cleaning
networks.

2. Add the list of these security group UUIDs under the neutron section of ironic-conductors
configuration file as shown below:

[neutron]
...
cleaning_network=$CLEAN_UUID_OR_NAME
cleaning_network_security_groups=[$LIST_OF_CLEAN_SECURITY_GROUPS]
provisioning_network=$PROVISION_UUID_OR_NAME
provisioning_network_security_groups=[$LIST_OF_PROVISION_SECURITY_
↪→GROUPS]

Multiple security groups may be applied to a given network, hence, they are specified as a
list. The same security group(s) could be used for both provisioning and cleaning networks.

Warning

If security groups are configured as described above, do not set the port_security_enabled flag
to False for the corresponding Networking services network or port. This will cause the deploy
to fail.

For example: if provisioning_network_security_groups configuration option is used,
ensure that port_security_enabled flag for the provisioning network is set to True. This flag is
set to True by default; make sure not to override it by manually setting it to False.

5. Install and configure a compatible ML2 mechanism driver which supports bare metal provisioning
for your switch. See ML2 plugin configuration manual for details.

6. Restart the ironic-conductor and ironic-api services after the modifications:

• Fedora/RHEL8/CentOS8:

sudo systemctl restart openstack-ironic-api
sudo systemctl restart openstack-ironic-conductor

• Ubuntu:

sudo service ironic-api restart
sudo service ironic-conductor restart

7. Make sure that the ironic-conductor is reachable over the provisioning network by trying to down-
load a file from a TFTP server on it, from some non-control-plane server in that network:

tftp $TFTP_IP -c get $FILENAME

where FILENAME is the file located at the TFTP server.

2.1. Bare Metal Service Installation Guide 43

https://docs.openstack.org/neutron/2024.2/admin/config-ml2.html

Ironic Documentation, Release 26.1.2.dev21

See Multi-tenancy in the Bare Metal service for required node configuration.

Add images to the Image service

Supported Image Formats

Ironic officially supports and tests use of qcow2 formatted images as well as raw format images. Other
types of disk images, like vdi, and single file vmdk files have been reported by users as working in their
specific cases, but are not tested upstream. We advise operators to convert the image and properly upload
the image to Glance.

Ironic enforces the list of supported and permitted image formats utilizing the
[conductor]permitted_image_formats option in ironic.conf. This setting defaults to raw
and qcow2.

A detected format mismatch between Glance and what the actual contents of the disk image file are
detected as will result in a failed deployment. To correct such a situation, the image must be re-uploaded
with the declared --disk-format or actual image file format corrected.

Instance (end-user) images

Build or download the user images as described in Creating instance images.

Load all the created images into the Image service, and note the image UUIDs in the Image service for
each one as it is generated.

Note

Images from Glance used by Ironic must be flagged as public, which requires administrative privi-
leges with the Glance image service to set.

• For whole disk images just upload the image:

$ openstack image create my-whole-disk-image --public \
--disk-format qcow2 --container-format bare \
--file my-whole-disk-image.qcow2

Warning

The kernel/ramdisk pair must not be set for whole disk images, otherwise theyll be mistaken
for partition images.

• For partition images to be used only with local boot (the default) the img_type property must be
set:

$ openstack image create my-image --public \
--disk-format qcow2 --container-format bare \
--property img_type=partition --file my-image.qcow2

44 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

• For partition images to be used with both local and network boot:

Add the kernel and ramdisk images to the Image service:

$ openstack image create my-kernel --public \
--disk-format raw --container-format bare --file my-image.vmlinuz

Store the image uuid obtained from the above step as MY_VMLINUZ_UUID.

$ openstack image create my-image.initrd --public \
--disk-format raw --container-format bare --file my-image.initrd

Store the image UUID obtained from the above step as MY_INITRD_UUID.

Add the my-image to the Image service which is going to be the OS that the user is going to run.
Also associate the above created images with this OS image. These two operations can be done by
executing the following command:

$ openstack image create my-image --public \
--disk-format qcow2 --container-format bare --property \
kernel_id=$MY_VMLINUZ_UUID --property \
ramdisk_id=$MY_INITRD_UUID --file my-image.qcow2

Deploy ramdisk images

1. Build or download the deploy images

The deploy images are used initially for preparing the server (creating disk partitions) before the
actual OS can be deployed.

There are several methods to build or download deploy images, please read the Building or down-
loading a deploy ramdisk image section.

2. Add the deploy images to the Image service

Add the deployment kernel and ramdisk images to the Image service:

$ openstack image create deploy-vmlinuz --public \
--disk-format raw --container-format bare \
--file ironic-python-agent.vmlinuz

Store the image UUID obtained from the above step as DEPLOY_VMLINUZ_UUID (or a different
name when using the parameter specified by node architecture).

$ openstack image create deploy-initrd --public \
--disk-format raw --container-format bare \
--file ironic-python-agent.initramfs

Store the image UUID obtained from the above step as DEPLOY_INITRD_UUID (or a different name
when using the parameter specified by node architecture).

3. Configure the Bare Metal service to use the produced images. It can be done per node as described
in Enrolling hardware with Ironic or in the configuration file either using a dictionary to specify
them by architecture (matching the nodes cpu_arch property) as follows:

2.1. Bare Metal Service Installation Guide 45

Ironic Documentation, Release 26.1.2.dev21

[conductor]
deploy_kernel_by_arch = x86_64:<DEPLOY_VMLINUZ_X86_64_UUID>,aarch64:
↪→<DEPLOY_VMLINUZ_AARCH64_UUID>
deploy_ramdisk_by_arch = x86_64:<DEPLOY_INITRD_X86_64_UUID>,aarch64:
↪→<DEPLOY_INITRD_AARCH64_UUID>

or globally using the general configuration parameters:

[conductor]
deploy_kernel = <insert DEPLOY_VMLINUZ_UUID>
deploy_ramdisk = <insert DEPLOY_INITRD_UUID>

In the case when both general parameters and parameters specified by architecture are defined, the
parameters specified by architecture take priority.

Create flavors for use with the Bare Metal service

Youll need to create a special bare metal flavor in the Compute service. The flavor is mapped to the bare
metal node through the nodes resource_class field (available starting with Bare Metal API version
1.21). A flavor can request exactly one instance of a bare metal resource class.

Note that when creating the flavor, its useful to add the RAM_MB and CPU properties as a convenience to
users, although they are not used for scheduling. The DISK_GB property is also not used for scheduling,
but is still used to determine the root partition size.

1. Change these to match your hardware:

$ RAM_MB=1024
$ CPU=2
$ DISK_GB=100

2. Create the bare metal flavor by executing the following command:

$ openstack flavor create --ram $RAM_MB --vcpus $CPU --disk $DISK_GB \
my-baremetal-flavor

Note

You can add --id <id> to specify an ID for the flavor.

See the docs on this command for other options that may be specified.

After creation, associate each flavor with one custom resource class. The name of a custom resource
class that corresponds to a nodes resource class (in the Bare Metal service) is:

• the bare metal nodes resource class all upper-cased

• prefixed with CUSTOM_

• all punctuation replaced with an underscore

For example, if the resource class is named baremetal-small, associate the flavor with this custom
resource class via:

46 Chapter 2. Installation Guide

https://docs.openstack.org/python-openstackclient/2024.2/cli/command-objects/flavor.html#flavor-create

Ironic Documentation, Release 26.1.2.dev21

$ openstack flavor set --property resources:CUSTOM_BAREMETAL_SMALL=1 my-
↪→baremetal-flavor

Another set of flavor properties must be used to disable scheduling based on standard properties for a
bare metal flavor:

$ openstack flavor set --property resources:VCPU=0 my-baremetal-flavor
$ openstack flavor set --property resources:MEMORY_MB=0 my-baremetal-flavor
$ openstack flavor set --property resources:DISK_GB=0 my-baremetal-flavor

Example

If you want to define a class of nodes called baremetal.with-GPU, start with tagging some nodes with
it:

$ baremetal node set <node> --resource-class baremetal.with-GPU

Warning

It is possible to add a resource class to active nodes, but it is not possible to replace an existing
resource class on them.

Then you can update your flavor to request the resource class instead of the standard properties:

$ openstack flavor set --property resources:CUSTOM_BAREMETAL_WITH_GPU=1 my-
↪→baremetal-flavor
$ openstack flavor set --property resources:VCPU=0 my-baremetal-flavor
$ openstack flavor set --property resources:MEMORY_MB=0 my-baremetal-flavor
$ openstack flavor set --property resources:DISK_GB=0 my-baremetal-flavor

Note how baremetal.with-GPU in the nodes resource_class field becomes
CUSTOM_BAREMETAL_WITH_GPU in the flavors properties.

Scheduling based on traits

Starting with the Queens release, the Compute service supports scheduling based on qualitative attributes
using traits. Starting with Bare Metal REST API version 1.37, it is possible to assign a list of traits to
each bare metal node. Traits assigned to a bare metal node will be assigned to the corresponding resource
provider in the Compute service placement API.

When creating a flavor in the Compute service, required traits may be specified via flavor properties. The
Compute service will then schedule instances only to bare metal nodes with all of the required traits.

Traits can be either standard or custom. Standard traits are listed in the os_traits library. Custom traits
must meet the following requirements:

• prefixed with CUSTOM_

• contain only upper case characters A to Z, digits 0 to 9, or underscores

2.1. Bare Metal Service Installation Guide 47

https://docs.openstack.org/os-traits/latest/

Ironic Documentation, Release 26.1.2.dev21

• no longer than 255 characters in length

A bare metal node can have a maximum of 50 traits.

Example

To add the standard trait HW_CPU_X86_VMX and a custom trait CUSTOM_TRAIT1 to a node:

$ baremetal node add trait <node> CUSTOM_TRAIT1 HW_CPU_X86_VMX

Then, update the flavor to require these traits:

$ openstack flavor set --property trait:CUSTOM_TRAIT1=required my-baremetal-
↪→flavor
$ openstack flavor set --property trait:HW_CPU_X86_VMX=required my-baremetal-
↪→flavor

2.1.6 Set up the drivers for the Bare Metal service

Enabling drivers and hardware types

Introduction

The Bare Metal service delegates actual hardware management to drivers. Drivers, also called hard-
ware types, consist of hardware interfaces: sets of functionality dealing with some aspect of bare metal
provisioning in a vendor-specific way. There are generic hardware types (eg. redfish and ipmi), and
vendor-specific ones (eg. ilo and irmc).

Note

Starting with the Rocky release, the terminologies driver, dynamic driver, and hardware type have
the same meaning in the scope of Bare Metal service.

Enabling hardware types

Hardware types are enabled in the configuration file of the ironic-conductor service by setting the
enabled_hardware_types configuration option, for example:

[DEFAULT]
enabled_hardware_types = ipmi,redfish

Due to the drivers dynamic nature, they also require configuring enabled hardware interfaces.

Note

All available hardware types and interfaces are listed in setup.cfg file in the source code tree.

48 Chapter 2. Installation Guide

https://opendev.org/openstack/ironic/src/branch/master/setup.cfg

Ironic Documentation, Release 26.1.2.dev21

Enabling hardware interfaces

There are several types of hardware interfaces:

bios
manages configuration of the BIOS settings of a bare metal node. This interface is vendor-specific
and can be enabled via the enabled_bios_interfaces option:

[DEFAULT]
enabled_hardware_types = <hardware_type_name>
enabled_bios_interfaces = <bios_interface_name>

See BIOS Configuration for details.

boot
manages booting of both the deploy ramdisk and the user instances on the bare metal node. See
Boot interfaces for details.

Boot interface implementations are often vendor specific, and can be enabled via the
enabled_boot_interfaces option:

[DEFAULT]
enabled_hardware_types = ipmi,ilo
enabled_boot_interfaces = pxe,ilo-virtual-media

Boot interfaces with pxe in their name require Configuring Network Boot. There are also a few
hardware-specific boot interfaces - see Drivers, Hardware Types and Hardware Interfaces for
Ironic for their required configuration.

console
manages access to the serial console of a bare metal node. See Configuring Web or Serial Console
for details.

deploy
defines how the image gets transferred to the target disk. See Deploy Interfaces for an explanation
of the difference between supported deploy interfaces.

The deploy interfaces can be enabled as follows:

[DEFAULT]
enabled_hardware_types = ipmi,redfish
enabled_deploy_interfaces = direct,ramdisk

Note

The direct deploy interface requires the Object Storage service or an HTTP service

inspect
implements fetching hardware information from nodes. Can be implemented out-of-band (via con-
tacting the nodes BMC) or in-band (via booting a ramdisk on a node). The latter implementation
is called inspector and uses a separate service called ironic-inspector. Example:

2.1. Bare Metal Service Installation Guide 49

https://docs.openstack.org/ironic-inspector/2024.2/

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
enabled_hardware_types = ipmi,ilo,irmc
enabled_inspect_interfaces = ilo,irmc,inspector

See Hardware Inspection for more details.

management
provides additional hardware management actions, like getting or setting boot devices. This inter-
face is usually vendor-specific, and its name often matches the name of the hardware type (with
ipmitool being a notable exception). For example:

[DEFAULT]
enabled_hardware_types = ipmi,redfish,ilo,irmc
enabled_management_interfaces = ipmitool,redfish,ilo,irmc

Using ipmitool requires Configuring IPMI support. See Drivers, Hardware Types and Hardware
Interfaces for Ironic for the required configuration of each driver.

network
connects/disconnects bare metal nodes to/from virtual networks. See Configure tenant networks
for more details.

power
runs power actions on nodes. Similar to the management interface, it is usually vendor-specific, and
its name often matches the name of the hardware type (with ipmitool being again an exception).
For example:

[DEFAULT]
enabled_hardware_types = ipmi,redfish,ilo,irmc
enabled_power_interfaces = ipmitool,redfish,ilo,irmc

Using ipmitool requires Configuring IPMI support. See Drivers, Hardware Types and Hardware
Interfaces for Ironic for the required configuration of each driver.

raid
manages building and tearing down RAID on nodes. Similar to inspection, it can be implemented
either out-of-band or in-band (via agent implementation). See RAID Configuration for details.
For example:

[DEFAULT]
enabled_hardware_types = ipmi,redfish,ilo,irmc
enabled_raid_interfaces = agent,no-raid

storage
manages the interaction with a remote storage subsystem, such as the Block Storage service, and
helps facilitate booting from a remote volume. This interface ensures that volume target and con-
nector information is updated during the lifetime of a deployed instance. See Boot From Volume
for more details.

This interface defaults to a noop driver as it is considered an opt-in interface which requires addi-
tional configuration by the operator to be usable.

For example:

50 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
enabled_hardware_types = ipmi,irmc
enabled_storage_interfaces = cinder,noop

vendor
is a place for vendor extensions to be exposed in API. See Vendor Methods for details.

[DEFAULT]
enabled_hardware_types = ipmi,redfish,ilo,irmc
enabled_vendor_interfaces = ipmitool,no-vendor

Here is a complete configuration example, enabling two generic protocols, IPMI and Redfish, with a few
additional features:

[DEFAULT]
enabled_hardware_types = ipmi,redfish
enabled_boot_interfaces = pxe
enabled_console_interfaces = ipmitool-socat,no-console
enabled_deploy_interfaces = direct
enabled_inspect_interfaces = inspector
enabled_management_interfaces = ipmitool,redfish
enabled_network_interfaces = flat,neutron
enabled_power_interfaces = ipmitool,redfish
enabled_raid_interfaces = agent
enabled_storage_interfaces = cinder,noop
enabled_vendor_interfaces = ipmitool,no-vendor

Note that some interfaces have implementations named no-<TYPE> where <TYPE> is the interface type.
These implementations do nothing and return errors when used from API.

Hardware interfaces in multi-conductor environments

When enabling hardware types and their interfaces, make sure that for every enabled hardware type,
the whole set of enabled interfaces matches for all conductors. However, different conductors can have
different hardware types enabled.

For example, you can have two conductors with the following configuration respectively:

[DEFAULT]
enabled_hardware_types = ipmi
enabled_deploy_interfaces = direct
enabled_power_interfaces = ipmitool
enabled_management_interfaces = ipmitool

[DEFAULT]
enabled_hardware_types = redfish
enabled_deploy_interfaces = ansible
enabled_power_interfaces = redfish
enabled_management_interfaces = redfish

But you cannot have two conductors with the following configuration respectively:

2.1. Bare Metal Service Installation Guide 51

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
enabled_hardware_types = ipmi,redfish
enabled_deploy_interfaces = direct
enabled_power_interfaces = ipmitool,redfish
enabled_management_interfaces = ipmitool,redfish

[DEFAULT]
enabled_hardware_types = redfish
enabled_deploy_interfaces = ansible
enabled_power_interfaces = redfish
enabled_management_interfaces = redfish

This is because the redfish hardware type will have different enabled deploy interfaces on these conduc-
tors. It would have been fine, if the second conductor had enabled_deploy_interfaces = direct
instead of ansible.

This situation is not detected by the Bare Metal service, but it can cause inconsistent behavior in the API,
when node functionality will depend on which conductor it gets assigned to.

Note

We dont treat this as an error, because such temporary inconsistency is inevitable during a rolling
upgrade or a configuration update.

Configuring interface defaults

When an operator does not provide an explicit value for one of the interfaces (when creating a node
or updating its driver), the default value is calculated as described in Defaults for hardware inter-
faces. It is also possible to override the defaults for any interfaces by setting one of the options named
default_<IFACE>_interface, where <IFACE> is the interface name. For example:

[DEFAULT]
default_deploy_interface = direct
default_network_interface = neutron

This configuration forces the default deploy interface to be direct and the default network interface to
be neutron for all hardware types.

The defaults are calculated and set on a node when creating it or updating its hardware type. Thus,
changing these configuration options has no effect on existing nodes.

Warning

The default interface implementation must be configured the same way across all conductors in the
cloud, except maybe for a short period of time during an upgrade or configuration update. Otherwise
the default implementation will depend on which conductor handles which node, and this mapping is
not predictable or even persistent.

52 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Warning

These options should be used with care. If a hardware type does not support the provided default
implementation, its users will have to always provide an explicit value for this interface when creating
a node.

Configuring Network Boot

Ironics primary means of booting hardware to perform actions or work on a baremetal node is to perform
network booting. Traditionally, this has meant the use of Preboot Execution Environment, or PXE. This
support and and functionality has evolve as time has gone on to include support for not just the pxe
boot_interface in concert with hardware vendor specific variations, but also a distinct ipxe setting
for boot_interface with default values to enable use of iPXE.

As time passed, http and http-ipxe values were also added as valid boot_interface options which
may be used, which are functionally identical in behavior to pxe and ipxe, except HTTP is used as the
transport mechanism. Not all hardware supports HTTPBoot, as it is often referred.

Note

Support for HTTPBoot interfaces was added during the 2024.1 development cycle. Prior versions of
Ironic does not contain the http and http-ipxe boot interfaces.

DHCP server setup

A DHCP server is required for network boot clients. You need to follow steps below.

1. Set the [dhcp]/dhcp_provider to neutron in the Bare Metal Services configuration file (/etc/
ironic/ironic.conf):

Note

Refer Configure tenant networks for details. The dhcp_provider configuration is already set
by the configuration defaults, and when you create subnet, DHCP is also enabled if you do not
add any dhcp options at openstack subnet create command.

2. Enable DHCP in the subnet of provisioning network to be used for network boot (PXE, iPXE,
HTTPBoot) operations.

3. Set the ip address range in the subnet for DHCP.

Note

Refer Configure the Networking service for bare metal provisioning for details about the two
precedent steps.

4. Connect the openstack DHCP agent to the external network through the OVS bridges and the in-
terface eth2.

2.1. Bare Metal Service Installation Guide 53

https://ipxe.org/

Ironic Documentation, Release 26.1.2.dev21

Note

Refer Configure the Networking service for bare metal provisioning for details. You do not
require this part if br-int, br-eth2 and eth2 are already connected.

5. Configure the host ip at br-eth2. If it locates at eth2, do below:

ip addr del 192.168.2.10/24 dev eth2
ip addr add 192.168.2.10/24 dev br-eth2

Note

Replace eth2 with the interface on the network node which you are using to connect to the Bare
Metal service.

TFTP server setup

In order to deploy instances via PXE, a TFTP server needs to be set up on the Bare Metal service nodes
which run the ironic-conductor.

1. Make sure the tftp root directory exist and can be written to by the user the ironic-conductor
is running as. For example:

sudo mkdir -p /tftpboot
sudo chown -R ironic /tftpboot

2. Install tftp server:

Ubuntu:

sudo apt-get install xinetd tftpd-hpa

RHEL8/CentOS8/Fedora:

sudo dnf install tftp-server xinetd

SUSE:

sudo zypper install tftp xinetd

3. Using xinetd to provide a tftp server setup to serve /tftpboot. Create or edit /etc/xinetd.d/
tftp as below:

service tftp
{
protocol = udp
port = 69
socket_type = dgram
wait = yes
user = root

(continues on next page)

54 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

server = /usr/sbin/in.tftpd
server_args = -v -v -v -v -v --map-file /tftpboot/map-file /tftpboot
disable = no
This is a workaround for Fedora, where TFTP will listen only on
IPv6 endpoint, if IPv4 flag is not used.
flags = IPv4

}

and restart the xinetd service:

Ubuntu:

sudo service xinetd restart

Fedora/RHEL8/CentOS8/SUSE:

sudo systemctl restart xinetd

Note

In certain environments the networks MTU may cause TFTP UDP packets to get fragmented.
Certain PXE firmwares struggle to reconstruct the fragmented packets which can cause signif-
icant slow down or even prevent the server from PXE booting. In order to avoid this, TFTPd
provides an option to limit the packet size so that it they do not get fragmented. To set this
additional option in the server_args above:

--blocksize <MAX MTU minus 32>

4. Create a map file in the tftp boot directory (/tftpboot):

echo 're ^(/tftpboot/) /tftpboot/\2' > /tftpboot/map-file
echo 're ^/tftpboot/ /tftpboot/' >> /tftpboot/map-file
echo 're ^(^/) /tftpboot/\1' >> /tftpboot/map-file
echo 're ^([^/]) /tftpboot/\1' >> /tftpboot/map-file

UEFI PXE - Grub setup

In order to deploy instances with PXE on bare metal nodes which support UEFI, perform these additional
steps on the ironic conductor node to configure the PXE UEFI environment.

Note

Most commercial Linux distributions have signed shim and grub binaries, which are required for
Secure Boot.

1. Install Grub2 and shim packages:

Ubuntu (18.04LTS and later):

2.1. Bare Metal Service Installation Guide 55

Ironic Documentation, Release 26.1.2.dev21

sudo apt-get install grub-efi-amd64-signed shim-signed

RHEL8/CentOS8/Fedora:

sudo dnf install grub2-efi shim

SUSE:

sudo zypper install grub2-x86_64-efi shim

2. Copy grub and shim boot loader images to /tftpboot directory:

Ubuntu (18.04LTS and later):

sudo cp /usr/lib/shim/shimx64.efi.signed /tftpboot/bootx64.efi
sudo cp /usr/lib/grub/x86_64-efi-signed/grubnetx64.efi.signed /tftpboot/
↪→grubx64.efi

Fedora:

sudo cp /boot/efi/EFI/fedora/shim.efi /tftpboot/bootx64.efi
sudo cp /boot/efi/EFI/fedora/grubx64.efi /tftpboot/grubx64.efi

RHEL8/CentOS8:

sudo cp /boot/efi/EFI/centos/shim.efi /tftpboot/bootx64.efi
sudo cp /boot/efi/EFI/centos/grubx64.efi /tftpboot/grubx64.efi

SUSE:

sudo cp /usr/lib64/efi/shim.efi /tftpboot/bootx64.efi
sudo cp /usr/lib/grub2/x86_64-efi/grub.efi /tftpboot/grubx64.efi

3. Update the bare metal node with boot_mode:uefi capability in nodes properties field. See Boot
mode support for details.

4. Make sure that bare metal node is configured to boot in UEFI boot mode and boot device is set to
network/pxe.

Note

Some drivers, e.g. ilo, irmc and redfish, support automatic setting of the boot mode during
deployment. This step is not required for them. Please check Drivers, Hardware Types and
Hardware Interfaces for Ironic for information on whether your driver requires manual UEFI
configuration.

56 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

iPXE setup

If you will be using iPXE to boot instead of PXE, iPXE needs to be set up on the Bare Metal service
node(s) where ironic-conductor is running.

1. Make sure these directories exist and can be written to by the user the ironic-conductor is
running as. For example:

sudo mkdir -p /tftpboot
sudo mkdir -p /httpboot
sudo chown -R ironic /tftpboot
sudo chown -R ironic /httpboot

2. Create a map file in the tftp boot directory (/tftpboot):

echo 'r ^([^/]) /tftpboot/\1' > /tftpboot/map-file
echo 'r ^(/tftpboot/) /tftpboot/\2' >> /tftpboot/map-file

3. Set up TFTP and HTTP servers.

These servers should be running and configured to use the local /tftpboot and /httpboot directories
respectively, as their root directories. (Setting up these servers is outside the scope of this install
guide.)

These root directories need to be mounted locally to the ironic-conductor services, so that the
services can access them.

The Bare Metal services configuration file (/etc/ironic/ironic.conf) should be edited accordingly to
specify the TFTP and HTTP root directories and server addresses. For example:

[pxe]

Ironic compute node's tftp root path. (string value)
tftp_root=/tftpboot

IP address of Ironic compute node's tftp server. (string
value)
tftp_server=192.168.0.2

[deploy]
Ironic compute node's http root path. (string value)
http_root=/httpboot

Ironic compute node's HTTP server URL. Example:
http://192.1.2.3:8080 (string value)
http_url=http://192.168.0.2:8080

See also: Deploying outside of the provisioning network.

4. Install the iPXE package with the boot images:

Ubuntu:

apt-get install ipxe

2.1. Bare Metal Service Installation Guide 57

Ironic Documentation, Release 26.1.2.dev21

RHEL8/CentOS8/Fedora:

dnf install ipxe-bootimgs

Note

SUSE does not provide a package containing iPXE boot images. If you are using SUSE or
if the packaged version of the iPXE boot image doesnt work, you can download a prebuilt
one from http://boot.ipxe.org or build one image from source, see http://ipxe.org/download for
more information.

Note

The Ironic project is unaware of any vendor signed iPXE binaries to enable use of iPXE with Secure
Boot, unless you have implemented your own Secure Boot key signing and support for the Machine
Owner Key settings on individual baremetal nodes.

1. Copy the iPXE boot image (undionly.kpxe for BIOS and ipxe.efi for UEFI) to /tftpboot.
The binary might be found at:

Ubuntu:

cp /usr/lib/ipxe/{undionly.kpxe,ipxe.efi,snponly.efi} /tftpboot

Fedora/RHEL8/CentOS8:

cp /usr/share/ipxe/{undionly.kpxe,ipxe-x86_64.efi,ipxe-snponly-x86_64.efi}
↪→ /tftpboot

Note

snponly variants may not be available for all distributions.

2. Enable/Configure iPXE overrides in the Bare Metal Services configuration file if required
(/etc/ironic/ironic.conf):

[pxe]

Neutron bootfile DHCP parameter. (string value)
ipxe_bootfile_name=undionly.kpxe

Bootfile DHCP parameter for UEFI boot mode. (string value)
uefi_ipxe_bootfile_name=ipxe.efi

Template file for PXE configuration. (string value)
ipxe_config_template=$pybasedir/drivers/modules/ipxe_config.template

58 Chapter 2. Installation Guide

http://boot.ipxe.org
http://ipxe.org/download

Ironic Documentation, Release 26.1.2.dev21

Note

Most UEFI systems have integrated networking which means the pxe.
uefi_ipxe_bootfile_name setting should be set to snponly.efi or
ipxe-snponly-x86_64.efi if its available for your distribution.

Note

Setting the iPXE parameters noted in the code block above to no value, in other words setting a
line to something like ipxe_bootfile_name= will result in ironic falling back to the default
values of the non-iPXE PXE settings. This is for backwards compatibility.

3. Ensure iPXE is the default PXE, if applicable.

In earlier versions of ironic, a now deprecated and removed [pxe]ipxe_enabled setting allowed
operators to declare the behavior of the conductor to exclusively operate as if only iPXE was to be
used. As time moved on, iPXE functionality was moved to its own ipxe boot interface.

If you want to emulate that same behavior, set the following in the configuration file
(/etc/ironic/ironic.conf):

[DEFAULT]
default_boot_interface=ipxe
enabled_boot_interfaces=ipxe,pxe

Note

The DEFAULT.enabled_boot_interfaces setting may be exclusively set to ipxe, however
ironic has multiple interfaces available depending on the hardware types available for use.

4. It is possible to configure the Bare Metal service in such a way that nodes will boot into the deploy
image directly from Object Storage. Doing this avoids having to cache the images on the ironic-
conductor host and serving them via the ironic-conductors HTTP server. This can be done if:

1. the Image Service is used for image storage;

2. the images in the Image Service are internally stored in Object Storage;

3. the Object Storage supports generating temporary URLs for accessing objects stored in it.
Both the OpenStack Swift and RADOS Gateway provide support for this.

• See Ceph Object Gateway support on how to configure the Bare Metal Service with
RADOS Gateway as the Object Storage.

Configure this by setting the [pxe]/ipxe_use_swift configuration option to True as follows:

[pxe]

Download deploy images directly from swift using temporary
URLs. If set to false (default), images are downloaded to
the ironic-conductor node and served over its local HTTP

(continues on next page)

2.1. Bare Metal Service Installation Guide 59

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

server. Applicable only when 'ipxe_enabled' option is set to
true. (boolean value)
ipxe_use_swift=True

Although the HTTP server still has to be deployed and configured (as it will serve iPXE boot
script and boot configuration files for nodes), such configuration will shift some load from ironic-
conductor hosts to the Object Storage service which can be scaled horizontally.

Note that when SSL is enabled on the Object Storage service you have to ensure that iPXE firmware
on the nodes can indeed boot from generated temporary URLs that use HTTPS protocol.

5. Restart the ironic-conductor process:

Fedora/RHEL8/CentOS8/SUSE:

sudo systemctl restart openstack-ironic-conductor

Ubuntu:

sudo service ironic-conductor restart

PXE multi-architecture setup

It is possible to deploy servers of different architecture by one conductor. To use this feature,
architecture-specific boot and template files must be configured using the configuration options pxe.
pxe_bootfile_name_by_arch and pxe.pxe_config_template_by_arch respectively, in the Bare
Metal services configuration file (/etc/ironic/ironic.conf).

These two options are dictionary values; the key is the architecture and the value is the boot (or
config template) file. A nodes cpu_arch property is used as the key to get the appropriate boot
file and template file. If the nodes cpu_arch is not in the dictionary, the configuration options
(in [pxe] group) pxe_bootfile_name, pxe_config_template, uefi_pxe_bootfile_name and
uefi_pxe_config_template will be used instead.

In the following example, since x86 and x86_64 keys are not in the pxe_bootfile_name_by_arch or
pxe_config_template_by_arch options, x86 and x86_64 nodes will be deployed by undionly.kpxe
or bootx64.efi, depending on the nodes boot_mode capability (bios or uefi). However, aarch64 nodes
will be deployed by grubaa64.efi, and ppc64 nodes by bootppc64:

[pxe]

Bootfile DHCP parameter. (string value)
pxe_bootfile_name=undionly.kpxe

On ironic-conductor node, template file for PXE
configuration. (string value)
pxe_config_template = $pybasedir/drivers/modules/ipxe_config.template

Bootfile DHCP parameter for UEFI boot mode. (string value)
uefi_pxe_bootfile_name=bootx64.efi

(continues on next page)

60 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

On ironic-conductor node, template file for PXE
configuration for UEFI boot loader. (string value)
uefi_pxe_config_template=$pybasedir/drivers/modules/pxe_grub_config.template

Bootfile DHCP parameter per node architecture. (dict value)
pxe_bootfile_name_by_arch=aarch64:grubaa64.efi,ppc64:bootppc64

On ironic-conductor node, template file for PXE
configuration per node architecture. For example:
aarch64:/opt/share/grubaa64_pxe_config.template (dict value)
pxe_config_template_by_arch=aarch64:pxe_grubaa64_config.template,ppc64:pxe_
↪→ppc64_config.template

Note

The grub implementation may vary on different architecture, you may need to tweak the pxe config
template for a specific arch. For example, grubaa64.efi shipped with CentoOS7 does not support
linuxefi and initrdefi commands, youll need to switch to use linux and initrd command
instead.

Note

A pxe.ipxe_bootfile_name_by_arch setting is available for multi-arch iPXE based deployment,
and defaults to the same behavior as the comperable pxe.pxe_bootfile_name_by_arch setting
for standard PXE.

Note

When booting PowerPC based machines, the firmware loader directly boots a kernel and ramdisk.
It explicitly reads a pxelinux style template, and then directly retrieves the files defined in the file
without a network boot program.

PXE timeouts tuning

Because of its reliance on UDP-based protocols (DHCP and TFTP), PXE is particularly vulnerable to
random failures during the booting stage. If the deployment ramdisk never calls back to the bare metal
conductor, the build will be aborted, and the node will be moved to the deploy failed state, after the de-
ploy callback timeout. This timeout can be changed via the conductor.deploy_callback_timeout
configuration option.

Starting with the Train release, the Bare Metal service can retry PXE boot if it takes too long. The timeout
is defined via pxe.boot_retry_timeout and must be smaller than the deploy_callback_timeout,
otherwise it will have no effect.

For example, the following configuration sets the overall timeout to 60 minutes, allowing two retries after
20 minutes:

2.1. Bare Metal Service Installation Guide 61

Ironic Documentation, Release 26.1.2.dev21

[conductor]
deploy_callback_timeout = 3600

[pxe]
boot_retry_timeout = 1200

PXE artifacts

Ironic features the capability to load PXE artifacts into the conductor startup, minimizing the need for
external installation and configuration management tooling from having to do additional work to facili-
tate.

While this is an advanced feature, and destination file names must match existing bootloader configured
filenames.

For example, if using iPXE and GRUB across interfaces, you may desire a configuration similar to this
example.

[pxe]
loader_file_paths = ipxe.efi:/usr/share/ipxe/ipxe-snponly-x86_64.efi,undionly.
↪→kpxe:/usr/share/ipxe/undionly.kpxe,bootx64.efi,/boot/efi/EFI/boot/grubx64.
↪→efi,bootx64.efi:/boot/efi/EFI/boot/BOOTX64.EFI

If you choose to use relative paths as part of your destination, those paths will be created using con-
figuration parameter pxe.dir_permission where as actual files copied are set with the configuration
parameter pxe.file_permission. Absolute destination paths are not supported and will result in ironic
failing to start up as it is a misconfiguration of the deployment.

Configuring unmanaged in-band inspection

This section must be followed if you intend to use Unmanaged inspection without ironic-inspector. For
ironic-inspector support, check its installation guide.

With PXE

After you followed TFTP Server Setup, you need to create the default PXE configuration. Populate /
tftpboot/pxelinux.cfg/default with the following contents:

default introspect

label introspect
kernel ironic-python-agent.kernel
append initrd=ironic-python-agent.initramfs ipa-inspection-callback-url=http:/
↪→/{IP}:6385/v1/continue_inspection systemd.journald.forward_to_console=yes

ipappend 3

Instead of http://{IP}:6385/v1/continue_inspection, insert the correct Bare Metal API end-
point, keeping the mandatory /v1/continue_inspection suffix. You may also populate other IPA

62 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-inspector/latest/install/index.html#configuration

Ironic Documentation, Release 26.1.2.dev21

options (e.g. ipa-debug=1 for detailed logging, ipa-inspection-collectors to customize the in-
spection process, or ipa-api-url to enable Fast-Track Deployment).

Second, you need to configure DHCP for unknown hosts since the OpenStack Networking service wont be
able to handle them. For instance, you can install dnsmasq and use the following /etc/dnsmasq.conf:

port=0
interface={INTERFACE}
bind-interfaces
dhcp-range={DHCP IP RANGE, e.g. 192.168.0.50,192.168.0.150}
enable-tftp
tftp-root=/tftpboot
dhcp-boot=pxelinux.0
dhcp-sequential-ip

If you need this dnsmasq instance to co-exist with the OpenStack Networking service, some measures
must be taken to prevent them from clashing over DHCP requests. One way to do it is to physically
separate the inspection network. Another - to configure the PXE filter service.

Finally, build or download IPA images into /tftpboot/ironic-python-agent.kernel and /
tftpboot/ironic-python-agent.initramfs. These can be the same images that you use for de-
ployment and cleaning.

With iPXE

iPXE configuration is pretty similar to PXE above, but differs in details. Start with iPXE Setup, then
create a new file /httpboot/inspection.ipxe with the following contents:

#!ipxe

:retry_dhcp
dhcp || goto retry_dhcp

:retry_boot
imgfree
kernel --timeout 30000 http://{IP}:8080/ironic-python-agent.kernel ipa-
↪→inspection-callback-url=http://{IP}:6385/v1/continue_inspection systemd.
↪→journald.forward_to_console=yes BOOTIF=${mac} initrd=ironic-python-agent.
↪→initramfs || goto retry_boot
initrd --timeout 30000 http://{IP}:8080/ironic-python-agent.initramfs || goto␣
↪→retry_boot
boot

Just as with PXE, adjust ipa-inspection-callback-url to match your deployment and add any re-
quired IPA options. You also need to fix {IP}:8080 to match the iPXE server you configured previously.

The DHCP configuration is much more complex. Since most hardware does not have an up-to-date iPXE
firmware, you need to bootstrap it from TFTP. The dnsmasq configuration may look roughly like this:

port=0
interface={INTERFACE}
bind-interfaces

(continues on next page)

2.1. Bare Metal Service Installation Guide 63

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

dhcp-range={DHCP IP RANGE, e.g. 192.168.0.50,192.168.0.150}
enable-tftp
tftp-root=/tftpboot
dhcp-sequential-ip
dhcp-match=ipxe,175
dhcp-match=set:efi,option:client-arch,7
dhcp-match=set:efi,option:client-arch,9
dhcp-match=set:efi,option:client-arch,11
dhcpv6.option: Client System Architecture Type (61)
dhcp-match=set:efi6,option6:61,0007
dhcp-match=set:efi6,option6:61,0009
dhcp-match=set:efi6,option6:61,0011
dhcp-userclass=set:ipxe6,iPXE
Client is already running iPXE; move to next stage of chainloading
dhcp-boot=tag:ipxe,http://{IP}:8080/inspection.ipxe
Client is PXE booting over EFI without iPXE ROM,
send EFI version of iPXE chainloader
dhcp-boot=tag:efi,tag:!ipxe,ipxe.efi
dhcp-option=tag:efi6,tag:!ipxe6,option6:bootfile-url,tftp://{IP}/ipxe.efi
Client is running PXE over BIOS; send BIOS version of iPXE chainloader
dhcp-boot=undionly.kpxe,localhost.localdomain,{IP}

Note

Its not trivial to write such a configuration from scratch. In addition to this document, you may take
some inspiration from Bifrost and Metal3.

Finally, put ironic-python-agent.kernel and ironic-python-agent.initramfs to /
httpboot.

HTTPBoot

HTTPBoot interfaces in Ironic are built upon the underlying network boot substrate. This means much
of the configuration in the [pxe] and [deploy] impacts the use of HTTPBoot, except when Ironic is
setting DHCP parameters, it populates a HTTP(S) URL to the DHCP server, which is then transmitted
to the client attempting to Network Boot. In large part, this is because HTTPBoot is an evolution of PXE
Boot technique and technology.

This means a TFTP server is not required, but the HTTP server is required as if you are utilizing iPXE.
This is largely because iPXE has traditionally been leveraged by Operators to limit the TFTP packets
being transmitted via UDP across a network.

One aspect to keep in mind, is HTTPBoot is relatively new when compared to PXE boot, and not all
bootloaders may support HTTPBoot, as the underlying UEFI standard upon which it was largely based,
UEFI v2.5, was published in 2015.

Ironic contains two distinct flavors of HTTPBoot, largely based upon what configuration defaults are
used in terms of boot loader, templates, and overall mechanism style.

• http is the boot interface based upon the pxe boot interface. This is the interface you would

64 Chapter 2. Installation Guide

https://opendev.org/openstack/bifrost/src/branch/master/playbooks/roles/bifrost-ironic-install/templates/dnsmasq.conf.j2
https://github.com/metal3-io/ironic-image/blob/main/ironic-config/dnsmasq.conf.j2

Ironic Documentation, Release 26.1.2.dev21

want to use if you had, for example, a signed GRUB2 bootloader chain to utilize. In this case it is
up to the boot loader to understand how to extract and run with the URL, and then retrieves any
additional configuration loader files and configuration templates created on disk.

• http-ipxe is the boot interface based upon the ipxe boot interface. This interface signals to the
client to utilize the configured iPXE loader binary over HTTP, and then the boot sequence proceeds
with the pattern and capabilities of iPXE.

To enable the boot interfaces, you will need to add them to your DEFAULT.enabled_boot_interfaces
configuration entry.

[DEFAULT]
enabled_boot_interfaces=ipxe,http-ipxe,pxe,http

Configuring IPMI support

Installing ipmitool command

To enable one of the drivers that use IPMI protocol for power and management actions (for example,
ipmi), the ipmitool command must be present on the service node(s) where ironic-conductor is
running. On most distros, it is provided as part of the ipmitool package. Source code is available at
http://ipmitool.sourceforge.net/.

Warning

Certain distros, notably Mac OS X and SLES, install openipmi instead of ipmitool by default.
This driver is not compatible with openipmi as it relies on error handling options not provided by
this tool.

Please refer to the IPMI driver for information on how to configure and use IPMItool-based drivers.

Configuring hardware

IPMI is a relatively old protocol and may require additional set up on the hardware side that the Bare
Metal service cannot do automatically:

1. Make sure IPMI is enabled and the account you use have the permissions to change power and boot
devices. By default the administrator rights are expected, you can change it: see Using a different
privilege level.

2. Make sure the cipher suites are configured for maximum security. Suite 17 is recommended, 3 can
be used if its not available. Cipher suite 0 must be disabled as it provides unauthenticated access
to the BMC.

See also

Cipher suites

2.1. Bare Metal Service Installation Guide 65

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://ipmitool.sourceforge.net/

Ironic Documentation, Release 26.1.2.dev21

3. Make sure the boot mode correspond to the expected boot mode on the node (see Boot mode
support). Some hardware is able to change the boot mode to the requested by Ironic, some does
not.

Validation and troubleshooting

Check that you can connect to, and authenticate with, the IPMI controller in your bare metal server by
running ipmitool:

ipmitool -I lanplus -H <ip-address> -U <username> -P <password> chassis power␣
↪→status

where <ip-address> is the IP of the IPMI controller you want to access. This is not the bare metal
nodes main IP. The IPMI controller should have its own unique IP.

If the above command doesnt return the power status of the bare metal server, check that

• ipmitool is installed and is available via the $PATH environment variable.

• The IPMI controller on your bare metal server is turned on.

• The IPMI controller credentials and IP address passed in the command are correct.

• The conductor node has a route to the IPMI controller. This can be checked by just pinging the
IPMI controller IP from the conductor node.

IPMI configuration

If there are slow or unresponsive BMCs in the environment, the min_command_interval configuration
option in the [ipmi] section may need to be raised. The default is fairly conservative, as setting this
timeout too low can cause older BMCs to crash and require a hard-reset.

Collecting sensor data

Bare Metal service supports sending IPMI sensor data to Telemetry with certain hardware types, such as
ipmi, ilo and irmc. By default, support for sending IPMI sensor data to Telemetry is disabled. If you
want to enable it, you should make the following two changes in ironic.conf:

[conductor]
send_sensor_data = true
[oslo_messaging_notifications]
driver = messagingv2

If you want to customize the sensor types which will be sent to Telemetry, change the
send_sensor_data_types option. For example, the below settings will send information about tem-
perature, fan, voltage from sensors to the Telemetry service:

send_sensor_data_types=Temperature,Fan,Voltage

Supported sensor types are defined by the Telemetry service, currently these are Temperature, Fan,
Voltage, Current. Special value All (the default) designates all supported sensor types.

66 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Configuring an ESP image

An ESP image is an image that contains the necessary bootloader to boot the ISO in UEFI mode. You
will need a GRUB2 image file, as well as Shim for secure boot. See UEFI PXE - Grub setup for an
explanation how to get them.

Then the following script can be used to build an ESP image:

DEST=/path/to/esp.img
GRUB2=/path/to/grub.efi
SHIM=/path/to/shim.efi

dd if=/dev/zero of=$DEST bs=4096 count=1024
mkfs.msdos -F 12 -n ESP_IMAGE $DEST

The following commands require mtools to be installed
mmd -i $DEST EFI EFI/BOOT
mcopy -i $DEST -v $SHIM ::EFI/BOOT/BOOTX64.efi
mcopy -i $DEST -v $GRUB2 ::EFI/BOOT/GRUBX64.efi
mdir -i $DEST ::EFI/BOOT

Note

If you use an architecture other than x86-64, youll need to adjust the destination paths.

Warning

If you are using secure boot, you must utilize the same SHIM and GRUB binaries matching your dis-
tributions kernel and ramdisk, otherwise the Secure Boot chain of trust will be broken. Additionally,
if you encounter odd issues UEFI booting with virtual media which point to the bootloader, verify
the appropriate distribution matching binaries are in use.

The resulting image should be provided via the driver_info/bootloader ironic node property in form
of an image UUID or a URL:

baremetal node set --driver-info bootloader=<glance-uuid-or-url> node-0

Alternatively, set the bootloader UUID or URL in the configuration file:

[conductor]
bootloader = <glance-uuid-or-url>

Finally, you need to provide the correct GRUB2 configuration path for your image. In most cases this
path will depend on your distribution, more precisely, the distribution you took the GRUB2 image from.
For example:

CentOS:

[DEFAULT]
grub_config_path = EFI/centos/grub.cfg

2.1. Bare Metal Service Installation Guide 67

https://wiki.ubuntu.com/EFIBootLoaders#Booting_from_EFI
https://github.com/rhboot/shim

Ironic Documentation, Release 26.1.2.dev21

Ubuntu:

[DEFAULT]
grub_config_path = EFI/ubuntu/grub.cfg

Note

Unlike in the script above, these paths are case-sensitive!

2.1.7 Enrolling hardware with Ironic

After all the services have been properly configured, you should enroll your hardware with the Bare Metal
service, and confirm that the Compute service sees the available hardware. The nodes will be visible to
the Compute service once they are in the available provision state.

Note

After enrolling nodes with the Bare Metal service, the Compute service will not be immediately
notified of the new resources. The Compute services resource tracker syncs periodically, and so any
changes made directly to the Bare Metal services resources will become visible in the Compute service
only after the next run of that periodic task. More information is in the Troubleshooting section.

Note

Any bare metal node that is visible to the Compute service may have a workload scheduled to it, if
both the power and management interfaces pass the validate check. If you wish to exclude a node
from the Compute services scheduler, for instance so that you can perform maintenance on it, you can
set the node to maintenance mode. For more information see the Maintenance mode section.

Choosing a driver

When enrolling a node, the most important information to supply is driver. See Enabling drivers and
hardware types for a detailed explanation of bare metal drivers, hardware types and interfaces. The
driver list command can be used to list all drivers enabled on all hosts:

baremetal driver list
+---------------------+-----------------------+
| Supported driver(s) | Active host(s) |
+---------------------+-----------------------+
| ipmi | localhost.localdomain |
+---------------------+-----------------------+

The specific driver to use should be picked based on actual hardware capabilities and expected features.
See Drivers, Hardware Types and Hardware Interfaces for Ironic for more hints on that.

Each driver has a list of driver properties that need to be specified via the nodes driver_info field, in
order for the driver to operate on node. This list consists of the properties of the hardware interfaces that
the driver uses. These driver properties are available with the driver property list command:

68 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

$ baremetal driver property list ipmi
+----------------------+--
↪→---+
| Property | Description ␣
↪→ |
+----------------------+--
↪→---+
| ipmi_address | IP address or hostname of the node. Required. ␣
↪→ |
| ipmi_password | password. Optional. ␣
↪→ |
| ipmi_username | username; default is NULL user. Optional. ␣
↪→ |
| ... | ... ␣
↪→ |
| deploy_kernel | UUID (from Glance) of the deployment kernel.␣
↪→Required. |
| deploy_ramdisk | UUID (from Glance) of the ramdisk that is mounted at␣
↪→boot time. Required. |
+----------------------+--
↪→---+

The properties marked as required must be supplied either during node creation or shortly after. Some
properties may only be required for certain features.

Note on API versions

Starting with API version 1.11, the Bare Metal service added a new initial provision state of enroll to
its state machine. When this or later API version is used, new nodes get this state instead of available.

Existing automation tooling that use an API version lower than 1.11 are not affected, since the initial pro-
vision state is still available. However, using API version 1.11 or above may break existing automation
tooling with respect to node creation.

The openstack baremetal command line tool tries to negotiate the most recent supported version,
which in virtually all cases will be newer than 1.11.

To set the API version for all commands, you can set the environment variable IRONIC_API_VERSION.
For the OpenStackClient baremetal plugin, set the OS_BAREMETAL_API_VERSION variable to the same
value. For example:

$ export IRONIC_API_VERSION=1.11
$ export OS_BAREMETAL_API_VERSION=1.11

2.1. Bare Metal Service Installation Guide 69

Ironic Documentation, Release 26.1.2.dev21

Enrollment process

Creating a node

This section describes the main steps to enroll a node and make it available for provisioning. Some steps
are shown separately for illustration purposes, and may be combined if desired.

1. Create a node in the Bare Metal service with the node create command. At a minimum, you
must specify the driver name (for example, ipmi).

This command returns the node UUID along with other information about the node. The nodes
provision state will be enroll:

$ baremetal node create --driver ipmi
+--------------+--------------------------------------+
| Property | Value |
+--------------+--------------------------------------+
uuid	dfc6189f-ad83-4261-9bda-b27258eb1987
driver_info	{}
extra	{}
driver	ipmi
chassis_uuid	
properties	{}
name	None
+--------------+--------------------------------------+

$ baremetal node show dfc6189f-ad83-4261-9bda-b27258eb1987
+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
target_power_state	None
extra	{}
last_error	None
maintenance_reason	None
provision_state	enroll
uuid	dfc6189f-ad83-4261-9bda-b27258eb1987
console_enabled	False
target_provision_state	None
provision_updated_at	None
maintenance	False
power_state	None
driver	ipmi
properties	{}
instance_uuid	None
name	None
driver_info	{}
...	...
+------------------------+--------------------------------------+

A node may also be referred to by a logical name as well as its UUID. A name can be assigned to
the node during its creation by adding the -n option to the node create command or by updating
an existing node with the node set command. See Logical Names for examples.

70 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

2. Starting with API version 1.31 (and python-ironicclient 1.13), you can pick which hard-
ware interface to use with nodes that use hardware types. Each interface is represented by a node
field called <IFACE>_interface where <IFACE> in the interface type, e.g. boot. See Enabling
drivers and hardware types for details on hardware interfaces.

An interface can be set either separately:

$ baremetal node set $NODE_UUID --deploy-interface direct --raid-
↪→interface agent

or set during node creation:

$ baremetal node create --driver ipmi \
--deploy-interface direct \
--raid-interface agent

If no value is provided for some interfaces, Defaults for hardware interfaces are used instead.

3. Update the node driver_info with the required driver properties, so that the Bare Metal service
can manage the node:

$ baremetal node set $NODE_UUID \
--driver-info ipmi_username=$USER \
--driver-info ipmi_password=$PASS \
--driver-info ipmi_address=$ADDRESS

Note

If IPMI is running on a port other than 623 (the default). The port must be added to
driver_info by specifying the ipmi_port value. Example:

$ baremetal node set $NODE_UUID --driver-info ipmi_port=$PORT_NUMBER

You may also specify all driver_info parameters during node creation by passing the driver-info
option multiple times:

$ baremetal node create --driver ipmi \
--driver-info ipmi_username=$USER \
--driver-info ipmi_password=$PASS \
--driver-info ipmi_address=$ADDRESS

See Choosing a driver above for details on driver properties.

4. Specify a deploy kernel and ramdisk compatible with the nodes driver, for example:

$ baremetal node set $NODE_UUID \
--driver-info deploy_kernel=$DEPLOY_VMLINUZ_UUID \
--driver-info deploy_ramdisk=$DEPLOY_INITRD_UUID

See Add images to the Image service for details.

5. Optionally you can specify the provisioning and/or cleaning network UUID or name in the nodes
driver_info. The neutron network interface requires both provisioning_network and

2.1. Bare Metal Service Installation Guide 71

Ironic Documentation, Release 26.1.2.dev21

cleaning_network, while the flat network interface requires the cleaning_network to be
set either in the configuration or on the nodes. For example:

$ baremetal node set $NODE_UUID \
--driver-info cleaning_network=$CLEAN_UUID_OR_NAME \
--driver-info provisioning_network=$PROVISION_UUID_OR_NAME

If you use managed inspection, you may also configure inspection_network the same way.

See Configure tenant networks for details.

6. You must also inform the Bare Metal service of the network interface cards which are part of the
node by creating a port with each NICs MAC address. These MAC addresses are passed to the
Networking service during instance provisioning and used to configure the network appropriately:

$ baremetal port create $MAC_ADDRESS --node $NODE_UUID

Note

When it is time to remove the node from the Bare Metal service, the command used to remove
the port is baremetal port delete <port uuid>. When doing so, it is important to ensure
that the baremetal node is not in maintenance as guarding logic to prevent orphaning Neutron
Virtual Interfaces (VIFs) will be overridden.

Adding scheduling information

1. Assign a resource class to the node. A resource class should represent a class of hardware in your
data center, that corresponds to a Compute flavor.

For example, lets split hardware into these three groups:

1. nodes with a lot of RAM and powerful CPU for computational tasks,

2. nodes with powerful GPU for OpenCL computing,

3. smaller nodes for development and testing.

We can define three resource classes to reflect these hardware groups, named large-cpu,
large-gpu and small respectively. Then, for each node in each of the hardware groups, well
set their resource_class appropriately via:

$ baremetal node set $NODE_UUID --resource-class $CLASS_NAME

The --resource-class argument can also be used when creating a node:

$ baremetal node create --driver $DRIVER --resource-class $CLASS_NAME

To use resource classes for scheduling you need to update your flavors as described in Create flavors
for use with the Bare Metal service.

Note

72 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

This is not required for standalone deployments, only for those using the Compute service for
provisioning bare metal instances.

2. Update the nodes properties to match the actual hardware of the node. These are optional. When
provided, memory_mb can be used for checking if the instance image fits into the nodes memory:

$ baremetal node set $NODE_UUID \
--property memory_mb=$RAM_MB \
--property local_gb=$DISK_GB

As above, these can also be specified at node creation by passing the property option to node
create multiple times:

$ baremetal node create --driver ipmi \
--driver-info ipmi_username=$USER \
--driver-info ipmi_password=$PASS \
--driver-info ipmi_address=$ADDRESS \
--property memory_mb=$RAM_MB \
--property local_gb=$DISK_GB

These values can also be discovered during Hardware Inspection.

Note

The value provided for the local_gb property should match the size of the root device youre
going to deploy on. By default ironic-python-agent picks the smallest disk which is not smaller
than 4 GiB.

If you override this logic by using root device hints (see Specifying the disk for deployment
(root device hints)), the local_gb value should match the size of picked target disk.

3. If you wish to perform more advanced scheduling of the instances based on hardware capabilities,
you may add metadata to each node that will be exposed to the Compute scheduler (see: Compute-
CapabilitiesFilter). A full explanation of this is outside of the scope of this document. It can be
done through the special capabilities member of node properties:

$ baremetal node set $NODE_UUID \
--property capabilities=key1:val1,key2:val2

Some capabilities can also be discovered during Hardware Inspection.

4. If you wish to perform advanced scheduling of instances based on qualitative attributes of bare
metal nodes, you may add traits to each bare metal node that will be exposed to the Compute sched-
uler (see: Scheduling based on traits for a more in-depth discussion of traits in the Bare Metal ser-
vice). For example, to add the standard trait HW_CPU_X86_VMX and a custom trait CUSTOM_TRAIT1
to a node:

$ baremetal node add trait $NODE_UUID \
CUSTOM_TRAIT1 HW_CPU_X86_VMX

2.1. Bare Metal Service Installation Guide 73

https://docs.openstack.org/nova/2024.2/user/filter-scheduler.html
https://docs.openstack.org/nova/2024.2/user/filter-scheduler.html

Ironic Documentation, Release 26.1.2.dev21

Validating node information

1. To check if Bare Metal service has the minimum information necessary for a nodes driver to be
functional, you may validate it:

$ baremetal node validate $NODE_UUID
+------------+--------+--------+
| Interface | Result | Reason |
+------------+--------+--------+
boot	True	
console	True	
deploy	True	
inspect	True	
management	True	
network	True	
power	True	
raid	True	
storage	True	
+------------+--------+--------+

If the node fails validation, each driver interface will return information as to why it failed:

$ baremetal node validate $NODE_UUID
+------------+--------+---
↪→--
↪→----------+
| Interface | Result | Reason ␣
↪→ ␣
↪→ |
+------------+--------+---
↪→--
↪→----------+
| boot | True | ␣
↪→ ␣
↪→ |
| console | None | not supported ␣
↪→ ␣
↪→ |
| deploy | False | Cannot validate iSCSI deploy. Some parameters␣
↪→were missing in node's instance_info. Missing are: ['root_gb', 'image_
↪→source'] |
| inspect | True | ␣
↪→ ␣
↪→ |
| management | False | Missing the following IPMI credentials in node's␣
↪→driver_info: ['ipmi_address']. ␣
↪→ |
| network | True | ␣
↪→ ␣
↪→ |
| power | False | Missing the following IPMI credentials in node's␣

(continues on next page)

74 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

↪→driver_info: ['ipmi_address']. ␣
↪→ |
| raid | None | not supported ␣
↪→ ␣
↪→ |
| storage | True | ␣
↪→ ␣
↪→ |
+------------+--------+---
↪→--
↪→----------+

When using the Compute Service with the Bare Metal service, it is safe to ignore the deploy inter-
faces validation error due to lack of image information. You may continue the enrollment process.
This information will be set by the Compute Service just before deploying, when an instance is
requested:

$ baremetal node validate $NODE_UUID
+------------+--------+---
↪→--
↪→---------------------------------------+
| Interface | Result | Reason ␣
↪→ ␣
↪→ |
+------------+--------+---
↪→--
↪→---------------------------------------+
| boot | False | Cannot validate image information for node␣
↪→because one or more parameters are missing from its instance_info.␣
↪→Missing are: ['ramdisk', 'kernel', 'image_source'] |
| console | True | ␣
↪→ ␣
↪→ |
| deploy | False | Cannot validate image information for node␣
↪→because one or more parameters are missing from its instance_info.␣
↪→Missing are: ['ramdisk', 'kernel', 'image_source'] |
| inspect | True | ␣
↪→ ␣
↪→ |
| management | True | ␣
↪→ ␣
↪→ |
| network | True | ␣
↪→ ␣
↪→ |
| power | True | ␣
↪→ ␣
↪→ |
| raid | None | not supported ␣
↪→ ␣

(continues on next page)

2.1. Bare Metal Service Installation Guide 75

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

↪→ |
| storage | True | ␣
↪→ ␣
↪→ |
+------------+--------+---
↪→--
↪→---------------------------------------+

Making node available for deployment

In order for nodes to be available for deploying workloads on them, nodes must be in the available
provision state. To do this, nodes must be moved from the enroll state to the manageable state and
then to the available state.

Note

This section can be skipped, if API version 1.10 or earlier is used.

After creating a node and before moving it from its initial provision state of enroll, basic power and
port information needs to be configured on the node. The Bare Metal service needs this information
because it verifies that it is capable of controlling the node when transitioning the node from enroll to
manageable state.

To move a node from enroll to manageable provision state:

$ baremetal node manage $NODE_UUID
$ baremetal node show $NODE_UUID
+------------------------+--
↪→----------------+
| Property | Value ␣
↪→ |
+------------------------+--
↪→----------------+
| ... | ... ␣
↪→ |
| provision_state | manageable ␣
↪→ | <- verify correct state
| uuid | 0eb013bb-1e4b-4f4c-94b5-2e7468242611 ␣
↪→ |
| ... | ... ␣
↪→ |
+------------------------+--
↪→----------------+

Note

Since it is an asynchronous call, the response for baremetal node managewill not indicate whether
the transition succeeded or not. You can check the status of the operation via baremetal node

76 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

show. If it was successful, provision_state will be in the desired state. If it failed, there will be
information in the nodes last_error.

When a node is moved from the manageable to available provision state, the node will go through
automated cleaning if configured to do so (see Configure the Bare Metal service for cleaning).

To move a node from manageable to available provision state:

$ baremetal node provide $NODE_UUID
$ baremetal node show $NODE_UUID
+------------------------+--
↪→----------------+
| Property | Value ␣
↪→ |
+------------------------+--
↪→----------------+
| ... | ... ␣
↪→ |
| provision_state | available ␣
↪→ | < - verify correct state
| uuid | 0eb013bb-1e4b-4f4c-94b5-2e7468242611 ␣
↪→ |
| ... | ... ␣
↪→ |
+------------------------+--
↪→----------------+

For more details on the Bare Metal services state machine, see the Bare Metal State Machine documen-
tation.

Mapping nodes to Compute cells

If the Compute service is used for scheduling, and the discover_hosts_in_cells_interval was
not set as described in Configure the Compute service to use the Bare Metal service, then log into any
controller node and run the following command to map the new node(s) to Compute cells:

nova-manage cell_v2 discover_hosts

Logical names

A node may also be referred to by a logical name as well as its UUID. Names can be assigned either
during its creation by adding the -n option to the node create command or by updating an existing
node with the node set command.

Node names must be unique, and conform to:

• rfc952

• rfc1123

• wiki_hostname

2.1. Bare Metal Service Installation Guide 77

https://tools.ietf.org/html/rfc952
https://tools.ietf.org/html/rfc1123
https://en.wikipedia.org/wiki/Hostname

Ironic Documentation, Release 26.1.2.dev21

The node is named example in the following examples:

$ baremetal node create --driver ipmi --name example

or

$ baremetal node set $NODE_UUID --name example

Once assigned a logical name, a node can then be referred to by name or UUID interchangeably:

$ baremetal node create --driver ipmi --name example
+--------------+--------------------------------------+
| Property | Value |
+--------------+--------------------------------------+
uuid	71e01002-8662-434d-aafd-f068f69bb85e
driver_info	{}
extra	{}
driver	ipmi
chassis_uuid	
properties	{}
name	example
+--------------+--------------------------------------+

$ baremetal node show example
+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
target_power_state	None
extra	{}
last_error	None
updated_at	2015-04-24T16:23:46+00:00
...	...
instance_info	{}
+------------------------+--------------------------------------+

Defaults for hardware interfaces

For hardware types, users can request one of enabled implementations when creating or updating a node
as explained in Creating a node.

When no value is provided for a certain interface when creating a node, or changing a nodes hardware
type, the default value is used. You can use the driver details command to list the current enabled and
default interfaces for a hardware type (for your deployment):

$ baremetal driver show ipmi
+-------------------------------+----------------+
| Field | Value |
+-------------------------------+----------------+
default_boot_interface	pxe
default_console_interface	no-console
default_deploy_interface	direct

(continues on next page)

78 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

default_inspect_interface	no-inspect
default_management_interface	ipmitool
default_network_interface	flat
default_power_interface	ipmitool
default_raid_interface	no-raid
default_vendor_interface	no-vendor
enabled_boot_interfaces	pxe
enabled_console_interfaces	no-console
enabled_deploy_interfaces	direct
enabled_inspect_interfaces	no-inspect
enabled_management_interfaces	ipmitool
enabled_network_interfaces	flat, noop
enabled_power_interfaces	ipmitool
enabled_raid_interfaces	no-raid, agent
enabled_vendor_interfaces	no-vendor
hosts	ironic-host-1
name	ipmi
type	dynamic
+-------------------------------+----------------+

The defaults are calculated as follows:

1. If the default_<IFACE>_interface configuration option (where <IFACE> is the interface
name) is set, its value is used as the default.

If this implementation is not compatible with the nodes hardware type, an error is returned to a
user. An explicit value has to be provided for the nodes <IFACE>_interface field in this case.

2. Otherwise, the first supported implementation that is enabled by an operator is used as the default.

A list of supported implementations is calculated by taking the intersection between the im-
plementations supported by the nodes hardware type and implementations enabled by the
enabled_<IFACE>_interfaces option (where <IFACE> is the interface name). The calcula-
tion preserves the order of items, as provided by the hardware type.

If the list of supported implementations is not empty, the first one is used. Otherwise, an error is
returned to a user. In this case, an explicit value has to be provided for the <IFACE>_interface
field.

See Enabling drivers and hardware types for more details on configuration.

Example

Consider the following configuration (shortened for simplicity):

[DEFAULT]
enabled_hardware_types = ipmi,redfish
enabled_console_interfaces = no-console,ipmitool-shellinabox
enabled_deploy_interfaces = direct
enabled_management_interfaces = ipmitool,redfish
enabled_power_interfaces = ipmitool,redfish
default_deploy_interface = ansible

2.1. Bare Metal Service Installation Guide 79

Ironic Documentation, Release 26.1.2.dev21

A new node is created with the ipmi driver and no interfaces specified:

$ export OS_BAREMETAL_API_VERSION=1.31
$ baremetal node create --driver ipmi
+--------------+--------------------------------------+
| Property | Value |
+--------------+--------------------------------------+
uuid	dfc6189f-ad83-4261-9bda-b27258eb1987
driver_info	{}
extra	{}
driver	ipmi
chassis_uuid	
properties	{}
name	None
+--------------+--------------------------------------+

Then the defaults for the interfaces that will be used by the node in this example are calculated as follows:

deploy
An explicit value of ansible is provided for default_deploy_interface, so it is used.

power
No default is configured. The ipmi hardware type supports only ipmitool power.
The intersection between supported power interfaces and values provided in the
enabled_power_interfaces option has only one item: ipmitool. It is used.

console
No default is configured. The ipmi hardware type supports the following console interfaces:
ipmitool-socat, ipmitool-shellinabox and no-console (in this order). Of these three,
only two are enabled: no-console and ipmitool-shellinabox (order does not matter). The
intersection contains ipmitool-shellinabox and no-console. The first item is used, and it is
ipmitool-shellinabox.

management
Following the same calculation as power, the ipmitool management interface is used.

Hardware Inspection

The Bare Metal service supports hardware inspection that simplifies enrolling nodes - please see Hard-
ware Inspection for details.

Tenant Networks and Port Groups

See Multi-tenancy in the Bare Metal service and Port groups support.

80 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

2.1.8 Using Bare Metal service as a standalone service

This guide explains how to configure and use the Bare Metal service standalone, i.e. without other
OpenStack services. In this mode users are interacting with the bare metal API directly, not though
OpenStack Compute.

Configuration

This guide covers manual configuration of the Bare Metal service in the standalone mode. Alternatively,
Bifrost can be used for automatic configuration.

Service settings

It is possible to use the Bare Metal service without other OpenStack services. You should make the
following changes to /etc/ironic/ironic.conf:

1. Choose an authentication strategy which supports standalone, one option is noauth:

[DEFAULT]
auth_strategy=noauth

Another option is http_basicwhere the credentials are stored in an Apache htpasswd format file:

[DEFAULT]
auth_strategy=http_basic
http_basic_auth_user_file=/etc/ironic/htpasswd

Only the bcrypt format is supported, and the Apache htpasswd utility can be used to populate the
file with entries, for example:

htpasswd -nbB myName myPassword >> /etc/ironic/htpasswd

2. If you want to disable the Networking service, you should have your network pre-configured to
serve DHCP and TFTP for machines that youre deploying. To disable it, change the following
lines:

[dhcp]
dhcp_provider=none

Note

If you disabled the Networking service and the driver that you use is supported by at most one
conductor, PXE boot will still work for your nodes without any manual config editing. This is
because you know all the DHCP options that will be used for deployment and can set up your
DHCP server appropriately.

If you have multiple conductors per driver, it would be better to use Networking since it will
do all the dynamically changing configurations for you.

3. If you want to disable using a messaging broker between conductor and API processes, switch to
JSON RPC instead:

2.1. Bare Metal Service Installation Guide 81

https://docs.openstack.org/bifrost/latest/
https://httpd.apache.org/docs/current/misc/password_encryptions.html

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
rpc_transport = json-rpc

JSON RPC also has its own authentication strategy. If it is not specified then the strategy defaults
to [DEFAULT] auth_strategy. The following will set JSON RPC to noauth:

[json_rpc]
auth_strategy = noauth

For http_basic the conductor server needs a credentials file to validate requests:

[json_rpc]
auth_strategy = http_basic
http_basic_auth_user_file = /etc/ironic/htpasswd-json-rpc

The API server also needs client-side credentials to be specified:

[json_rpc]
auth_type = http_basic
username = myName
password = myPassword

4. Starting with the Yoga release series, you can use a combined API+conductor service and com-
pletely disable the RPC. Set

[DEFAULT]
rpc_transport = none

and use the ironic executable to start the combined service.

Note

The combined service also works with RPC enabled, which can be useful for some deploy-
ments, but may not be advisable for all security models.

Using CLI

To use the baremetal CLI, set up these environment variables. If the noauth authentication strategy
is being used, the value none must be set for OS_AUTH_TYPE. OS_ENDPOINT is the URL of the
ironic-api process. For example:

export OS_AUTH_TYPE=none
export OS_ENDPOINT=http://localhost:6385/

If the http_basic authentication strategy is being used, the value http_basic must be set for
OS_AUTH_TYPE. For example:

export OS_AUTH_TYPE=http_basic
export OS_ENDPOINT=http://localhost:6385/

(continues on next page)

82 Chapter 2. Installation Guide

https://docs.openstack.org/python-ironicclient/2024.2/cli/osc_plugin_cli.html

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

export OS_USERNAME=myUser
export OS_PASSWORD=myPassword

Enrollment

Preparing images

If you dont use Image service, its possible to provide images to Bare Metal service via a URL.

At the moment, only two types of URLs are acceptable instead of Image service UUIDs: HTTP(S) URLs
(for example, http://my.server.net/images/img) and file URLs (file:///images/img).

There are however some limitations for different hardware interfaces:

• If youre using Direct deploy with HTTP(s) URLs, you have to provide the Bare Metal service with
the a checksum of your instance image.

MD5 is used by default for backward compatibility reasons. To compute an MD5 checksum, you
can use the following command:

$ md5sum image.qcow2
ed82def8730f394fb85aef8a208635f6 image.qcow2

Alternatively, use a SHA256 checksum or any other algorithm supported by the Pythons hashlib,
e.g.:

$ sha256sum image.qcow2
9f6c942ad81690a9926ff530629fb69a82db8b8ab267e2cbd59df417c1a28060 image.
↪→qcow2

• Direct deploy started supporting file:// images in the Victoria release cycle, before that only
HTTP(s) had been supported.

Warning

File images must be accessible to every conductor! Use a shared file system if you have more
than one conductor. The ironic CLI tool will not transfer the file from a local machine to the
conductor(s).

Note

The Bare Metal service tracks content changes for non-Glance images by checking their modification
date and time. For example, for HTTP image, if Last-Modified header value from response to a HEAD
request to http://my.server.net/images/deploy.ramdisk is greater than cached image modification time,
Ironic will re-download the content. For file:// images, the file system modification time is used.

If the HTTP server does not provide the last modification date and time, the image will be redown-
loaded every time it is used.

2.1. Bare Metal Service Installation Guide 83

http://my.server.net/images/img
file:///images/img
https://docs.python.org/3/library/hashlib.html
http://my.server.net/images/deploy.ramdisk
file://

Ironic Documentation, Release 26.1.2.dev21

Enrolling nodes

1. Create a node in Bare Metal service. At minimum, you must specify the driver name (for example,
ipmi). You can also specify all the required driver parameters in one command. This will return
the node UUID:

$ baremetal node create --driver ipmi \
--driver-info ipmi_address=ipmi.server.net \
--driver-info ipmi_username=user \
--driver-info ipmi_password=pass \
--driver-info deploy_kernel=file:///images/deploy.vmlinuz \
--driver-info deploy_ramdisk=http://my.server.net/images/deploy.

↪→ramdisk
+--------------+--
↪→----------------+
| Property | Value ␣
↪→ |
+--------------+--
↪→----------------+
| uuid | be94df40-b80a-4f63-b92b-e9368ee8d14c ␣
↪→ |
| driver_info | {u'deploy_ramdisk': u'http://my.server.net/images/deploy.
↪→ramdisk', |
| | u'deploy_kernel': u'file:///images/deploy.vmlinuz', u
↪→'ipmi_address': |
| | u'ipmi.server.net', u'ipmi_username': u'user', u'ipmi_
↪→password': |
| | u'******'} ␣
↪→ |
| extra | {} ␣
↪→ |
| driver | ipmi ␣
↪→ |
| chassis_uuid | ␣
↪→ |
| properties | {} ␣
↪→ |
+--------------+--
↪→----------------+

Note that here deploy_kernel and deploy_ramdisk contain links to images instead of Image service
UUIDs.

2. As in case of Compute service, you can also provide capabilities to node properties, but they
will be used only by Bare Metal service (for example, boot mode).

3. Then create a port to inform Bare Metal service of the network interface cards which are part of
the node by creating a port with each NICs MAC address. In this case, theyre used for naming of
PXE configs for a node:

baremetal port create $MAC_ADDRESS --node $NODE_UUID

84 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Once the installation is done, please see Deploying with Bare Metal service for information on how to
deploy bare metal machines.

Deploying

The content has been migrated, please see Deploying with Bare Metal service.

2.1.9 Enabling the configuration drive (configdrive)

The Bare Metal service supports exposing a configuration drive image to the instances.

The configuration drive is used to store instance-specific metadata and is present to the instance as a
disk partition labeled config-2. The configuration drive has a maximum size of 64MB. One use case
for using the configuration drive is to expose a networking configuration when you do not use DHCP to
assign IP addresses to instances.

The configuration drive is usually used in conjunction with the Compute service, but the Bare Metal
service also offers a standalone way of using it. The following sections will describe both methods.

When used with Compute service

To enable the configuration drive for a specific request, pass --config-drive true parameter to the
nova boot command, for example:

openstack server create --use-config-drive --flavor baremetal --image test-
↪→image instance-1

Its also possible to enable the configuration drive automatically on all instances by configuring the
OpenStack Compute service to always create a configuration drive by setting the following option
in the /etc/nova/nova.conf file, for example:

[DEFAULT]
...

force_config_drive=True

In some cases, you may wish to pass a user customized script when deploying an instance. To do this,
pass --user-data /path/to/file to the nova boot command.

When used standalone

When used without the Compute service, the operator needs to create a configuration drive and provide
the file or HTTP URL to the Bare Metal service. See Deploying with a config drive for details.

2.1. Bare Metal Service Installation Guide 85

Ironic Documentation, Release 26.1.2.dev21

Configuration drive storage in an object store

Under normal circumstances, the configuration drive can be stored in the Bare Metal service when the
size is less than 64KB. Optionally, if the size is larger than 64KB there is support to store it in a swift
endpoint. Both swift and radosgw use swift-style APIs.

The following option in /etc/ironic/ironic.conf enables swift as an object store backend to store
config drive. This uses the Identity service to establish a session between the Bare Metal service and the
Object Storage service.

[deploy]
...

configdrive_use_object_store = True

Use the following options in /etc/ironic/ironic.conf to enable radosgw. Credentials in the swift
section are needed because radosgw will not use the Identity service and relies on radosgws username
and password authentication instead.

[deploy]
...

configdrive_use_object_store = True

[swift]
...

username = USERNAME
password = PASSWORD
auth_url = http://RADOSGW_IP:8000/auth/v1

If the Direct deploy is being used, edit /etc/glance/glance-api.conf to store the instance images
in respective object store (radosgw or swift) as well:

[glance_store]
...

swift_store_user = USERNAME
swift_store_key = PASSWORD
swift_store_auth_address = http://RADOSGW_OR_SWIFT_IP:PORT/auth/v1

Accessing the configuration drive data

When the configuration drive is enabled, the Bare Metal service will create a partition on the instance
disk and write the configuration drive image onto it. The configuration drive must be mounted before
use. This is performed automatically by many tools, such as cloud-init and cloudbase-init. To mount it
manually on a Linux distribution that supports accessing devices by labels, simply run the following:

mkdir -p /mnt/config
mount /dev/disk/by-label/config-2 /mnt/config

86 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

If the guest OS doesnt support accessing devices by labels, you can use other tools such as blkid to
identify which device corresponds to the configuration drive and mount it, for example:

CONFIG_DEV=$(blkid -t LABEL="config-2" -odevice)
mkdir -p /mnt/config
mount $CONFIG_DEV /mnt/config

Cloud-init integration

The configuration drive can be especially useful when used with cloud-init, but in order to use it we
should follow some rules:

• Cloud-init data should be organized in the expected format.

• Since the Bare Metal service uses a disk partition as the configuration drive, it will only work with
cloud-init version >= 0.7.5.

• Cloud-init has a collection of data source modules, so when building the image with disk-image-
builder we have to define DIB_CLOUD_INIT_DATASOURCES environment variable and set the ap-
propriate sources to enable the configuration drive, for example:

DIB_CLOUD_INIT_DATASOURCES="ConfigDrive, OpenStack" disk-image-create -o␣
↪→fedora-cloud-image fedora baremetal

For more information see how to configure cloud-init data sources.

2.1.10 Advanced features

Specifying the disk for deployment (root device hints)

The Bare Metal service supports passing hints to the deploy ramdisk about which disk it should pick for
the deployment. The list of supported hints is:

• model (STRING): device identifier

• vendor (STRING): device vendor

• serial (STRING): disk serial number

• size (INT): size of the device in GiB

Note

A nodes local_gb property is often set to a value 1 GiB less than the actual disk size to account
for partitioning (this is how DevStack, TripleO and Ironic Inspector work, to name a few).
However, in this case size should be the actual size. For example, for a 128 GiB disk local_gb
will be 127, but size hint will be 128.

• wwn (STRING): unique storage identifier

• wwn_with_extension (STRING): unique storage identifier with the vendor extension appended

• wwn_vendor_extension (STRING): unique vendor storage identifier

2.1. Bare Metal Service Installation Guide 87

http://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html
https://docs.openstack.org/nova/latest/user/vendordata.html
https://github.com/cloud-init/cloud-init/blob/2d6e4219db73e80c135efd83753f9302f778f08d/ChangeLog
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/elements/cloud-init-datasources/README.html

Ironic Documentation, Release 26.1.2.dev21

• rotational (BOOLEAN): whether its a rotational device or not. This hint makes it easier to distin-
guish HDDs (rotational) and SSDs (not rotational) when choosing which disk Ironic should deploy
the image onto.

• hctl (STRING): the SCSI address (Host, Channel, Target and Lun), e.g 1:0:0:0

• by_path (STRING): the alternate device name corresponding to a particular PCI or iSCSI path, e.g
/dev/disk/by-path/pci-0000:00

• name (STRING): the device name, e.g /dev/md0

Warning

The root device hint name should only be used for devices with constant names (e.g RAID
volumes). For SATA, SCSI and IDE disk controllers this hint is not recommended because
the order in which the device nodes are added in Linux is arbitrary, resulting in devices like
/dev/sda and /dev/sdb switching around at boot time.

To associate one or more hints with a node, update the nodes properties with a root_device key, for
example:

baremetal node set <node-uuid> --property root_device='{"wwn":
↪→"0x4000cca77fc4dba1"}'

That will guarantee that Bare Metal service will pick the disk device that has the wwn equal to the specified
wwn value, or fail the deployment if it can not be found.

Note

Starting with the Ussuri release, root device hints can be specified per-instance, see Using Bare Metal
service as a standalone service.

The hints can have an operator at the beginning of the value string. If no operator is specified the default
is == (for numerical values) and s== (for string values). The supported operators are:

• For numerical values:

– = equal to or greater than. This is equivalent to >= and is supported for legacy reasons

– == equal to

– != not equal to

– >= greater than or equal to

– > greater than

– <= less than or equal to

– < less than

• For strings (as python comparisons):

– s== equal to

– s!= not equal to

– s>= greater than or equal to

88 Chapter 2. Installation Guide

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/persistent_naming.html
https://docs.openstack.org/nova/latest/user/filter-scheduler.html#filtering

Ironic Documentation, Release 26.1.2.dev21

– s> greater than

– s<= less than or equal to

– s< less than

– <in> substring

• For collections:

– <all-in> all elements contained in collection

– <or> find one of these

Examples are:

• Finding a disk larger or equal to 60 GiB and non-rotational (SSD):

baremetal node set <node-uuid> --property root_device='{"size": ">= 60",
↪→"rotational": false}'

• Finding a disk whose vendor is samsung or winsys:

baremetal node set <node-uuid> --property root_device='{"vendor": "<or>␣
↪→samsung <or> winsys"}'

Note

If multiple hints are specified, a device must satisfy all the hints.

Appending kernel parameters to boot instances

The Bare Metal service supports passing custom kernel parameters to boot instances to fit users require-
ments. The way to append the kernel parameters is depending on how to boot instances.

Network boot

Currently, the Bare Metal service supports assigning unified kernel parameters to PXE booted instances
by:

• Modifying the [pxe]/kernel_append_params configuration option, for example:

[pxe]
kernel_append_params = quiet splash

Note

The option was called pxe_append_params before the Xena cycle.

• Copying a template from shipped templates to another place, for example:

2.1. Bare Metal Service Installation Guide 89

Ironic Documentation, Release 26.1.2.dev21

https://opendev.org/openstack/ironic/src/branch/master/ironic/drivers/
↪→modules/pxe_config.template

Making the modifications and pointing to the custom template via the configuration options:
[pxe]/pxe_config_template and [pxe]/uefi_pxe_config_template.

Local boot

For local boot instances, users can make use of configuration drive (see Enabling the configuration drive
(configdrive)) to pass a custom script to append kernel parameters when creating an instance. This is
more flexible and can vary per instance. Here is an example for grub2 with ubuntu, users can customize
it to fit their use case:

#!/usr/bin/env python
import os

Default grub2 config file in Ubuntu
grub_file = '/etc/default/grub'
Add parameters here to pass to instance.
kernel_parameters = ['quiet', 'splash']
grub_cmd = 'GRUB_CMDLINE_LINUX'
old_grub_file = grub_file+'~'
os.rename(grub_file, old_grub_file)
cmdline_existed = False
with open(grub_file, 'w') as writer, \

open(old_grub_file, 'r') as reader:
for line in reader:

key = line.split('=')[0]
if key == grub_cmd:

#If there is already some value:
if line.strip()[-1] == '"':

line = line.strip()[:-1] + ' ' + ' '.join(kernel_
↪→parameters) + '"'

cmdline_existed = True
writer.write(line)

if not cmdline_existed:
line = grub_cmd + '=' + '"' + ' '.join(kernel_parameters) + '"'
writer.write(line)

os.remove(old_grub_file)
os.system('update-grub')
os.system('reboot')

90 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Console

In order to change default console configuration in the Bare Metal service configuration file ([pxe]
section in /etc/ironic/ironic.conf), include the serial port terminal and serial speed. Serial speed
must be the same as the serial configuration in the BIOS settings, so that the operating system boot process
can be seen in the serial console or web console. Following examples represent possible parameters for
serial and web console respectively.

• Node serial console. The console parameter console=ttyS0,115200n8 uses ttyS0 for console
output at 115200bps, 8bit, non-parity, e.g.:

[pxe]

Additional append parameters for baremetal PXE boot.
kernel_append_params = nofb vga=normal console=ttyS0,115200n8

• For node web console configuration is similar with the addition of ttyX parameter, see example:

[pxe]

Additional append parameters for baremetal PXE boot.
kernel_append_params = nofb vga=normal console=tty0 console=ttyS0,115200n8

For detailed information on how to add consoles see the reference documents kernel params and serial
console. In case of local boot the Bare Metal service is not able to control kernel boot parameters. To
configure console locally, follow Local boot section above.

Boot mode support

Some of the bare metal hardware types (namely, redfish, ilo and generic ipmi) support setting boot
mode (Legacy BIOS or UEFI).

Note

Setting boot mode support in generic ipmi driver is coupled with setting boot device. That makes
boot mode support in the ipmi driver incomplete.

Note

In this chapter we will distinguish ironic node from bare metal node. The difference is that ironic node
refers to a logical node, as it is configured in ironic, while bare metal node indicates the hardware
machine that ironic is managing.

The following rules apply in order when ironic manages node boot mode:

• If the hardware type (or bare metal node) does not implement reading current boot mode of the
bare metal node, then ironic assumes that boot mode is not set on the bare metal node

• If boot mode is not set on ironic node and bare metal node boot mode is unknown (not set, cant be
read etc.), ironic node boot mode is set to the value of the [deploy]/default_boot_mode option

2.1. Bare Metal Service Installation Guide 91

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html

Ironic Documentation, Release 26.1.2.dev21

• If boot mode is set on a bare metal node, but is not set on ironic node, bare metal node boot mode
is set on ironic node

• If boot mode is set on ironic node, but is not set on the bare metal node, ironic node boot mode is
attempted to be set on the bare metal node (failure to set boot mode on the bare metal node will
not fail ironic node deployment)

• If different boot modes appear on to be set ironic node and on the bare metal node, ironic node
boot mode is attempted to be set on the bare metal node (failure to set boot mode on the bare metal
node will fail ironic node deployment)

Warning

If a bare metal node does not support setting boot mode, then the operator needs to make sure that
boot mode configuration is consistent between ironic node and the bare metal node.

The boot modes can be configured in the Bare Metal service in the following way:

• Only one boot mode (either uefi or bios) can be configured for the node.

• If the operator wants a node to boot always in uefi mode or bios mode, then they may use
capabilities parameter within properties field of an bare metal node. The operator must
manually set the appropriate boot mode on the bare metal node.

To configure a node in uefi mode, then set capabilities as below:

openstack baremetal node set <node-uuid> --property capabilities='boot_
↪→mode:uefi'

Conversely, to configure a node in bios mode, then set the capabilities as below:

openstack baremetal node set <node-uuid> --property capabilities='boot_
↪→mode:bios'

Note

The Ironic project changed the default boot mode setting for nodes from bios to uefi
during the Yoga development cycle.

Nodes having boot_mode set to uefi may be requested by adding an extra_spec to the Compute
service flavor:
openstack flavor set ironic-test-3 --property capabilities:boot_mode="uefi"
openstack server create boot --flavor ironic-test-3 --image test-image␣
↪→instance-1

If capabilities is used in extra_spec as above, nova scheduler
(ComputeCapabilitiesFilter) will match only bare metal nodes which have the boot_mode set
appropriately in properties/capabilities. It will filter out rest of the nodes.

The above facility for matching in the Compute service can be used in heterogeneous environments
where there is a mix of uefi and bios machines, and operator wants to provide a choice to the user
regarding boot modes. If the flavor doesnt contain boot_mode and boot_mode is configured for

92 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

bare metal nodes, then nova scheduler will consider all nodes and user may get either bios or uefi
machine.

Some hardware support setting secure boot mode, see UEFI secure boot mode for details.

Choosing the disk label

Note

The term disk label is historically used in Ironic and was taken from parted. Apparently everyone
seems to have a different word for disk label - these are all the same thing: disk type, partition
table, partition map and so on

Ironic allows operators to choose which disk label they want their bare metal node to be deployed with
when Ironic is responsible for partitioning the disk; therefore choosing the disk label does not apply when
the image being deployed is a whole disk image.

There are some edge cases where someone may want to choose a specific disk label for the images being
deployed, including but not limited to:

• For machines in bios boot mode with disks larger than 2 terabytes its recommended to use a
gpt disk label. Thats because a capacity beyond 2 terabytes is not addressable by using the MBR
partitioning type. But, although GPT claims to be backward compatible with legacy BIOS systems
thats not always the case.

• Operators may want to force the partitioning to be always MBR (even if the machine is deployed
with boot mode uefi) to avoid breakage of applications and tools running on those instances.

The disk label can be configured in two ways; when Ironic is used with the Compute service or in stan-
dalone mode. The following bullet points and sections will describe both methods:

• When no disk label is provided Ironic will configure it according to the boot mode (see Boot mode
support); bios boot mode will use msdos and uefi boot mode will use gpt.

• Only one disk label - either msdos or gpt - can be configured for the node.

Warning

If the host is in UEFI boot mode, use of disk_label is redundant, and may cause deployments to
fail unexpectedly if the node is not explicitly set to boot in UEFI mode. Use of appropriate boot mode
is highly recommended.

2.1. Bare Metal Service Installation Guide 93

https://www.gnu.org/software/parted
http://www.rodsbooks.com/gdisk/bios.html

Ironic Documentation, Release 26.1.2.dev21

When used with Compute service

When Ironic is used with the Compute service the disk label should be set to nodes properties/
capabilities field and also to the flavor which will request such capability, for example:

baremetal node set <node-uuid> --property capabilities='disk_label:gpt'

As for the flavor:

openstack flavor set baremetal --property capabilities:disk_label="gpt"

When used in standalone mode

When used without the Compute service, the disk label should be set directly to the nodes
instance_info field, as below:

baremetal node set <node-uuid> --instance-info capabilities='{"disk_label":
↪→"gpt"}'

Notifications

The Bare Metal service supports the emission of notifications, which are messages sent on a message
broker (like RabbitMQ or anything else supported by the oslo messaging library) that indicate various
events which occur, such as when a node changes power states. These can be consumed by an exter-
nal service reading from the message bus. For example, Searchlight is an OpenStack service that uses
notifications to index (and make searchable) resources from the Bare Metal service.

Notifications are disabled by default. For a complete list of available notifications and instructions for
how to enable them, see the Notifications.

Configuring node web console

See Configuring Web or Serial Console.

2.1.11 Troubleshooting

Once all the services are running and configured properly, and a node has been enrolled with the Bare
Metal service and is in the available provision state, the Compute service should detect the node as an
available resource and expose it to the scheduler.

Note

There is a delay, and it may take up to a minute (one periodic task cycle) for the Compute service to
recognize any changes in the Bare Metal services resources (both additions and deletions).

In addition to watching nova-compute log files, you can see the available resources by looking at the list
of Compute hypervisors. The resources reported therein should match the bare metal node properties,
and the Compute service flavor.

94 Chapter 2. Installation Guide

https://docs.openstack.org/oslo.messaging/latest/reference/notifier.html
https://wiki.openstack.org/wiki/Searchlight

Ironic Documentation, Release 26.1.2.dev21

Here is an example set of commands to compare the resources in Compute service and Bare Metal service:

$ baremetal node list
+--------------------------------------+---------------+-------------+--------
↪→------------+-------------+
| UUID | Instance UUID | Power State |␣
↪→Provisioning State | Maintenance |
+--------------------------------------+---------------+-------------+--------
↪→------------+-------------+
| 86a2b1bb-8b29-4964-a817-f90031debddb | None | power off |␣
↪→available | False |
+--------------------------------------+---------------+-------------+--------
↪→------------+-------------+

$ baremetal node show 86a2b1bb-8b29-4964-a817-f90031debddb
+------------------------+--
↪→------------------+
| Property | Value ␣
↪→ |
+------------------------+--
↪→------------------+
| instance_uuid | None ␣
↪→ |
| properties | {u'memory_mb': u'1024', u'cpu_arch': u'x86_64', u
↪→'local_gb': u'10'} |
| maintenance | False ␣
↪→ |
| driver_info | { [SNIP] } ␣
↪→ |
| extra | {} ␣
↪→ |
| last_error | None ␣
↪→ |
| created_at | 2014-11-20T23:57:03+00:00 ␣
↪→ |
| target_provision_state | None ␣
↪→ |
| driver | ipmi ␣
↪→ |
| updated_at | 2014-11-21T00:47:34+00:00 ␣
↪→ |
| instance_info | {} ␣
↪→ |
| chassis_uuid | 7b49bbc5-2eb7-4269-b6ea-3f1a51448a59 ␣
↪→ |
| provision_state | available ␣
↪→ |
| reservation | None ␣
↪→ |
| power_state | power off ␣
↪→ |

(continues on next page)

2.1. Bare Metal Service Installation Guide 95

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

| console_enabled | False ␣
↪→ |
| uuid | 86a2b1bb-8b29-4964-a817-f90031debddb ␣
↪→ |
+------------------------+--
↪→------------------+

$ nova hypervisor-list
+--------------------------------------+--------------------------------------
↪→+-------+---------+
| ID | Hypervisor hostname ␣
↪→| State | Status |
+--------------------------------------+--------------------------------------
↪→+-------+---------+
| 584cfdc8-9afd-4fbb-82ef-9ff25e1ad3f3 | 86a2b1bb-8b29-4964-a817-f90031debddb␣
↪→| up | enabled |
+--------------------------------------+--------------------------------------
↪→+-------+---------+

$ nova hypervisor-show 584cfdc8-9afd-4fbb-82ef-9ff25e1ad3f3
+-------------------------+--------------------------------------+
| Property | Value |
+-------------------------+--------------------------------------+
cpu_info	baremetal cpu
current_workload	0
disk_available_least	-
free_disk_gb	10
free_ram_mb	1024
host_ip	[SNIP]
hypervisor_hostname	86a2b1bb-8b29-4964-a817-f90031debddb
hypervisor_type	ironic
hypervisor_version	1
id	1
local_gb	10
local_gb_used	0
memory_mb	1024
memory_mb_used	0
running_vms	0
service_disabled_reason	-
service_host	my-test-host
service_id	6
state	up
status	enabled
vcpus	1
vcpus_used	0
+-------------------------+--------------------------------------+

96 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Maintenance mode

Maintenance mode may be used if you need to take a node out of the resource pool. Putting a node in
maintenance mode will prevent Bare Metal service from executing periodic tasks associated with the
node. This will also prevent Compute service from placing a tenant instance on the node by not exposing
the node to the nova scheduler. Nodes can be placed into maintenance mode with the following command.

$ baremetal node maintenance set $NODE_UUID

A maintenance reason may be included with the optional --reason command line option. This is a free
form text field that will be displayed in the maintenance_reason section of the node show command.

$ baremetal node maintenance set $UUID --reason "Need to add ram."

$ baremetal node show $UUID

+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
target_power_state	None
extra	{}
last_error	None
updated_at	2015-04-27T15:43:58+00:00
maintenance_reason	Need to add ram.
...	...
maintenance	True
...	...
+------------------------+--------------------------------------+

To remove maintenance mode and clear any maintenance_reason use the following command.

$ baremetal node maintenance unset $NODE_UUID

2.1.12 Next steps

Your OpenStack environment now includes the Bare Metal service.

2.1. Bare Metal Service Installation Guide 97

Ironic Documentation, Release 26.1.2.dev21

2.1.13 Create user images for the Bare Metal service

The content has been migrated, please see Creating instance images.

2.2 Bare Metal Service Upgrade Guide

This document outlines various steps and notes for operators to consider when upgrading their ironic-
driven clouds from previous versions of OpenStack.

The Bare Metal (ironic) service is tightly coupled with the ironic driver that is shipped with the Compute
(nova) service. Some special considerations must be taken into account when upgrading your cloud.

Both offline and rolling upgrades are supported.

2.2.1 Plan your upgrade

• Rolling upgrades are available starting with the Pike release; that is, when upgrading from Ocata.
This means that it is possible to do an upgrade with minimal to no downtime of the Bare Metal
API.

• Upgrades are only supported between two consecutive named releases. This means that you cannot
upgrade Ocata directly into Queens; you need to upgrade into Pike first.

• The release notes should always be read carefully when upgrading the Bare Metal service. Specific
upgrade steps and considerations are documented there.

• The Bare Metal service should always be upgraded before the Compute service.

Note

The ironic virt driver in nova always uses a specific version of the ironic REST API. This API
version may be one that was introduced in the same development cycle, so upgrading nova first
may result in nova being unable to use the Bare Metal API.

• Make a backup of your database. Ironic does not support downgrading of the database. Hence, in
case of upgrade failure, restoring the database from a backup is the only choice.

• Before starting your upgrade, it is best to ensure that all nodes have reached, or are in, a stable
provision_state. Nodes in states with long running processes such as deploying or cleaning,
may fail, and may require manual intervention to return them to the available hardware pool. This
is most likely in cases where a timeout has occurred or a service was terminated abruptly. For a
visual diagram detailing states and possible state transitions, please see Bare Metal State Machine.

98 Chapter 2. Installation Guide

https://docs.openstack.org/releasenotes/ironic/

Ironic Documentation, Release 26.1.2.dev21

2.2.2 Offline upgrades

In an offline (or cold) upgrade, the Bare Metal service is not available during the upgrade, because all
the services have to be taken down.

When upgrading the Bare Metal service, the following steps should always be taken in this order:

1. upgrade the ironic-python-agent image

2. update ironic code, without restarting services

3. run database schema migrations via ironic-dbsync upgrade

4. restart ironic-conductor and ironic-api services

Once the above is done, do the following:

• update any applicable configuration options to stop using any deprecated features or options, and
perform any required work to transition to alternatives. All the deprecated features and options will
be supported for one release cycle, so should be removed before your next upgrade is performed.

• upgrade python-ironicclient along with any other services connecting to the Bare Metal service as
a client, such as nova-compute

• run the ironic-dbsync online_data_migrations command to make sure that data migra-
tions are applied. The command lets you limit the impact of the data migrations with the
--max-count option, which limits the number of migrations executed in one run. You should
complete all of the migrations as soon as possible after the upgrade.

Warning

You will not be able to start an upgrade to the release after this one, until this has been completed
for the current release. For example, as part of upgrading from Ocata to Pike, you need to
complete Pikes data migrations. If this not done, you will not be able to upgrade to Queens it
will not be possible to execute Queens database schema updates.

2.2.3 Rolling upgrades

To Reduce downtime, the services can be upgraded in a rolling fashion, meaning to upgrade one or a few
services at a time to minimize impact.

Rolling upgrades are available starting with the Pike release. This feature makes it possible to upgrade
between releases, such as Ocata to Pike, with minimal to no downtime of the Bare Metal API.

Requirements

To facilitate an upgrade in a rolling fashion, you need to have a highly-available deployment consisting
of at least two ironic-api and two ironic-conductor services. Use of a load balancer to balance requests
across the ironic-api services is recommended, as it allows for a minimal impact to end users.

2.2. Bare Metal Service Upgrade Guide 99

Ironic Documentation, Release 26.1.2.dev21

Concepts

There are four aspects of the rolling upgrade process to keep in mind:

• API and RPC version pinning, and versioned object backports

• online data migrations

• graceful service shutdown

• API load balancer draining

API & RPC version pinning and versioned object backports

Through careful RPC versioning, newer services are able to talk to older services (and vice-versa). The
[DEFAULT]/pin_release_version configuration option is used for this. It should be set (pinned) to
the release version that the older services are using. The newer services will backport RPC calls and
objects to their appropriate versions from the pinned release. If the IncompatibleObjectVersion ex-
ception occurs, it is most likely due to an incorrect or unspecified [DEFAULT]/pin_release_version
configuration value. For example, when [DEFAULT]/pin_release_version is not set to the older
release version, no conversion will happen during the upgrade.

For the ironic-api service, the API version is pinned via the same [DEFAULT]/pin_release_version
configuration option as above. When pinned, the new ironic-api services will not service any API requests
with Bare Metal API versions that are higher than what the old ironic-api services support. HTTP status
code 406 is returned for such requests. This prevents new features (available in new API versions) from
being used until after the upgrade has been completed.

Online data migrations

To make database schema migrations less painful to execute, we have implemented process changes to
facilitate upgrades.

• All data migrations are banned from schema migration scripts.

• Schema migration scripts only update the database schema.

• Data migrations must be done at the end of the rolling upgrade process, after the schema migration
and after the services have been upgraded to the latest release.

All data migrations are performed using the ironic-dbsync online_data_migrations command.
It can be run as a background process so that it does not interrupt running services; however it must be
run to completion for a cold upgrade if the intent is to make use of new features immediately.

(You would also execute the same command with services turned off if you are doing a cold upgrade).

This data migration must be completed. If not, you will not be able to upgrade to future releases. For
example, if you had upgraded from Ocata to Pike but did not do the data migrations, you will not be
able to upgrade from Pike to Queens. (More precisely, you will not be able to apply Queens schema
migrations.)

100 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

Graceful conductor service shutdown

The ironic-conductor service is a Python process listening for messages on a message queue. When the
operator sends the SIGTERM signal to the process, the service stops consuming messages from the queue,
so that no additional work is picked up. It completes any outstanding work and then terminates. During
this process, messages can be left on the queue and will be processed after the Python process starts back
up. This gives us a way to shutdown a service using older code, and start up a service using newer code
with minimal impact.

Note

This was tested with RabbitMQ messaging backend and may vary with other backends.

Nodes that are being acted upon by an ironic-conductor process, which are not in a stable state, will be put
into a failed state when DEFAULT.graceful_shutdown_timeout is reached. Node failures that occur
during an upgrade are likely due to timeouts, resulting from delays involving messages being processed
and acted upon by a conductor during long running, multi-step processes such as deployment or cleaning.

Drain conductor service shutdown

A drain shutdown is similar to graceful shutdown, differing in the following ways:

• Triggered by sending signal SIGUSR2 to the process instead of SIGTERM

• The timeout for process termination is determined by DEFAULT.drain_shutdown_timeout in-
stead of DEFAULT.graceful_shutdown_timeout

DEFAULT.drain_shutdown_timeout is set long enough so that any node in a not stable state will have
time to reach a stable state (complete or failed) before the ironic-conductor process terminates.

API load balancer draining

If you are using a load balancer for the ironic-api services, we recommend that you redirect requests to
the new API services and drain off of the ironic-api services that have not yet been upgraded.

Rolling upgrade process

Before maintenance window

• Upgrade the ironic-python-agent image

• Using the new release (ironic code), execute the required database schema updates by running the
database upgrade command: ironic-dbsync upgrade. These schema change operations should
have minimal or no effect on performance, and should not cause any operations to fail (but please
check the release notes). You can:

– install the new release on an existing system

– install the new release in a new virtualenv or a container

2.2. Bare Metal Service Upgrade Guide 101

Ironic Documentation, Release 26.1.2.dev21

At this point, new columns and tables may exist in the database. These database schema changes
are done in a way that both the old and new (N and N+1) releases can perform operations against
the same schema.

Note

Ironic bases its API, RPC and object storage format versions on the [DEFAULT]/
pin_release_version configuration option. It is advisable to automate the deployment of
changes in configuration files to make the process less error prone and repeatable.

During maintenance window

1. All ironic-conductor services should be upgraded first. Ensure that at least one ironic-conductor
service is running at all times. For every ironic-conductor, either one by one or a few at a time:

• shut down the service. Messages from the ironic-api services to the conductors are load-
balanced by the message queue and a hash-ring, so the only thing you need to worry about is
to shut the service down gracefully (using SIGTERM signal) to make sure it will finish all the
requests being processed before shutting down.

• upgrade the installed version of ironic and dependencies

• set the [DEFAULT]/pin_release_version configuration option value to the version you
are upgrading from (that is, the old version). Based on this setting, the new ironic-conductor
services will downgrade any RPC communication and data objects to conform to the old
service. For example, if you are upgrading from Ocata to Pike, set this value to ocata.

• start the service

2. The next service to upgrade is ironic-api. Ensure that at least one ironic-api service is running at
all times. You may want to start another temporary instance of the older ironic-api to handle the
load while you are upgrading the original ironic-api services. For every ironic-api service, either
one by one or a few at a time:

• in HA deployment you are typically running them behind a load balancer (for example
HAProxy), so you need to take the service instance out of the balancer

• shut it down

• upgrade the installed version of ironic and dependencies

• set the [DEFAULT]/pin_release_version configuration option value to the version you
are upgrading from (that is, the old version). Based on this setting, the new ironic-api services
will downgrade any RPC communication and data objects to conform to the old service. In
addition, the new services will return HTTP status code 406 for any requests with newer API
versions that the old services did not support. This prevents new features (available in new
API versions) from being used until after the upgrade has been completed. For example, if
you are upgrading from Ocata to Pike, set this value to ocata.

• restart the service

• add it back into the load balancer

After upgrading all the ironic-api services, the Bare Metal service is running in the new version
but with downgraded RPC communication and database object storage formats. New features (in

102 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

new API versions) are not supported, because they could fail when objects are in the downgraded
object formats and some internal RPC API functions may still not be available.

3. For all the ironic-conductor services, one at a time:

• remove the [DEFAULT]/pin_release_version configuration option setting

• restart the ironic-conductor service

4. For all the ironic-api services, one at a time:

• remove the [DEFAULT]/pin_release_version configuration option setting

• restart the ironic-api service

After maintenance window

Now that all the services are upgraded, the system is able to use the latest version of the RPC protocol
and able to access all the features of the new release.

• Update any applicable configuration options to stop using any deprecated features or options, and
perform any required work to transition to alternatives. All the deprecated features and options will
be supported for one release cycle, so should be removed before your next upgrade is performed.

• Upgrade python-ironicclient along with other services connecting to the Bare Metal service
as a client, such as nova-compute.

Warning

A nova-compute instance tries to attach VIFs to all active instances on start up. Make sure
that for all active nodes there is at least one running ironic-conductor process to manage
them. Otherwise the instances will be moved to the ERROR state on the nova-compute start
up.

• Run the ironic-dbsync online_data_migrations command to make sure that data mi-
grations are applied. The command lets you limit the impact of the data migrations with the
--max-count option, which limits the number of migrations executed in one run. You should
complete all of the migrations as soon as possible after the upgrade.

Warning

Note that you will not be able to start an upgrade to the next release after this one, until this has
been completed for the current release. For example, as part of upgrading from Ocata to Pike,
you need to complete Pikes data migrations. If this not done, you will not be able to upgrade
to Queens it will not be possible to execute Queens database schema updates.

2.2. Bare Metal Service Upgrade Guide 103

Ironic Documentation, Release 26.1.2.dev21

Upgrading to Hardware Types

Starting with the Rocky release, the Bare Metal service does not support classic drivers any more. If you
still use classic drivers, please upgrade to hardware types immediately. Please see Enabling drivers and
hardware types for details on hardware types and hardware interfaces.

Planning the upgrade

It is necessary to figure out which hardware types and hardware interfaces correspond to which classic
drivers used in your deployment. The following table lists the classic drivers with their corresponding
hardware types and the boot, deploy, inspect, management, and power hardware interfaces:

Classic Driver Hardware
Type

Boot De-
ploy

Inspect Manage-
ment

Power

agent_ilo ilo ilo-virtual-
media

direct ilo ilo ilo

agent_ipmitool ipmi pxe direct inspec-
tor

ipmitool ipmi-
tool

agent_ipmitool_socatipmi pxe direct inspec-
tor

ipmitool ipmi-
tool

agent_irmc irmc irmc-virtual-
media

direct irmc irmc irmc

iscsi_ilo ilo ilo-virtual-
media

iscsi ilo ilo ilo

iscsi_irmc irmc irmc-virtual-
media

iscsi irmc irmc irmc

pxe_drac idrac pxe iscsi idrac idrac idrac
pxe_drac_inspector idrac pxe iscsi inspec-

tor
idrac idrac

pxe_ilo ilo ilo-pxe iscsi ilo ilo ilo
pxe_ipmitool ipmi pxe iscsi inspec-

tor
ipmitool ipmi-

tool
pxe_ipmitool_socat ipmi pxe iscsi inspec-

tor
ipmitool ipmi-

tool
pxe_irmc irmc irmc-pxe iscsi irmc irmc irmc
pxe_snmp snmp pxe iscsi no-

inspect
fake snmp

Note

The inspector inspect interface was only used if explicitly enabled in the configuration. Otherwise,
no-inspect was used.

Note

104 Chapter 2. Installation Guide

Ironic Documentation, Release 26.1.2.dev21

pxe_ipmitool_socat and agent_ipmitool_socat use ipmitool-socat console interface
(the default for the ipmi hardware type), while pxe_ipmitool and agent_ipmitool use
ipmitool-shellinabox. See Console for details.

For out-of-tree drivers you may need to reach out to their maintainers or figure out the appropriate inter-
faces by researching the source code.

Configuration

You will need to enable hardware types and interfaces that correspond to your currently enabled classic
drivers. For example, if you have the following configuration in your ironic.conf:

[DEFAULT]
enabled_drivers = pxe_ipmitool,agent_ipmitool

You will have to add this configuration as well:

[DEFAULT]
enabled_hardware_types = ipmi
enabled_boot_interfaces = pxe
enabled_deploy_interfaces = iscsi,direct
enabled_management_interfaces = ipmitool
enabled_power_interfaces = ipmitool

Note

For every interface type there is an option default_<INTERFACE>_interface, where
<INTERFACE> is the interface type name. For example, one can make all nodes use the direct
deploy method by default by setting:

[DEFAULT]
default_deploy_interface = direct

Migrating nodes

After the required items are enabled in the configuration, each nodes driver field has to be updated to
a new value. You may need to also set new values for some or all interfaces:

export OS_BAREMETAL_API_VERSION=1.31

for uuid in $(baremetal node list --driver pxe_ipmitool -f value -c UUID); do
baremetal node set <node> --driver ipmi --deploy-interface iscsi

done

for uuid in $(baremetal node list --driver agent_ipmitool -f value -c UUID);␣
↪→do

baremetal node set <node> --driver ipmi --deploy-interface direct
done

2.2. Bare Metal Service Upgrade Guide 105

Ironic Documentation, Release 26.1.2.dev21

See Enrolling hardware with Ironic for more details on setting hardware types and interfaces.

Warning

It is not recommended to change the interfaces for active nodes. If absolutely needed, the nodes
have to be put in the maintenance mode first:

baremetal node maintenance set $UUID \
--reason "Changing driver and/or hardware interfaces"

do the update, validate its correctness
baremetal node maintenance unset $UUID

Other interfaces

Care has to be taken to migrate from classic drivers using non-default interfaces. This chapter covers a
few of the most commonly used.

Ironic Inspector

Some classic drivers, notably pxe_ipmitool, agent_ipmitool and pxe_drac_inspector, use
ironic-inspector for their inspect interface.

The same functionality is available for all hardware types, but the appropriate inspect interface has to
be enabled in the Bare Metal service configuration file, for example:

[DEFAULT]
enabled_inspect_interfaces = inspector,no-inspect

See Enabling drivers and hardware types for more details.

Then you can tell your nodes to use this interface, for example:

export OS_BAREMETAL_API_VERSION=1.31
for uuid in $(baremetal node list --driver ipmi -f value -c UUID); do

baremetal node set <node> --inspect-interface inspector
done

Note

A node configured with the IPMI hardware type, will use the inspector inspection implementation
automatically if it is enabled. This is not the case for the most of the vendor drivers.

106 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-inspector/

Ironic Documentation, Release 26.1.2.dev21

Console

Several classic drivers, notably pxe_ipmitool_socat and agent_ipmitool_socat, use socat-based
serial console implementation.

For the ipmi hardware type it is used by default, if enabled in the configuration file:

[DEFAULT]
enabled_console_interfaces = ipmitool-socat,no-console

If you want to use the shellinabox implementation instead, it has to be enabled as well:

[DEFAULT]
enabled_console_interfaces = ipmitool-shellinabox,no-console

Then you need to update some or all nodes to use it explicitly. For example, to update all nodes use:

export OS_BAREMETAL_API_VERSION=1.31
for uuid in $(baremetal node list --driver ipmi -f value -c UUID); do

baremetal node set <node> --console-interface ipmitool-shellinabox
done

RAID

Many classic drivers, including pxe_ipmitool and agent_ipmitool use the IPA-based in-band RAID
implementation by default.

For the hardware types it is not used by default. To use it, you need to enable it in the configuration first:

[DEFAULT]
enabled_raid_interfaces = agent,no-raid

Then you can update those nodes that support in-band RAID to use the agent RAID interface. For
example, to update all nodes use:

export OS_BAREMETAL_API_VERSION=1.31
for uuid in $(baremetal node list --driver ipmi -f value -c UUID); do

baremetal node set <node> --raid-interface agent
done

Note

The ability of a node to use the agent RAID interface depends on the ramdisk (more specifically, a
hardware manager used in it), not on the driver.

2.2. Bare Metal Service Upgrade Guide 107

https://docs.openstack.org/ironic-python-agent/2024.2/contributor/hardware_managers.html

Ironic Documentation, Release 26.1.2.dev21

Network and storage

The network and storage interfaces have always been dynamic, and thus do not require any special treat-
ment during upgrade.

Vendor

Classic drivers are allowed to use the VendorMixin functionality to combine and expose several node
or driver vendor passthru methods from different vendor interface implementations in one driver.

This is no longer possible with hardware types.

With hardware types, a vendor interface can only have a single active implementation from the list of
vendor interfaces supported by a given hardware type.

Ironic no longer has in-tree drivers (both classic and hardware types) that rely on this VendorMixin func-
tionality support. However if you are using an out-of-tree classic driver that depends on it, youll need to
do the following in order to use vendor passthru methods from different vendor passthru implementations:

1. While creating a new hardware type to replace your classic driver, specify all vendor interface im-
plementations your classic driver was using to build its VendorMixin as supported vendor inter-
faces (property supported_vendor_interfaces of the Python class that defines your hardware
type).

2. Ensure all required vendor interfaces are enabled in the ironic configuration file under
the DEFAULT.enabled_vendor_interfaces option. You should also consider setting the
DEFAULT.default_vendor_interface option to specify the vendor interface for nodes that do
not have one set explicitly.

3. Before invoking a specific vendor passthru method, make sure that the nodes vendor interface is
set to the interface with the desired vendor passthru method. For example, if you want to invoke
the vendor passthru method vendor_method_foo() from vendor_foo vendor interface:

set the vendor interface to 'vendor_foo`
baremetal node set <node> --vendor-interface vendor_foo

invoke the vendor passthru method
baremetal node passthru call <node> vendor_method_foo

108 Chapter 2. Installation Guide

CHAPTER

THREE

USER GUIDE

3.1 Bare Metal Service User Guide

Ironic is an OpenStack project which provisions bare metal (as opposed to virtual) machines. It may
be used independently or as part of an OpenStack Cloud, and integrates with the OpenStack Identity
(keystone), Compute (nova), Network (neutron), Image (glance) and Object (swift) services.

When the Bare Metal service is appropriately configured with the Compute and Network services, it is
possible to provision both virtual and physical machines through the Compute services API. However,
the set of instance actions is limited, arising from the different characteristics of physical servers and
switch hardware. For example, live migration can not be performed on a bare metal instance.

The community maintains reference drivers that leverage open-source technologies (eg. PXE and IPMI)
to cover a wide range of hardware. Ironics pluggable driver architecture also allows hardware vendors
to write and contribute drivers that may improve performance or add functionality not provided by the
community drivers.

3.1.1 Understanding Bare Metal service

Why Provision Bare Metal

Here are a few use-cases for bare metal (physical server) provisioning in cloud; there are doubtless many
more interesting ones:

• High-performance computing clusters

• Computing tasks that require access to hardware devices which cant be virtualized

• Database hosting (some databases run poorly in a hypervisor)

• Single tenant, dedicated hardware for performance, security, dependability and other regulatory
requirements

• Or, rapidly deploying a cloud infrastructure

109

Ironic Documentation, Release 26.1.2.dev21

Conceptual Architecture

The following diagram shows the relationships and how all services come into play during the provision-
ing of a physical server. (Note that Ceilometer and Swift can be used with Ironic, but are missing from
this diagram.)

Key Technologies for Bare Metal Hosting

Preboot Execution Environment (PXE)

PXE is part of the Wired for Management (WfM) specification developed by Intel and Microsoft. The
PXE enables systems BIOS and network interface card (NIC) to bootstrap a computer from the network
in place of a disk. Bootstrapping is the process by which a system loads the OS into local memory so
that it can be executed by the processor. This capability of allowing a system to boot over a network
simplifies server deployment and server management for administrators.

110 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

Dynamic Host Configuration Protocol (DHCP)

DHCP is a standardized networking protocol used on Internet Protocol (IP) networks for dynamically
distributing network configuration parameters, such as IP addresses for interfaces and services. Using
PXE, the BIOS uses DHCP to obtain an IP address for the network interface and to locate the server that
stores the network bootstrap program (NBP).

Network Bootstrap Program (NBP)

NBP is equivalent to GRUB (GRand Unified Bootloader) or LILO (LInux LOader) - loaders which are
traditionally used in local booting. Like the boot program in a hard drive environment, the NBP is
responsible for loading the OS kernel into memory so that the OS can be bootstrapped over a network.

Trivial File Transfer Protocol (TFTP)

TFTP is a simple file transfer protocol that is generally used for automated transfer of configuration or
boot files between machines in a local environment. In a PXE environment, TFTP is used to download
NBP over the network using information from the DHCP server.

Intelligent Platform Management Interface (IPMI)

IPMI is a standardized computer system interface used by system administrators for out-of-band man-
agement of computer systems and monitoring of their operation. It is a method to manage systems that
may be unresponsive or powered off by using only a network connection to the hardware rather than to
an operating system.

Understanding Bare Metal Deployment

What happens when a boot instance request comes in? The below diagram walks through the steps
involved during the provisioning of a bare metal instance.

These pre-requisites must be met before the deployment process:

• Dependent packages to be configured on the Bare Metal service node(s) where ironic-conductor
is running like tftp-server, ipmi, grub/ipxe, etc for bare metal provisioning.

• Nova must be configured to make use of the bare metal service endpoint and compute driver should
be configured to use ironic driver on the Nova compute node(s).

• Flavors to be created for the available hardware. Nova must know the flavor to boot from.

• Images to be made available in Glance. Listed below are some image types required for successful
bare metal deployment:

– bm-deploy-kernel

– bm-deploy-ramdisk

– user-image

– user-image-vmlinuz

– user-image-initrd

3.1. Bare Metal Service User Guide 111

Ironic Documentation, Release 26.1.2.dev21

• Hardware to be enrolled via the bare metal API service.

Deploy Process

This describes a typical bare metal node deployment within OpenStack using PXE to boot the ramdisk.
Depending on the ironic driver interfaces used, some of the steps might be marginally different, however
the majority of them will remain the same.

1. A boot instance request comes in via the Nova API, through the message queue to the Nova sched-
uler.

2. Nova scheduler applies filters and finds the eligible hypervisor. The nova scheduler also uses the
flavors extra_specs, such as cpu_arch, to match the target physical node.

3. Nova compute manager claims the resources of the selected hypervisor.

4. Nova compute manager creates (unbound) tenant virtual interfaces (VIFs) in the Networking ser-
vice according to the network interfaces requested in the nova boot request. A caveat here is,
the MACs of the ports are going to be randomly generated, and will be updated when the VIF is
attached to some node to correspond to the node network interface cards (or bonds) MAC.

5. A spawn task is created by the nova compute which contains all the information such as which
image to boot from etc. It invokes the driver.spawn from the virt layer of Nova compute. During
the spawn process, the virt driver does the following:

1. Updates the target ironic node with the information about deploy image, instance UUID,
requested capabilities and various flavor properties.

2. Validates nodes power and deploy interfaces, by calling the ironic API.

3. Attaches the previously created VIFs to the node. Each neutron port can be attached to any
ironic port or port group, with port groups having higher priority than ports. On ironic side,
this work is done by the network interface. Attachment here means saving the VIF identifier
into ironic port or port group and updating VIF MAC to match the ports or port groups MAC,
as described in bullet point 4.

4. Generates config drive, if requested.

6. Novas ironic virt driver issues a deploy request via the Ironic API to the Ironic conductor servicing
the bare metal node.

7. Virtual interfaces are plugged in and Neutron API updates DHCP port to set PXE/TFTP options.
In case of using neutron network interface, ironic creates separate provisioning ports in the Net-
working service, while in case of flat network interface, the ports created by nova are used both
for provisioning and for deployed instance networking.

8. The ironic nodes boot interface prepares (i)PXE configuration and caches deploy kernel and
ramdisk.

9. The ironic nodes management interface issues commands to enable network boot of a node.

10. The ironic nodes deploy interface caches the instance image (normal deployment), kernel and
ramdisk (ramdisk deploy) or ISO (ramdisk deploy with virtual media).

11. The ironic nodes power interface instructs the node to power on.

12. The node boots the deploy ramdisk.

112 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

13. Depending on the exact driver used, the deploy ramdisk downloads the image from a URL (Direct
deploy) or the conductor uses SSH to execute commands (Ansible deploy). The URL can be gen-
erated by Swift API-compatible object stores, for example Swift itself or RadosGW, or provided
by a user.

The image deployment is done.

14. The nodes boot interface switches pxe config to refer to instance images (or, in case of local boot,
sets boot device to disk), and asks the ramdisk agent to soft power off the node. If the soft power
off by the ramdisk agent fails, the bare metal node is powered off via IPMI/BMC call.

15. The deploy interface triggers the network interface to remove provisioning ports if they were cre-
ated, and binds the tenant ports to the node if not already bound. Then the node is powered on.

Note

There are 2 power cycles during bare metal deployment; the first time the node is powered-on
when ramdisk is booted, the second time after the image is deployed.

16. The bare metal nodes provisioning state is updated to active.

Below is the diagram that describes the above process.

Nova DB Ironic DB

Nova API

Nova Message Queue

 1

Ironic API

Ironic Message Queue

Nova Conductor Nova Scheduler

 2

Nova Compute Ironic Conductor

16

Deploy Interface

10

Boot Interface

8, 14

Power Interface

11

Management Interface

 9

Glance

Bare Metal Nodes

13

TFTP Server

12

Network Interface

7, 15

Neutron

 3

 4

Nova Ironic Virt Driver

5

6

The following two examples describe what ironic is doing in more detail, leaving out the actions per-
formed by nova and some of the more advanced options.

Example: PXE Boot and Direct Deploy Process

This process is how Direct deploy works.

(From a talk and slides)

3.1. Bare Metal Service User Guide 113

https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/isn-and-039t-it-ironic-the-bare-metal-cloud
http://www.slideshare.net/devananda1/isnt-it-ironic-managing-a-bare-metal-cloud-osl-tes-2015

Ironic Documentation, Release 26.1.2.dev21

Nova API Conductor Neutron HTTPStore TFTP/HTTPd Node

Set instance_info
(image_source,
root_gb, etc.)

Validate power and deploy
interfaces

Plug VIFs to the node

Set provision_state,
optionally pass configdrive

do_node_deploy()

Validate power and
deploy interfaces

Store configdrive if configdrive_use_swift
option is set

POWER OFF

Attach provisioning network to
port(s)

Update DHCP boot options

Prepare PXE
environment for
deployment

Set PXE boot device
through the BMC

Cache deploy
and instance
kernel and ramdisk

REBOOT

DHCP request

next-server = Conductor

Runs agent
ramdisk

lookup()

Pass UUID

Heartbeat (UUID)

Heartbeat

Continue deploy asynchronously: Pass image, disk info

Downloads image, writes to disk,
writes configdrive if present

Is deploy done?

Still working...

Deploy is done

Install boot loader, if requested

Update DHCP boot options

Prepare PXE
environment for
instance image
if needed

Set boot device either to PXE or to disk

Collect ramdisk logs

POWER OFF

Detach provisioning network
from port(s)

Bind tenant port

POWER ON

Mark node as
ACTIVE

Heartbeat periodically

...

114 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

3.1.2 Bare Metal State Machine

State Machine Diagram

The diagram below shows the provisioning states that an Ironic node goes through during the lifetime of
a node. The diagram also depicts the events that transition the node to different states.

Stable states are highlighted with a thicker border. All transitions from stable states are initiated by API
requests. There are a few other API-initiated-transitions that are possible from non-stable states. The
events for these API-initiated transitions are indicated with (via API). Internally, the conductor initiates
the other transitions (depicted in gray).

enroll verifying
manage (via API)

fail
manageable

done

cleaningprovide (via API)

clean (via API)

inspecting

inspect (via API)

adoptingadopt (via API)

manage

available

done

clean failed

fail

clean wait

wait

clean hold

hold

done
inspect failed

fail

inspect wait

wait

active

done

adopt failed
fail

manage (via API)

deploying

active (via API)

done

deploy failed

fail

wait call-backwait

deploy hold
hold

rebuild (via API)
deleting

deleted (via API)

rescuing

rescue (via API)

servicing

service (via API)

clean

error

fail
rescue

done

rescue wait

wait

rescue failed

fail

done

service failed

fail

service wait

wait

service hold

hold

rebuild (via API)

deleted (via API)

deleted (via API)

rescue (via API)

unrescuing

unrescue (via API)

done

unrescue failedfail

rebuild (via API)

active (via API)
deleted (via API)

resume

deleted (via API)

fail

hold
abort (via API)

unhold

manage (via API)

resume

fail

abort (via API)

hold

abort (via API)

unhold

manage (via API)

inspect (via API)

done resume

fail

abort (via API)

manage (via API)

adopt (via API)

deleted (via API)

resume fail

abort (via API)

deleted (via API)

rescue (via API)

unrescue (via API)

deleted (via API)

rescue (via API)

unrescue (via API)

rescue (via API)

service (via API)

resume

fail

abort (via API)hold

service

abort (via API)

unhold

Please
click
the
im-
age
above
to
view
the
di-
a-
gram

at its full size, as the presence in the documentation results in it being scaled down.

Note

There are aliases for some transitions:

• deploy is an alias for active.

• undeploy is an alias for deleted

Enrollment and Preparation

enroll (stable state)
This is the state that all nodes start off in when created using API version 1.11 or newer. When
a node is in the enroll state, the only thing ironic knows about it is that it exists, and ironic
cannot take any further action by itself. Once a node has its driver/interfaces and their required
information set in node.driver_info, the node can be transitioned to the verifying state by
setting the nodes provision state using the manage verb.

See Enrolling hardware with Ironic for information on enrolling nodes.

verifying
ironic will validate that it can manage the node using the information given in node.driver_info
and with either the driver/hardware type and interfaces it has been assigned. This involves going
out and confirming that the credentials work to access whatever node control mechanism they talk
to.

manageable (stable state)
Once ironic has verified that it can manage the node using the driver/interfaces and credentials

3.1. Bare Metal Service User Guide 115

Ironic Documentation, Release 26.1.2.dev21

passed in at node create time, the node will be transitioned to the manageable state. From
manageable, nodes can transition to:

• manageable (through cleaning) by setting the nodes provision state using the clean verb.

• manageable (through inspecting) by setting the nodes provision state using the inspect
verb.

• available (through cleaning if automatic cleaning is enabled) by setting the nodes pro-
vision state using the provide verb.

• active (through adopting) by setting the nodes provision state using the adopt verb.

manageable is the state that a node should be moved into when any updates need to be made to
it such as changes to fields in driver_info and updates to networking information on ironic ports
assigned to the node.

manageable is also the only stable state that can be transitioned to, from these failure states:

• adopt failed

• clean failed

• inspect failed

inspecting
inspecting will utilize node introspection to update hardware-derived node properties to reflect
the current state of the hardware. Typically, the node will transition to manageable if inspection
is synchronous, or inspect wait if asynchronous. The node will transition to inspect failed
if error occurred.

See Hardware Inspection for information about inspection.

inspect wait
This is the provision state used when an asynchronous inspection is in progress. A successfully
inspected node shall transition to manageable state.

inspect failed
This is the state a node will move into when inspection of the node fails. From here the node can
transitioned to:

• inspecting by setting the nodes provision state using the inspect verb.

• manageable by setting the nodes provision state using the manage verb

cleaning
Nodes in the cleaning state are being scrubbed and reprogrammed into a known configuration.

When a node is in the cleaning state it means that the conductor is executing the clean step (for
out-of-band clean steps) or preparing the environment (building PXE configuration files, config-
uring the DHCP, etc) to boot the ramdisk for running in-band clean steps.

clean wait
Just like the cleaning state, the nodes in the clean wait state are being scrubbed and repro-
grammed. The difference is that in the clean wait state the conductor is waiting for the ramdisk
to boot or the clean step which is running in-band to finish.

The cleaning process of a node in the clean wait state can be interrupted by setting the nodes
provision state using the abort verb if the task that is running allows it.

116 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

Deploy and Undeploy

available (stable state)
After nodes have been successfully preconfigured and cleaned, they are moved into the available
state and are ready to be provisioned. From available, nodes can transition to:

• active (through deploying) by setting the nodes provision state using the active or
deploy verbs.

• manageable by setting the nodes provision state using the manage verb

deploying
Nodes in deploying are being prepared to run a workload on them. This consists of running a
series of tasks, such as:

• Setting appropriate BIOS configurations

• Partitioning drives and laying down file systems.

• Creating any additional resources (node-specific network config, a config drive partition, etc.)
that may be required by additional subsystems.

See Deploying with Bare Metal service and Using deploy steps and templates for information about
deploying nodes.

wait call-back
Just like the deploying state, the nodes in wait call-back are being deployed. The difference
is that in wait call-back the conductor is waiting for the ramdisk to boot or execute parts of
the deployment which need to run in-band on the node (for example, installing the bootloader, or
writing the image to the disk).

The deployment of a node in wait call-back can be interrupted by setting the nodes provision
state using the deleted or undeploy verbs.

deploy failed
This is the state a node will move into when a deployment fails, for example a timeout waiting for
the ramdisk to PXE boot. From here the node can be transitioned to:

• active (through deploying) by setting the nodes provision state using the active, deploy
or rebuild verbs.

• available (through deleting and cleaning) by setting the nodes provision state using
the deleted or undeploy verbs.

active (stable state)
Nodes in active have a workload running on them. ironic may collect out-of-band sensor infor-
mation (including power state) on a regular basis. Nodes in active can transition to:

• available (through deleting and cleaning) by setting the nodes provision state using
the deleted or undeploy verbs.

• active (through deploying) by setting the nodes provision state using the rebuild verb.

• rescue (through rescuing) by setting the nodes provision state using the rescue verb.

deleting
Nodes in deleting state are being torn down from running an active workload. In deleting,
ironic tears down and removes any configuration and resources it added in deploying or
rescuing.

3.1. Bare Metal Service User Guide 117

Ironic Documentation, Release 26.1.2.dev21

error (stable state)
This is the state a node will move into when deleting an active deployment fails. From error,
nodes can transition to:

• available (through deleting and cleaning) by setting the nodes provision state using
the deleted or undeploy verbs.

adopting
This state allows ironic to take over management of a baremetal node with an existing workload on
it. Ordinarily when a baremetal node is enrolled and managed by ironic, it must transition through
cleaning and deploying to reach active state. However, those baremetal nodes that have an
existing workload on them, do not need to be deployed or cleaned again, so this transition allows
these nodes to move directly from manageable to active.

See Node adoption for information about this feature.

Rescue

rescuing
Nodes in rescuing are being prepared to perform rescue operations. This consists of running a
series of tasks, such as:

• Setting appropriate BIOS configurations.

• Creating any additional resources (node-specific network config, etc.) that may be required
by additional subsystems.

See Rescue Mode for information about this feature.

rescue wait
Just like the rescuing state, the nodes in rescue wait are being rescued. The difference is that
in rescue wait the conductor is waiting for the ramdisk to boot or execute parts of the rescue
which need to run in-band on the node (for example, setting the password for user named rescue).

The rescue operation of a node in rescue wait can be aborted by setting the nodes provision
state using the abort verb.

rescue failed
This is the state a node will move into when a rescue operation fails, for example a timeout waiting
for the ramdisk to PXE boot. From here the node can be transitioned to:

• rescue (through rescuing) by setting the nodes provision state using the rescue verb.

• active (through unrescuing) by setting the nodes provision state using the unrescue verb.

• available (through deleting) by setting the nodes provision state using the deleted verb.

rescue (stable state)
Nodes in rescue have a rescue ramdisk running on them. Ironic may collect out-of-band sensor
information (including power state) on a regular basis. Nodes in rescue can transition to:

• active (through unrescuing) by setting the nodes provision state using the unrescue verb.

• available (through deleting) by setting the nodes provision state using the deleted verb.

unrescuing
Nodes in unrescuing are being prepared to transition to active state from rescue state. This
consists of running a series of tasks, such as setting appropriate BIOS configurations such as chang-
ing boot device.

118 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

unrescue failed
This is the state a node will move into when an unrescue operation fails. From here the node can
be transitioned to:

• rescue (through rescuing) by setting the nodes provision state using the rescue verb.

• active (through unrescuing) by setting the nodes provision state using the unrescue verb.

• available (through deleting) by setting the nodes provision state using the deleted verb.

Servicing

servicing
Nodes in the servicing state are nodes that are having service performed on them. This service
is similar to cleaning, but is performed on nodes currently in active state and returns them to
active state when complete.

When a node is in the servicing state it means that the conductor is executing the service step or
preparing the environment to execute the step.

See Node servicing for more details on Node servicing.

service wait
Just like the servicing state, the nodes in the service wait state are being serviced with service
steps. The difference is that in the service wait state the conductor is waiting for the ramdisk
to boot or the clean step which is running in-band to finish.

The servicing of a node in the service wait state can be interrupted by setting the nodes provi-
sion state using the abort verb if the task that is running allows it.

service failed
This is the state a node will move into when a service operation fails, for example a timeout waiting
for the ramdisk to PXE boot. From here the node can be transitioned to:

• active (through servicing) by setting the nodes provision state using the service verb.

• rescue (through rescuing) by setting the nodes provision state using the rescue verb.

3.1.3 Creating instance images

Bare Metal provisioning requires two sets of images: the deploy images and the user images. The deploy
images are used by the Bare Metal service to prepare the bare metal server for actual OS deployment.
Whereas the user images are installed on the bare metal server to be used by the end user. There are two
types of user images:

partition images
contain only the contents of the root partition. Additionally, two more images are used together
with them when booting from network: an image with a kernel and with an initramfs.

Warning

To use partition images, Grub2 must be installed in the image. This is not a recommended path.

whole disk images
contain a complete partition table with one or more partitions.

3.1. Bare Metal Service User Guide 119

Ironic Documentation, Release 26.1.2.dev21

Warning

The kernel/initramfs pair must not be used with whole disk images, otherwise theyll be mistaken
for partition images. Whole disk images are the recommended type of images to use.

Many distributions publish their own cloud images. These are usually whole disk images that are built
for legacy boot mode (not UEFI), with Ubuntu being an exception (they publish images that work in both
modes).

Supported Disk Image Formats

The following formats are tested by Ironic and are expected to work as long as no unknown or unsafe
special features are being used

• raw - A file containing bytes as they would exist on a disk or other block storage device. This is
the simplest format.

• qcow2 - An updated file format based upon the QEMU Copy-on-Write format.

A special mention exists for iso formatted CD images. While Ironic uses the ISO9660 filesystems in
some of its processes for aspects such as virtual media, it does not support writing them to the remote
block storage device.

Image formats we believe may work due to third party reports, but do not test:

• vmdk - A file format derived from the image format originally created by VMware for their hy-
pervisor product line. Specifically we believe a single file VMDK formatted image should work.
As there are are several subformats, some of which will not work and may result in unexpected
behavior such as failed deployments.

• vdi - A file format used by Oracle VM Virtualbox hypervisor.

As Ironic does not support these formats, their usage is normally blocked due security considerations by
default. Please consult with your Ironic Operator.

It is important to highlight that Ironic enforces and matches the file type based upon signature, and not
file extension. If there is a mismatch, the input and or remote service records such as in the Image service
must be corrected.

disk-image-builder

The disk-image-builder can be used to create user images required for deployment and the actual OS
which the user is going to run.

• Install diskimage-builder package (use virtualenv, if you dont want to install anything globally):

pip install diskimage-builder

• Build the image your users will run (Ubuntu image has been taken as an example):

– Partition images

$ disk-image-create ubuntu baremetal dhcp-all-interfaces grub2 -o my-
↪→image

120 Chapter 3. User Guide

https://www.qemu.org
https://www.virtualbox.org
https://docs.openstack.org/diskimage-builder/latest/

Ironic Documentation, Release 26.1.2.dev21

– Whole disk images

$ disk-image-create ubuntu vm dhcp-all-interfaces -o my-image

with an EFI partition:

$ disk-image-create ubuntu vm block-device-efi dhcp-all-interfaces -
↪→o my-image

The partition image command creates my-image.qcow2, my-image.vmlinuz and my-image.initrd
files. The grub2 element in the partition image creation command is only needed if local boot will be
used to deploy my-image.qcow2, otherwise the images my-image.vmlinuz and my-image.initrd
will be used for PXE booting after deploying the bare metal with my-image.qcow2. For whole disk
images only the main image is used.

If you want to use Fedora image, replace ubuntu with fedora in the chosen command.

Virtual machine

Virtual machine software can also be used to build user images. There are different software options
available, qemu-kvm is usually a good choice on linux platform, it supports emulating many devices and
even building images for architectures other than the host machine by software emulation. VirtualBox is
another good choice for non-linux host.

The procedure varies depending on the software used, but the steps for building an image are similar, the
user creates a virtual machine, and installs the target system just like what is done for a real hardware.
The system can be highly customized like partition layout, drivers or software shipped, etc.

Usually libvirt and its management tools are used to make interaction with qemu-kvm easier, for example,
to create a virtual machine with virt-install:

$ virt-install --name centos8 --ram 4096 --vcpus=2 -f centos8.qcow2 \
> --cdrom CentOS-8-x86_64-1905-dvd1.iso

Graphic frontend like virt-manager can also be utilized.

The disk file can be used as user image after the system is set up and powered off. The path of the disk file
varies depending on the software used, usually its stored in a user-selected part of the local file system.
For qemu-kvm or GUI frontend building upon it, its typically stored at /var/lib/libvirt/images.

3.1.4 Deploying with Bare Metal service

This guide explains how to use Ironic to deploy nodes without any front-end service, such as OpenStack
Compute (nova) or Metal3.

Note

To simplify this task you can use the metalsmith tool which provides a convenient CLI for the most
common cases.

3.1. Bare Metal Service User Guide 121

http://metal3.io/
https://docs.openstack.org/metalsmith/latest/

Ironic Documentation, Release 26.1.2.dev21

Allocations

Allocation is a way to find and reserve a node suitable for deployment. When an allocation is created,
the list of available nodes is searched for a node with the given resource class and traits, similarly to how
it is done in OpenStack Compute flavors. Only the resource class is mandatory, for example:

$ baremetal allocation create --resource-class baremetal --wait
+-----------------+--------------------------------------+
| Field | Value |
+-----------------+--------------------------------------+
candidate_nodes	[]
created_at	2019-04-03T12:18:26+00:00
extra	{}
last_error	None
name	None
node_uuid	5d946337-b1d9-4b06-8eda-4fb77e994a0d
resource_class	baremetal
state	active
traits	[]
updated_at	2019-04-03T12:18:26+00:00
uuid	e84f5d60-84f1-4701-a635-10ff90e2f3b0
+-----------------+--------------------------------------+

Note

The allocation processing is fast but nonetheless asynchronous. Use the --wait argument to wait for
the results.

If an allocation is successful, it sets the nodes instance_uuid to the allocation UUID. The nodes UUID
can be retrieved from the allocations node_uuid field.

An allocation is automatically deleted when the associated node is unprovisioned. If you dont provision
the node, youre responsible for deleting the allocation.

See the allocation API reference for more information on how to use allocations.

Populating instance information

The nodes instance_info field is a JSON object that contains all information required for deploying
an instance on bare metal. It has to be populated before deployment and is automatically cleared on tear
down.

122 Chapter 3. User Guide

https://docs.openstack.org/api-ref/baremetal/?expanded=create-allocation-detail#create-allocation

Ironic Documentation, Release 26.1.2.dev21

Image information

You need to specify image information in the nodes instance_info (see Creating instance images):

• image_source - URL of the whole disk or root partition image, mandatory. The following
schemes are supported: http://, https:// and file://. Files have to be accessible by the
conductor. If the scheme is missing, an Image Service (glance) image UUID is assumed.

• In case the image source requires HTTP(s) Basic Authentication RFC 7616 then the relevant au-
thentication strategy has to be configured as http_basic and supplied with credentials in the
ironic global config file. Further information about the authentication strategy selection can be
found in HTTP(s) Authentication strategy for user image servers.

• root_gb - size of the root partition, required for partition images.

Note

Older versions of the Bare Metal service used to require a positive integer for root_gb even
for whole-disk images.

• image_checksum - MD5 checksum of the image specified by image_source, only required for
http:// images when using Direct deploy.

Other checksum algorithms are supported via the image_os_hash_algo and
image_os_hash_value fields. They may be used instead of the image_checksum field.

Warning

If your operating system is running in FIPS 140-2 mode, MD5 will not be available, and you
must use SHA256 or another modern algorithm.

Starting with the Stein release of ironic-python-agent can also be a URL to a checksums file, e.g.
one generated with:

$ cd /path/to/http/root
$ md5sum *.img > checksums

• kernel, ramdisk - HTTP(s) or file URLs of the kernel and initramfs of the target OS. Must be
added only for partition images and only if network boot is required. Supports the same schemes
as image_source.

An example for a partition image with local boot:

baremetal node set $NODE_UUID \
--instance-info image_source=http://image.server/my-image.qcow2 \
--instance-info image_checksum=1f9c0e1bad977a954ba40928c1e11f33 \
--instance-info image_type=partition \
--instance-info root_gb=10

With a SHA256 hash:

3.1. Bare Metal Service User Guide 123

Ironic Documentation, Release 26.1.2.dev21

baremetal node set $NODE_UUID \
--instance-info image_source=http://image.server/my-image.qcow2 \
--instance-info image_os_hash_algo=sha256 \
--instance-info image_os_hash_

↪→value=a64dd95e0c48e61ed741ff026d8c89ca38a51f3799955097c5123b1705ef13d4 \
--instance-info image_type=partition \
--instance-info root_gb=10

If you use network boot (or Ironic before Yoga), two more fields must be set:

baremetal node set $NODE_UUID \
--instance-info image_source=http://image.server/my-image.qcow2 \
--instance-info image_checksum=1f9c0e1bad977a954ba40928c1e11f33 \
--instance-info image_type=partition \
--instance-info kernel=http://image.server/my-image.kernel \
--instance-info ramdisk=http://image.server/my-image.initramfs \
--instance-info root_gb=10

With a whole disk image and a checksum URL:

baremetal node set $NODE_UUID \
--instance-info image_source=http://image.server/my-image.qcow2 \
--instance-info image_checksum=http://image.server/my-image.qcow2.CHECKSUM

Note

Certain hardware types and interfaces may require additional or different fields to be provided. See
specific guides under Drivers, Hardware Types and Hardware Interfaces for Ironic.

When using low RAM nodes with http:// images that are not in the RAW format, you may want them
cached locally, converted to raw and served from the conductors HTTP server:

baremetal node set $NODE_UUID --instance-info image_download_source=local

For software RAID with whole-disk images, the root UUID of the root partition has to be provided so
that the bootloader can be correctly installed:

baremetal node set $NODE_UUID --instance-info image_rootfs_uuid=<uuid>

Capabilities

• Boot mode can be specified per instance:

baremetal node set $NODE_UUID \
--instance-info capabilities='{"boot_mode": "uefi"}'

Otherwise, the boot_mode capability from the nodes properties will be used.

124 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

Warning

The two settings must not contradict each other.

Note

This capability was introduced in the Wallaby release series, previously ironic used a separate
instance_info/deploy_boot_mode field instead.

• Starting with the Ussuri release, you can set root device hints per instance:

baremetal node set $NODE_UUID \
--instance-info root_device='{"wwn": "0x4000cca77fc4dba1"}'

This setting overrides any previous setting in properties and will be removed on undeployment.

Overriding a hardware interface

Non-admins with temporary access to a node, may wish to specify different node interfaces. However,
allowing them to set these interface values directly on the node is problematic, as there is no automated
way to ensure that the original interface values are restored.

In order to temporarily override a hardware interface, simply set the appropriate value in
instance_info. For example, if youd like to override a nodes storage interface, run the following:

baremetal node set $NODE_UUID --instance-info storage_interface=cinder

instance_info values persist until after a node is cleaned.

Note

This feature is available starting with the Wallaby release.

Attaching virtual interfaces

If using the OpenStack Networking service (neutron), you can attach its ports to a node before deployment
as VIFs:

baremetal node vif attach $NODE_UUID $PORT_UUID

Warning

These are neutron ports, not ironic ports!

VIFs are automatically detached on deprovisioning.

3.1. Bare Metal Service User Guide 125

Ironic Documentation, Release 26.1.2.dev21

Deployment

1. Validate that all parameters are correct:

$ baremetal node validate $NODE_UUID
+------------+--------+---
↪→-------------+
| Interface | Result | Reason ␣
↪→ |
+------------+--------+---
↪→-------------+
| boot | True | ␣
↪→ |
| console | False | Missing 'ipmi_terminal_port' parameter in node's␣
↪→driver_info. |
| deploy | True | ␣
↪→ |
| inspect | True | ␣
↪→ |
| management | True | ␣
↪→ |
| network | True | ␣
↪→ |
| power | True | ␣
↪→ |
| raid | True | ␣
↪→ |
| storage | True | ␣
↪→ |
+------------+--------+---
↪→-------------+

2. Now you can start the deployment, run:

baremetal node deploy $NODE_UUID

3. Starting with the Wallaby release you can also request custom deploy steps, see Requesting steps
for details.

Deploying with a config drive

The configuration drive is a small image used to store instance-specific metadata and is present to the
instance as a disk partition labeled config-2. See Enabling the configuration drive (configdrive) for a
detailed explanation.

A configuration drive can be provided either as a whole ISO 9660 image or as JSON input for build-
ing an image. A first-boot service, such as cloud-init, must be running on the instance image for the
configuration to be applied.

126 Chapter 3. User Guide

https://cloudinit.readthedocs.io/en/latest/

Ironic Documentation, Release 26.1.2.dev21

Building a config drive on the client side

For the format of the configuration drive, Bare Metal service expects a gzipped and base64 encoded ISO
9660 file with a config-2 label. The baremetal client can generate a configuration drive in the expected
format. Pass a directory path containing the files that will be injected into it via the --config-drive
parameter of the baremetal node deploy command, for example:

baremetal node deploy $NODE_UUID --config-drive /dir/configdrive_files

Note

A configuration drive could also be a data block with a VFAT filesystem on it instead of ISO 9660.
But its unlikely that it would be needed since ISO 9660 is widely supported across operating systems.

Building a config drive on the conductor side

Starting with the Stein release and ironicclient 2.7.0, you can request building a configdrive on the server
side by providing a JSON with keys meta_data, user_data and network_data (all optional), e.g.:

baremetal node deploy $node_identifier \
--config-drive '{"meta_data": {"hostname": "server1.cluster"}}'

Note

When this feature is used, host name defaults to the nodes name or UUID.

SSH public keys can be provided as a mapping:

baremetal node deploy $NODE_UUID \
--config-drive '{"meta_data": {"public_keys": {"0": "ssh key contents"}}}'

If using cloud-init, its configuration can be supplied as user_data, e.g.:

baremetal node deploy $NODE_UUID \
--config-drive '{"user_data": "#cloud-config\n{\"users\": [{\"name\": ...}

↪→]}"}'

Warning

User data is a string, not a JSON! Also note that a prefix, such as #cloud-config, is required, see
user data format.

Some first-boot services support network configuration in the OpenStack network data format. It can be
provided in the network_data field of the configuration drive.

3.1. Bare Metal Service User Guide 127

https://docs.openstack.org/python-ironicclient/2024.2/cli/osc_plugin_cli.html
https://docs.openstack.org/nova/latest/user/metadata.html#config-drives
https://docs.openstack.org/nova/latest/user/metadata.html#config-drives
https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/topics/format.html
https://docs.openstack.org/nova/latest/user/metadata.html#openstack-format-metadata

Ironic Documentation, Release 26.1.2.dev21

Ramdisk booting

Advanced operators, specifically ones working with ephemeral workloads, may find it more useful to
explicitly treat a node as one that would always boot from a Ramdisk. See Booting a Ramdisk or an ISO
for details.

3.2 REST API Conceptual Guide

3.2.1 Versioning

The ironic REST API supports two types of versioning:

• major versions, which have dedicated urls.

• microversions, which can be requested through the use of the
X-OpenStack-Ironic-API-Version header.

There is only one major version supported currently, v1. As such, most URLs in this documentation are
written with the /v1/ prefix.

Starting with the Kilo release, ironic supports microversions. In this context, a version is defined as a
string of 2 integers separated by a dot: X.Y. Here X is a major version, always equal to 1, and Y is a minor
version. Server minor version is increased every time the API behavior is changed (note Exceptions from
Versioning).

Note

Nova versioning documentation has a nice guide for developers on when to bump an API version.

The server indicates its minimum and maximum supported API
versions in the X-OpenStack-Ironic-API-Minimum-Version and
X-OpenStack-Ironic-API-Maximum-Version headers respectively, returned with every response.
Client may request a specific API version by providing X-OpenStack-Ironic-API-Version header
with request.

The requested microversion determines both the allowable requests and the response format for all re-
quests. A resource may be represented differently based on the requested microversion.

If no version is requested by the client, the minimum supported version will be assumed. In this way, a
client is only exposed to those API features that are supported in the requested (explicitly or implicitly)
API version (again note Exceptions from Versioning, they are not covered by this rule).

We recommend clients that require a stable API to always request a specific version of API that they have
been tested against.

Note

A special value latest can be requested instead a numerical microversion, which always requests
the newest supported API version from the server.

128 Chapter 3. User Guide

https://docs.openstack.org/nova/2024.2/contributor/microversions.html#when-do-i-need-a-new-microversion

Ironic Documentation, Release 26.1.2.dev21

REST API Versions History

REST API Version History

1.92 (Dalmatian)

Adds runbooks, a predefined list of steps that can be run on nodes associated via traits and used in place
of an explicit list of steps for manual cleaning or servicing, to enable self-service of maintenance items
by project members.

• Adds a new REST API endpoint /v1/runbooks/ with basic CRUD support.

• Extends the /v1/nodes/<node>/states/provision API to accept a runbook identifier (name or UUID)
instead of clean_steps or service_steps for servicing or manual cleaning.

• Implements RBAC-aware lifecycle management for runbooks, allowing projects to limit who can
CRUD and use a runbook.

1.91 (Dalmatian)

Removes special treatment of .json for API objects

• /v1/nodes/test.json will now only mean node with the name test.json

• /v1/nodes/test.json.json will mean a node with the name test.json.json and,

• /v1/nodes/test will mean a node with the name test.

So /v1/nodes/test.jsonwill no longer default to test and will HTTP 404 unless a node with the name
test actually exists.

This also removes the backward compatibility with the guess_content_type_from_ext feature

1.90 (Caracal)

API supports ovn vtep switches as a valid schema for port.local_link_connection. Ovn vtep
switches are represented as the following:

{
"port_id": "exampleportid",
"vtep-logical-switch": "examplelogicalswitch",
"vtep-physical-switch": "examplephysicalswitch"

}

3.2. REST API Conceptual Guide 129

Ironic Documentation, Release 26.1.2.dev21

1.89 (Caracal)

Adds support to attaching or detaching images from a nodes virtual media using the /v1/nodes/
{node_ident}/vmedia endpoint. A POST request containing device_type, image_url, and
image_download_source will attach the requested image to the nodes virtual media. A later DELETE
request to the same endpoint will detach it.

1.88 (Bobcat)

Added the name field to the port API. It should be unique when set, and can be used to identify a port
resource.

1.87 (Bobcat)

Adds the service provision state verb to allow modifications via the steps interface to occur with a
baremetal node. With this functionality comes a service_step field on the /v1/nodes based resources,
which indicates the current step.

1.86 (Bobcat)

Adds a firmware_interface field to the /v1/nodes resources.

1.85 (Bobcat, 22.1)

This version adds a new provision state change verb called unhold to be utilized with the new
provision_state values clean hold and deploy hold. The verb instructs Ironic to remove the
node from its present hold and to resume its prior cleaning or deployment process.

1.84 (Bobcat, 22.1)

Add callback endpoint for in-band inspection /v1/continue_inspection. This endpoint is not de-
signed to be used by regular users.

1.83 (Bobcat, 22.0)

This version adds a concept of child nodes through the use of a parent_node field which can be set on
a node.

Under normal conditions, child nodes are not visible in the normal node list, as they are more for nested
resources and not machines which can be freely used outside of an integrated context of the parent node.
Think of a child node as a node with its own BMC embedded inside of an existing node.

Additionally:

• Adds GET /v1/nodes/{node_ident}/children to return a list of node UUIDs which represent
children, which can acted upon individually.

130 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

• Adds GET /v1/nodes/?include_children=True to return a list of all parent nodes and chil-
dren.

• Adds GET /v1/nodes?parent_node={node_ident} to explicitly request a detailed list of
nodes by parent relationship.

1.82 (Antelope, 21.4)

This version signifies the addition of node sharding endpoints.

• Adds support for get, set, and delete of shard key on Node object.

• Adds support for GET /v1/shards which returns a list of all shards and the count of nodes as-
signed to each.

1.81 (Antelope, 21.3)

Add endpoint to retrieve introspection data for nodes via the REST API.

• GET /v1/nodes/{node_ident}/inventory/

1.80 (Zed, 21.1)

This version is a signifier of additional RBAC functionality allowing a project scoped admin to create or
delete nodes in Ironic.

1.79 (Zed, 21.0)

A node with the same name as the allocation name is moved to the start of the derived candidate list.

1.78 (Xena, 18.2)

Add endpoints to allow history events for nodes to be retrieved via the REST API.

• GET /v1/nodes/{node_ident}/history/

• GET /v1/nodes/{node_ident}/history/{event_uuid}

1.77 (Xena, 18.2)

Add a fields selector to the the Drivers list: * GET /v1/drivers?fields= Also add a fields selector to
the the Driver detail: * GET /v1/drivers/{driver_name}?fields=

3.2. REST API Conceptual Guide 131

Ironic Documentation, Release 26.1.2.dev21

1.76 (Xena, 18.2)

Add endpoints for changing boot mode and secure boot state of node asynchronously:

• PUT /v1/nodes/{node_ident}/states/boot_mode

• PUT /v1/nodes/{node_ident}/states/secure_boot

1.75 (Xena, 18.1)

Add boot_mode and secure_boot to node object and expose their state at:

• /v1/nodes/{node_ident}/states

1.74 (Xena, 18.0)

Add support for BIOS registry fields which include details about the BIOS setting. Included in the /v1/
nodes/{node_ident}/bios/{setting} response.

Add a new selector to include the fields in the BIOS settings list:

• /v1/nodes/{node_ident}/bios/?detail=

Also add a fields selector to the the BIOS settings list:

• /v1/nodes/{node_ident}/bios/?fields=

1.73 (Xena, 18.0)

Add a new deploy verb as an alias to active and undeploy verb as an alias to deleted.

1.72 (Wallaby, 17.0)

Add support for agent_status and agent_status_message to /v1/heartbeat. These fields are used
for external installation tools, such as Anaconda, to report back status.

1.71 (Wallaby, 17.0)

Signifier of the API supporting keystone system scoped roles and access controls. This is an informa-
tional flag for clients to be aware of the servers capability.

132 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

1.70 (Wallaby, 17.0)

Add support for disable_ramdisk parameter to provisioning endpoint /v1/nodes/{node_ident}/
states/provision.

1.69 (Wallaby, 16.2)

Add support for deploy_steps parameter to provisioning endpoint /v1/nodes/{node_ident}/
states/provision. Available and optional when target is active or rebuild.

1.68 (Victoria, 16.0)

Added the agent_verify_ca parameter to the ramdisk heartbeat API.

1.67 (Victoria, 15.1)

Add support for the mutually exclusive port_uuid and portgroup_uuid fields by having the node
vif_attach API accept those values within vif_info. If one is specified, then Ironic will attempt to
attach a VIF to the relative port or portgroup.

1.66 (Victoria, 15.1)

Add network_data field to the node object, that will be used by stand-alone ironic to pass L3 network
configuration information to ramdisk.

1.65 (Ussuri, 15.0)

Added lessee field to the node object. The field should match the project_id of the intended lessee.
If an allocation has an owner, then the allocation process will only match the allocation with a node that
has the same owner or lessee.

1.64 (Ussuri, 15.0)

Added the network_type to the port objects local_link_connection field. The network_type can
be set to either managed or unmanaged. When the type is unmanaged other fields are not required. Use
unmanaged when the neutron network_interface is required, but the network is in fact a flat network
where no actual switch management is done.

3.2. REST API Conceptual Guide 133

Ironic Documentation, Release 26.1.2.dev21

1.63 (Ussuri, 15.0)

Added the following new endpoints for indicator management:

• GET /v1/nodes/<node_ident>/management/indicators to list all available indicators
names for each of the hardware component. Currently known components are: chassis, system,
disk, power and nic.

• GET /v1/nodes/<node_ident>/management/indicators/<component>/
<indicator_ident> to retrieve all indicators and their states for the hardware component.

• PUT /v1/nodes/<node_ident>/management/indicators/<component>/
<indicator_ident> change state of the desired indicators of the component.

1.62 (Ussuri, 15.0)

This version of the API is to signify capability of an ironic deployment to support the agent token
functionality with the ironic-python-agent.

1.61 (Ussuri, 14.0)

Added retired field to the node object to mark nodes for retirement. If set, this flag will move nodes
to manageable upon automatic cleaning. manageable nodes which have this flag set cannot be moved
to available. Also added retired_reason to specify the retirement reason.

1.60 (Ussuri, 14.0)

Added owner field to the allocation object. The field should match the project_id of the intended
owner. If the owner field is set, the allocation process will only match the allocation with a node that has
the same owner field set.

1.59 (Ussuri, 14.0)

Added the ability to specify a vendor_data dictionary field in the configdrive parameter submitted
with the deployment of a node. The value is a dictionary which is served as vendor_data2.json in the
config drive.

1.58 (Train, 12.2.0)

Added the ability to backfill allocations for already deployed nodes by creating an allocation with node
set.

134 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

1.57 (Train, 12.2.0)

Added the following new endpoint for allocation:

• PATCH /v1/allocations/<allocation_ident> that allows updating name and extra fields
for an existing allocation.

1.56 (Stein, 12.1.0)

Added the ability for the configdrive parameter submitted with the deployment of a node, to include
a meta_data, network_data and user_data dictionary fields. Ironic will now use the supplied data
to create a configuration drive for the user. Prior uses of the configdrive field are unaffected.

1.55 (Stein, 12.1.0)

Added the following new endpoints for deploy templates:

• GET /v1/deploy_templates to list all deploy templates.

• GET /v1/deploy_templates/<deploy template identifier> to retrieve details of a de-
ploy template.

• POST /v1/deploy_templates to create a deploy template.

• PATCH /v1/deploy_templates/<deploy template identifier> to update a deploy tem-
plate.

• DELETE /v1/deploy_templates/<deploy template identifier> to delete a deploy tem-
plate.

1.54 (Stein, 12.1.0)

Added new endpoints for external events:

• POST /v1/events for creating events. (This endpoint is only intended for internal consumption.)

1.53 (Stein, 12.1.0)

Added is_smartnic field to the port object to enable Smart NIC port creation in addition to local link
connection attributes port_id and hostname.

3.2. REST API Conceptual Guide 135

Ironic Documentation, Release 26.1.2.dev21

1.52 (Stein, 12.1.0)

Added allocation API, allowing reserving a node for deployment based on resource class and traits. The
new endpoints are:

• POST /v1/allocations to request an allocation.

• GET /v1/allocations to list all allocations.

• GET /v1/allocations/<ID or name> to retrieve the allocation details.

• GET /v1/nodes/<ID or name>/allocation to retrieve an allocation associated with the node.

• DELETE /v1/allocations/<ID or name> to remove the allocation.

• DELETE /v1/nodes/<ID or name>/allocation to remove an allocation associated with the
node.

Also added a new field allocation_uuid to the node resource.

1.51 (Stein, 12.1.0)

Added description field to the node object to enable operators to store any information relates to the
node. The field is limited to 4096 characters.

1.50 (Stein, 12.1.0)

Added owner field to the node object to enable operators to store information in relation to the owner of
a node. The field is up to 255 characters and MAY be used in a later point in time to allow designation
and deligation of permissions.

1.49 (Stein, 12.0.0)

Added new endpoints for retrieving conductors information, and added a conductor field to node object.

1.48 (Stein, 12.0.0)

Added protected field to the node object to allow protecting deployed nodes from undeploying, rebuild-
ing or deletion. Also added protected_reason to specify the reason of making the node protected.

1.47 (Stein, 12.0.0)

Added automated_clean field to the node object, enabling cleaning per node.

136 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

1.46 (Rocky, 11.1.0)

Added conductor_group field to the node and the node response, as well as support to the API to return
results by matching the parameter.

1.45 (Rocky, 11.1.0)

Added reset_interfaces parameter to nodes PATCH request, to specify whether to reset hardware
interfaces to their defaults on drivers update.

1.44 (Rocky, 11.1.0)

Added deploy_step to the node object, to indicate the current deploy step (if any) being performed on
the node.

1.43 (Rocky, 11.0.0)

Added ?detail= boolean query to the API list endpoints to provide a more RESTful alternative to the
existing /nodes/detail and similar endpoints.

1.42 (Rocky, 11.0.0)

Added fault to the node object, to indicate currently detected fault on the node.

1.41 (Rocky, 11.0.0)

Added support to abort inspection of a node in the inspect wait state.

1.40 (Rocky, 11.0.0)

Added BIOS properties as sub resources of nodes:

• GET /v1/nodes/<node_ident>/bios

• GET /v1/nodes/<node_ident>/bios/<setting_name>

Added bios_interface field to the node object to allow getting and setting the interface.

3.2. REST API Conceptual Guide 137

Ironic Documentation, Release 26.1.2.dev21

1.39 (Rocky, 11.0.0)

Added inspect wait to available provision states. A node is shown as inspect wait instead of
inspecting during asynchronous inspection.

1.38 (Queens, 10.1.0)

Added provision_state verbs rescue and unrescue along with the following states: rescue, rescue
failed, rescue wait, rescuing, unrescue failed, and unrescuing. After rescuing a node, it
will be left in the rescue state running a rescue ramdisk, configured with the rescue_password, and
listening with ssh on the specified network interfaces. Unrescuing a node will return it to active.

Added rescue_interface to the node object, to allow setting the rescue interface for a dynamic driver.

1.37 (Queens, 10.1.0)

Adds support for node traits, with the following new endpoints.

• GET /v1/nodes/<node identifier>/traits lists the traits for a node.

• PUT /v1/nodes/<node identifier>/traits sets all traits for a node.

• PUT /v1/nodes/<node identifier>/traits/<trait> adds a trait to a node.

• DELETE /v1/nodes/<node identifier>/traits removes all traits from a node.

• DELETE /v1/nodes/<node identifier>/traits/<trait> removes a trait from a node.

A nodes traits are also included the following node query and list responses:

• GET /v1/nodes/<node identifier>

• GET /v1/nodes/detail

• GET /v1/nodes?fields=traits

Traits cannot be specified on node creation, nor can they be updated via a PATCH request on the node.

1.36 (Queens, 10.0.0)

Added agent_version parameter to deploy heartbeat request for version negotiation with Ironic Python
Agent features.

1.35 (Queens, 9.2.0)

Added ability to provide configdrive when node is updated to rebuild provision state.

138 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

1.34 (Pike, 9.0.0)

Adds a physical_network field to the port object. All ports in a portgroup must have the same value
in their physical_network field.

1.33 (Pike, 9.0.0)

Added storage_interface field to the node object to allow getting and setting the interface.

Added default_storage_interface and enabled_storage_interfaces fields to the driver object
to show the information.

1.32 (Pike, 9.0.0)

Added new endpoints for remote volume configuration:

• GET /v1/volume as a root for volume resources

• GET /v1/volume/connectors for listing volume connectors

• POST /v1/volume/connectors for creating a volume connector

• GET /v1/volume/connectors/<UUID> for showing a volume connector

• PATCH /v1/volume/connectors/<UUID> for updating a volume connector

• DELETE /v1/volume/connectors/<UUID> for deleting a volume connector

• GET /v1/volume/targets for listing volume targets

• POST /v1/volume/targets for creating a volume target

• GET /v1/volume/targets/<UUID> for showing a volume target

• PATCH /v1/volume/targets/<UUID> for updating a volume target

• DELETE /v1/volume/targets/<UUID> for deleting a volume target

Volume resources also can be listed as sub resources of nodes:

• GET /v1/nodes/<node identifier>/volume

• GET /v1/nodes/<node identifier>/volume/connectors

• GET /v1/nodes/<node identifier>/volume/targets

1.31 (Ocata, 7.0.0)

Added the following fields to the node object, to allow getting and setting interfaces for a dynamic driver:

• boot_interface

• console_interface

• deploy_interface

• inspect_interface

• management_interface

3.2. REST API Conceptual Guide 139

Ironic Documentation, Release 26.1.2.dev21

• power_interface

• raid_interface

• vendor_interface

1.30 (Ocata, 7.0.0)

Added dynamic driver APIs:

• GET /v1/drivers now accepts a type parameter (optional, one of classic or dynamic), to limit
the result to only classic drivers or dynamic drivers (hardware types). Without this parameter, both
classic and dynamic drivers are returned.

• GET /v1/drivers now accepts a detail parameter (optional, one of True or False), to show all
fields for a driver. Defaults to False.

• GET /v1/drivers now returns an additional type field to show if the driver is classic or dynamic.

• GET /v1/drivers/<name> now returns an additional type field to show if the driver is classic or
dynamic.

• GET /v1/drivers/<name> now returns additional fields that are null for classic drivers, and set as
following for dynamic drivers:

– The value of the default_<interface-type>_interface is the entrypoint name of the calculated
default interface for that type:

∗ default_boot_interface

∗ default_console_interface

∗ default_deploy_interface

∗ default_inspect_interface

∗ default_management_interface

∗ default_network_interface

∗ default_power_interface

∗ default_raid_interface

∗ default_vendor_interface

– The value of the enabled_<interface-type>_interfaces is a list of entrypoint names of the
enabled interfaces for that type:

∗ enabled_boot_interfaces

∗ enabled_console_interfaces

∗ enabled_deploy_interfaces

∗ enabled_inspect_interfaces

∗ enabled_management_interfaces

∗ enabled_network_interfaces

∗ enabled_power_interfaces

140 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

∗ enabled_raid_interfaces

∗ enabled_vendor_interfaces

1.29 (Ocata, 7.0.0)

Add a new management API to support inject NMI, PUT /v1/nodes/(node_ident)/management/inject_nmi.

1.28 (Ocata, 7.0.0)

Add /v1/nodes/<node identifier>/vifs endpoint for attach, detach and list of VIFs.

1.27 (Ocata, 7.0.0)

Add soft rebooting and soft power off as possible values for the target field of the power state
change payload, and also add timeout field to it.

1.26 (Ocata, 7.0.0)

Add portgroup mode and properties fields.

1.25 (Ocata, 7.0.0)

Add possibility to unset chassis_uuid from a node.

1.24 (Ocata, 7.0.0)

Added new endpoints /v1/nodes/<node>/portgroups and /v1/portgroups/<portgroup>/ports. Added new
field port.portgroup_uuid.

1.23 (Ocata, 7.0.0)

Added /v1/portgroups/ endpoint.

1.22 (Newton, 6.1.0)

Added endpoints for deployment ramdisks.

3.2. REST API Conceptual Guide 141

Ironic Documentation, Release 26.1.2.dev21

1.21 (Newton, 6.1.0)

Add node resource_class field.

1.20 (Newton, 6.1.0)

Add node network_interface field.

1.19 (Newton, 6.1.0)

Add local_link_connection and pxe_enabled fields to the port object.

1.18 (Newton, 6.1.0)

Add internal_info readonly field to the port object, that will be used by ironic to store internal port-
related information.

1.17 (Newton, 6.0.0)

Addition of provision_state verb adoptwhich allows an operator to move a node from manageable state
to active state without performing a deployment operation on the node. This is intended for nodes that
have already been deployed by external means.

1.16 (Mitaka, 5.0.0)

Add ability to filter nodes by driver.

1.15 (Mitaka, 5.0.0)

Add ability to do manual cleaning when a node is in the manageable provision state via PUT
v1/nodes/<identifier>/states/provision, target:clean, clean_steps:[].

1.14 (Liberty, 4.2.0)

Make the following endpoints discoverable via Ironic API:

• /v1/nodes/<UUID or logical name>/states

• /v1/drivers/<driver name>/properties

142 Chapter 3. User Guide

Ironic Documentation, Release 26.1.2.dev21

1.13 (Liberty, 4.2.0)

Add a new verb abort to the API used to abort nodes in CLEANWAIT state.

1.12 (Liberty, 4.2.0)

This API version adds the following abilities:

• Get/set node.target_raid_config and to get node.raid_config.

• Retrieve the logical disk properties for the driver.

1.11 (Liberty, 4.0.0, breaking change)

Newly registered nodes begin in the enroll provision state by default, instead of available. To get
them to the available state, the manage action must first be run to verify basic hardware control.
On success the node moves to manageable provision state. Then the provide action must be run.
Automated cleaning of the node is done and the node is made available.

1.10 (Liberty, 4.0.0)

Logical node names support all RFC 3986 unreserved characters. Previously only valid fully qualified
domain names could be used.

1.9 (Liberty, 4.0.0)

Add ability to filter nodes by provision state.

1.8 (Liberty, 4.0.0)

Add ability to return a subset of resource fields.

1.7 (Liberty, 4.0.0)

Add node clean_step field.

1.6 (Kilo)

Add inspection process: introduce inspecting and inspectfail provision states, and inspect action
that can be used when a node is in manageable provision state.

3.2. REST API Conceptual Guide 143

Ironic Documentation, Release 26.1.2.dev21

1.5 (Kilo)

Add logical node names that can be used to address a node in addition to the node UUID. Name is
expected to be a valid fully qualified domain name in this version of API.

1.4 (Kilo)

Add manageable state and manage transition, which can be used to move a node to manageable state
from available. The node cannot be deployed in manageable state. This change is mostly a prepara-
tion for future inspection work and introduction of enroll provision state.

1.3 (Kilo)

Add node driver_internal_info field.

1.2 (Kilo, breaking change)

Renamed NOSTATE (None in Python, null in JSON) node state to available. This is needed to reduce
confusion around None state, especially when future additions to the state machine land.

1.1 (Kilo)

This was the initial version when API versioning was introduced. Includes the following changes from
Kilo release cycle:

• Add node maintenance_reason field and an API endpoint to set/unset the node maintenance
mode.

• Add sync and async support for vendor passthru methods.

• Vendor passthru endpoints support different HTTP methods, not only POST.

• Make vendor methods discoverable via the Ironic API.

• Add logic to store the config drive passed by Nova.

This has been the minimum supported version since versioning was introduced.

1.0 (Juno)

This version denotes Juno API and was never explicitly supported, as API versioning was not imple-
mented in Juno, and 1.1 became the minimum supported version in Kilo.

144 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

Ironic Documentation, Release 26.1.2.dev21

Exceptions from Versioning

The following API-visible things are not covered by the API versioning:

• Current node state is always exposed as it is, even if not supported by the requested API version,
with exception of available state, which is returned in version 1.1 as None (in Python) or null
(in JSON).

• Data within free-form JSON attributes: properties, driver_info, instance_info,
driver_internal_info fields on a node object; extra fields on all objects.

• Addition of new drivers.

• All vendor passthru methods.

3.2. REST API Conceptual Guide 145

Ironic Documentation, Release 26.1.2.dev21

146 Chapter 3. User Guide

CHAPTER

FOUR

ADMINISTRATOR GUIDE

4.1 Drivers, Hardware Types and Hardware Interfaces for Ironic

4.1.1 Generic Interfaces

Boot interfaces

The boot interface manages booting of both the deploy ramdisk and the user instances on the bare metal
node.

The PXE boot interface is generic and works with all hardware that supports booting from network.
Alternatively, several vendors provide virtual media implementations of the boot interface. They work
by pushing an ISO image to the nodes management controller, and do not require either PXE or iPXE.
Check your driver documentation at Drivers, Hardware Types and Hardware Interfaces for Ironic for
details.

PXE boot

The pxe and ipxe boot interfaces uses PXE or iPXE accordingly to deliver the target kernel/ramdisk
pair. PXE uses relatively slow and unreliable TFTP protocol for transfer, while iPXE uses HTTP. The
downside of iPXE is that its less common, and usually requires bootstrapping using PXE first.

The pxe and ipxe boot interfaces work by preparing a PXE/iPXE environment for a node on the file
system, then instructing the DHCP provider (for example, the Networking service) to boot the node
from it. See Example: PXE Boot and Direct Deploy Process for a better understanding of the whole
deployment process.

Note

Both PXE and iPXE are configured differently, when UEFI boot is used instead of conventional BIOS
boot. This is particularly important for CPU architectures that do not have BIOS support at all.

The ipxe boot interface is used by default for many hardware types, including ipmi. Some hardware
types, notably ilo and irmc have their specific implementations of the PXE boot interface.

Additional configuration is required for this boot interface - see Configuring Network Boot for details.

147

https://en.wikipedia.org/wiki/Out-of-band_management
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/IPXE

Ironic Documentation, Release 26.1.2.dev21

HTTP Boot

The http and http-ipxe boot interfaces are based upon the Ironic implementation of the pxe and
ipxe boot interfaces, respectively, and utilize HTTP in the transmission of the location to start the boot
sequence from. These interfaces are specific to UEFI as they are rooted in the UEFI standard v2.5s
support for booting from an HTTP URL.

One caveat to keep in mind is that these interfaces require hardware support and the ability to signal to
the remote BMC that the node should boot utilizing UEFIHTTP. If a hardware type does not support that
as an option, we will fallback and request PXE boot, but that realistically may only work if the firmware
on the machine is smart enough to check and evaluate for an HTTP Boot URL instead of a PXE boot
server and file name.

It should be noted, that these boot interfaces are available for the vendor independent, generic hardware
types of ipmi and redfish. Hardware vendors typically only include additional interfaces after they
have performed their own verification and qualification testing.

Kernel parameters

If you need to pass additional kernel parameters to the deployment/cleaning ramdisk (for example, to
configure serial console), use the following configuration option:

[pxe]
kernel_append_params = nofb vga=normal

Note

The option was called pxe_append_params before the Xena cycle.

Per-node and per-instance overrides are also possible, for example:

baremetal node set node-0 \
--driver-info kernel_append_params="nofb vga=normal"

baremetal node set node-0 \
--instance-info kernel_append_params="nofb vga=normal"

Starting with the Zed cycle, you can combine the parameters from the configuration and from the node
using the special %default% syntax:

baremetal node set node-0 \
--driver-info kernel_append_params="%default% console=ttyS0,115200n8"

Together with the configuration above, the following parameters will be appended to the kernel command
line:

nofb vga=normal console=ttyS0,115200n8

Note

148 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Ironic does not do any de-duplication of the resulting kernel parameters. Both kernel itself and dracut
seem to give priority to the last instance of the same parameter.

Warning

Previously our documentation listed the Linux kernel parameter nomodeset as an option. This op-
tion is intended for troubleshooting, and can greatly degrade performance with Matrox/Aspeed BMC
Graphics controllers which is very commonly used on physical servers. The performance degradation
can greatly reduce IO capacity upon every console graphics update being written to the screen.

Common options

Enable persistent boot device for deploy/clean operation

For (i)PXE booting, Ironic uses non-persistent boot order changes for clean/deploy by default. For some
drivers, persistent changes are far more costly than non-persisent ones, so this approach can bring a
performance benefit.

In order to control this behavior, however, Ironic provides the force_persistent_boot_device flag
in the nodes driver_info. It allows the values Default (make all changes but the last one upon de-
ployment non-persistent), Always (make all changes persistent), and Never (make all boot order changes
non-persistent). For example in order to have only persistent changes one would need to set something
like:

$ openstack baremetal node set --driver-info force_persistent_boot_device=
↪→'Always' <node>

Note

It is recommended to check if the nodes state has not changed as there is no way of locking the node
between these commands.

Note

The values True/False for the option force_persistent_boot_device in the nodes driver info for the
(i)PXE drivers are deprecated and support for them may be removed in a future release. The former
default value False is replaced by the new value Default, the value True is replaced by Always.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 149

Ironic Documentation, Release 26.1.2.dev21

Deploy Interfaces

A deploy interface plays a critical role in the provisioning process. It orchestrates the whole deployment
and defines how the image gets transferred to the target disk.

Direct deploy

With direct deploy interface, the deploy ramdisk fetches the image from an HTTP location. It can be an
object storage (swift or RadosGW) temporary URL or a user-provided HTTP URL. The deploy ramdisk
then copies the image to the target disk. See direct deploy diagram for a detailed explanation of how this
deploy interface works.

You can specify this deploy interface when creating or updating a node:

baremetal node create --driver ipmi --deploy-interface direct
baremetal node set <NODE> --deploy-interface direct

Note

For historical reasons the direct deploy interface is sometimes called agent. This is because before
the Kilo release ironic-python-agent used to only support this deploy interface.

Deploy with custom HTTP servers

The direct deploy interface can also be configured to use with custom HTTP servers set up at ironic
conductor nodes, images will be cached locally and made accessible by the HTTP server.

To use this deploy interface with a custom HTTP server, set image_download_source to http in the
[agent] section.

[agent]
...
image_download_source = http
...

This configuration affects glance and file:// images. If you want http(s):// images to also be
cached and served locally, use instead:

[agent]
image_download_source = local

Note

This option can also be set per node in driver_info:

baremetal node set <node> --driver-info image_download_source=local

or per instance in instance_info:

baremetal node set <node> --instance-info image_download_source=local

150 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

You need to set up a workable HTTP server at each conductor node which with direct deploy inter-
face enabled, and check http related options in the ironic configuration file to match the HTTP server
configurations.

[deploy]
http_url = http://example.com
http_root = /httpboot

Note

See also: Deploying outside of the provisioning network.

Each HTTP server should be configured to follow symlinks for images accessible from HTTP ser-
vice. Please refer to configuration option FollowSymLinks if you are using Apache HTTP server, or
disable_symlinks if Nginx HTTP server is in use.

Streaming raw images

The Bare Metal service is capable of streaming raw images directly to the target disk of a node, without
caching them in the nodes RAM. When the source image is not already raw, the conductor will convert
the image and calculate the new checksum.

Note

If no algorithm is specified via the image_os_hash_algo field, or if this field is set to md5, SHA256
is used for the updated checksum.

For HTTP or local file images that are already raw, you need to explicitly set the disk format to prevent
the checksum from being unnecessarily re-calculated. For example:

baremetal node set <node> \
--instance-info image_source=http://server/myimage.img \
--instance-info image_os_hash_algo=sha512 \
--instance-info image_os_hash_value=<SHA512 of the raw image> \
--instance-info image_disk_format=raw

To disable this feature and cache images in the nodes RAM, set

[agent]
stream_raw_images = False

To disable the conductor-side conversion completely, set

[DEFAULT]
force_raw_images = False

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 151

Ironic Documentation, Release 26.1.2.dev21

Ansible deploy

This interface is similar to direct in the sense that the image is downloaded by the ramdisk directly
from the image store (not from ironic-conductor host), but the logic of provisioning the node is held in a
set of Ansible playbooks that are applied by the ironic-conductor service handling the node. While
somewhat more complex to set up, this deploy interface provides greater flexibility in terms of advanced
node preparation during provisioning.

This interface is supported by most but not all hardware types declared in ironic. However this deploy
interface is not enabled by default. To enable it, add ansible to the list of enabled deploy interfaces in
enabled_deploy_interfaces option in the [DEFAULT] section of ironics configuration file:

[DEFAULT]
...
enabled_deploy_interfaces = direct,ansible
...

Once enabled, you can specify this deploy interface when creating or updating a node:

baremetal node create --driver ipmi --deploy-interface ansible
baremetal node set <NODE> --deploy-interface ansible

For more information about this deploy interface, its features and how to use it, see Ansible deploy inter-
face.

Ansible deploy interface

Ansible is a mature and popular automation tool, written in Python and requiring no agents running on
the node being configured. All communications with the node are by default performed over secure SSH
transport.

The ansible deploy interface uses Ansible playbooks to define the deployment logic. It is not based on
Ironic Python Agent (IPA) and does not generally need IPA to be running in the deploy ramdisk.

Overview

The main advantage of this deploy interface is extended flexibility in regards to changing and adapting
node deployment logic for specific use cases, via Ansible tooling that is already familiar to operators.

It can be used to shorten the usual feature development cycle of

• implementing logic in ironic,

• implementing logic in IPA,

• rebuilding deploy ramdisk,

• uploading deploy ramdisk to Glance/HTTP storage,

• reassigning deploy ramdisk to nodes,

• restarting ironic-conductor service(s) and

• running a test deployment

152 Chapter 4. Administrator Guide

https://docs.ansible.com/ansible/latest/index.html
https://docs.openstack.org/ironic-python-agent/2024.2/

Ironic Documentation, Release 26.1.2.dev21

by using a stable deploy ramdisk and not requiring ironic-conductor restarts (see Extending playbooks).

The main disadvantage of this deploy interface is the synchronous manner of performing deploy-
ment/cleaning tasks. A separate ansible-playbook process is spawned for each node being provi-
sioned or cleaned, which consumes one thread from the thread pool available to the ironic-conductor
process and blocks this thread until the node provisioning or cleaning step is finished or fails. This has
to be taken into account when planning an ironic deployment that enables this deploy interface.

Each action (deploy, clean) is described by a single playbook with roles, which is run whole during
deployment, or tag-wise during cleaning. Control of cleaning steps is through tags and auxiliary clean
steps file. The playbooks for actions can be set per-node, as can the clean steps file.

Features

Similar to deploy interfaces relying on Ironic Python Agent (IPA), this deploy interface also depends on
the deploy ramdisk calling back to ironic APIs heartbeat endpoint.

However, the driver is currently synchronous, so only the first heartbeat is processed and is used as a
signal to start ansible-playbook process.

User images

Supports whole-disk images and partition images:

• compressed images are downloaded to RAM and converted to disk device;

• raw images are streamed to disk directly.

For partition images the driver will create root partition, and, if requested, ephemeral and swap partitions
as set in nodes instance_info by the Compute service or operator. The create partition table will be
of msdos type by default, the nodes disk_label capability is honored if set in nodes instance_info
(see also Choosing the disk label).

Configdrive partition

Creating a configdrive partition is supported for both whole disk and partition images, on both msdos
and GPT labeled disks.

Root device hints

Root device hints are currently supported in their basic form only, with exact matches (see Specifying the
disk for deployment (root device hints) for more details). If no root device hint is provided for the node,
the first device returned as part of ansible_devices fact is used as root device to create partitions on
or write the whole disk image to.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 153

https://docs.openstack.org/ironic-python-agent/2024.2/

Ironic Documentation, Release 26.1.2.dev21

Node cleaning

Cleaning is supported, both automated and manual. The driver has two default clean steps:

• wiping device metadata

• disk shredding

Their priority can be overridden via [deploy]\erase_devices_metadata_priority and
[deploy]\erase_devices_priority options, respectively, in the ironic configuration file.

As in the case of this driver all cleaning steps are known to the ironic-conductor service, booting the
deploy ramdisk is completely skipped when there are no cleaning steps to perform.

Note

Aborting cleaning steps is not supported.

Logging

Logging is implemented as custom Ansible callback module, that makes use of oslo.log and oslo.
config libraries and can reuse logging configuration defined in the main ironic configuration file to set
logging for Ansible events, or use a separate file for this purpose.

It works best when journald support for logging is enabled.

Requirements

Ansible
Tested with, and targets, Ansible 2.5.x

Bootstrap image requirements

• password-less sudo permissions for the user used by Ansible

• python 2.7.x

• openssh-server

• GNU coreutils

• utils-linux

• parted

• gdisk

• qemu-utils

• python-requests (for ironic callback and streaming image download)

• python-netifaces (for ironic callback)

154 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

A set of scripts to build a suitable deploy ramdisk based on TinyCore Linux and tinyipa ramdisk, and
an element for diskimage-builder can be found in ironic-staging-drivers project but will be eventually
migrated to the new ironic-python-agent-builder project.

Setting up your environment

1. Install ironic (either as part of OpenStack or standalone)

• If using ironic as part of OpenStack, ensure that the Image service is configured to use the
Object Storage service as backend, and the Bare Metal service is configured accordingly, see
Configure the Image service for temporary URLs.

2. Install Ansible version as specified in ironic/driver-requirements.txt file

3. Edit ironic configuration file

A. Add ansible to the list of deploy interfaces defined in [DEFAULT]\
enabled_deploy_interfaces option.

B. Ensure that a hardware type supporting ansible deploy interface is enabled in [DEFAULT]\
enabled_hardware_types option.

C. Modify options in the [ansible] section of ironics configuration file if needed (see Config-
uration file).

4. (Re)start ironic-conductor service

5. Build suitable deploy kernel and ramdisk images

6. Upload them to Glance or put in your HTTP storage

7. Create new or update existing nodes to use the enabled driver of your choice and populate Driver
properties for the Node when different from defaults.

8. Deploy the node as usual.

Ansible-deploy options

Configuration file

Driver options are configured in [ansible] section of ironic configuration file, for their descriptions
and default values please see configuration file sample.

Driver properties for the Node

Set them per-node via baremetal node set command, for example:

baremetal node set <node> \
--deploy-interface ansible \
--driver-info ansible_username=stack \
--driver-info ansible_key_file=/etc/ironic/id_rsa

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 155

https://opendev.org/x/ironic-staging-drivers/src/branch/stable/pike/imagebuild
https://opendev.org/openstack/ironic-python-agent-builder
../../configuration/config.html#ansible

Ironic Documentation, Release 26.1.2.dev21

ansible_username
User name to use for Ansible to access the node. Default is taken from [ansible]/
default_username option of the ironic configuration file (defaults to ansible).

ansible_key_file
Private SSH key used to access the node. Default is taken from [ansible]/default_key_file
option of the ironic configuration file. If neither is set, the default private SSH keys of the user
running the ironic-conductor process will be used.

ansible_deploy_playbook
Playbook to use when deploying this node. Default is taken from [ansible]/
default_deploy_playbook option of the ironic configuration file (defaults to deploy.yaml).

ansible_shutdown_playbook
Playbook to use to gracefully shutdown the node in-band. Default is taken from [ansible]/
default_shutdown_playbook option of the ironic configuration file (defaults to shutdown.
yaml).

ansible_clean_playbook
Playbook to use when cleaning the node. Default is taken from [ansible]/
default_clean_playbook option of the ironic configuration file (defaults to clean.yaml).

ansible_clean_steps_config
Auxiliary YAML file that holds description of cleaning steps used by this node, and defines play-
book tags in ansible_clean_playbook file corresponding to each cleaning step. Default is
taken from [ansible]/default_clean_steps_config option of the ironic configuration file
(defaults to clean_steps.yaml).

ansible_python_interpreter
Absolute path to the python interpreter on the managed machine. Default is taken from
[ansible]/default_python_interpreter option of the ironic configuration file. Ansible
uses /usr/bin/python by default.

Customizing the deployment logic

Expected playbooks directory layout

The [ansible]\playbooks_path option in the ironic configuration file is expected to have a standard
layout for an Ansible project with some additions:

<playbooks_path>
|
_ inventory
_ add-ironic-nodes.yaml
_ roles
_ role1
_ role2
_ ...
|
_callback_plugins
_ ...
|

(continues on next page)

156 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

_ library
_ ...

The extra files relied by this driver are:

inventory
Ansible inventory file containing a single entry of conductor ansible_connection=local.
This basically defines an alias to localhost. Its purpose is to make logging for tasks performed
by Ansible locally and referencing the localhost in playbooks more intuitive. This also suppresses
warnings produced by Ansible about hosts file being empty.

add-ironic-nodes.yaml
This file contains an Ansible play that populates in-memory Ansible inventory with access infor-
mation received from the ansible-deploy interface, as well as some per-node variables. Include it
in all your custom playbooks as the first play.

The default deploy.yaml playbook is using several smaller roles that correspond to particular stages of
deployment process:

• discover - e.g. set root device and image target

• prepare - if needed, prepare system, for example create partitions

• deploy - download/convert/write user image and configdrive

• configure - post-deployment steps, e.g. installing the bootloader

Some more included roles are:

• shutdown - used to gracefully power the node off in-band

• clean - defines cleaning procedure, with each clean step defined as separate playbook tag.

Extending playbooks

Most probably youd start experimenting like this:

1. Create a copy of deploy.yaml playbook in the same folder, name it distinctively.

2. Create Ansible roles with your customized logic in roles folder.

A. In your custom deploy playbook, replace the prepare role with your own one that defines
steps to be run before image download/writing. This is a good place to set facts overriding
those provided/omitted by the driver, like ironic_partitions or ironic_root_device,
and create custom partitions or (software) RAIDs.

B. In your custom deploy playbook, replace the configure role with your own one that defines
steps to be run after image is written to disk. This is a good place for example to configure
the bootloader and add kernel options to avoid additional reboots.

C. Use those new roles in your new playbook.

3. Assign the custom deploy playbook youve created to the nodes driver_info/
ansible_deploy_playbook field.

4. Run deployment.

A. No ironic-conductor restart is necessary.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 157

Ironic Documentation, Release 26.1.2.dev21

B. A new deploy ramdisk must be built and assigned to nodes only when you want to use a
command/script/package not present in the current deploy ramdisk and you can not or do not
want to install those at runtime.

Variables you have access to

This driver will pass the single JSON-ified extra var argument to Ansible (as in ansible-playbook -e
..). Those values are then accessible in your plays as well (some of them are optional and might not be
defined):

ironic:
nodes:
- ip: "<IPADDRESS>"
name: "<NODE_UUID>"
user: "<USER ANSIBLE WILL USE>"
extra: "<COPY OF NODE's EXTRA FIELD>"

image:
url: "<URL TO FETCH THE USER IMAGE FROM>"
disk_format: "<qcow2|raw|...>"
container_format: "<bare|...>"
checksum: "<hash-algo:hashstring>"
mem_req: "<REQUIRED FREE MEMORY TO DOWNLOAD IMAGE TO RAM>"
tags: "<LIST OF IMAGE TAGS AS DEFINED IN GLANCE>"
properties: "<DICT OF IMAGE PROPERTIES AS DEFINED IN GLANCE>"

configdrive:
type: "<url|file>"
location: "<URL OR PATH ON CONDUCTOR>"

partition_info:
label: "<msdos|gpt>"
preserve_ephemeral: "<bool>"
ephemeral_format: "<FILESYSTEM TO CREATE ON EPHEMERAL PARTITION>"
partitions: "<LIST OF PARTITIONS IN FORMAT EXPECTED BY PARTED MODULE>"

raid_config: "<COPY OF NODE's TARGET_RAID_CONFIG FIELD>"

ironic.nodes
List of dictionaries (currently of only one element) that will be used by add-ironic-nodes.
yaml play to populate in-memory inventory. It also contains a copy of nodes extra field so you
can access it in the playbooks. The Ansibles host is set to nodes UUID.

ironic.image
All fields of nodes instance_info that start with image_ are passed inside this variable. Some
extra notes and fields:

• mem_req is calculated from image size (if available) and config option ansible.
extra_memory.

• if checksum is not in the form <hash-algo>:<hash-sum>, hashing algorithm is assumed
to be md5 (default in Glance).

• validate_certs - boolean (yes/no) flag that turns validating image store SSL certificate
on or off (default is yes). Governed by ansible.image_store_insecure option in ironic
configuration file.

158 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• cafile - custom CA bundle to use for validating image store SSL certificate. Takes value
of ansible.image_store_cafile if that is defined. Currently is not used by default play-
books, as Ansible has no way to specify the custom CA bundle to use for single HTTPS
actions, however you can use this value in your custom playbooks to for example upload and
register this CA in the ramdisk at deploy time.

• client_cert - cert file for client-side SSL authentication. Takes value of ansible.
image_store_certfile option if defined. Currently is not used by default playbooks,
however you can use this value in your custom playbooks.

• client_key - private key file for client-side SSL authentication. Takes value of ansible.
image_store_keyfile option if defined. Currently is not used by default playbooks, how-
ever you can use this value in your custom playbooks.

ironic.partition_info.partitions
Optional. List of dictionaries defining partitions to create on the node in the form:

partitions:
- name: "<NAME OF PARTITION>"
unit: "<UNITS FOR SIZE>"
size: "<SIZE OF THE PARTITION>"
type: "<primary|extended|logical>"
align: "<ONE OF PARTED_SUPPORTED OPTIONS>"
format: "<PARTITION TYPE TO SET>"
flags:
flag_name: "<bool>"

The driver will populate this list from root_gb, swap_mb and ephemeral_gb fields of
instance_info. The driver will also prepend the bios_grub-labeled partition when de-
ploying on GPT-labeled disk, and pre-create a 64 MiB partition for configdrive if it is set in
instance_info.

Please read the documentation included in the ironic_parted modules source for more info on
the module and its arguments.

ironic.partition_info.ephemeral_format
Optional. Taken from instance_info, it defines file system to be created on the ephemeral parti-
tion. Defaults to the value of [pxe]\default_ephemeral_format option in ironic configuration
file.

ironic.partition_info.preserve_ephemeral
Optional. Taken from the instance_info, it specifies if the ephemeral partition must be pre-
served or rebuilt. Defaults to no.

ironic.raid_config
Taken from the target_raid_config if not empty, it specifies the RAID configuration to apply.

As usual for Ansible playbooks, you also have access to standard Ansible facts discovered by setup
module.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 159

Ironic Documentation, Release 26.1.2.dev21

Included custom Ansible modules

The provided playbooks_path/library folder includes several custom Ansible modules used by de-
fault implementation of deploy and prepare roles. You can use these modules in your playbooks as
well.

stream_url
Streaming download from HTTP(S) source to the disk device directly, tries to be compatible with
Ansibles get_url module in terms of module arguments. Due to the low level of such operation
it is not idempotent.

ironic_parted
creates partition tables and partitions with parted utility. Due to the low level of such operation
it is not idempotent. Please read the documentation included in the modules source for more
information about this module and its arguments. The name is chosen so that the parted module
included in Ansible is not shadowed.

Anaconda deploy

The anaconda deploy interface is another option for highly customized deployments. See Deploying
with anaconda deploy interface for more details.

Ramdisk deploy

The ramdisk interface is intended to provide a mechanism to deploy an instance where the item to be
deployed is in reality a ramdisk. It is documented separately, see Booting a Ramdisk or an ISO.

Custom agent deploy

The custom-agent deploy interface is designed for operators who want to completely orchestrate writ-
ing the instance image using in-band deploy steps from a custom agent image. If you use this deploy
interface, you are responsible to provide all necessary deploy steps with priorities between 61 and 99
(see Agent steps for information on priorities).

4.1.2 Hardware Types

iDRAC driver

Overview

The integrated Dell Remote Access Controller (iDRAC) is an out-of-band management platform on Dell
EMC servers, and is supported directly by the idrac hardware type. This driver utilizes the Distributed
Management Task Force (DMTF) Redfish protocol to perform all of its functions. In older versions of
Ironic, this driver leveraged Web Services for Management (WSMAN) protocol.

iDRAC hardware is also supported by the generic ipmi and redfish hardware types, though with
smaller feature sets.

Key features of the Dell iDRAC driver include:

160 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/2024.2/admin/hardware_managers.html
https://www.dell.com/idracmanuals
https://www.dell.com/idracmanuals

Ironic Documentation, Release 26.1.2.dev21

• Out-of-band node inspection

• Boot device management and firmware management

• Power management

• RAID controller management and RAID volume configuration

• BIOS settings configuration

Ironic Features

The idrac hardware type extends the redfish hardware type and supports the following Ironic inter-
faces:

• BIOS Interface: BIOS management

• Inspect Interface: Hardware inspection

• Management Interface: Boot device and firmware management

• Power Interface: Power management

• RAID Interface: RAID controller and disk management

• Vendor Interface: eject virtual media (Redfish)

Prerequisites

The idrac hardware type requires the sushy library and the vendor extensions to be installed on the
ironic conductor node(s) if an Ironic node is configured to use an idrac-redfish interface implemen-
tation, for example:

sudo pip install 'sushy>=2.0.0' 'sushy-oem-idrac>=2.0.0'

Enabling

The iDRAC driver supports Redfish for the bios, inspect, management, power, and raid interfaces.

The idrac-redfish implementation must be enabled to use Redfish for an interface.

To enable the idrac hardware type, add the following to your /etc/ironic/ironic.conf:

[DEFAULT]
enabled_hardware_types=idrac
enabled_management_interfaces=idrac-redfish
enabled_power_interfaces=redfish

To enable all optional features (BIOS, inspection, RAID, and vendor passthru), use the following config-
uration:

[DEFAULT]
enabled_hardware_types=idrac
enabled_bios_interfaces=redfish

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 161

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

enabled_firmware_interfaces=redfish
enabled_inspect_interfaces=idrac-redfish
enabled_management_interfaces=idrac-redfish
enabled_power_interfaces=idrac-redfish
enabled_raid_interfaces=idrac-redfish
enabled_vendor_interfaces=idrac-redfish

Below is the list of supported interface implementations in priority order:

Interface Supported Implementations
bios idrac-redfish, no-bios
boot ipxe, pxe, http-ipxe, http, redfish-https, idrac-redfish-virtual-media
console no-console
deploy direct, ansible, ramdisk
firmware redfish, no-firmware
inspect idrac-redfish, inspector, no-inspect
management idrac-redfish
network flat, neutron, noop
power redfish, idrac-redfish
raid idrac-redfish, no-raid
rescue no-rescue, agent
storage noop, cinder, external
vendor redfish, idrac-redfish, no-vendor

Protocol-specific Properties

The Redfish protocols require different properties to be specified in the Ironic nodes driver_info field
to communicate with the bare metal systems iDRAC.

The Redfish protocol requires the following properties:

• redfish_username: The Redfish user name to use when communicating with the iDRAC. Usu-
ally root.

• redfish_password: The password for the Redfish user to use when communicating with the
iDRAC.

• redfish_address: The URL address of the iDRAC. It must include the authority portion of the
URL, and can optionally include the scheme. If the scheme is missing, https is assumed.

• redfish_system_id: The Redfish ID of the server to be managed. This should always be: /
redfish/v1/Systems/System.Embedded.1.

For other Redfish protocol parameters see Redfish driver.

162 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Enrolling

The following command enrolls a bare metal node with the idrac hardware type using Redfish for all
interfaces:

baremetal node create --driver idrac \
--driver-info redfish_username=user \
--driver-info redfish_password=pa$$w0rd \
--driver-info redfish_address=drac.host \
--driver-info redfish_system_id=/redfish/v1/Systems/System.Embedded.1 \
--bios-interface redfish \
--inspect-interface idrac-redfish \
--management-interface idrac-redfish \
--power-interface redfish \
--raid-interface idrac-redfish \
--vendor-interface redfish

BIOS Interface

The BIOS interface implementations supported by the idrac hardware type allows BIOS to be config-
ured with the standard clean/deploy step approach.

Example

A clean step to enable Virtualization and SRIOV in BIOS of an iDRAC BMC would be as follows:

{
"target":"clean",
"clean_steps": [
{

"interface": "bios",
"step": "apply_configuration",
"args": {
"settings": [
{
"name": "ProcVirtualization",
"value": "Enabled"

},
{
"name": "SriovGlobalEnable",
"value": "Enabled"

}
]

}
}

]
}

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 163

Ironic Documentation, Release 26.1.2.dev21

See the Known Issues for a known issue with factory_reset clean step. For additional details of BIOS
configuration, see BIOS Configuration.

Inspect Interface

The Dell iDRAC out-of-band inspection process catalogs all the same attributes of the server as the IPMI
driver. Unlike IPMI, it does this without requiring the system to be rebooted, or even to be powered on.
Inspection is performed using the Redfish protocol directly without affecting the operation of the system
being inspected.

The inspection discovers the following properties:

• cpu_arch: cpu architecture

• local_gb: disk size in gigabytes

• memory_mb: memory size in megabytes

Extra capabilities:

• boot_mode: UEFI or BIOS boot mode.

• pci_gpu_devices: number of GPU devices connected to the bare metal.

It also creates baremetal ports for each NIC port detected in the system. The idrac-redfish inspect
interface does not currently set pxe_enabled on the ports. The user should ensure that pxe_enabled
is set correctly on the ports following inspection with the idrac-redfish inspect interface.

Management Interface

The management interface for idrac-redfish supports:

• updating firmware on nodes using a manual cleaning step. See Redfish driver for more information
on firmware update support.

• updating system and getting its inventory using configuration molds. For more information see
Import and export configuration.

Import and export configuration

Warning

This feature has been deprecated and is anticipated to be removed once Ironic has a generalized in-
terface for doing step template articulation for aspects beyond just deployment of baremetal nodes.

The clean and deploy steps provided in this section allow to configure the system and collect the system
inventory using configuration mold files.

The introduction of this feature in the Wallaby release is experimental.

These steps are:

• export_configuration with the export_configuration_location input parameter to ex-
port the configuration from the existing system.

164 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• import_configuration with the import_configuration_location input parameter to im-
port the existing configuration mold into the system.

• import_export_configuration with the export_configuration_location and
import_configuration_location input parameters. This step combines the previous
two steps into one step that first imports existing configuration mold into system, then exports the
resulting configuration.

The input parameters provided include the URL where the configuration mold is to be stored after the
export, or the reference location for an import. For more information on setting up storage and available
options see Storage setup.

Configuration molds are JSON files that contain three top-level sections: bios, raid and oem. The
following is an example of a configuration mold:

{
"bios": {
"reset": false,
"settings": [

{
"name": "ProcVirtualization",
"value": "Enabled"

},
{
"name": "MemTest",
"value": "Disabled"

}
]

}
"raid": {
"create_nonroot_volumes": true,
"create_root_volume": true,
"delete_existing": false,
"target_raid_config": {

"logical_disks": [
{
"size_gb": 50,
"raid_level": "1+0",
"controller": "RAID.Integrated.1-1",
"volume_name": "root_volume",
"is_root_volume": true,
"physical_disks": [
"Disk.Bay.0:Encl.Int.0-1:RAID.Integrated.1-1",
"Disk.Bay.1:Encl.Int.0-1:RAID.Integrated.1-1"

]
},
{
"size_gb": 100,
"raid_level": "5",
"controller": "RAID.Integrated.1-1",
"volume_name": "data_volume",
"physical_disks": [

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 165

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"Disk.Bay.2:Encl.Int.0-1:RAID.Integrated.1-1",
"Disk.Bay.3:Encl.Int.0-1:RAID.Integrated.1-1",
"Disk.Bay.4:Encl.Int.0-1:RAID.Integrated.1-1"

]
}

]
}

}
"oem": {
"interface": "idrac-redfish",
"data": {

"SystemConfiguration": {
"Model": "PowerEdge R640",
"ServiceTag": "8CY9Z99",
"TimeStamp": "Fri Jun 26 08:43:15 2020",
"Components": [
{
[...]
"FQDD": "NIC.Slot.1-1-1",
"Attributes": [

{
"Name": "BlnkLeds",
"Value": "15",
"Set On Import": "True",
"Comment": "Read and Write"
},
{
"Name": "VirtMacAddr",
"Value": "00:00:00:00:00:00",
"Set On Import": "False",
"Comment": "Read and Write"
},
{
"Name": "VirtualizationMode",
"Value": "NONE",
"Set On Import": "True",
"Comment": "Read and Write"
},

[...]
]

}
]

}
}

}

Currently, the OEM section is the only section that is supported. The OEM section uses the iDRAC
Server Configuration Profile (SCP) and can be edited as necessary if it complies with the SCP. For more
information about SCP and its capabilities, see SCP_Reference_Guide.

166 Chapter 4. Administrator Guide

http://downloads.dell.com/manuals/common/dellemc-server-config-profile-refguide.pdf

Ironic Documentation, Release 26.1.2.dev21

Note

iDRAC BMC connection settings are not exported to avoid overwriting these in another system when
using unmodified exported configuration mold in import step. If need to replicate iDRAC BMC
connection settings, then add these settings manually to configuration mold for import step.

To replicate the system configuration to that of a similar system, perform the following steps:

1. Configure a golden, or one to many, system.

2. Use the export_configuration step to export the configuration to the wanted location.

3. Adjust the exported configuration mold for other systems to replicate. For example, remove sec-
tions that do not need to be replicated such as iDRAC connection settings. The configuration mold
can be accessed directly from the storage location.

4. Import the selected configuration mold into the other systems using the import_configuration
step.

It is not mandatory to use export_configuration step to create a configuration mold. Upload the file
to a designated storage location without using Ironic if it has been created manually or by other means.

Storage setup

To start using these steps, configure the storage location. The settings can be found in the [molds] sec-
tion. Configure the storage type from the molds.storage setting. Currently, swift, which is enabled
by default, and http are supported.

In the setup input parameters, the complete HTTP URL is used. This requires that the containers (for
swift) and the directories (for http) are created beforehand, and that read/write access is configured
accordingly.

Note

Use of TLS is strongly advised.

This setup configuration allows a user to access these locations outside of Ironic to list, create, update,
and delete the configuration molds.

For more information see Swift configuration and HTTP configuration.

Swift configuration

To use Swift with configuration molds,

1. Create the containers to be used for configuration mold storage.

2. For Ironic Swift user that is configured in the [swift] section add read/write access to these
containers.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 167

Ironic Documentation, Release 26.1.2.dev21

HTTP configuration

To use HTTP server with configuration molds,

1. Enable HTTP PUT support.

2. Create the directory to be used for the configuration mold storage.

3. Configure read/write access for HTTP Basic access authentication and provide user credentials in
molds.user and molds.password fields.

The HTTP web server does not support multitenancy and is intended to be used in a stand-alone Ironic,
or single-tenant OpenStack environment.

RAID Interface

See RAID Configuration for more information on Ironic RAID support.

RAID interface of redfish hardware type can be used on iDRAC systems. Compared to redfish
RAID interface, using idrac-redfish adds:

• Waiting for real-time operations to be available on RAID controllers. When using redfish this is
not guaranteed and reboots might be intermittently required to complete,

• Converting non-RAID disks to RAID mode if there are any,

• Clearing foreign configuration, if any, after deleting virtual disks.

The following properties are supported by the Redfish RAID interface implementation:

Note

When using idrac-redfish for RAID interface iDRAC firmware greater than 4.40.00.00 is re-
quired.

Mandatory properties

• size_gb: Size in gigabytes (integer) for the logical disk. Use MAX as size_gb if this logical disk
is supposed to use the rest of the space available.

• raid_level: RAID level for the logical disk. Valid values are 0, 1, 5, 6, 1+0, 5+0 and 6+0.

Note

JBOD and 2 are not supported, and will fail with reason: Cannot calculate spans for RAID level.

168 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Optional properties

• is_root_volume: Optional. Specifies whether this disk is a root volume. By default, this is
False.

• volume_name: Optional. Name of the volume to be created. If this is not specified, it will be
auto-generated.

Backing physical disk hints

See RAID Configuration for more information on backing disk hints.

These are machine-independent information. The hints are specified for each logical disk to help Ironic
find the desired disks for RAID configuration.

• disk_type

• interface_type

• share_physical_disks

• number_of_physical_disks

Backing physical disks

These are Dell RAID controller-specific values and must match the names provided by the iDRAC.

• controller: Mandatory. The name of the controller to use.

• physical_disks: Optional. The names of the physical disks to use.

Note

physical_disks is a mandatory parameter if the property size_gb is set to MAX.

Examples

Creation of RAID 1+0 logical disk with six disks on one controller:

{ "logical_disks":
[{ "controller": "RAID.Integrated.1-1",

"is_root_volume": "True",
"physical_disks": [
"Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.3:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.4:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.5:Enclosure.Internal.0-1:RAID.Integrated.1-1"],

"raid_level": "1+0",
"size_gb": "MAX"}]}

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 169

Ironic Documentation, Release 26.1.2.dev21

Manual RAID Invocation

The following command can be used to delete any existing RAID configuration. It deletes all virtual
disks/RAID volumes, unassigns all global and dedicated hot spare physical disks, and clears foreign
configuration:

baremetal node clean --clean-steps \
'[{"interface": "raid", "step": "delete_configuration"}]' ${node_uuid}

The following command shows an example of how to set the target RAID configuration:

baremetal node set --target-raid-config '{ "logical_disks":
[{ "controller": "RAID.Integrated.1-1",

"is_root_volume": true,
"physical_disks": [
"Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1"],

"raid_level": "0",
"size_gb": "MAX"}]}' ${node_uuid}

The following command can be used to create a RAID configuration:

baremetal node clean --clean-steps \
'[{"interface": "raid", "step": "create_configuration"}]' <node>

When the physical disk names or controller names are not known, the following Python code example
shows how the python-dracclient can be used to fetch the information directly from the Dell bare
metal:

import dracclient.client

client = dracclient.client.DRACClient(
host="192.168.1.1",
username="root",
password="calvin")

controllers = client.list_raid_controllers()
print(controllers)

physical_disks = client.list_physical_disks()
print(physical_disks)

Or using sushy with Redfish:

import sushy

client = sushy.Sushy('https://192.168.1.1', username='root', password='calvin
↪→', verify=False)
for s in client.get_system_collection().get_members():

print("System: %(id)s" % {'id': s.identity})
(continues on next page)

170 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

for c in system1.storage.get_members():
print("\tController: %(id)s" % {'id': c.identity})
for d in c.drives:
print("\t\tDrive: %(id)s" % {'id': d.identity})

Vendor Interface

idrac-redfish

Through the idrac-redfish vendor passthru interface these methods are available:

Method
Name

HTTP
Method

Description

eject_mediaPOST Eject a virtual media device. If no device is provided then all attached devices will
be ejected. Optional argument: boot_device - the boot device to eject, either, cd,
dvd, usb or floppy.

Known Issues

Nodes go into maintenance mode

After some period of time, nodes managed by the idrac hardware type may go into maintenance mode
in Ironic. This issue can be worked around by changing the Ironic power state poll interval to 70 seconds.
See conductor.sync_power_state_interval in /etc/ironic/ironic.conf.

PXE reset with factory_reset BIOS clean step

When using the UEFI boot mode with non-default PXE interface, the factory reset can cause the PXE
interface to be reset to default, which doesnt allow the server to PXE boot for any further operations.
This can cause a clean_failed state on the node or deploy_failed if you attempt to deploy a node
after this step. For now, the only solution is for the operator to manually restore the PXE settings of the
server for it to PXE boot again, properly. The problem is caused by the fact that with the UEFI boot
mode, the idrac uses BIOS settings to manage PXE configuration. This is not the case with the BIOS
boot mode where the PXE configuration is handled as a configuration job on the integrated NIC itself,
independently of the BIOS settings.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 171

Ironic Documentation, Release 26.1.2.dev21

Timeout when powering off

Some servers might be slow when soft powering off and time out. The default
retry count is 6, resulting in 30 seconds timeout (the default retry interval set by
post_deploy_get_power_state_retry_interval is 5 seconds). To resolve this issue, increase the
timeout to 90 seconds by setting the retry count to 18 as follows:

[agent]
post_deploy_get_power_state_retries = 18

Unable to mount remote share with iDRAC firmware before 4.40.40.00

When using iDRAC firmware 4.40.00.00 and consecutive versions before 4.40.40.00 with virtual media
boot and new Virtual Console plug-in type eHTML5, there is an error: Unable to mount remote share.
This is a known issue that is fixed in 4.40.40.00 iDRAC firmware release. If cannot upgrade, then adjust
settings in iDRAC to use plug-in type HTML5. In iDRAC web UI go to Configuration -> Virtual Console
and select Plug-in Type to HTML5.

During upgrade to 4.40.00.00 or newer iDRAC firmware eHTML5 is automatically selected if default
plug-in type has been used and never changed. Systems that have plug-in type changed will keep selected
plug-in type after iDRAC firmware upgrade.

Firmware update from Swift fails before 6.00.00.00

With iDRAC firmware prior to 6.00.00.00 and when using Swift to stage firmware update files in Man-
agement interface firmware_update clean step of redfish or idrac hardware type, the cleaning fails
with error An internal error occurred. Unable to complete the specified operation. in iDRAC job. This
is fixed in iDRAC firmware 6.00.00.00. If cannot upgrade, then use HTTP service to stage firmware files
for iDRAC.

iLO driver

Overview

iLO driver enables to take advantage of features of iLO management engine in HPE ProLiant servers. The
ilo hardware type is targeted for HPE ProLiant Gen8 and Gen9 systems which have iLO 4 management
engine. From Pike release ilo hardware type supports ProLiant Gen10 systems which have iLO 5
management engine. iLO5 conforms to Redfish API and hence hardware type redfish (see Redfish
driver) is also an option for this kind of hardware but it lacks the iLO specific features.

For more details and for up-to-date information (like tested platforms, known issues, etc), please check
the iLO driver wiki page.

For enabling Gen10 systems and getting detailed information on Gen10 feature support in Ironic please
check this Gen10 wiki section.

Warning

172 Chapter 4. Administrator Guide

https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html
https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html
https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html#innovations
https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html#innovations
https://www.dmtf.org/standards/redfish
https://wiki.openstack.org/wiki/Ironic/Drivers/iLODrivers
https://wiki.openstack.org/wiki/Ironic/Drivers/iLODrivers/master#Enabling_ProLiant_Gen10_systems_in_Ironic

Ironic Documentation, Release 26.1.2.dev21

Starting from Gen11 servers and above (iLO6 and above) use redfish (see Redfish driver) hard-
ware type for baremetal provisioning and management. You can use the redfish hardware type for
iLO5 hardware, however RAID configuration is not available via Redfish until the iLO6 baseboard
management controllers.

The Ironic community does not anticipate new features to be added to the ilo and ilo5 hardware
types as redfish is superseding most vendor specific hardware types. These drivers are anticipated
to be available in Ironic as long as the proliantutils library is maintained.

Hardware type

ProLiant hardware is primarily supported by the ilo hardware type. ilo5 hardware type is only sup-
ported on ProLiant Gen10 and later systems. Both hardware can be used with reference hardware type
ipmi (see IPMI driver) and redfish (see Redfish driver). For information on how to enable the ilo
and ilo5 hardware type, see Enabling hardware types.

Warning

It is important to note that while the HPE Edgeline series of servers may contain iLO adapters, they
are known to not be compatible with the ilo hardware type. The redfish hardware type should be
used instead.

The hardware type ilo supports following HPE server features:

• Boot mode support

• UEFI Secure Boot Support

• Node Cleaning Support

• Node Deployment Customization

• Hardware Inspection Support

• Swiftless deploy for intermediate images

• HTTP(S) Based Deploy Support

• Support for iLO driver with Standalone Ironic

• RAID Support

• Disk Erase Support

• Initiating firmware update as manual clean step

• Smart Update Manager (SUM) based firmware update

• Updating security parameters as manual clean step

• Update Minimum Password Length security parameter as manual clean step

• Update Authentication Failure Logging security parameter as manual clean step

• Create Certificate Signing Request(CSR) as manual clean step

• Add HTTPS Certificate as manual clean step

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 173

Ironic Documentation, Release 26.1.2.dev21

• Activating iLO Advanced license as manual clean step

• Removing CA certificates from iLO as manual clean step

• Firmware based UEFI iSCSI boot from volume support

• Certificate based validation in iLO

• Rescue mode support

• Inject NMI support

• Soft power operation support

• BIOS configuration support

• IPv6 support

• Layer 3 or DHCP-less ramdisk booting

• Events subscription

Apart from above features hardware type ilo5 also supports following features:

• Out of Band RAID Support

• Out of Band Sanitize Disk Erase Support

• Out of Band One Button Secure Erase Support

• UEFI-HTTPS Boot support

Hardware interfaces

The ilo hardware type supports following hardware interfaces:

• bios
Supports ilo and no-bios. The default is ilo. They can be enabled by using the DEFAULT.
enabled_bios_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_bios_interfaces = ilo,no-bios

• boot
Supports ilo-virtual-media, ilo-pxe and ilo-ipxe. The default is
ilo-virtual-media. The ilo-virtual-media interface provides security enhanced
PXE-less deployment by using iLO virtual media to boot up the bare metal node. The
ilo-pxe and ilo-ipxe interfaces use PXE and iPXE respectively for deployment(just like
PXE boot). These interfaces do not require iLO Advanced license. They can be enabled by
using the DEFAULT.enabled_boot_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_boot_interfaces = ilo-virtual-media,ilo-pxe,ilo-ipxe

• console
Supports ilo and no-console. The default is ilo. They can be enabled by using the
DEFAULT.enabled_console_interfaces option in ironic.conf as given below:

174 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
enabled_hardware_types = ilo
enabled_console_interfaces = ilo,no-console

Note

To use ilo console interface you need to enable iLO feature IPMI/DCMI over LAN Ac-
cess on iLO4 and iLO5 management engine.

• inspect
Supports ilo and inspector. The default is ilo. They can be enabled by using the
DEFAULT.enabled_inspect_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_inspect_interfaces = ilo,inspector

Note

Ironic Inspector needs to be configured to use inspector as the inspect interface.

• management
Supports only ilo. It can be enabled by using the DEFAULT.
enabled_management_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_management_interfaces = ilo

• power
Supports only ilo. It can be enabled by using the DEFAULT.enabled_power_interfaces
option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_power_interfaces = ilo

• raid
Supports agent and no-raid. The default is no-raid. They can be enabled by using the
DEFAULT.enabled_raid_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_raid_interfaces = agent,no-raid

• storage
Supports cinder and noop. The default is noop. They can be enabled by using the
DEFAULT.enabled_storage_interfaces option in ironic.conf as given below:

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 175

https://support.hpe.com/hpsc/doc/public/display?docId=c03334051
https://support.hpe.com/hpsc/doc/public/display?docId=a00018324en_us
https://docs.openstack.org/ironic-inspector/2024.2/

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
enabled_hardware_types = ilo
enabled_storage_interfaces = cinder,noop

Note

The storage interface cinder is supported only when corresponding boot interface of
the ilo hardware type based node is ilo-pxe or ilo-ipxe. Please refer to Boot From
Volume for configuring cinder as a storage interface.

• rescue
Supports agent and no-rescue. The default is no-rescue. They can be enabled by using
the DEFAULT.enabled_rescue_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_rescue_interfaces = agent,no-rescue

• vendor
Supports ilo, ilo-redfish and no-vendor. The default is ilo. They can be enabled
by using the DEFAULT.enabled_vendor_interfaces option in ironic.conf as given
below:

[DEFAULT]
enabled_hardware_types = ilo
enabled_vendor_interfaces = ilo,ilo-redfish,no-vendor

The ilo5 hardware type supports all the ilo interfaces described above, except for boot and raid
interfaces. The details of boot and raid interfaces is as under:

• raid
Supports ilo5 and no-raid. The default is ilo5. They can be enabled by using the
DEFAULT.enabled_raid_interfaces option in ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo5
enabled_raid_interfaces = ilo5,no-raid

• boot
Supports ilo-uefi-https apart from the other boot interfaces supported by ilo hardware
type. This can be enabled by using the DEFAULT.enabled_boot_interfaces option in
ironic.conf as given below:

[DEFAULT]
enabled_hardware_types = ilo5
enabled_boot_interfaces = ilo-uefi-https,ilo-virtual-media

The ilo and ilo5 hardware type support all standard deploy and network interface implementations,
see Enabling hardware interfaces for details.

The following command can be used to enroll a ProLiant node with ilo hardware type:

176 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal node create \
--driver ilo \
--deploy-interface direct \
--raid-interface agent \
--rescue-interface agent \
--driver-info ilo_address=<ilo-ip-address> \
--driver-info ilo_username=<ilo-username> \
--driver-info ilo_password=<ilo-password> \
--driver-info deploy_iso=<glance-uuid-of-deploy-iso> \
--driver-info rescue_iso=<glance-uuid-of-rescue-iso>

Note

The fields deploy_iso and rescue_iso used to be called ilo_deploy_iso and ilo_rescue_iso
before the Xena release.

The following command can be used to enroll a ProLiant node with ilo5 hardware type:

baremetal node create \
--driver ilo5 \
--deploy-interface direct \
--raid-interface ilo5 \
--rescue-interface agent \
--driver-info ilo_address=<ilo-ip-address> \
--driver-info ilo_username=<ilo-username> \
--driver-info ilo_password=<ilo-password> \
--driver-info deploy_iso=<glance-uuid-of-deploy-iso> \
--driver-info rescue_iso=<glance-uuid-of-rescue-iso>

Please refer to Enabling drivers and hardware types for detailed explanation of hardware type.

Node configuration

• Each node is configured for ilo and ilo5 hardware type by setting the following ironic node
objects properties in driver_info:

– ilo_address: IP address or hostname of the iLO.

– ilo_username: Username for the iLO with administrator privileges.

– ilo_password: Password for the above iLO user.

– client_port: (optional) Port to be used for iLO operations if you are using a custom port
on the iLO. Default port used is 443.

– client_timeout: (optional) Timeout for iLO operations. Default timeout is 60 seconds.

– ca_file: (optional) CA certificate file to validate iLO.

– console_port: (optional) Nodes UDP port for console access. Any unused port on the
ironic conductor node may be used. This is required only when ilo-console interface is
used.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 177

Ironic Documentation, Release 26.1.2.dev21

• The following properties are also required in node objects driver_info if ilo-virtual-media
boot interface is used:

– deploy_iso: The glance UUID of the deploy ramdisk ISO image.

– instance info/boot_iso property to be either boot iso Glance UUID or a HTTP(S) URL.
This is optional property and is used with Booting a Ramdisk or an ISO.

Note

The boot_iso property used to be called ilo_boot_iso before the Xena release.

– rescue_iso: The glance UUID of the rescue ISO image. This is optional property and is
used when rescue interface is set to agent.

• The following properties are also required in node objects driver_info if ilo-pxe or ilo-ipxe
boot interface is used:

– deploy_kernel: The glance UUID or a HTTP(S) URL of the deployment kernel.

– deploy_ramdisk: The glance UUID or a HTTP(S) URL of the deployment ramdisk.

– rescue_kernel: The glance UUID or a HTTP(S) URL of the rescue kernel. This is optional
property and is used when rescue interface is set to agent.

– rescue_ramdisk: The glance UUID or a HTTP(S) URL of the rescue ramdisk. This is
optional property and is used when rescue interface is set to agent.

• The following properties are also required in node objects driver_info if ilo-uefi-https boot
interface is used for ilo5 hardware type:

– deploy_kernel: The glance UUID or a HTTPS URL of the deployment kernel.

– deploy_ramdisk: The glance UUID or a HTTPS URL of the deployment ramdisk.

– bootloader: The glance UUID or a HTTPS URL of the bootloader.

– rescue_kernel: The glance UUID or a HTTPS URL of the rescue kernel. This is optional
property and is used when rescue interface is set to agent.

– rescue_ramdisk: The glance UUID or a HTTP(S) URL of the rescue ramdisk. This is
optional property and is used when rescue interface is set to agent.

Note

ilo-uefi-https boot interface is supported by only ilo5 hardware type. If the images are
not hosted in glance, the references must be HTTPS URLs hosted by secure webserver. This
boot interface can be used only when the current boot mode is UEFI.

Note

The fields deploy_kernel, deploy_ramdisk, rescue_kernel rescue_ramdisk and
bootloader used to have an ilo_ prefix before the Xena release.

178 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• The following parameters are mandatory in driver_info if ilo-inspect inspect interface is
used and SNMPv3 inspection (SNMPv3 Authentication in HPE iLO4 User Guide) is desired:

– snmp_auth_user : The SNMPv3 user.

– snmp_auth_prot_password : The auth protocol pass phrase.

– snmp_auth_priv_password : The privacy protocol pass phrase.

The following parameters are optional for SNMPv3 inspection:

– snmp_auth_protocol : The Auth Protocol. The valid values are MD5 and SHA. The iLO
default value is MD5.

– snmp_auth_priv_protocol : The Privacy protocol. The valid values are AES and DES.
The iLO default value is DES.

Note

If configuration values for ca_file, client_port and client_timeout are not provided in the
driver_info of the node, the corresponding config variables defined under [ilo] section in
ironic.conf will be used.

Prerequisites

• proliantutils is a python package which contains a set of modules for managing HPE ProLiant
hardware.

Install proliantutils module on the ironic conductor node. Minimum version required is 2.8.0:

$ pip install "proliantutils>=2.8.0"

• ipmitool command must be present on the service node(s) where ironic-conductor is run-
ning. On most distros, this is provided as part of the ipmitool package. Please refer to Hardware
Inspection Support for more information on recommended version.

Different configuration for ilo hardware type

Glance Configuration

1. Configure Glance image service with its storage backend as Swift.

2. Set a temp-url key for Glance user in Swift. For example, if you have configured Glance with user
glance-swift and tenant as service, then run the below command:

swift --os-username=service:glance-swift post -m temp-url-
↪→key:mysecretkeyforglance

3. Fill the required parameters in the [glance] section in /etc/ironic/ironic.conf. Normally
you would be required to fill in the following details:

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 179

https://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c03334051
https://pypi.org/project/proliantutils
https://docs.openstack.org/glance/2024.2/configuration/configuring.html#configuring-the-swift-storage-backend

Ironic Documentation, Release 26.1.2.dev21

[glance]
swift_temp_url_key=mysecretkeyforglance
swift_endpoint_url=https://10.10.1.10:8080
swift_api_version=v1
swift_account=AUTH_51ea2fb400c34c9eb005ca945c0dc9e1
swift_container=glance

The details can be retrieved by running the below command:

$ swift --os-username=service:glance-swift stat -v | grep -i url

StorageURL: http://10.10.1.10:8080/v1/AUTH_
↪→51ea2fb400c34c9eb005ca945c0dc9e1
Meta Temp-Url-Key: mysecretkeyforglance

4. Swift must be accessible with the same admin credentials configured in Ironic. For example, if
Ironic is configured with the below credentials in /etc/ironic/ironic.conf:

[keystone_authtoken]
admin_password = password
admin_user = ironic
admin_tenant_name = service

Ensure auth_version in keystone_authtoken to 2.

Then, the below command should work.:

$ swift --os-username ironic --os-password password --os-tenant-name␣
↪→service --auth-version 2 stat

Account: AUTH_22af34365a104e4689c46400297f00cb
Containers: 2

Objects: 18
Bytes: 1728346241

Objects in policy "policy-0": 18
Bytes in policy "policy-0": 1728346241

Meta Temp-Url-Key: mysecretkeyforglance
X-Timestamp: 1409763763.84427
X-Trans-Id: tx51de96a28f27401eb2833-005433924b

Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

5. Restart the Ironic conductor service:

$ service ironic-conductor restart

180 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Web server configuration on conductor

• The HTTP(S) web server can be configured in many ways. For apache web server on Ubuntu, refer
here

• Following config variables need to be set in /etc/ironic/ironic.conf:

– use_web_server_for_images in [ilo] section:

[ilo]
use_web_server_for_images = True

– http_url and http_root in [deploy] section:

[deploy]
Ironic compute node's http root path. (string value)
http_root=/httpboot

Ironic compute node's HTTP server URL. Example:
http://192.1.2.3:8080 (string value)
http_url=http://192.168.0.2:8080

use_web_server_for_images: If the variable is set to false, the ilo-virtual-media boot in-
terface uses swift containers to host the intermediate floppy image and the boot ISO. If the variable
is set to true, it uses the local web server for hosting the intermediate files. The default value for
use_web_server_for_images is False.

http_url: The value for this variable is prefixed with the generated intermediate files to generate a URL
which is attached in the virtual media.

http_root: It is the directory location to which ironic conductor copies the intermediate floppy image
and the boot ISO.

Note

HTTPS is strongly recommended over HTTP web server configuration for security enhancement. The
ilo-virtual-media boot interface will send the instances configdrive over an encrypted channel
if web server is HTTPS enabled. However for ilo-uefi-https boot interface HTTPS webserver is
mandatory as this interface only supports HTTPS URLs.

Enable driver

1. Build a deploy ISO (and kernel and ramdisk) image, see Building or downloading a deploy ramdisk
image

2. See Glance Configuration for configuring glance image service with its storage backend as swift.

3. Upload this image to Glance:

glance image-create --name deploy-ramdisk.iso --disk-format iso --
↪→container-format bare < deploy-ramdisk.iso

4. Enable hardware type and hardware interfaces in /etc/ironic/ironic.conf:

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 181

https://help.ubuntu.com/lts/serverguide/httpd.html

Ironic Documentation, Release 26.1.2.dev21

[DEFAULT]
enabled_hardware_types = ilo
enabled_bios_interfaces = ilo
enabled_boot_interfaces = ilo-virtual-media,ilo-pxe,ilo-ipxe
enabled_power_interfaces = ilo
enabled_console_interfaces = ilo
enabled_raid_interfaces = agent
enabled_management_interfaces = ilo
enabled_inspect_interfaces = ilo
enabled_rescue_interfaces = agent

5. Restart the ironic conductor service:

$ service ironic-conductor restart

Optional functionalities for the ilo hardware type

Boot mode support

The hardware type ilo supports automatic detection and setting of boot mode (Legacy BIOS or UEFI).

• When boot mode capability is not configured:

– If config variable default_boot_mode in [ilo] section of ironic configuration file is set
to either bios or uefi, then iLO driver uses that boot mode for provisioning the baremetal
ProLiant servers.

– If the pending boot mode is set on the node then iLO driver uses that boot mode for provi-
sioning the baremetal ProLiant servers.

– If the pending boot mode is not set on the node then iLO driver uses uefi boot mode for UEFI
capable servers and bios when UEFI is not supported.

• When boot mode capability is configured, the driver sets the pending boot mode to the configured
value.

• Only one boot mode (either uefi or bios) can be configured for the node.

• If the operator wants a node to boot always in uefi mode or bios mode, then they may use
capabilities parameter within properties field of an ironic node.

To configure a node in uefi mode, then set capabilities as below:

baremetal node set <node> --property capabilities='boot_mode:uefi'

Nodes having boot_mode set to uefi may be requested by adding an extra_spec to the nova
flavor:

openstack flavor set ironic-test-3 --property capabilities:boot_mode="uefi
↪→"
openstack server create --flavor ironic-test-3 --image test-image␣
↪→instance-1

182 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

If capabilities is used in extra_spec as above, nova scheduler
(ComputeCapabilitiesFilter) will match only ironic nodes which have the boot_mode
set appropriately in properties/capabilities. It will filter out rest of the nodes.

The above facility for matching in nova can be used in heterogeneous environments where there is
a mix of uefi and bios machines, and operator wants to provide a choice to the user regarding
boot modes. If the flavor doesnt contain boot_mode then nova scheduler will not consider boot
mode as a placement criteria, hence user may get either a BIOS or UEFI machine that matches
with user specified flavors.

The automatic boot ISO creation for UEFI boot mode has been enabled in Kilo. The manual creation of
boot ISO for UEFI boot mode is also supported. For the latter, the boot ISO for the deploy image needs to
be built separately and the deploy images boot_iso property in glance should contain the glance UUID
of the boot ISO. For building boot ISO, add iso element to the diskimage-builder command to build the
image. For example:

disk-image-create ubuntu baremetal iso

UEFI Secure Boot Support

The hardware type ilo supports secure boot deploy, see UEFI secure boot mode for details.

iLO specific notes:

In UEFI secure boot, digitally signed bootloader should be able to validate digital signatures of kernel
during boot process. This requires that the bootloader contains the digital signatures of the kernel. For the
ilo-virtual-media boot interface, it is recommended that boot_iso property for user image contains
the glance UUID of the boot ISO. If boot_iso property is not updated in glance for the user image, it
would create the boot_iso using bootloader from the deploy iso. This boot_iso will be able to boot
the user image in UEFI secure boot environment only if the bootloader is signed and can validate digital
signatures of user image kernel.

For HPE ProLiant Gen9 servers, one can enroll public key using iLO System Utilities UI. Please refer
to section Accessing Secure Boot options in HP UEFI System Utilities User Guide. One can also
refer to white paper on Secure Boot for Linux on HP ProLiant servers for additional details.

For more up-to-date information, refer iLO driver wiki page

Node Cleaning Support

The hardware type ilo and ilo5 supports node cleaning.

For more information on node cleaning, see Node cleaning

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 183

https://h20628.www2.hp.com/km-ext/kmcsdirect/emr_na-c03886429-5.pdf
https://h50146.www5.hpe.com/products/software/oe/linux/mainstream/support/whitepaper/pdfs/2018_rev2_4AA5-4496ENW.pdf
https://wiki.openstack.org/wiki/Ironic/Drivers/iLODrivers

Ironic Documentation, Release 26.1.2.dev21

Supported Automated Cleaning Operations

• The automated cleaning operations supported are:

– reset_bios_to_default: Resets system ROM settings to default. By default, enabled
with priority 10. This clean step is supported only on Gen9 and above servers.

– reset_secure_boot_keys_to_default: Resets secure boot keys to manufacturers de-
faults. This step is supported only on Gen9 and above servers. By default, enabled with
priority 20 .

– reset_ilo_credential: Resets the iLO password, if ilo_change_password is specified
as part of nodes driver_info. By default, enabled with priority 30.

– clear_secure_boot_keys: Clears all secure boot keys. This step is supported only on
Gen9 and above servers. By default, this step is disabled.

– reset_ilo: Resets the iLO. By default, this step is disabled.

– erase_devices: An inband clean step that performs disk erase on all the disks including
the disks visible to OS as well as the raw disks visible to Smart Storage Administrator (SSA).
This step supports erasing of the raw disks visible to SSA in Proliant servers only with the
ramdisk created using diskimage-builder from Ocata release. By default, this step is disabled.
See Disk Erase Support for more details.

• For supported in-band cleaning operations, see In-band vs out-of-band.

• All the automated cleaning steps have an explicit configuration option for priority. In order to
disable or change the priority of the automated clean steps, respective configuration option for
priority should be updated in ironic.conf.

• Updating clean step priority to 0, will disable that particular clean step and will not run during
automated cleaning.

• Configuration Options for the automated clean steps are listed under [ilo] and [deploy] section
in ironic.conf

[ilo]
clean_priority_reset_ilo=0
clean_priority_reset_bios_to_default=10
clean_priority_reset_secure_boot_keys_to_default=20
clean_priority_clear_secure_boot_keys=0
clean_priority_reset_ilo_credential=30

[deploy]
erase_devices_priority=0

For more information on node automated cleaning, see Automated cleaning

184 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Supported Manual Cleaning Operations

• The manual cleaning operations supported are:

activate_license:
Activates the iLO Advanced license. This is an out-of-band manual cleaning step associated
with the management interface. See Activating iLO Advanced license as manual clean step
for user guidance on usage. Please note that this operation cannot be performed using the
ilo-virtual-media boot interface as it needs this type of advanced license already active
to use virtual media to boot into to start cleaning operation. Virtual media is an advanced
feature. If an advanced license is already active and the user wants to overwrite the current
license key, for example in case of a multi-server activation key delivered with a flexible-
quantity kit or after completing an Activation Key Agreement (AKA), then the driver can
still be used for executing this cleaning step.

clear_ca_certificates:
Removes the CA certificates from iLO. See Removing CA certificates from iLO as manual
clean step for user guidance on usage.

apply_configuration:
Applies given BIOS settings on the node. See BIOS configuration support. This step is part
of the bios interface.

factory_reset:
Resets the BIOS settings on the node to factory defaults. See BIOS configuration support.
This step is part of the bios interface.

create_configuration:
Applies RAID configuration on the node. See RAID Configuration for more information.
This step is part of the raid interface.

delete_configuration:
Deletes RAID configuration on the node. See RAID Configuration for more information.
This step is part of the raid interface.

update_firmware:
Updates the firmware of the devices. Also an out-of-band step associated with the
management interface. See Initiating firmware update as manual clean step for user guid-
ance on usage. The supported devices for firmware update are: ilo, cpld, power_pic, bios
and chassis. Please refer to below table for their commonly used descriptions.

Device Description
ilo BMC for HPE ProLiant servers
cpld System programmable logic device
power_pic Power management controller
bios HPE ProLiant System ROM
chassis System chassis device

Some devices firmware cannot be updated via this method, such as: storage controllers, host
bus adapters, disk drive firmware, network interfaces and Onboard Administrator (OA).

update_firmware_sum:
Updates all or list of user specified firmware components on the node using Smart Update

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 185

Ironic Documentation, Release 26.1.2.dev21

Manager (SUM). It is an inband step associated with the management interface. See Smart
Update Manager (SUM) based firmware update for more information on usage.

security_parameters_update:
Updates the Security Parameters. See Updating security parameters as manual clean
step for user guidance on usage. The supported security parameters for this clean
step are: Password_Complexity, RequiredLoginForiLORBSU, IPMI/DCMI_Over_LAN,
RequireHostAuthentication and Secure_Boot.

update_minimum_password_length:
Updates the Minimum Password Length security parameter. See Update Minimum Password
Length security parameter as manual clean step for user guidance on usage.

update_auth_failure_logging_threshold:
Updates the Authentication Failure Logging security parameter. See Update Authentication
Failure Logging security parameter as manual clean step for user guidance on usage.

create_csr:
Creates the certificate signing request. See Create Certificate Signing Request(CSR) as man-
ual clean step for user guidance on usage.

add_https_certificate:
Adds the signed HTTPS certificate to the iLO. See Add HTTPS Certificate as manual clean
step for user guidance on usage.

• iLO with firmware version 1.5 is minimally required to support all the operations.

For more information on node manual cleaning, see Manual cleaning

Node Deployment Customization

The hardware type ilo and ilo5 supports customization of node deployment via deploy templates, see
Using deploy steps and templates.

The supported deploy steps are:

• apply_configuration:
Applies given BIOS settings on the node. See BIOS configuration support. This step is part
of the bios interface.

• factory_reset:
Resets the BIOS settings on the node to factory defaults. See BIOS configuration support.
This step is part of the bios interface.

• reset_bios_to_default:
Resets system ROM settings to default. This step is supported only on Gen9 and above
servers. This step is part of the management interface.

• reset_secure_boot_keys_to_default:
Resets secure boot keys to manufacturers defaults. This step is supported only on Gen9 and
above servers. This step is part of the management interface.

• reset_ilo_credential:
Resets the iLO password. The password need to be specified in ilo_password argument of
the step. This step is part of the management interface.

186 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• clear_secure_boot_keys:
Clears all secure boot keys. This step is supported only on Gen9 and above servers. This step
is part of the management interface.

• reset_ilo:
Resets the iLO. This step is part of the management interface.

• update_firmware:
Updates the firmware of the devices. This step is part of the management interface. See
Initiating firmware update as manual clean step for user guidance on usage. The supported
devices for firmware update are: ilo, cpld, power_pic, bios and chassis. This step is
part of management interface. Please refer to below table for their commonly used descrip-
tions.

Device Description
ilo BMC for HPE ProLiant servers
cpld System programmable logic device
power_pic Power management controller
bios HPE ProLiant System ROM
chassis System chassis device

Some devices firmware cannot be updated via this method, such as: storage controllers, host
bus adapters, disk drive firmware, network interfaces and Onboard Administrator (OA).

• flash_firmware_sum:
Updates all or list of user specified firmware components on the node using Smart Update
Manager (SUM). It is an inband step associated with the management interface. See Smart
Update Manager (SUM) based firmware update for more information on usage.

• apply_configuration:
Applies RAID configuration on the node. See RAID Configuration for more information.
This step is part of the raid interface.

Example of using deploy template with the Compute service

Create a deploy template with a single step:

baremetal deploy template create \
CUSTOM_HYPERTHREADING_ON \
--steps '[{"interface": "bios", "step": "apply_configuration", "args": {

↪→"settings": [{"name": "ProcHyperthreading", "value": "Enabled"}]}, "priority
↪→": 150}]'

Add the trait CUSTOM_HYPERTHREADING_ON to the node represented by $node_ident:

baremetal node add trait $node_ident CUSTOM_HYPERTHREADING_ON

Update the flavor bm-hyperthreading-on in the Compute service with the following property:

openstack flavor set --property trait:CUSTOM_HYPERTHREADING_ON=required bm-
↪→hyperthreading-on

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 187

Ironic Documentation, Release 26.1.2.dev21

Creating a Compute instance with this flavor will ensure that the instance is scheduled only
to Bare Metal nodes with the CUSTOM_HYPERTHREADING_ON trait. When an instance is
created using the bm-hyperthreading-on flavor, then the deploy steps of deploy template
CUSTOM_HYPERTHREADING_ON will be executed during the deployment of the scheduled node, causing
Hyperthreading to be enabled in the nodes BIOS configuration.

Hardware Inspection Support

The hardware type ilo supports hardware inspection.

Note

• The disk size is returned by RIBCL/RIS only when RAID is preconfigured on the storage. If
the storage is Direct Attached Storage, then RIBCL/RIS fails to get the disk size.

• The SNMPv3 inspection gets disk size for all types of storages. If RIBCL/RIS is unable to get
disk size and SNMPv3 inspection is requested, the proliantutils does SNMPv3 inspection to
get the disk size. If proliantutils is unable to get the disk size, it raises an error. This feature is
available in proliantutils release version >= 2.2.0.

• The iLO must be updated with SNMPv3 authentication details. Please refer to the section
SNMPv3 Authentication in HPE iLO4 User Guide for setting up authentication details on iLO.
The following parameters are mandatory to be given in driver_info for SNMPv3 inspection:

– snmp_auth_user : The SNMPv3 user.

– snmp_auth_prot_password : The auth protocol pass phrase.

– snmp_auth_priv_password : The privacy protocol pass phrase.

The following parameters are optional for SNMPv3 inspection:

– snmp_auth_protocol : The Auth Protocol. The valid values are MD5 and SHA. The
iLO default value is MD5.

– snmp_auth_priv_protocol : The Privacy protocol. The valid values are AES and
DES. The iLO default value is DES.

The inspection process will discover the following properties:

• memory_mb: memory size

• cpu_arch: cpu architecture

• local_gb: disk size

Inspection can also discover the following extra capabilities for iLO driver:

• ilo_firmware_version: iLO firmware version

• rom_firmware_version: ROM firmware version

• secure_boot: secure boot is supported or not. The possible values are true or false. The value is
returned as true if secure boot is supported by the server.

• server_model: server model

• pci_gpu_devices: number of gpu devices connected to the bare metal.

188 Chapter 4. Administrator Guide

https://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c03334051

Ironic Documentation, Release 26.1.2.dev21

• nic_capacity: the max speed of the embedded NIC adapter.

• sriov_enabled: true, if server has the SRIOV supporting NIC.

• has_rotational: true, if server has HDD disk.

• has_ssd: true, if server has SSD disk.

• has_nvme_ssd: true, if server has NVME SSD disk.

• cpu_vt: true, if server supports cpu virtualization.

• hardware_supports_raid: true, if RAID can be configured on the server using RAID controller.

• nvdimm_n: true, if server has NVDIMM_N type of persistent memory.

• persistent_memory: true, if server has persistent memory.

• logical_nvdimm_n: true, if server has logical NVDIMM_N configured.

• rotational_drive_<speed>_rpm: The capabilities rotational_drive_4800_rpm,
rotational_drive_5400_rpm, rotational_drive_7200_rpm,
rotational_drive_10000_rpm and rotational_drive_15000_rpm are set to true if
the server has HDD drives with speed of 4800, 5400, 7200, 10000 and 15000 rpm respectively.

• logical_raid_level_<raid_level>: The capabilities logical_raid_level_0,
logical_raid_level_1, logical_raid_level_2, logical_raid_level_5,
logical_raid_level_6, logical_raid_level_10, logical_raid_level_50 and
logical_raid_level_60 are set to true if any of the raid levels among 0, 1, 2, 5, 6, 10,
50 and 60 are configured on the system.

• overall_security_status: Ok or Risk or Ignored as returned by iLO security dashboard.
iLO computes the overall security status by evaluating the security status for each of the security
parameters. Admin needs to fix the actual parameters and then re-inspect so that iLO can recompute
the overall security status. If the all security params, whose security_status is Risk, have the
Ignore field set to True, then iLO sets the overall security status value as Ignored. All the
security params must have the security_status as Ok for the overall_security_status to
have the value as Ok.

• last_firmware_scan_status: Ok or Risk as returned by iLO security dashboard. This denotes
security status of the last firmware scan done on the system. If it is Risk, the recommendation
is to run clean_step update_firmware_sum without any specific firmware components so that
firmware is updated for all the components using latest SPP (Service Provider Pack) ISO and then
re-inspect to get the security status again.

• security_override_switch: Ok or Risk as returned by iLO security dashboard. This is dis-
able/enable login to the iLO using credentials. This can be toggled only by physical visit to the
bare metal.

• gpu_<vendor>_count: Integer value. The capability name is dynamically formed as
gpu_<vendor>_count. The vendor name is replaced in the <vendor>. If the vendor name is not
returned by the hardware, then vendor ID in hexadecimal form is replaced in the capability name.
Examples: {gpu_Nvidia_count: 1}, {gpu_0x102b_count: 1}.

• gpu_<vendor_device_name>_count: Integer value. The capability name is formed dynami-
cally by replacing the gpu device name as returned by ilo in <vendor_device_name>. Examples:
{gpu_Nvidia_Tesla_M10_count: 1}, {gpu_Embedded_Video_Controller_count: 1}

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 189

Ironic Documentation, Release 26.1.2.dev21

• gpu_<vendor_device_name>: Boolean. The capability name is formed dynamically by
replacing the gpu device name as returned by ilo in <vendor_device_name>. Examples:
{gpu_Nvidia_Tesla_M10: True}, {gpu_Embedded_Video_Controller: True}

Note

– The capability nic_capacity can only be discovered if ipmitool version >= 1.8.15 is
used on the conductor. The latest version can be downloaded from here.

– The iLO firmware version needs to be 2.10 or above for nic_capacity to be discovered.

– To discover IPMI based attributes you need to enable iLO feature IPMI/DCMI over LAN
Access on iLO4 and iLO5 management engine.

– The proliantutils returns only active NICs for Gen10 ProLiant HPE servers. The user
would need to delete the ironic ports corresponding to inactive NICs for Gen8 and Gen9
servers as proliantutils returns all the discovered (active and otherwise) NICs for Gen8
and Gen9 servers and ironic ports are created for all of them. Inspection logs a warning
if the node under inspection is Gen8 or Gen9.

– The security dashboard capabilities are applicable only for Gen10 ProLiant HPE servers
and above. To fix the security dashboard parameters value from Risk to Ok, user need to
fix the parameters separately and re-inspect to see the security status of the parameters.

The operator can specify these capabilities in nova flavor for node to be selected for scheduling:

openstack flavor set my-baremetal-flavor --property capabilities:server_model=
↪→"<in> Gen8"

openstack flavor set my-baremetal-flavor --property capabilities:nic_capacity=
↪→"10Gb"

openstack flavor set my-baremetal-flavor --property capabilities:ilo_firmware_
↪→version="<in> 2.10"

openstack flavor set my-baremetal-flavor --property capabilities:has_ssd="true
↪→"

See Capabilities discovery for more details and examples.

Swiftless deploy for intermediate images

The hardware type ilo with ilo-virtual-media as boot interface can deploy and boot the server with
and without swift being used for hosting the intermediate temporary floppy image (holding metadata
for deploy kernel and ramdisk) and the boot ISO. A local HTTP(S) web server on each conductor node
needs to be configured. Please refer to Web server configuration on conductor for more information.
The HTTPS web server needs to be enabled (instead of HTTP web server) in order to send management
information and images in encrypted channel over HTTPS.

Note

190 Chapter 4. Administrator Guide

https://sourceforge.net/projects/ipmitool/
https://support.hpe.com/hpsc/doc/public/display?docId=c03334051
https://support.hpe.com/hpsc/doc/public/display?docId=a00018324en_us

Ironic Documentation, Release 26.1.2.dev21

This feature assumes that the user inputs are on Glance which uses swift as backend. If swift depen-
dency has to be eliminated, please refer to HTTP(S) Based Deploy Support also.

Deploy Process

Please refer to Swiftless deploy for intermediate images.

HTTP(S) Based Deploy Support

The user input for the images given in driver_info like deploy_iso, deploy_kernel and
deploy_ramdisk and in instance_info like image_source, kernel, ramdisk and boot_iso may
also be given as HTTP(S) URLs.

The HTTP(S) web server can be configured in many ways. For the Apache web server on Ubuntu, refer
here. The web server may reside on a different system than the conductor nodes, but its URL must be
reachable by the conductor and the bare metal nodes.

Deploy Process

Please refer to HTTP(S) based deploy.

Support for iLO driver with Standalone Ironic

It is possible to use ironic as standalone services without other OpenStack services. The ilo hardware
type can be used in standalone ironic. This feature is referred to as iLO driver with standalone
ironic in this document.

Configuration

The HTTP(S) web server needs to be configured as described in HTTP(S) Based Deploy Support and Web
server configuration on conductor needs to be configured for hosting intermediate images on conductor
as described in Swiftless deploy for intermediate images.

Deploy Process

Glance and swift for partition images

Glance and swift with whole-disk images

Swiftless deploy

HTTP(S) based deploy

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 191

https://help.ubuntu.com/lts/serverguide/httpd.html

Ironic Documentation, Release 26.1.2.dev21

Glance Conductor Baremetal Swift IPA iLO

Powers off the node

Get the metadata for deploy IS
O

Returns the metadata for deplo
y ISO

Generates swift te
mpURL for deploy I
SO

Creates the FAT32
image containing i
ronic API URL and

driver name

Uploads the FAT32 image

Generates swift te
mpURL for FAT32 im
age

Attaches the FAT32 image swift tempURL as virtual media floppy

Attaches the deploy ISO swift tempURL as virtual media CDROM

Sets one time boot to CDROM

Reboot the node

Downloads deploy ISO

Boots deploy kernel/ramdisk from iLO virtual media CDROM

Lookup node

Provides node UUID

Heartbeat

Sends the user image HTTP(S) URL

Retrieves the user image on ba
re metal

Writes user image
to root partition

Installs boot load
er

Heartbeat

Sets boot device to disk

Power off the node

Power on the node

Boot user image fr
om disk

Glance Conductor Baremetal Swift IPA iLO

Powers off the node

Get the metadata for deploy IS
O

Returns the metadata for deplo
y ISO

Generates swift te
mpURL for deploy I
SO

Creates the FAT32
image containing i
ronic API URL and

driver name

Uploads the FAT32 image

Generates swift te
mpURL for FAT32 im
age

Attaches the FAT32 image swift tempURL as virtual media floppy

Attaches the deploy ISO swift tempURL as virtual media CDROM

Sets one time boot to CDROM

Reboot the node

Downloads deploy ISO

Boots deploy kernel/ramdisk from iLO virtual media CDROM

Lookup node

Provides node UUID

Heartbeat

Sends the user image HTTP(S) URL

Retrieves the user image on ba
re metal

Writes user image
to disk

Heartbeat

Sets boot device to disk

Power off the node

Power on the node

Boot user image fr
om disk

192 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Glance Conductor Baremetal ConductorWebserv
er IPA iLO Swift

Powers off the node

Get the metadata for deploy IS
O

Returns the metadata for deplo
y ISO

Generates swift te
mpURL for deploy I
SO

Creates the FAT32
image containing I
ronic API URL and

driver name

Uploads the FAT32 image

Attaches the FAT32 image URL as virtual media floppy

Attaches the deploy ISO swift tempURL as virtual media CDROM

Sets one time boot to CDROM

Reboot the node

Downloads deploy ISO

Boots deploy kernel/ramdisk from iLO virtual media CDROM

Lookup node

Provides node UUID

Heartbeat

Sends the user image HTTP(S) URL

Retrieves the user image on bare metal

Writes user image
to disk

Heartbeat

Sets boot device to disk

Power off the node

Power on the node

Boot user image fr
om disk

Webserver Conductor Baremetal Swift IPA iLO

Powers off the node

Creates the FAT32
image containing i
ronic API URL and

driver name

Uploads the FAT32 image

Generates swift te
mpURL for FAT32 im
age

Attaches the FAT32 image swift tempURL as virtual media floppy

Attaches the deploy ISO URL as virtual media CDROM

Sets one time boot to CDROM

Reboot the node

Downloads deploy ISO

Boots deploy kernel/ramdisk from iLO virtual media CDROM

Lookup node

Provides node UUID

Heartbeat

Sends the user image HTTP(S) URL

Retrieves the user image on bare metal

Writes user image
to disk

Heartbeat

Sets boot device to disk

Power off the node

Power on the node

Boot user image fr
om disk

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 193

Ironic Documentation, Release 26.1.2.dev21

Standalone ironic

Webserver Conductor Baremetal ConductorWebserv
er IPA iLO

Powers off the node

Creates the FAT32
image containing I
ronic API URL and

driver name

Uploads the FAT32 image

Generates URL for
FAT32 image

Attaches the FAT32 image URL as virtual media floppy

Attaches the deploy ISO URL as virtual media CDROM

Sets one time boot to CDROM

Reboot the node

Downloads deploy ISO

Boots deploy kernel/ramdisk from iLO virtual media CDROM

Lookup node

Provides node UUID

Heartbeat

Sends the user image HTTP(S) URL

Retrieves the user image on bare metal

Writes user image
to disk

Heartbeat

Sets boot device to disk

Power off the node

Power on the node

Boot user image fr
om disk

Activating iLO Advanced license as manual clean step

iLO driver can activate the iLO Advanced license key as a manual cleaning step. Any manual cleaning
step can only be initiated when a node is in the manageable state. Once the manual cleaning is finished,
the node will be put in the manageable state again. User can follow steps from Manual cleaning to
initiate manual cleaning operation on a node.

An example of a manual clean step with activate_license as the only clean step could be:

"clean_steps": [{
"interface": "management",
"step": "activate_license",
"args": {

"ilo_license_key": "ABC12-XXXXX-XXXXX-XXXXX-YZ345"
}

}]

The different attributes of activate_license clean step are as follows:

Attribute Description
interface Interface of clean step, here management
step Name of clean step, here activate_license
args Keyword-argument entry (<name>: <value>) being passed to clean step
args.
ilo_license_key

iLO Advanced license key to activate enterprise features. This is mandatory.

194 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Removing CA certificates from iLO as manual clean step

iLO driver can remove the invalidated CA certificates as a manual step. Any manual cleaning step can
only be initiated when a node is in the manageable state. Once the manual cleaning is finished, the
node will be put in the manageable state again. User can follow steps from Manual cleaning to initiate
manual cleaning operation on a node.

An example of a manual clean step with clear_ca_certificates as the only clean step could be:

"clean_steps": [{
"interface": "management",
"step": "clear_ca_certificates",
"args": {

"certificate_files" : ["/path/to/certsA", "/path/to/certsB"]
}

}]

The different attributes of clear_ca_certificates clean step are as follows:

Attribute Description
interface Interface of clean step, here management
step Name of clean step, here clear_ca_certificates
args Keyword-argument entry (<name>: <value>) being passed to clean step
args.
certificate_files

List of CA certificates which are to be removed.

This is manda-
tory.

Initiating firmware update as manual clean step

iLO driver can invoke secure firmware update as a manual cleaning step. Any manual cleaning step can
only be initiated when a node is in the manageable state. Once the manual cleaning is finished, the node
will be put in the manageable state again. A user can follow steps from Manual cleaning to initiate
manual cleaning operation on a node.

An example of a manual clean step with update_firmware as the only clean step could be:

"clean_steps": [{
"interface": "management",
"step": "update_firmware",
"args": {

"firmware_update_mode": "ilo",
"firmware_images":[

{
"url": "file:///firmware_images/ilo/1.5/CP024444.scexe",
"checksum": "a94e683ea16d9ae44768f0a65942234d",
"component": "ilo"

},
{

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 195

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"url": "swift://firmware_container/cpld2.3.rpm",
"checksum": "<md5-checksum-of-this-file>",
"component": "cpld"

},
{

"url": "http://my_address:port/firmwares/bios_vLatest.scexe",
"checksum": "<sha256-checksum-of-this-file>",
"component": "bios"

},
{

"url": "https://my_secure_address_url/firmwares/chassis_
↪→vLatest.scexe",

"checksum": "<sha512-checksum-of-this-file>",
"component": "chassis"

},
{

"url": "file:///home/ubuntu/firmware_images/power_pic/pmc_v3.
↪→0.bin",

"checksum": "<sha256-checksum-of-this-file>",
"component": "power_pic"

}
]

}
}]

The different attributes of update_firmware clean step are as follows:

Attribute Description
interface Interface of clean step, here management
step Name of clean step, here update_firmware
args Keyword-argument entry (<name>: <value>) being passed to clean step
args.
firmware_update_mode

Mode (or mechanism) of out-of-band firmware update. Supported value is ilo.
This is mandatory.

args.
firmware_images

Ordered list of dictionaries of images to be flashed. This is mandatory.

Each firmware image block is represented by a dictionary (JSON), in the form:

{
"url": "<url of firmware image file>",
"checksum": "<SHA256, SHA512, or MD5 checksum of firmware image file to␣

↪→verify the image>",
"component": "<device on which firmware image will be flashed>"

}

All the fields in the firmware image block are mandatory.

• The different types of firmware url schemes supported are: file, http, https and swift.

196 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Note

This feature assumes that while using file url scheme the file path is on the conductor con-
trolling the node.

Note

The swift url scheme assumes the swift account of the service project. The service project
(tenant) is a special project created in the Keystone system designed for the use of the core
OpenStack services. When Ironic makes use of Swift for storage purpose, the account is gen-
erally service and the container is generally ironic and ilo driver uses a container named
ironic_ilo_container for their own purpose.

Note

While using firmware files with a .rpm extension, make sure the commands rpm2cpio and
cpio are present on the conductor, as they are utilized to extract the firmware image from the
package.

• The firmware components that can be updated are: ilo, cpld, power_pic, bios and chassis.

• The firmware images will be updated in the order given by the operator. If there is any error during
processing of any of the given firmware images provided in the list, none of the firmware updates
will occur. The processing error could happen during image download, image checksum verifica-
tion or image extraction. The logic is to process each of the firmware files and update them on the
devices only if all the files are processed successfully. If, during the update (uploading and flash-
ing) process, an update fails, then the remaining updates, if any, in the list will be aborted. But it is
recommended to triage and fix the failure and re-attempt the manual clean step update_firmware
for the aborted firmware_images.

The devices for which the firmwares have been updated successfully would start functioning using
their newly updated firmware.

• As a troubleshooting guidance on the complete process, check Ironic conductor logs carefully to
see if there are any firmware processing or update related errors which may help in root causing
or gain an understanding of where things were left off or where things failed. You can then fix
or work around and then try again. A common cause of update failure is HPE Secure Digital
Signature check failure for the firmware image file.

• To compute sha256 checksum for your image file, you can use the following command:

$ sha256sum image.rpm
24f6abba6fb6921b05afdb4f9a671aed72af3add90c912b5e3989f51f1b359e5 image.
↪→rpm

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 197

Ironic Documentation, Release 26.1.2.dev21

Smart Update Manager (SUM) based firmware update

The firmware update based on SUM is an inband clean/deploy step supported by iLO driver. The firmware
update is performed on all or list of user specified firmware components on the node. Refer to SUM User
Guide to get more information on SUM based firmware update.

Note

update_firmware_sum clean step requires the agent ramdisk with Proliant Hardware Manager
from the proliantutils version 2.5.0 or higher. See DIB support for Proliant Hardware Manager to
create the agent ramdisk with Proliant Hardware Manager.

Note

flash_firmware_sum deploy step requires the agent ramdisk with Proliant Hardware Manager
from the proliantutils version 2.9.5 or higher. See DIB support for Proliant Hardware Manager to
create the agent ramdisk with Proliant Hardware Manager.

The attributes of update_firmware_sum/flash_firmware_sum step are as follows:

Attribute Description
interface Interface of the clean step, here management
step Name of the clean step, here update_firmware_sum
args Keyword-argument entry (<name>: <value>) being passed to the clean step

The keyword arguments used for the step are as follows:

• url: URL of SPP (Service Pack for Proliant) ISO. It is mandatory. The URL schemes supported
are http, https and swift.

• checksum: MD5 checksum of SPP ISO to verify the image. It is mandatory.

• components: List of filenames of the firmware components to be flashed. It is optional. If not
provided, the firmware update is performed on all the firmware components.

The step performs an update on all or a list of firmware components and returns the SUM log files.
The log files include hpsum_log.txt and hpsum_detail_log.txt which holds the information about
firmware components, firmware version for each component and their update status. The log object will
be named with the following pattern:

<node>[_<instance-uuid>]_update_firmware_sum_<timestamp yyyy-mm-dd-hh-mm-ss>.
↪→tar.gz
or
<node>[_<instance-uuid>]_flash_firmware_sum_<timestamp yyyy-mm-dd-hh-mm-ss>.
↪→tar.gz

Refer to Retrieving logs from the deploy ramdisk for more information on enabling and viewing the logs
returned from the ramdisk.

An example of update_firmware_sum clean step:

198 Chapter 4. Administrator Guide

https://h17007.www1.hpe.com/us/en/enterprise/servers/products/service_pack/hpsum/index.aspx
https://h20565.www2.hpe.com/hpsc/doc/public/display?docId=c05210448
https://h20565.www2.hpe.com/hpsc/doc/public/display?docId=c05210448

Ironic Documentation, Release 26.1.2.dev21

{
"interface": "management",
"step": "update_firmware_sum",
"args":

{
"url": "http://my_address:port/SPP.iso",
"checksum": "abcdefxyz",
"components": ["CP024356.scexe", "CP008097.exe"]

}
}

The step fails if there is any error in the processing of step arguments. The processing error could happen
during validation of components file extension, image download, image checksum verification or image
extraction. In case of a failure, check Ironic conductor logs carefully to see if there are any validation or
firmware processing related errors which may help in root cause analysis or gaining an understanding of
where things were left off or where things failed. You can then fix or work around and then try again.

Warning

This feature is officially supported only with RHEL and SUSE based IPA ramdisk. Refer to SUM for
supported OS versions for specific SUM version.

Note

Refer Guidelines for SPP ISO for steps to get SPP (Service Pack for ProLiant) ISO.

Updating security parameters as manual clean step

iLO driver can invoke security parameters update as a manual clean step. Any manual cleaning step can
only be initiated when a node is in the manageable state. Once the manual cleaning is finished, the node
will be put in the manageable state again. A user can follow steps from Manual cleaning to initiate
manual cleaning operation on a node. This feature is only supported for iLO5 based hardware.

An example of a manual clean step with security_parameters_update as the only clean step could
be:

"clean_steps": [{
"interface": "management",
"step": "security_parameters_update",
"args": {

"security_parameters":[
{

"param": "password_complexity",
"enable": "True",
"ignore": "False"

},
{

"param": "require_login_for_ilo_rbsu",
(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 199

https://h17007.www1.hpe.com/us/en/enterprise/servers/products/service_pack/hpsum/index.aspx
https://h17007.www1.hpe.com/us/en/enterprise/servers/products/service_pack/spp

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"enable": "True",
"ignore": "False"

},
{

"param": "ipmi_over_lan",
"enable": "True",
"ignore": "False"

},
{

"param": "secure_boot",
"enable": "True",
"ignore": "False"

},
{

"param": "require_host_authentication",
"enable": "True",
"ignore": "False"

}
]

}
}]

The different attributes of security_parameters_update clean step are as follows:

Attribute Description
interface Interface of clean step, here management
step Name of clean step, here security_parameters_update
args Keyword-argument entry (<name>: <value>) being passed to clean step
args.
security_parameters

Ordered list of dictionaries of security parameters to be updated. This is manda-
tory.

Each security parameter block is represented by a dictionary (JSON), in the form:

{
"param": "<security parameter name>",
"enable": "security parameter to be enabled/disabled",
"ignore": "security parameter status to be ignored or not"

}

In all of these fields, param field is mandatory. Remaining fields are boolean and are optional. If user
doesnt pass any value then for enable field the default will be True and for ignore field default will be
False.

• The Security Parameters which are supported for this clean step are: Password_Complexity,
RequiredLoginForiLORBSU, RequireHostAuthentication, IPMI/DCMI_Over_LAN and
Secure_Boot.

200 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Update Minimum Password Length security parameter as manual clean step

iLO driver can invoke Minimum Password Length security parameter update as a manual clean step.
This feature is only supported for iLO5 based hardware.

An example of a manual clean step with update_minimum_password_length as the only clean step
could be:

"clean_steps": [{
"interface": "management",
"step": "update_minimum_password_length",
"args": {

"password_length": "8",
"ignore": "False"

}
}]

Both the arguments password_length and ignore are optional. The accepted values for pass-
word_length are 0 to 39. If user doesnt pass any value, the default value for password_length will be
8 and for ignore the default value be False.

Update Authentication Failure Logging security parameter as manual clean step

iLO driver can invoke Authentication Failure Logging security parameter update as a manual
clean step. This feature is only supported for iLO5 based hardware.

An example of a manual clean step with Authentication Failure Logging as the only clean step
could be:

"clean_steps": [{
"interface": "management",
"step": "update_auth_failure_logging_threshold",
"args": {

"logging_threshold": "1",
"ignore": "False"

}
}]

Both the arguments logging_threshold and ignore are optional. The accepted values for log-
ging_threshold are 0 to 5. If user doesnt pass any value, the default value for logging_threshold will
be 1 and for ignore the default value be False. If user passes the value of logging_threshold as 0, the
Authentication Failure Logging security parameter will be disabled.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 201

Ironic Documentation, Release 26.1.2.dev21

Create Certificate Signing Request(CSR) as manual clean step

iLO driver can invoke create_csr request as a manual clean step. This step is only supported for iLO5
based hardware.

An example of a manual clean step with create_csr as the only clean step could be:

"clean_steps": [{
"interface": "management",
"step": "create_csr",
"args": {

"csr_params": {
"City": "Bengaluru",
"CommonName": "1.1.1.1",
"Country": "India",
"OrgName": "HPE",
"State": "Karnataka"

}
}

}]

The ilo.cert_path option in ironic.conf is used as the directory path for creating the CSR,
which defaults to /var/lib/ironic/ilo. The CSR is created in the directory location given in ilo.
cert_path in node_uuid directory as <node_uuid>.csr.

Add HTTPS Certificate as manual clean step

iLO driver can invoke add_https_certificate request as a manual clean step. This step is only
supported for iLO5 based hardware.

An example of a manual clean step with add_https_certificate as the only clean step could be:

"clean_steps": [{
"interface": "management",
"step": "add_https_certificate",
"args": {

"cert_file": "/test1/iLO.crt"
}

}]

Argument cert_file is mandatory. The cert_file takes the path or url of the certificate file. The url
schemes supported are: file, http and https. The CSR generated in step create_csr needs to be
signed by a valid CA and the resultant HTTPS certificate should be provided in cert_file. It copies
the cert_file to ilo.cert_path under node.uuid as <node_uuid>.crt before adding it to iLO.

202 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

RAID Support

The inband RAID functionality is supported by iLO driver. See RAID Configuration for more infor-
mation. Bare Metal service update node with following information after successful configuration of
RAID:

• Node properties/local_gb is set to the size of root volume.

• Node properties/root_device is filled with wwn details of root volume. It is used by iLO
driver as root device hint during provisioning.

• The value of raid level of root volume is added as raid_level capability to the nodes
capabilities parameter within properties field. The operator can specify the raid_level
capability in nova flavor for node to be selected for scheduling:

openstack flavor set ironic-test --property capabilities:raid_level="1+0"
openstack server create --flavor ironic-test --image test-image instance-1

DIB support for Proliant Hardware Manager

Install ironic-python-agent-builder following the guide1

To create an agent ramdisk with Proliant Hardware Manager, use the proliant-tools element in
DIB:

ironic-python-agent-builder -o proliant-agent-ramdisk -e proliant-tools fedora

Disk Erase Support

erase_devices is an inband clean step supported by iLO driver. It performs erase on all the disks
including the disks visible to OS as well as the raw disks visible to the Smart Storage Administrator
(SSA).

This inband clean step requires ssacli utility starting from version 2.60-19.0 to perform the erase on
physical disks. See the ssacli documentation for more information on ssacli utility and different erase
methods supported by SSA.

The disk erasure via shred is used to erase disks visible to the OS and its implementation is available in
Ironic Python Agent. The raw disks connected to the Smart Storage Controller are erased using Sanitize
erase which is a ssacli supported erase method. If Sanitize erase is not supported on the Smart Storage
Controller the disks are erased using One-pass erase (overwrite with zeros).

This clean step is supported when the agent ramdisk contains the Proliant Hardware Manager from
the proliantutils version 2.3.0 or higher. This clean step is performed as part of automated cleaning and
it is disabled by default. See In-band vs out-of-band for more information on enabling/disabling a clean
step.

Install ironic-python-agent-builder following the guide1

To create an agent ramdisk with Proliant Hardware Manager, use the proliant-tools element in
DIB:

1 ironic-python-agent-builder: https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 203

https://support.hpe.com/hpsc/doc/public/display?docId=c03909334
https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

Ironic Documentation, Release 26.1.2.dev21

ironic-python-agent-builder -o proliant-agent-ramdisk -e proliant-tools fedora

See the proliant-tools for more information on creating agent ramdisk with proliant-tools element
in DIB.

Firmware based UEFI iSCSI boot from volume support

With Gen9 (UEFI firmware version 1.40 or higher) and Gen10 HPE Proliant servers, the driver supports
firmware based UEFI boot of an iSCSI cinder volume.

This feature requires the node to be configured to boot in UEFI boot mode, as well as user image should be
UEFI bootable image, and PortFast needs to be enabled in switch configuration for immediate spanning
tree forwarding state so it wouldnt take much time setting the iSCSI target as persistent device.

The driver does not support this functionality when in bios boot mode. In case the node is configured
with ilo-pxe or ilo-ipxe as boot interface and the boot mode configured on the bare metal is bios,
the iscsi boot from volume is performed using iPXE. See Boot From Volume for more details.

To use this feature, configure the boot mode of the bare metal to uefi and configure the corresponding
ironic node using the steps given in Boot From Volume. In a cloud environment with nodes configured
to boot from bios and uefi boot modes, the virtual media driver only supports uefi boot mode, and that
attempting to use iscsi boot at the same time with a bios volume will result in an error.

BIOS configuration support

The ilo and ilo5 hardware types support ilo BIOS interface. The support includes providing manual
clean steps apply_configuration and factory_reset to manage supported BIOS settings on the node. See
BIOS Configuration for more details and examples.

Note

Prior to the Stein release the user is required to reboot the node manually in order for the settings
to take into effect. Starting with the Stein release, iLO drivers reboot the node after running clean
steps related to the BIOS configuration. The BIOS settings are cached and the clean step is marked
as success only if all the requested settings are applied without any failure. If application of any of
the settings fails, the clean step is marked as failed and the settings are not cached.

Configuration

Following are the supported BIOS settings and the corresponding brief description for each of the set-
tings. For a detailed description please refer to HPE Integrated Lights-Out REST API Documentation.

• AdvancedMemProtection: Configure additional memory protection with ECC (Error Check-
ing and Correcting). Allowed values are AdvancedEcc, OnlineSpareAdvancedEcc,
MirroredAdvancedEcc.

• AutoPowerOn: Configure the server to automatically power on when AC power is applied to the
system. Allowed values are AlwaysPowerOn, AlwaysPowerOff, RestoreLastState.

• BootMode: Select the boot mode of the system. Allowed values are Uefi, LegacyBios

204 Chapter 4. Administrator Guide

https://docs.openstack.org/diskimage-builder/latest/elements/proliant-tools/README.html
https://hewlettpackard.github.io/ilo-rest-api-docs

Ironic Documentation, Release 26.1.2.dev21

• BootOrderPolicy: Configure how the system attempts to boot devices per the Boot Order
when no bootable device is found. Allowed values are RetryIndefinitely, AttemptOnce,
ResetAfterFailed.

• CollabPowerControl: Enables the Operating System to request processor frequency changes
even if the Power Regulator option on the server configured for Dynamic Power Savings Mode.
Allowed values are Enabled, Disabled.

• DynamicPowerCapping: Configure when the System ROM executes power calibration during the
boot process. Allowed values are Enabled, Disabled, Auto.

• DynamicPowerResponse: Enable the System BIOS to control processor performance and power
states depending on the processor workload. Allowed values are Fast, Slow.

• IntelligentProvisioning: Enable or disable the Intelligent Provisioning functionality. Al-
lowed values are Enabled, Disabled.

• IntelPerfMonitoring: Exposes certain chipset devices that can be used with the Intel Perfor-
mance Monitoring Toolkit. Allowed values are Enabled, Disabled.

• IntelProcVtd: Hypervisor or operating system supporting this option can use hardware capabil-
ities provided by Intels Virtualization Technology for Directed I/O. Allowed values are Enabled,
Disabled.

• IntelQpiFreq: Set the QPI Link frequency to a lower speed. Allowed values are Auto,
MinQpiSpeed.

• IntelTxt: Option to modify Intel TXT support. Allowed values are Enabled, Disabled.

• PowerProfile: Set the power profile to be used. Allowed values are BalancedPowerPerf,
MinPower, MaxPerf, Custom.

• PowerRegulator: Determines how to regulate the power consumption. Allowed values are
DynamicPowerSavings, StaticLowPower, StaticHighPerf, OsControl.

• ProcAes: Enable or disable the Advanced Encryption Standard Instruction Set (AES-NI) in the
processor. Allowed values are Enabled, Disabled.

• ProcCoreDisable: Disable processor cores using Intels Core Multi-Processing (CMP) Technol-
ogy. Allowed values are Integers ranging from 0 to 24.

• ProcHyperthreading: Enable or disable Intel Hyperthreading. Allowed values are Enabled,
Disabled.

• ProcNoExecute: Protect your system against malicious code and viruses. Allowed values are
Enabled, Disabled.

• ProcTurbo: Enables the processor to transition to a higher frequency than the processors rated
speed using Turbo Boost Technology if the processor has available power and is within temperature
specifications. Allowed values are Enabled, Disabled.

• ProcVirtualization: Enables or Disables a hypervisor or operating system supporting this
option to use hardware capabilities provided by Intels Virtualization Technology. Allowed values
are Enabled, Disabled.

• SecureBootStatus: The current state of Secure Boot configuration. Allowed values are
Enabled, Disabled.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 205

Ironic Documentation, Release 26.1.2.dev21

Note

This setting is read-only and cant be modified with apply_configuration clean step.

• Sriov: If enabled, SR-IOV support enables a hypervisor to create virtual instances of a PCI-
express device, potentially increasing performance. If enabled, the BIOS allocates additional re-
sources to PCI-express devices. Allowed values are Enabled, Disabled.

• ThermalConfig: select the fan cooling solution for the system. Allowed values are
OptimalCooling, IncreasedCooling, MaxCooling

• ThermalShutdown: Control the reaction of the system to caution level thermal events. Allowed
values are Enabled, Disabled.

• TpmState: Current TPM device state. Allowed values are NotPresent, PresentDisabled,
PresentEnabled.

Note

This setting is read-only and cant be modified with apply_configuration clean step.

• TpmType: Current TPM device type. Allowed values are NoTpm, Tpm12, Tpm20, Tm10.

Note

This setting is read-only and cant be modified with apply_configuration clean step.

• UefiOptimizedBoot: Enables or Disables the System BIOS boot using native UEFI graphics
drivers. Allowed values are Enabled, Disabled.

• WorkloadProfile: Change the Workload Profile to accommodate your desired workload. Al-
lowed values are GeneralPowerEfficientCompute, GeneralPeakFrequencyCompute,
GeneralThroughputCompute, Virtualization-PowerEfficient,
Virtualization-MaxPerformance, LowLatency, MissionCritical,
TransactionalApplicationProcessing, HighPerformanceCompute, DecisionSupport,
GraphicProcessing, I/OThroughput, Custom

Note

This setting is only applicable to ProLiant Gen10 servers with iLO 5 management systems.

206 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Certificate based validation in iLO

The driver supports validation of certificates on the HPE Proliant servers. The path to certificate file
needs to be appropriately set in ca_file in the nodes driver_info. To update SSL certificates into
iLO, refer to HPE Integrated Lights-Out Security Technology Brief. Use iLO hostname or IP address
as a Common Name (CN) while generating Certificate Signing Request (CSR). Use the same value as
ilo_address while enrolling node to Bare Metal service to avoid SSL certificate validation errors related
to hostname mismatch.

Rescue mode support

The hardware type ilo supports rescue functionality. Rescue operation can be used to boot nodes into a
rescue ramdisk so that the rescue user can access the node.

Please refer to Rescue Mode for detailed explanation of rescue feature.

Inject NMI support

The management interface ilo supports injection of non-maskable interrupt (NMI) to a bare metal.
Following command can be used to inject NMI on a server:

baremetal node inject nmi <node>

Following command can be used to inject NMI via Compute service:

openstack server dump create <server>

Note

This feature is supported on HPE ProLiant Gen9 servers and beyond.

Soft power operation support

The power interface ilo supports soft power off and soft reboot operations on a bare metal. Following
commands can be used to perform soft power operations on a server:

baremetal node reboot --soft \
[--power-timeout <power-timeout>] <node>

baremetal node power off --soft \
[--power-timeout <power-timeout>] <node>

Note

The configuration conductor.soft_power_off_timeout is used as a default timeout value when
no timeout is provided while invoking hard or soft power operations.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 207

http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04530504

Ironic Documentation, Release 26.1.2.dev21

Note

Server POST state is used to track the power status of HPE ProLiant Gen9 servers and beyond.

Out of Band RAID Support

With Gen10 HPE Proliant servers and later the ilo5 hardware type supports firmware based RAID
configuration as a clean step. This feature requires the node to be configured to ilo5 hardware type and
its raid interface to be ilo5. See RAID Configuration for more information.

After a successful RAID configuration, the Bare Metal service will update the node with the following
information:

• Node properties/local_gb is set to the size of root volume.

• Node properties/root_device is filled with wwn details of root volume. It is used by iLO
driver as root device hint during provisioning.

Later the value of raid level of root volume can be added in baremetal-with-RAID10 (RAID10 for
raid level 10) resource class. And consequently flavor needs to be updated to request the resource class
to create the server using selected node:

baremetal node set test_node --resource-class \
baremetal-with-RAID10

openstack flavor set --property \
resources:CUSTOM_BAREMETAL_WITH_RAID10=1 test-flavor

openstack server create --flavor test-flavor --image test-image instance-1

Note

Supported raid levels for ilo5 hardware type are: 0, 1, 5, 6, 10, 50, 60

IPv6 support

With the IPv6 support in proliantutils>=2.8.0, nodes can be enrolled into the baremetal service
using the iLO IPv6 addresses.

baremetal node create --driver ilo --deploy-interface direct \
--driver-info ilo_address=2001:0db8:85a3:0000:0000:8a2e:0370:7334 \
--driver-info ilo_username=test-user \
--driver-info ilo_password=test-password \
--driver-info deploy_iso=test-iso \
--driver-info rescue_iso=test-iso

Note

208 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

No configuration changes (in e.g. ironic.conf) are required in order to support IPv6.

Out of Band Sanitize Disk Erase Support

With Gen10 HPE Proliant servers and later the ilo5 hardware type supports firmware based sanitize
disk erase as a clean step. This feature requires the node to be configured to ilo5 hardware type and its
management interface to be ilo5.

The possible erase pattern its supports are:

• For HDD - overwrite, zero, crypto

• For SSD - block, zero, crypto

The default erase pattern are, for HDD, overwrite and for SSD, block.

Note

In average 300GB HDD with default pattern overwrite would take approx. 9 hours and 300GB SSD
with default pattern block would take approx. 30 seconds to complete the erase.

Out of Band One Button Secure Erase Support

With Gen10 HPE Proliant servers which have been updated with SPP version 2019.03.0 or later the ilo5
hardware type supports firmware based one button secure erase as a clean step.

The One Button Secure Erase resets iLO and deletes all licenses stored there, resets BIOS settings, and
deletes all Active Health System (AHS) and warranty data stored on the system. It also erases supported
non-volatile storage data and deletes any deployment settings profiles. See HPE Gen10 Security Refer-
ence Guide for more information.

Below are the steps to perform this clean step:

• Perform the cleaning using one_button_secure_erase clean step

baremetal node clean $node_ident --clean-steps\
'[{"interface": "management", "step": "one_button_secure_erase"}]'

• Once the clean step would triggered and node go to clean wait state and maintenance flag on node
would be set to True, then delete the node

baremetal node delete $node_ident

Note

• Even after deleting the node, One Button Secure Erase operation would continue on the node.

• This clean step should be kept last if the multiple clean steps are to be executed. No clean step
after this step would be executed.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 209

https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00018320en_us
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00018320en_us

Ironic Documentation, Release 26.1.2.dev21

• One Button Secure Erase should be used with extreme caution, and only when a system is being
decommissioned. During the erase the iLO network would keep disconnecting and after the
erase user will completely lose iLO access along with the credentials of the server, which needs
to be regained by the administrator. The process can take up to a day or two to fully erase and
reset all user data.

• When you activate One Button Secure Erase, iLO 5 does not allow firmware update or reset
operations.

Note

Do not perform any iLO 5 configuration changes until this process is completed.

UEFI-HTTPS Boot support

The UEFI firmware on Gen10 HPE Proliant servers supports booting from secured URLs. With this
capability ilo5 hardware with ilo-uefi-https boot interface supports deploy/rescue features in more
secured environments.

If swift is used as glance backend and ironic is configured to use swift to store temporary images, it is
required that swift is configured on HTTPS so that the tempurl generated is HTTPS URL.

If the webserver is used for hosting the temporary images, then the webserver is required to serve requests
on HTTPS.

If the images are hosted on a HTTPS webserver or swift configured with HTTPS with custom certificates,
the user is required to export SSL certificates into iLO. Refer to HPE Integrated Lights-Out Security
Technology Brief for more information.

The following command can be used to enroll a ProLiant node with ilo5 hardware type and
ilo-uefi-https boot interface:

baremetal node create \
--driver ilo5 \
--boot-interface ilo-uefi-https \
--deploy-interface direct \
--raid-interface ilo5 \
--rescue-interface agent \
--driver-info ilo_address=<ilo-ip-address> \
--driver-info ilo_username=<ilo-username> \
--driver-info ilo_password=<ilo-password> \
--driver-info deploy_kernel=<glance-uuid-of-deploy-kernel> \
--driver-info deploy_ramdisk=<glance-uuid-of-rescue-ramdisk> \
--driver-info bootloader=<glance-uuid-of-bootloader>

210 Chapter 4. Administrator Guide

http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04530504
http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04530504

Ironic Documentation, Release 26.1.2.dev21

Layer 3 or DHCP-less ramdisk booting

DHCP-less deploy is supported by ilo and ilo5 hardware types. However it would work only with
ilo-virtual-media boot interface. See Layer 3 or DHCP-less ramdisk booting for more information.

Events subscription

Events subscription is supported by ilo and ilo5 hardware types with ilo vendor interface for Gen10
and Gen10 Plus servers. See Node Vendor Passthru Methods for more information.

Anaconda based deployment

Deployment with anaconda deploy interface is supported by ilo and ilo5 hardware type and works
with ilo-pxe and ilo-ipxe boot interfaces. See Deploying with anaconda deploy interface for more
information.

Intel IPMI driver

Overview

The intel-ipmi hardware type is same as the IPMI driver hardware type except for the support of Intel
Speed Select Performance Profile (Intel SST-PP) feature. Intel SST-PP allows a server to run different
workloads by configuring the CPU to run at 3 distinct operating points or profiles.

Intel SST-PP supports three configuration levels:

• 0 - Intel SST-PP Base Config

• 1 - Intel SST-PP Config 1

• 2 - Intel SST-PP Config 2

The following table shows the list of active cores and their base frequency at different SST-PP config
levels:

Config Cores Base Freq (GHz)
Base 24 2.4
Config 1 20 2.5
Config 2 16 2.7

This configuration is managed by the management interface intel-ipmitool for IntelIPMI hardware.

IntelIPMI manages nodes by using IPMI (Intelligent Platform Management Interface) protocol versions
2.0 or 1.5. It uses the IPMItool utility which is an open-source command-line interface (CLI) for con-
trolling IPMI-enabled devices.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 211

https://www.intel.com/content/www/us/en/architecture-and-technology/speed-select-technology-article.html
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://sourceforge.net/projects/ipmitool/

Ironic Documentation, Release 26.1.2.dev21

Glossary

• IPMI - Intelligent Platform Management Interface.

• Intel SST-PP - Intel Speed Select Performance Profile.

Enabling the IntelIPMI hardware type

Please see Configuring IPMI support for the required dependencies.

1. To enable intel-ipmi hardware, add the following configuration to your ironic.conf:

[DEFAULT]
enabled_hardware_types = intel-ipmi
enabled_management_interfaces = intel-ipmitool

2. Restart the Ironic conductor service:

sudo service ironic-conductor restart

Or, for RDO:
sudo systemctl restart openstack-ironic-conductor

Registering a node with the IntelIPMI driver

Nodes configured to use the IntelIPMI drivers should have the driver field set to intel-ipmi.

All the configuration value required for IntelIPMI is the same as the IPMI hardware type except the
management interface which is intel-ipmitool. Refer IPMI driver for details.

The baremetal node create command can be used to enroll a node with an IntelIPMI driver. For
example:

baremetal node create --driver intel-ipmi \
--driver-info ipmi_address=<address> \
--driver-info ipmi_username=<username> \
--driver-info ipmi_password=<password>

Features of the intel-ipmi hardware type

Intel SST-PP

A node with Intel SST-PP can be configured to use it via configure_intel_speedselect deploy step.
This deploy accepts:

• intel_speedselect_config: Hexadecimal code of Intel SST-PP configuration. Accepted val-
ues are 0x00, 0x01, 0x02. These values correspond to Intel SST-PP Config Base, Intel SST-PP
Config 1, Intel SST-PP Config 2 respectively. The input value must be a string.

• socket_count: Number of sockets in the node. The input value must be a positive integer (1 by
default).

212 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

The deploy step issues an IPMI command with the raw code for each socket in the node to set the requested
configuration. A reboot is required to reflect the changes.

Each configuration profile is mapped to traits that Ironic understands. Please note that these names are
used for example purpose only. Any name can be used. Only the parameter value should match the
deploy step configure_intel_speedselect.

• 0 - CUSTOM_INTEL_SPEED_SELECT_CONFIG_BASE

• 1 - CUSTOM_INTEL_SPEED_SELECT_CONFIG_1

• 2 - CUSTOM_INTEL_SPEED_SELECT_CONFIG_2

Now to configure a node with Intel SST-PP while provisioning, create deploy templates for each profiles
in Ironic.

baremetal deploy template create \
CUSTOM_INTEL_SPEED_SELECT_CONFIG_BASE \
--steps '[{"interface": "management", "step": "configure_intel_speedselect

↪→", "args": {"intel_speedselect_config": "0x00", "socket_count": 2},
↪→"priority": 150}]'

baremetal deploy template create \
CUSTOM_INTEL_SPEED_SELECT_CONFIG_1 \
--steps '[{"interface": "management", "step": "configure_intel_speedselect

↪→", "args": {"intel_speedselect_config": "0x01", "socket_count": 2},
↪→"priority": 150}]'

baremetal deploy template create \
CUSTOM_INTEL_SPEED_SELECT_CONFIG_2 \
--steps '[{"interface": "management", "step": "configure_intel_speedselect

↪→", "args": {"intel_speedselect_config": "0x02", "socket_count": 2},
↪→"priority": 150}]'

All Intel SST-PP capable nodes should have these traits associated.

baremetal node add trait node-0 \
CUSTOM_INTEL_SPEED_SELECT_CONFIG_BASE \
CUSTOM_INTEL_SPEED_SELECT_CONFIG_1 \
CUSTOM_INTEL_SPEED_SELECT_CONFIG_2

To trigger the Intel SST-PP configuration during node provisioning, one of the traits can be added to the
flavor.

openstack flavor set baremetal --property trait:CUSTOM_INTEL_SPEED_SELECT_
↪→CONFIG_1=required

Finally create a server with baremetal flavor to provision a baremetal node with Intel SST-PP profile
Config 1.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 213

Ironic Documentation, Release 26.1.2.dev21

IPMI driver

Overview

The ipmi hardware type manage nodes by using IPMI (Intelligent Platform Management Interface) pro-
tocol versions 2.0 or 1.5. It uses the IPMItool utility which is an open-source command-line interface
(CLI) for controlling IPMI-enabled devices.

Glossary

• IPMI - Intelligent Platform Management Interface.

• IPMB - Intelligent Platform Management Bus/Bridge.

• BMC - Baseboard Management Controller.

• RMCP - Remote Management Control Protocol.

Enabling the IPMI hardware type

Please see Configuring IPMI support for the required dependencies.

1. The ipmi hardware type is enabled by default starting with the Ocata release. To enable it explicitly,
add the following to your ironic.conf:

[DEFAULT]
enabled_hardware_types = ipmi
enabled_management_interfaces = ipmitool,noop
enabled_power_interfaces = ipmitool

Optionally, enable the vendor passthru interface and either or both console interfaces:

[DEFAULT]
enabled_hardware_types = ipmi
enabled_console_interfaces = ipmitool-socat,ipmitool-shellinabox,no-
↪→console
enabled_management_interfaces = ipmitool,noop
enabled_power_interfaces = ipmitool
enabled_vendor_interfaces = ipmitool,no-vendor

2. Restart the Ironic conductor service.

Please see Enabling drivers and hardware types for more details.

214 Chapter 4. Administrator Guide

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://sourceforge.net/projects/ipmitool/
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface#Baseboard_management_controller

Ironic Documentation, Release 26.1.2.dev21

Registering a node with the IPMI driver

Nodes configured to use the IPMItool drivers should have the driver field set to ipmi.

The following configuration value is required and has to be added to the nodes driver_info field:

• ipmi_address: The IP address or hostname of the BMC.

Other options may be needed to match the configuration of the BMC, the following options are optional,
but in most cases, its considered a good practice to have them set:

• ipmi_username: The username to access the BMC; defaults to NULL user.

• ipmi_password: The password to access the BMC; defaults to NULL.

• ipmi_port: The remote IPMI RMCP port. By default ipmitool will use the port 623.

Note

It is highly recommend that you setup a username and password for your BMC.

The baremetal node create command can be used to enroll a node with an IPMItool-based driver.
For example:

baremetal node create --driver ipmi \
--driver-info ipmi_address=<address> \
--driver-info ipmi_username=<username> \
--driver-info ipmi_password=<password>

Changing The Default IPMI Credential Persistence Method

• store_cred_in_env: ipmi.store_cred_in_env.

The store_cred_in_env configuration option allow users to switch between file-based and environment
variable persistence methods for IPMI password.

For the temporary file option, long lived IPMI sessions, such as those for console support, leave files with
credentials on the conductor disk for the duration of the session.

To switch to environment variable persistence, set the store_cred_in_env parameter to True in the
configuration file:

[ipmi]
store_cred_in_env = True

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 215

Ironic Documentation, Release 26.1.2.dev21

Advanced configuration

When a simple configuration such as providing the address, username and password is not enough,
the IPMItool driver contains many other options that can be used to address special usages.

Single/Double bridging functionality

Note

A version of IPMItool higher or equal to 1.8.12 is required to use the bridging functionality.

There are two different bridging functionalities supported by the IPMItool-based drivers: single bridge
and dual bridge.

The following configuration values need to be added to the nodes driver_info field so bridging can be
used:

• ipmi_bridging: The bridging type; default is no; other supported values are single for single
bridge or dual for double bridge.

• ipmi_local_address: The local IPMB address for bridged requests.
Required only if ipmi_bridging is set to single or dual. This configuration is optional, if
not specified it will be auto discovered by IPMItool.

• ipmi_target_address: The destination address for bridged requests. Required only if
ipmi_bridging is set to single or dual.

• ipmi_target_channel: The destination channel for bridged requests. Required only if
ipmi_bridging is set to single or dual.

Double bridge specific options:

• ipmi_transit_address: The transit address for bridged requests. Required only if
ipmi_bridging is set to dual.

• ipmi_transit_channel: The transit channel for bridged requests. Required only if
ipmi_bridging is set to dual.

The parameter ipmi_bridging should specify the type of bridging required: single or dual to access
the bare metal node. If the parameter is not specified, the default value will be set to no.

The baremetal node set command can be used to set the required bridging information to the Ironic
node enrolled with the IPMItool driver. For example:

• Single Bridging:

baremetal node set <UUID or name> \
--driver-info ipmi_local_address=<address> \
--driver-info ipmi_bridging=single \
--driver-info ipmi_target_channel=<channel> \
--driver-info ipmi_target_address=<target address>

• Double Bridging:

216 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal node set <UUID or name> \
--driver-info ipmi_local_address=<address> \
--driver-info ipmi_bridging=dual \
--driver-info ipmi_transit_channel=<transit channel> \
--driver-info ipmi_transit_address=<transit address> \
--driver-info ipmi_target_channel=<target channel> \
--driver-info ipmi_target_address=<target address>

Changing the version of the IPMI protocol

The IPMItool-based drivers works with the versions 2.0 and 1.5 of the IPMI protocol. By default, the
version 2.0 is used.

In order to change the IPMI protocol version in the bare metal node, the following option needs to be set
to the nodes driver_info field:

• ipmi_protocol_version: The version of the IPMI protocol; default is 2.0. Supported values
are 1.5 or 2.0.

The baremetal node set command can be used to set the desired protocol version:

baremetal node set <UUID or name> --driver-info ipmi_protocol_version=
↪→<version>

Warning

Version 1.5 of the IPMI protocol does not support encryption. Therefore, it is highly recommended
that version 2.0 is used.

Cipher suites

IPMI 2.0 introduces support for encryption and allows setting which cipher suite to use. Traditionally,
ipmitool was using cipher suite 3 by default, but since SHA1 no longer complies with modern security
requirement, recent versions (e.g. the one used in RHEL 8.2) are switching to suite 17.

Normally, the cipher suite to use is negotiated with the BMC using the special command. On some
hardware the negotiation yields incorrect results and IPMI commands fail with

Error in open session response message : no matching cipher suite
Error: Unable to establish IPMI v2 / RMCP+ session

Another possible problem is ipmitool commands taking very long (tens of seconds or even minutes)
because the BMC does not support cipher suite negotiation. In both cases you can specify the required
suite yourself, e.g.

baremetal node set <UUID or name> --driver-info ipmi_cipher_suite=3

In scenarios where the operator cant specify the ipmi_cipher_suite for each node, the configuration
parameter [ipmi]/cipher_suite_versions can be set to a list of cipher suites that will be used, Ironic
will attempt to find a value that can be used from the list provided (from last to first):

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 217

Ironic Documentation, Release 26.1.2.dev21

[ipmi]
cipher_suite_versions = 1,2,3,6,7,8,11,12

To find the suitable values for this configuration, you can check the field RMCP+ Cipher Suites after
running an ipmitool command, e.g:

$ ipmitool -I lanplus -H $HOST -U $USER -v -R 12 -N 5 lan print
output
Set in Progress : Set Complete
Auth Type Support : NONE MD2 MD5 PASSWORD OEM
Auth Type Enable : Callback : NONE MD2 MD5 PASSWORD OEM
IP Address Source : Static Address
IP Address : <IP>
Subnet Mask : <Subnet>
MAC Address : <MAC>
RMCP+ Cipher Suites : 0,1,2,3,6,7,8,11,12

Warning

Only the cipher suites 3 and 17 are considered secure by the modern standards. Cipher suite 0 means
no security at all.

Using a different privilege level

By default Ironic requests the ADMINISTRATOR privilege level of all commands. This is the easiest option,
but if its not available for you, you can change it to CALLBACK, OPERATOR or USER this way:

baremetal node set <UUID or name> --driver-info ipmi_priv_level=OPERATOR

You must ensure that the user can still change power state and boot devices.

Static boot order configuration

See Static boot order configuration.

Vendor Differences

While the Intelligent Platform Management Interface (IPMI) interface is based upon a defined standard,
the Ironic community is aware of at least one vendor which utilizes a non-standard boot device selector.
In essence, this could be something as simple as different interpretation of the standard.

As of October 2020, the known difference is with Supermicro hardware where a selector of 0x24, sig-
nifying a REMOTE boot device in the standard, must be used when a boot operation from the local disk
subsystem is requested in UEFI mode. This is contrary to BIOS mode where the same BMCs expect
the selector to be a value of 0x08.

Because the BMC does not respond with any sort of error, nor do we want to risk BMC connectivity
issues by explicitly querying all BMCs what vendor it may be before every operation, the vendor can

218 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

automatically be recorded in the properties field vendor. When this is set to a value of supermicro,
Ironic will navigate the UEFI behavior difference enabling the UEFI to be requested with boot to disk.

Example:

baremetal node set <UUID or name> \
--properties vendor="supermicro"

Luckily, Ironic will attempt to perform this detection in power synchronization process, and record this
value if not already set.

While similar issues may exist when setting the boot mode and target boot device in other vendors BMCs,
we are not aware of them at present. Should you encounter such an issue, please feel free to report this
via Launchpad, and be sure to include the chassis bootparam get 5 output value along with the mc
info output from your BMC.

Example:

ipmitool -I lanplus -H <BMC ADDRESS> -U <Username> -P <Password> \
mc info

ipmitool -I lanplus -H <BMC ADDRESS> -U <Username> -P <Password> \
chassis bootparam get 5

send_raw clean/deploy step

The send_raw vendor passthru method is available to be invoked as a clean or deployment step should
raw bytes need to be transmitted to the remote BMC in order to facilitate some sort of action or specific
state. In this case, the raw bytes to be set are conveyed with a raw_bytes argument on the requested
clean or deploy step.

Example:

{
"interface": "vendor",
"step": "send_raw",
"args": {
"raw_bytes": "0x00 0x00 0x00 0x00"

}
}

iRMC driver

Overview

The iRMC driver enables control FUJITSU PRIMERGY via ServerView Common Command Interface
(SCCI). Support for FUJITSU PRIMERGY servers consists of the irmc hardware type and a few hard-
ware interfaces specific for that hardware type.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 219

https://bugs.launchpad.net/ironic/+bugs

Ironic Documentation, Release 26.1.2.dev21

Prerequisites

• Install python-scciclient and pysnmp packages:

$ pip install "python-scciclient>=0.7.2" pysnmp

Hardware Type

The irmc hardware type is available for FUJITSU PRIMERGY servers. For information on how to
enable the irmc hardware type, see Enabling hardware types.

Hardware interfaces

The irmc hardware type overrides the selection of the following hardware interfaces:

• bios
Supports irmc and no-bios. The default is irmc.

• boot
Supports irmc-virtual-media, irmc-pxe, and pxe. The default is
irmc-virtual-media. The irmc-virtual-media boot interface enables the virtual
media based deploy with IPA (Ironic Python Agent).

Warning

We deprecated the pxe boot interface when used with irmc hardware type. Support for
this interface will be removed in the future. Instead, use irmc-pxe. irmc-pxe boot
interface was introduced in Pike.

• console
Supports ipmitool-socat, ipmitool-shellinabox, and no-console. The default is
ipmitool-socat.

• inspect
Supports irmc, inspector, and no-inspect. The default is irmc.

Note

Ironic Inspector needs to be present and configured to use inspector as the inspect
interface.

• management
Supports only irmc.

• power
Supports irmc, which enables power control via ServerView Common Command Interface
(SCCI), by default. Also supports ipmitool.

• raid
Supports irmc, no-raid and agent. The default is no-raid.

220 Chapter 4. Administrator Guide

https://pypi.org/project/python-scciclient
https://pypi.org/project/pysnmp
https://docs.openstack.org/ironic-inspector/2024.2/

Ironic Documentation, Release 26.1.2.dev21

For other hardware interfaces, irmc hardware type supports the Bare Metal reference interfaces. For
more details about the hardware interfaces and how to enable the desired ones, see Enabling hardware
interfaces.

Here is a complete configuration example with most of the supported hardware interfaces enabled for
irmc hardware type.

[DEFAULT]
enabled_hardware_types = irmc
enabled_bios_interfaces = irmc
enabled_boot_interfaces = irmc-virtual-media,irmc-pxe
enabled_console_interfaces = ipmitool-socat,ipmitool-shellinabox,no-console
enabled_deploy_interfaces = direct
enabled_inspect_interfaces = irmc,inspector,no-inspect
enabled_management_interfaces = irmc
enabled_network_interfaces = flat,neutron
enabled_power_interfaces = irmc
enabled_raid_interfaces = no-raid,irmc
enabled_storage_interfaces = noop,cinder
enabled_vendor_interfaces = no-vendor,ipmitool

Here is a command example to enroll a node with irmc hardware type.

baremetal node create \
--bios-interface irmc \
--boot-interface irmc-pxe \
--deploy-interface direct \
--inspect-interface irmc \
--raid-interface irmc

Node configuration

Configuration via driver_info

• Each node is configured for irmc hardware type by setting the following ironic node objects prop-
erties:

– driver_info/irmc_address property to be IP address or hostname of the iRMC.

– driver_info/irmc_username property to be username for the iRMC with administrator
privileges.

– driver_info/irmc_password property to be password for irmc_username.

Note

Fujitsu server equipped with iRMC S6 2.00 or later version of firmware disables IPMI over LAN
by default. However user may be able to enable IPMI via BMC settings. To handle this change,
irmc hardware type first tries IPMI and, if IPMI operation fails, irmc hardware type uses
Redfish API of Fujitsu server to provide Ironic functionalities. So if user deploys Fujitsu server
with iRMC S6 2.00 or later, user needs to set Redfish related parameters in driver_info.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 221

Ironic Documentation, Release 26.1.2.dev21

– driver_info/redifsh_address property to be IP address or hostname of the iRMC.
You can prefix it with protocol (e.g. https://). If you dont provide protocol, Ironic as-
sumes HTTPS (i.e. add https:// prefix). iRMC with S6 2.00 or later only support HTTPS
connection to Redfish API.

– driver_info/redfish_username to be user name of iRMC with administrative privileges

– driver_info/redfish_password to be password of redfish_username

– driver_info/redfish_verify_ca accepts values those accepted in driver_info/
irmc_verify_ca

– driver_info/redfish_auth_type to be one of basic, session or auto

• If port in [irmc] section of /etc/ironic/ironic.conf or driver_info/irmc_port is set
to 443, driver_info/irmc_verify_ca will take effect:

driver_info/irmc_verify_ca property takes one of 4 value (default value is True):

– True: When set to True, which certification file iRMC driver uses is determined by
requests Python module.

Value of driver_info/irmc_verify_ca is passed to verify argument of functions de-
fined in requests Python module. So which certification will be used is depend on behavior
of requests module. (maybe certification provided by certifi Python module)

– False: When set to False, iRMC driver wont verify server certification with certification
file during HTTPS connection with iRMC. Just stop to verify server certification, but does
HTTPS.

Warning

When set to False, user must notice that it can result in vulnerable situation. Stop-
ping verification of server certification during HTTPS connection means it cannot prevent
Man-in-the-middle attack. When set to False, Ironic user must take enough care around
infrastructure environment in terms of security. (e.g. make sure network between Ironic
conductor and iRMC is secure)

– string representing filesystem path to directory which contains certification file: In this case,
iRMC driver uses certification file stored at specified directory. Ironic conductor must be
able to access that directory. For iRMC to recognize certification file, Ironic user must run
openssl rehash <path_to_dir>.

– string representing filesystem path to certification file: In this case, iRMC driver uses certi-
fication file specified. Ironic conductor must have access to that file.

• The following properties are also required if irmc-virtual-media boot interface is used:

– driver_info/deploy_iso property to be either deploy iso file name, Glance UUID, or
Image Service URL.

– instance info/boot_iso property to be either boot iso file name, Glance UUID, or Image
Service URL. This is used with the ramdisk deploy interface.

Note

222 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

The deploy_iso and boot_iso properties used to be called irmc_deploy_iso and
irmc_boot_iso accordingly before the Xena release.

• The following properties are also required if irmc inspect interface is enabled and SNMPv3 in-
spection is desired.

– driver_info/irmc_snmp_user property to be the SNMPv3 username. SNMPv3 func-
tionality should be enabled for this user on iRMC server side.

– driver_info/irmc_snmp_auth_password property to be the auth protocol pass phrase.
The length of pass phrase should be at least 8 characters.

– driver_info/irmc_snmp_priv_password property to be the privacy protocol pass
phrase. The length of pass phrase should be at least 8 characters.

Configuration via properties

• Each node is configured for irmc hardware type by setting the following ironic node objects prop-
erties:

– properties/capabilities property to be boot_mode:uefi if UEFI boot is required, or
boot_mode:bios if Legacy BIOS is required. If this is not set, default_boot_mode at
[default] section in ironic.conf will be used.

– properties/capabilities property to be secure_boot:true if UEFI Secure Boot is
required. Please refer to UEFI Secure Boot Support for more information.

Configuration via ironic.conf

• All of the nodes are configured by setting the following configuration options in the [irmc] section
of /etc/ironic/ironic.conf:

– port: Port to be used for iRMC operations; either 80 or 443. The default value is 443.
Optional.

Note

Since iRMC S6 2.00, iRMC firmware doesnt support HTTP connection to REST API. If
you deploy server with iRMS S6 2.00 and later, please set port to 443.

irmc hardware type provides verify_step named
verify_http_https_connection_and_fw_version to check HTTP(S) connec-
tion to iRMC REST API. If HTTP(S) connection is successfully established, then it
fetches and caches iRMC firmware version. If HTTP(S) connection to iRMC REST API
failed, Ironic nodes state moves to enroll with suggestion put in log message. Default
priority of this verify step is 10.

If operator updates iRMC firmware version of node, operator should run
cache_irmc_firmware_version node vendor passthru method to update iRMC
firmware version stored in driver_internal_info/irmc_fw_version.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 223

Ironic Documentation, Release 26.1.2.dev21

– auth_method: Authentication method for iRMC operations; either basic or digest. The
default value is basic. Optional.

– client_timeout: Timeout (in seconds) for iRMC operations. The default value is 60.
Optional.

– sensor_method: Sensor data retrieval method; either ipmitool or scci. The default value
is ipmitool. Optional.

• The following options are required if irmc-virtual-media boot interface is enabled:

– remote_image_share_root: Ironic conductor nodes NFS or CIFS root path. The default
value is /remote_image_share_root.

– remote_image_server: IP of remote image server.

– remote_image_share_type: Share type of virtual media, either NFS or CIFS. The default
is CIFS.

– remote_image_share_name: share name of remote_image_server. The default value
is share.

– remote_image_user_name: User name of remote_image_server.

– remote_image_user_password: Password of remote_image_user_name.

– remote_image_user_domain: Domain name of remote_image_user_name.

• The following options are required if irmc inspect interface is enabled:

– snmp_version: SNMP protocol version; either v1, v2c or v3. The default value is v2c.
Optional.

– snmp_port: SNMP port. The default value is 161. Optional.

– snmp_community: SNMP community required for versions v1 and v2c. The default value
is public. Optional.

– snmp_security: SNMP security name required for version v3. Optional.

– snmp_auth_proto: The SNMPv3 auth protocol. If using iRMC S4 or S5, the valid value of
this option is only sha. If using iRMC S6, the valid values are sha256, sha384 and sha512.
The default value is sha. Optional.

– snmp_priv_proto: The SNMPv3 privacy protocol. The valid value and the default value
are both aes. We will add more supported valid values in the future. Optional.

Warning

We deprecated the snmp_security option when use SNMPv3 inspection. Support for
this option will be removed in the future. Instead, set driver_info/irmc_snmp_user
parameter for each node if SNMPv3 inspection is needed.

224 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Override ironic.conf configuration via driver_info

• Each node can be further configured by setting the following ironic node objects properties which
override the parameter values in [irmc] section of /etc/ironic/ironic.conf:

– driver_info/irmc_port property overrides port.

– driver_info/irmc_auth_method property overrides auth_method.

– driver_info/irmc_client_timeout property overrides client_timeout.

– driver_info/irmc_sensor_method property overrides sensor_method.

– driver_info/irmc_snmp_version property overrides snmp_version.

– driver_info/irmc_snmp_port property overrides snmp_port.

– driver_info/irmc_snmp_community property overrides snmp_community.

– driver_info/irmc_snmp_security property overrides snmp_security.

– driver_info/irmc_snmp_auth_proto property overrides snmp_auth_proto.

– driver_info/irmc_snmp_priv_proto property overrides snmp_priv_proto.

Optional functionalities for the irmc hardware type

UEFI Secure Boot Support

The hardware type irmc supports secure boot deploy, see UEFI secure boot mode for details.

Warning

Secure boot feature is not supported with pxe boot interface.

Node Cleaning Support

The irmc hardware type supports node cleaning. For more information on node cleaning, see Node
cleaning.

Supported Automated Cleaning Operations

The automated cleaning operations supported are:

• restore_irmc_bios_config: Restores BIOS settings on a baremetal node from backup data. If
this clean step is enabled, the BIOS settings of a baremetal node will be backed up automatically
before the deployment. By default, this clean step is disabled with priority 0. Set its priority to a
positive integer to enable it. The recommended value is 10.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 225

Ironic Documentation, Release 26.1.2.dev21

Warning

pxe boot interface, when used with irmc hardware type, does not support this clean step. If
uses irmc hardware type, it is required to select irmc-pxe or irmc-virtual-media as the
boot interface in order to make this clean step work.

Configuration options for the automated cleaning steps are listed under [irmc] section in ironic.conf

clean_priority_restore_irmc_bios_config = 0

For more information on node automated cleaning, see Automated cleaning

Boot from Remote Volume

The irmc hardware type supports the generic PXE-based remote volume booting when using the follow-
ing boot interfaces:

• irmc-pxe

• pxe

In addition, the irmc hardware type supports remote volume booting without PXE. This is available
when using the irmc-virtual-media boot interface. This feature configures a node to boot from a
remote volume by using the API of iRMC. It supports iSCSI and FibreChannel.

Configuration

In addition to the configuration for generic drivers to remote volume boot, the iRMC driver requires the
following configuration:

• It is necessary to set physical port IDs to network ports and volume connectors. All cards including
those not used for volume boot should be registered.

The format of a physical port ID is: <Card Type><Slot No>-<Port No> where:

– <Card Type>: could be LAN, FC or CNA

– <Slot No>: 0 indicates onboard slot. Use 1 to 9 for add-on slots.

– <Port No>: A port number starting from 1.

These IDs are specified in a nodes driver_info[irmc_pci_physical_ids]. This value is a
dictionary. The key is the UUID of a resource (Port or Volume Connector) and its value is the
physical port ID. For example:

{
"1ecd14ee-c191-4007-8413-16bb5d5a73a2":"LAN0-1",
"87f6c778-e60e-4df2-bdad-2605d53e6fc0":"CNA1-1"

}

It can be set with the following command:

226 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal node set $NODE_UUID \
--driver-info irmc_pci_physical_ids={} \
--driver-info irmc_pci_physical_ids/$PORT_UUID=LAN0-1 \
--driver-info irmc_pci_physical_ids/$VOLUME_CONNECTOR_UUID=CNA1-1

• For iSCSI boot, volume connectors with both types iqn and ip are required. The configuration
with DHCP is not supported yet.

• For iSCSI, the size of the storage network is needed. This value should be specified in a nodes
driver_info[irmc_storage_network_size]. It must be a positive integer < 32. For example,
if the storage network is 10.2.0.0/22, use the following command:

baremetal node set $NODE_UUID --driver-info irmc_storage_network_size=22

Supported hardware

The driver supports the PCI controllers, Fibrechannel Cards, Converged Network Adapters supported by
Fujitsu ServerView Virtual-IO Manager.

Hardware Inspection Support

The irmc hardware type provides the iRMC-specific hardware inspection with irmc inspect interface.

Note

SNMP requires being enabled in ServerViewő iRMC S4 Web Server(Network SettingsSNMP sec-
tion).

Configuration

The Hardware Inspection Support in the iRMC driver requires the following configuration:

• It is necessary to set ironic configuration with gpu_ids and fpga_ids options in [irmc] section.

gpu_ids and fpga_ids are lists of <vendorID>/<deviceID> where:

– <vendorID>: 4 hexadecimal digits starts with 0x.

– <deviceID>: 4 hexadecimal digits starts with 0x.

Here are sample values for gpu_ids and fpga_ids:

gpu_ids = 0x1000/0x0079,0x2100/0x0080
fpga_ids = 0x1000/0x005b,0x1100/0x0180

• The python-scciclient package requires pyghmi version >= 1.0.22 and pysnmp version >= 4.2.3.
They are used by the conductor service on the conductor. The latest version of pyghmi can be
downloaded from here and pysnmp can be downloaded from here.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 227

http://www.fujitsu.com/fts/products/computing/servers/primergy/management/primergy-blade-server-io-virtualization.html
https://pypi.org/project/pyghmi/
https://pypi.org/project/pysnmp/

Ironic Documentation, Release 26.1.2.dev21

Supported properties

The inspection process will discover the following properties:

• memory_mb: memory size

• cpu_arch: cpu architecture

• local_gb: disk size

Inspection can also discover the following extra capabilities for iRMC driver:

• irmc_firmware_version: iRMC firmware version

• rom_firmware_version: ROM firmware version

• server_model: server model

• pci_gpu_devices: number of gpu devices connected to the bare metal.

Inspection can also set/unset nodes traits with the following cpu type for iRMC driver:

• CUSTOM_CPU_FPGA: The bare metal contains fpga cpu type.

Note

• The disk size is returned only when eLCM License for FUJITSU PRIMERGY servers is acti-
vated. If the license is not activated, then Hardware Inspection will fail to get this value.

• Before inspecting, if the server is power-off, it will be turned on automatically. System will
wait for a few second before start inspecting. After inspection, power status will be restored to
the previous state.

The operator can specify these capabilities in compute service flavor, for example:

openstack flavor set baremetal-flavor-name --property capabilities:irmc_
↪→firmware_version="iRMC S4-8.64F"

openstack flavor set baremetal-flavor-name --property capabilities:server_
↪→model="TX2540M1F5"

openstack flavor set baremetal-flavor-name --property capabilities:pci_gpu_
↪→devices="1"

See Capabilities discovery for more details and examples.

The operator can add a trait in compute service flavor, for example:

baremetal node add trait $NODE_UUID CUSTOM_CPU_FPGA

A valid trait must be no longer than 255 characters. Standard traits are defined in the os_traits library. A
custom trait must start with the prefix CUSTOM_ and use the following characters: A-Z, 0-9 and _.

228 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

RAID configuration Support

The irmc hardware type provides the iRMC RAID configuration with irmc raid interface.

Note

• RAID implementation for irmc hardware type is based on eLCM license and SDCard. Other-
wise, SP(Service Platform) in lifecycle management must be available.

• RAID implementation only supported for RAIDAdapter 0 in Fujitsu Servers.

Configuration

The RAID configuration Support in the iRMC drivers requires the following configuration:

• It is necessary to set ironic configuration into Node with JSON file option:

$ baremetal node set <node-uuid-or-name> \
--target-raid-config <JSON file containing target RAID configuration>

Here is some sample values for JSON file:

{
"logical_disks": [

{
"size_gb": 1000,
"raid_level": "1"

]
}

or:

{
"logical_disks": [

{
"size_gb": 1000,
"raid_level": "1",
"controller": "FTS RAID Ctrl SAS 6G 1GB (D3116C) (0)",
"physical_disks": [

"0",
"1"

]
}

]
}

Note

RAID 1+0 and 5+0 in iRMC driver does not support property physical_disks in
target_raid_config during create raid configuration yet. See following example:

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 229

Ironic Documentation, Release 26.1.2.dev21

{
"logical_disks":
[

{
"size_gb": "MAX",
"raid_level": "1+0"

}
]

}

See RAID Configuration for more details and examples.

Supported properties

The RAID configuration using iRMC driver supports following parameters in JSON file:

• size_gb: is mandatory properties in Ironic.

• raid_level: is mandatory properties in Ironic. Currently, iRMC Server supports following RAID
levels: 0, 1, 5, 6, 1+0 and 5+0.

• controller: is name of the controller as read by the RAID interface.

• physical_disks: are specific values for each raid array in LogicalDrive which operator want to
set them along with raid_level.

The RAID configuration is supported as a manual cleaning step.

Note

• iRMC server will power-on after create/delete raid configuration is applied, FGI (Foreground
Initialize) will process raid configuration in iRMC server, thus the operation will completed
upon power-on and power-off when created RAID on iRMC server.

See RAID Configuration for more details and examples.

BIOS configuration Support

The irmc hardware type provides the iRMC BIOS configuration with irmc bios interface.

Warning

irmc bios interface does not support factory_reset.

Starting from version 0.10.0 of python-scciclient, the BIOS setting obtained may not be the
latest. If you want to get the latest BIOS setting, you need to delete the existing BIOS profile in iRMC.
For example:

curl -u user:pass -H "Content-type: application/json" -X DELETE -i http://
↪→192.168.0.1/rest/v1/Oem/eLCM/ProfileManagement/BiosConfig

230 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Configuration

The BIOS configuration in the iRMC driver supports the following settings:

• boot_option_filter: Specifies from which drives can be booted. This supports following op-
tions: UefiAndLegacy, LegacyOnly, UefiOnly.

• check_controllers_health_status_enabled: The UEFI FW checks the controller health
status. This supports following options: true, false.

• cpu_active_processor_cores: The number of active processor cores 1n. Option 0 indicates
that all available processor cores are active.

• cpu_adjacent_cache_line_prefetch_enabled: The processor loads the requested cache line
and the adjacent cache line. This supports following options: true, false.

• cpu_vt_enabled: Supports the virtualization of platform hardware and several software environ-
ments, based on Virtual Machine Extensions to support the use of several software environments
using virtual computers. This supports following options: true, false.

• flash_write_enabled: The system BIOS can be written. Flash BIOS update is possible. This
supports following options: true, false.

• hyper_threading_enabled: Hyper-threading technology allows a single physical processor
core to appear as several logical processors. This supports following options: true, false.

• keep_void_boot_options_enabled: Boot Options will not be removed from Boot Option Pri-
ority list. This supports following options: true, false.

• launch_csm_enabled: Specifies whether the Compatibility Support Module (CSM) is executed.
This supports following options: true, false.

• os_energy_performance_override_enabled: Prevents the OS from overruling any energy
efficiency policy setting of the setup. This supports following options: true, false.

• pci_aspm_support: Active State Power Management (ASPM) is used to power-manage the PCI
Express links, thus consuming less power. This supports following options: Disabled, Auto,
L0Limited, L1only, L0Force.

• pci_above_4g_decoding_enabled: Specifies if memory resources above the 4GB address
boundary can be assigned to PCI devices. This supports following options: true, false.

• power_on_source: Specifies whether the switch on sources for the system are managed by
the BIOS or the ACPI operating system. This supports following options: BiosControlled,
AcpiControlled.

• single_root_io_virtualization_support_enabled: Single Root IO Virtualization Sup-
port is active. This supports following options: true, false.

The BIOS configuration is supported as a manual cleaning step. See BIOS Configuration for more details
and examples.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 231

Ironic Documentation, Release 26.1.2.dev21

Supported platforms

This driver supports FUJITSU PRIMERGY RX M4 servers and above.

When irmc power interface is used, Soft Reboot (Graceful Reset) and Soft Power Off (Graceful Power
Off) are only available if ServerView agents are installed. See iRMC S4 Manual for more details.

RAID configuration feature supports FUJITSU PRIMERGY servers with RAID-Ctrl-SAS-6G-
1GB(D3116C) controller and above. For detail supported controller with OOB-RAID configuration,
please see the whitepaper for iRMC RAID configuration.

Redfish driver

Overview

The redfish driver enables managing servers compliant with the Redfish protocol. Supported features
include:

• Network, virtual media and HTTP(s) boot.

• Additional virtual media features:

– Ramdisk deploy interface.

– Layer 3 or DHCP-less ramdisk booting.

– Virtual media API.

• Changing boot mode and secure boot status.

• In-band and out-of-band inspection.

• Retrieving and changing BIOS settings.

• Applying firmware updates.

• Configuring hardware RAID.

• Hardware metrics and integration with ironic-prometheus-exporter.

• Event notifications configured via Node Vendor Passthru Methods.

Prerequisites

• The Sushy library should be installed on the ironic conductor node(s).

For example, it can be installed with pip:

sudo pip install sushy

232 Chapter 4. Administrator Guide

http://manuals.ts.fujitsu.com/index.php?id=5406-5873-5925-5945-16159
http://manuals.ts.fujitsu.com/index.php?id=5406-5873-5925-5988
http://manuals.ts.fujitsu.com/file/12073/wp-svs-oob-raid-hdd-en.pdf
http://redfish.dmtf.org/
https://docs.openstack.org/api-ref/baremetal/#attach-detach-virtual-media-nodes
https://docs.openstack.org/ironic-prometheus-exporter/latest/
https://opendev.org/openstack/sushy

Ironic Documentation, Release 26.1.2.dev21

Enabling the Redfish driver

1. Add redfish to the list of enabled_hardware_types, enabled_power_interfaces,
enabled_management_interfaces and enabled_inspect_interfaces as well as
redfish-virtual-media and redfish-https to enabled_boot_interfaces in /etc/
ironic/ironic.conf. For example:

[DEFAULT]
...
enabled_hardware_types = ipmi,redfish
enabled_boot_interfaces = ipxe,redfish-virtual-media,redfish-https
enabled_power_interfaces = ipmitool,redfish
enabled_management_interfaces = ipmitool,redfish
enabled_inspect_interfaces = inspector,redfish

2. Restart the ironic conductor service:

sudo service ironic-conductor restart

Or, for RDO:
sudo systemctl restart openstack-ironic-conductor

Registering a node with the Redfish driver

Nodes configured to use the driver should have the driver property set to redfish.

The following properties are specified in the nodes driver_info field:

redfish_address
The URL address to the Redfish controller. It must include the authority portion of the URL,
and can optionally include the scheme. If the scheme is missing, https is assumed. For example:
https://mgmt.vendor.com. This is required.

redfish_system_id
The canonical path to the ComputerSystem resource that the driver will interact with. It should in-
clude the root service, version and the unique resource path to the ComputerSystem. This property
is only required if target BMC manages more than one ComputerSystem. Otherwise ironic will
pick the only available ComputerSystem automatically. For example: /redfish/v1/Systems/1.

redfish_username
User account with admin/server-profile access privilege. Although not required, it is highly rec-
ommended.

redfish_password
User account password. Although not required, it is highly recommended.

redfish_verify_ca
If redfish_address has the https:// scheme, the driver will use a secure (TLS) connection
when talking to the Redfish controller. By default (if this is not set or set to True), the driver will
try to verify the host certificates. This can be set to the path of a certificate file or directory with
trusted certificates that the driver will use for verification. To disable verifying TLS, set this to
False. This is optional.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 233

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security

Ironic Documentation, Release 26.1.2.dev21

redfish_auth_type
Redfish HTTP client authentication method. Can be basic, session or auto. The auto mode
first tries session and falls back to basic if session authentication is not supported by the Redfish
BMC. Default is set in ironic config as redfish.auth_type. Most operators should not need to
leverage this setting. Session based authentication should generally be used in most cases as it
prevents re-authentication every time a background task checks in with the BMC.

Note

The redfish_address, redfish_username, redfish_password, and redfish_verify_ca
fields, if changed, will trigger a new session to be established and cached with the BMC. The
redfish_auth_type field will only be used for the creation of a new cached session, or should
one be rejected by the BMC.

The baremetal node create command can be used to enroll a node with the redfish driver. For
example:

baremetal node create --driver redfish --driver-info \
redfish_address=https://example.com --driver-info \
redfish_system_id=/redfish/v1/Systems/CX34R87 --driver-info \
redfish_username=admin --driver-info redfish_password=password \
--name node-0

For more information about enrolling nodes see Enrolling hardware with Ironic in the install guide.

Boot mode support

The redfish hardware type can read current boot mode from the bare metal node as well as set it to
either Legacy BIOS or UEFI.

Note

Boot mode management is the optional part of the Redfish specification. Not all Redfish-compliant
BMCs might implement it. In that case it remains the responsibility of the operator to configure
proper boot mode to their bare metal nodes.

UEFI secure boot

Secure boot mode can be automatically set and unset during deployment for nodes in UEFI boot mode,
see UEFI secure boot mode for an explanation how to use it.

Two clean and deploy steps are provided for key management:

management.reset_secure_boot_keys_to_default
resets secure boot keys to their manufacturing defaults.

management.clear_secure_boot_keys
removes all secure boot keys from the node.

234 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Rebooting on boot mode changes

While some hardware is able to change the boot mode or the UEFI secure boot state immediately, other
models may require a reboot for such a change to be applied. Furthermore, some hardware models cannot
change the boot mode and the secure boot state simultaneously, requiring several reboots.

The Bare Metal service refreshes the System resource after issuing a PATCH request against it. If the
expected change is not observed, the node is rebooted, and the Bare Metal service waits until the change
is applied. In the end, the previous power state is restored.

This logic makes changing boot configuration more robust at the expense of several reboots in the worst
case.

Virtual media boot

The idea behind virtual media boot is that BMC gets hold of the boot image one way or the other (e.g.
by HTTP GET, other methods are defined in the standard), then inserts it into nodes virtual drive as if
it was burnt on a physical CD/DVD. The node can then boot from that virtual drive into the operating
system residing on the image.

The major advantage of virtual media boot feature is that potentially unreliable TFTP image transfer
phase of PXE protocol suite is fully eliminated.

Hardware types based on the redfish fully support booting deploy/rescue and user images over virtual
media. Ironic builds bootable ISO images, for either UEFI or BIOS (Legacy) boot modes, at the moment
of node deployment out of kernel and ramdisk images associated with the ironic node.

To boot a node managed by redfish hardware type over virtual media using BIOS boot mode, it suffice
to set ironic boot interface to redfish-virtual-media, as opposed to ipmitool.

baremetal node set --boot-interface redfish-virtual-media node-0

Note

iDRAC firmware before 4.40.10.00 (on Intel systems) and 6.00.00.00 (on AMD systems) requires a
non-standard Redfish call to boot from virtual media. Consider upgrading to 6.00.00.00, otherwise
you must use the idrac hardware type and the idrac-redfish-virtual-media boot interface
with older iDRAC firmware instead. For simplicity Ironic restricts both AMD and Intel systems
before firmware version 6.00.00.00. See iDRAC driver for more details on this hardware type.

If UEFI boot mode is desired, the user should additionally supply EFI System Partition image (ESP), see
Configuring an ESP image for details.

If [driver_info]/config_via_floppy boolean property of the node is set to true, ironic will create
a file with runtime configuration parameters, place into on a FAT image, then insert the image into nodes
virtual floppy drive.

When booting over PXE or virtual media, and user instance requires some specific kernel configuration,
the nodes instance_info[kernel_append_params] or driver_info[kernel_append_params]
properties can be used to pass user-specified kernel command line parameters.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 235

https://wiki.ubuntu.com/EFIBootLoaders#Booting_from_EFI

Ironic Documentation, Release 26.1.2.dev21

baremetal node set node-0 \
--driver-info kernel_append_params="nofb vga=normal"

Note

The driver_info field is supported starting with the Xena release.

Starting with the Zed cycle, you can combine the parameters from the configuration and from the node
using the special %default% syntax:

baremetal node set node-0 \
--driver-info kernel_append_params="%default% console=ttyS0,115200n8"

For ramdisk boot, the instance_info[ramdisk_kernel_arguments] property serves the same pur-
pose (%default% is not supported since there is no default value in the configuration).

Pre-built ISO images

By default an ISO images is built per node using the deploy kernel and initramfs provided in the config-
uration or the nodes driver_info. Starting with the Wallaby release its possible to provide a pre-built
ISO image:

baremetal node set node-0 \
--driver_info deploy_iso=http://url/of/deploy.iso \
--driver_info rescue_iso=http://url/of/rescue.iso

Note

OpenStack Image service (glance) image IDs and file:// links are also accepted.

Note

Before the Xena release the parameters were called redfish_deploy_iso and
redfish_rescue_iso accordingly. The old names are still supported for backward compati-
bility.

No customization is currently done to the image, so e.g. Layer 3 or DHCP-less ramdisk booting wont
work. Configuring an ESP image is also unnecessary.

236 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Virtual Media Ramdisk

The ramdisk deploy interface can be used in concert with the redfish-virtual-media boot interface
to facilitate the boot of a remote node utilizing pre-supplied virtual media. See Booting a Ramdisk or an
ISO for information on how to enable and configure it.

Instead of supplying an [instance_info]/image_source parameter, a [instance_info]/
boot_iso parameter can be supplied. The image will be downloaded by the conductor, and the instance
will be booted using the supplied ISO image. In accordance with the ramdisk deployment interface
behavior, once booted the machine will have a provision_state of ACTIVE.

baremetal node set <node name or UUID> \
--boot-interface redfish-virtual-media \
--deploy-interface ramdisk \
--instance_info boot_iso=http://url/to.iso

This initial interface does not support bootloader configuration parameter injection, as such the
[instance_info]/kernel_append_params setting is ignored.

Configuration drives are supported starting with the Wallaby release for nodes that have a free virtual
USB slot:

baremetal node deploy <node name or UUID> \
--config-drive '{"meta_data": {...}, "user_data": "..."}'

or via a link to a raw image:

baremetal node deploy <node name or UUID> \
--config-drive http://example.com/config.img

Redfish HTTP(s) Boot

The redfish-https boot interface is very similar to the redfish-virtual-media boot interface. In
this driver, we compose an ISO image, and request the BMC to inform the UEFI firmware to boot the
Ironic ramdisk, or a other ramdisk image. This approach is intended to allow a pattern of engagement
where we have minimal reliance on addressing and discovery of the Ironic deployment through autocon-
figuration like DHCP, and somewhat mirrors vendor examples of booting from an HTTP URL.

This interface has some basic constraints.

• There is no configuration drive functionality, while Virtual Media did help provide such function-
ality.

• This interface is dependent upon BMC, EFI Firmware, and Bootloader, which means we may not
see additional embedded files an contents in an ISO image. This is the same basic constraint over
the ramdisk deploy interface when using Network Booting.

• This is a UEFI-Only boot interface. No legacy boot is possible with this interface.

A good starting point for this interface, is to think of it as higher security network boot, as we are explicitly
telling the BMC where the node should boot from.

Like the redfish-virtual-media boot interface, you will need to create an EFI System Partition image
(ESP), see Configuring an ESP image for details on how to do this.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 237

https://wiki.ubuntu.com/EFIBootLoaders#Booting_from_EFI

Ironic Documentation, Release 26.1.2.dev21

Additionally, if you would like to use the ramdisk deployment interface, the same basic instructions
covered in Virtual Media Ramdisk apply, just use redfish-https as the boot_interface, and keep in
mind, no configuration drives exist with the redfish-https boot interface.

Limitations & Issues

Ironic contains two different ways of providing an HTTP(S) URL to a remote BMC. The first is Swift,
enabled when redfish.use_swift is set to true. Ironic uploads files to Swift, which are then shared as
Temporary Swift URLs. While highly scalable, this method does suffer from issues where some vendors
BMCs reject URLs with & or ? characters. There is no available workaround to leverage Swift in this
state.

When the redfish.use_swift setting is set to false, Ironic will house the files locally in the deploy.
http_root folder structure, and then generate a URL pointing the BMC to connect to the HTTP service
configured via deploy.http_url.

Out-Of-Band inspection

The redfish hardware type can inspect the bare metal node by querying Redfish compatible BMC. This
process is quick and reliable compared to the way the inspector hardware type works i.e. booting bare
metal node into the introspection ramdisk.

Note

The redfish inspect interface relies on the optional parts of the Redfish specification. Not all
Redfish-compliant BMCs might serve the required information, in which case bare metal node in-
spection will fail.

Note

The local_gb property cannot always be discovered, for example, when a node does not have local
storage or the Redfish implementation does not support the required schema. In this case the property
will be set to 0.

Retrieving BIOS Settings

When the bios interface is set to redfish, Ironic will retrieve the nodes BIOS settings as described in
BIOS Configuration. In addition, via Sushy, Ironic will get the BIOS Attribute Registry (BIOS Registry)
from the node which is a schema providing details on the settings. The following fields will be returned
in the BIOS API (/v1/nodes/{node_ident}/bios) along with the setting name and value:

238 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic/latest/admin/bios.html
https://opendev.org/openstack/sushy
https://redfish.dmtf.org/schemas/v1/AttributeRegistry.v1_3_5.json

Ironic Documentation, Release 26.1.2.dev21

Field Description
attribute_typeThe type of setting - Enumeration, Integer, String, Boolean, or Password
allowable_valuesA list of allowable values when the attribute_type is Enumeration
lower_bound The lowest allowed value when attribute_type is Integer
upper_bound The highest allowed value when attribute_type is Integer
min_length The shortest string length that the value can have when attribute_type is String
max_length The longest string length that the value can have when attribute_type is String
read_only The setting is ready only and cannot be modified
unique The setting is specific to this node
reset_requiredAfter changing this setting a node reboot is required

Further topics

Redfish hardware metrics

The redfish hardware type supports sending hardware metrics via the notification system. The
event_type field of a notification will be set to hardware.redfish.metrics (where redfish may
be replaced by a different driver name for hardware types derived from it).

The payload of each notification is a mapping where keys are sensor types (Fan, Temperature, Power
or Drive) and values are also mappings from sensor identifiers to the sensor data.

Each Fan payload contains the following fields:

• max_reading_range, min_reading_range - the range of reading values.

• reading, reading_units - the current reading and its units.

• serial_number - the serial number of the fan sensor.

• physical_context - the context of the sensor, such as SystemBoard. Can also be null or just
Fan.

Each Temperature payload contains the following fields:

• max_reading_range_temp, min_reading_range_temp - the range of reading values.

• reading_celsius - the current reading in degrees Celsius.

• sensor_number - the number of the temperature sensor.

• physical_context - the context of the sensor, usually reflecting its location, such as CPU,
Memory, Intake, PowerSupply or SystemBoard. Can also be null.

Each Power payload contains the following fields:

• power_capacity_watts, line_input_voltage, last_power_output_watts

• serial_number - the serial number of the power source.

• state - the power source state: enabled, absent (null if unknown).

• health - the power source health status: ok, warning, critical (null if unknown).

Each Drive payload contains the following fields:

• name - the drive name in the BMC (this is not a Linux device name like /dev/sda).

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 239

Ironic Documentation, Release 26.1.2.dev21

• model - the drive model (if known).

• capacity_bytes - the drive capacity in bytes.

• state - the drive state: enabled, absent (null if unknown).

• health - the drive health status: ok, warning, critical (null if unknown).

Note

Drive payloads are often not available on real hardware.

Warning

Metrics collection works by polling several Redfish endpoints on the target BMC. Some older BMC
implementations may have hard rate limits or misbehave under load. If this is the case for you, you
need to reduce the metrics collection frequency or completely disable it.

Example (Dell)

{
"message_id": "578628d2-9967-4d33-97ca-7e7c27a76abc",
"publisher_id": "conductor-1.example.com",
"event_type": "hardware.redfish.metrics",
"priority": "INFO",
"payload": {

"message_id": "60653d54-87aa-43b8-a4ed-96d568dd4e96",
"instance_uuid": null,
"node_uuid": "aea161dc-2e96-4535-b003-ca70a4a7bb6d",
"timestamp": "2023-10-22T15:50:26.841964",
"node_name": "dell-430",
"event_type": "hardware.redfish.metrics.update",
"payload": {

"Fan": {
"0x17||Fan.Embedded.1A@System.Embedded.1": {

"identity": "0x17||Fan.Embedded.1A",
"max_reading_range": null,
"min_reading_range": 720,
"reading": 1680,
"reading_units": "RPM",
"serial_number": null,
"physical_context": "SystemBoard",
"state": "enabled",
"health": "ok"

},
"0x17||Fan.Embedded.2A@System.Embedded.1": {

"identity": "0x17||Fan.Embedded.2A",
"max_reading_range": null,
"min_reading_range": 720,

(continues on next page)

240 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"reading": 3120,
"reading_units": "RPM",
"serial_number": null,
"physical_context": "SystemBoard",
"state": "enabled",
"health": "ok"

},
"0x17||Fan.Embedded.2B@System.Embedded.1": {

"identity": "0x17||Fan.Embedded.2B",
"max_reading_range": null,
"min_reading_range": 720,
"reading": 3000,
"reading_units": "RPM",
"serial_number": null,
"physical_context": "SystemBoard",
"state": "enabled",
"health": "ok"

}
},
"Temperature": {

"iDRAC.Embedded.1#SystemBoardInletTemp@System.Embedded.1": {
"identity": "iDRAC.Embedded.1#SystemBoardInletTemp",
"max_reading_range_temp": 47,
"min_reading_range_temp": -7,
"reading_celsius": 28,
"physical_context": "SystemBoard",
"sensor_number": 4,
"state": "enabled",
"health": "ok"

},
"iDRAC.Embedded.1#CPU1Temp@System.Embedded.1": {

"identity": "iDRAC.Embedded.1#CPU1Temp",
"max_reading_range_temp": 90,
"min_reading_range_temp": 3,
"reading_celsius": 63,
"physical_context": "CPU",
"sensor_number": 14,
"state": "enabled",
"health": "ok"

}
},
"Power": {

"PSU.Slot.1:Power@System.Embedded.1": {
"power_capacity_watts": null,
"line_input_voltage": 206,
"last_power_output_watts": null,
"serial_number": "CNLOD0075324D7",
"state": "enabled",
"health": "ok"

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 241

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

},
"PSU.Slot.2:Power@System.Embedded.1": {

"power_capacity_watts": null,
"line_input_voltage": null,
"last_power_output_watts": null,
"serial_number": "CNLOD0075324E5",
"state": null,
"health": "critical"

}
},
"Drive": {

"Solid State Disk 0:1:0:RAID.Integrated.1-1@System.Embedded.1
↪→": {

"name": "Solid State Disk 0:1:0",
"capacity_bytes": 479559942144,
"state": "enabled",
"health": "ok"

},
"Physical Disk 0:1:1:RAID.Integrated.1-1@System.Embedded.1": {

"name": "Physical Disk 0:1:1",
"capacity_bytes": 1799725514752,
"state": "enabled",
"health": "ok"

},
"Physical Disk 0:1:2:RAID.Integrated.1-1@System.Embedded.1": {

"name": "Physical Disk 0:1:2",
"capacity_bytes": 1799725514752,
"state": "enabled",
"health": "ok"

},
"Backplane 1 on Connector 0 of Integrated RAID Controller␣

↪→1:RAID.Integrated.1-1@System.Embedded.1": {
"name": "Backplane 1 on Connector 0 of Integrated RAID␣

↪→Controller 1",
"capacity_bytes": null,
"state": "enabled",
"health": "ok"

}
}

}
},
"timestamp": "2023-10-22 15:50:36.700458"

}

242 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Node Vendor Passthru Methods

Method Description
create_subscriptionCreate a new subscription on the Node
delete_subscriptionDelete a subscription of a Node
get_all_subscriptionsList all subscriptions of a Node
get_subscriptionShow a single subscription of a Node
eject_vmedia Eject attached virtual media from a Node

Create Subscription

Table 1: Request

Name In Type Description
Destination body string The URI of the destination Event Service
EventTypes
(optional)

body array List of types of events that shall be sent to the destination

Context (op-
tional)

body string A client-supplied string that is stored with the event destination
subscription

Protocol (op-
tional)

body string The protocol type that the event will use for sending the event
to the destination

Example JSON to use in create_subscription:

{
"Destination": "https://someurl",
"EventTypes": ["Alert"],
"Context": "MyProtocol",
"args": "Redfish"

}

Delete Subscription

Table 2: Request

Name In Type Description
id body string The Id of the subscription generated

by the BMC

Example JSON to use in delete_subscription:

{
"id": "<id of the subscription generated by the BMC>"

}

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 243

Ironic Documentation, Release 26.1.2.dev21

Get Subscription

Table 3: Request

Name In Type Description
id body string The Id of the subscription generated

by the BMC

Example JSON to use in get_subscription:

{
"id": "<id of the subscription generated by the BMC>"

}

Get All Subscriptions

The get_all_subscriptions doesnt require any parameters.

Eject Virtual Media

Table 4: Request

Name In Type Description
boot_device
(optional)

body string Type of the device to eject (all devices by default)

Internal Session Cache

The redfish hardware type, and derived interfaces, utilizes a built-in session cache which prevents
Ironic from re-authenticating every time Ironic attempts to connect to the BMC for any reason.

This consists of cached connectors objects which are used and tracked by a unique consideration
of redfish_username, redfish_password, redfish_verify_ca, and finally redfish_address.
Changing any one of those values will trigger a new session to be created. The redfish_system_id
value is explicitly not considered as Redfish has a model of use of one BMC to many systems, which is
also a model Ironic supports.

The session cache default size is 1000 sessions per conductor. If you are operating a deployment with
a larger number of Redfish BMCs, it is advised that you do appropriately tune that number. This can be
tuned via the API service configuration file, redfish.connection_cache_size.

244 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Session Cache Expiration

By default, sessions remain cached for as long as possible in memory, as long as they have not experienced
an authentication, connection, or other unexplained error.

Under normal circumstances, the sessions will only be rolled out of the cache in order of oldest first when
the cache becomes full. There is no time based expiration to entries in the session cache.

Of course, the cache is only in memory, and restarting the ironic-conductor will also cause the cache
to be rebuilt from scratch. If this is due to any persistent connectivity issue, this may be sign of an
unexpected condition, and please consider contacting the Ironic developer community for assistance.

Redfish Interoperability Profile

The Ironic project provides a Redfish Interoperability Profile located in redfish-interop-profiles
folder at source code root. The Redfish Interoperability Profile is a JSON document written in a particular
format that serves two purposes:

• It enables the creation of a human-readable document that merges the profile requirements with
the Redfish schema into a single document for developers or users.

• It allows a conformance test utility to test a Redfish Service implementation for conformance with
the profile.

The JSON document structure is intended to align easily with JSON payloads retrieved from Redfish
Service implementations, to allow for easy comparisons and conformance testing. Many of the properties
defined within this structure have assumed default values that correspond with the most common use case,
so that those properties can be omitted from the document for brevity.

OpenStackIronicProfile 1.1.0

Specifies the OpenStack Ironic vendor-independent Redfish service requirements, typically offered by a
baseboard management controller (BMC).

Bios

Allows reading or changing BIOS settings.

Properties

Attributes [required]
Current BIOS settings.

AttributeRegistry
Name of the registry with the schema of BIOS settings.

@Redfish.Settings [required]
ETag

Messages
Used to determine success or failure.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 245

Ironic Documentation, Release 26.1.2.dev21

SettingsObject [required]
Provides a link to the actually updated object.

Link to a Bios resource.

SupportedApplyTimes
Determines whether update is immediate or needs a reboot.

Actions

ResetBios
Reset BIOS settings to their factory values.

Chassis

Allows collecting sensors data from the chassis.

Properties

Power
Provides a link to the power information.

Link to a Power resource.

Thermal
Provides a link to the thermal information.

Link to a Thermal resource.

UUID
Used as an ID for indicators.

ComputerSystem

Provides bare-metal node management. [required]

Properties

Bios
Reference to the corresponding Bios resource.

BiosVersion
Version of the system firmware.

Boot [required]
Allows changing boot devices and modes, which is fundamental for bare-metal provisioning.

BootSourceOverrideEnabled [required] [writable]
Manages whether the next boot device will be permanent or one-time.

BootSourceOverrideMode [required] [writable]
Allows switching boot mode to/from UEFI.

246 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

BootSourceOverrideTarget [required] [writable]
Allows changing the next boot device.

EthernetInterfaces
Provides a link to the nodes network interfaces.

Link to a collection of EthernetInterface resources.

IndicatorLED
Enables the bare-metal indicator API.

Links [required]

Chassis
Provides sensor data.

ManagedBy [required]
Provides a link from the node to its BMC.

Manufacturer
Provides the vendor property.

MemorySummary
Provides memory data during out-of-band inspection.

TotalSystemMemoryGiB [required]

PowerState [required]
Provides the current power state.

Processors
Provides a link to the nodes CPUs.

Link to a collection of Processor resources.

SecureBoot
Provides a link to the nodes secure boot settings.

Link to a SecureBoot resource.

SimpleStorage
Provides disk data during out-of-band inspection.

Link to a collection of SimpleStorage resources.

Storage
Enables hardware RAID management.

Link to a collection of Storage resources.

VirtualMedia
Enables provisioning using virtual media.

Link to a collection of VirtualMedia resources.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 247

Ironic Documentation, Release 26.1.2.dev21

Actions

Reset [required]
Provides an ability to execute power actions on the node.

ResetType [required]

ComputerSystemCollection

At least one system is expected. [required]

Properties

Members [required]

Drive

Provides information about individual drives when configuring hardware RAID.

Properties

CapacityBytes

MediaType [required]

Protocol [required]

Status [required]
Health [required]

State [required]

EthernetInterface

Enables enrolling ports during inspection.

Properties

MACAddress [required]
MAC address is mandatory on ports.

Status [required]

Health [required]
Only healthy interfaces are considered.

State [required]
Enables filtering only enabled interfaces.

248 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Manager

Provides access to the properties of the BMC.

Properties

FirmwareVersion
Provides the current firmware version of the BMC.

Power

Provides the current power information in the sensor data.

Properties

PowerSupplies [required]
Provides a list of the installed power supplies.

LastPowerOutputWatts

LineInputVoltage

PowerCapacityWatts

SerialNumber

Status [required]

Health
Health status to report in the sensors data.

State
Power state to report in the sensors data.

Processor

Provides CPU data during out-of-band inspection.

Properties

ProcessorArchitecture [required]
Used to determine the CPU architecture of the machine.

TotalThreads [required]
Used to estimate the core count.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 249

Ironic Documentation, Release 26.1.2.dev21

SecureBoot

Allows turning secure boot mode on and off.

Properties

SecureBootEnable [required]
Allows reading and changing the secure boot state.

Actions

ResetKeys
Allows resetting secure boot keys via a step.

ServiceRoot

Provides links to all collections and services. [required]

Properties

Systems [required]
Provides a link to systems.

Link to a collection of ComputerSystem resources.

SessionService
Provides a link to the session service.

Link to a SessionService resource.

TaskService
Provides a link to the task service.

Link to a TaskService resource.

UpdateService
Provides a link to the update service.

Link to a UpdateService resource.

SessionService

Allows using sessions for authentication instead of HTTP basic authentication.

250 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

SimpleStorage

Provides information about disks during inspection as well as disk sensors.

Properties

Devices [required]

CapacityBytes
Disk capacity.

Model
Device model to report in the sensors data.

Name
Device name to report in the sensors data.

Status [required]

Health
Health status to report in the sensors data.

State
Device state to report in the sensors data.

Storage

Allows configuring hardware RAID.

Properties

Drives [required]
Provides a link to attached drives.

Link to a collection of Drive resources.

StorageControllers [required]
Provides information about storage controllers.

SupportedRAIDTypes
Defines which RAID types are supported.

Volumes [required]
Provides a link to existing volumes.

Link to a collection of Volume resources.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 251

Ironic Documentation, Release 26.1.2.dev21

TaskService

Provides task management.

Thermal

Provides thermal information of a chassis as part of the sensors data.

Properties

Fans [required]
MaxReadingRange

MinReadingRange

Reading [required]

ReadingUnits [required]

SerialNumber

Status [required]

Health
Health status to report in the sensors data.

State
Device state to report in the sensors data.

Temperatures [required]
MaxReadingRangeTemp

MinReadingRangeTemp

ReadingCelsius [required]

PhysicalContext

SensorNumber

UpdateService

Actions

SimpleUpdate [required]
Enables firmware updates.

ImageURI [required]

Targets

TransferProtocol [required]

252 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

VirtualMedia

Enables provisioning using virtual media. [required]

Properties

Image [required]
URL of the image to attach.

Inserted

MediaTypes [required]
Supported media types for this virtual media slot.

WriteProtected

Actions

EjectMedia [required]
Enables ejecting virtual media devices.

InsertMedia [required]
Enables inserting virtual media devices.

Image [required]

Inserted

TransferMethod

TransferProtocolType

WriteProtected

Volume

Provides access to RAID volumes.

Properties

CapacityBytes [required]

Name [required]

RAIDType

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 253

Ironic Documentation, Release 26.1.2.dev21

VolumeCollection

Allows listing and creating RAID volumes.

Properties

@Redfish.OperationApplyTimeSupport [required]

Validation of Profiles using DMTF tool

An open source utility has been created by the Redfish Forum to verify that a Redfish Service im-
plementation conforms to the requirements included in a Redfish Interoperability Profile. The Red-
fish Interop Validator is available for download from the DMTFs organization on Github at https:
//github.com/DMTF/Redfish-Interop-Validator. Refer to instructions in README on how to config-
ure and run validation.

SNMP driver

The SNMP hardware type enables control of power distribution units of the type frequently found in
data centre racks. PDUs frequently have a management ethernet interface and SNMP support enabling
control of the power outlets.

The SNMP power interface works with the PXE boot interface for network deployment and network-
configured boot.

Note

Unlike most of the other power interfaces, the SNMP power interface does not have a corresponding
management interface. The SNMP hardware type uses the noop management interface instead.

List of supported devices

This is a non-exhaustive list of supported devices. Any device not listed in this table could possibly work
using a similar driver.

Please report any device status.

Manufacturer Model Supported? Driver name
APC AP7920 Yes apc_masterswitch
APC AP9606 Yes apc_masterswitch
APC AP9225 Yes apc_masterswitchplus
APC AP7155 Yes apc_rackpdu
APC AP7900 Yes apc_rackpdu
APC AP7901 Yes apc_rackpdu
APC AP7902 Yes apc_rackpdu
APC AP7911a Yes apc_rackpdu

continues on next page

254 Chapter 4. Administrator Guide

https://github.com/DMTF/Redfish-Interop-Validator
https://github.com/DMTF/Redfish-Interop-Validator

Ironic Documentation, Release 26.1.2.dev21

Table 5 – continued from previous page
Manufacturer Model Supported? Driver name
APC AP7921 Yes apc_rackpdu
APC AP7922 Yes apc_rackpdu
APC AP7930 Yes apc_rackpdu
APC AP7931 Yes apc_rackpdu
APC AP7932 Yes apc_rackpdu
APC AP7940 Yes apc_rackpdu
APC AP7941 Yes apc_rackpdu
APC AP7951 Yes apc_rackpdu
APC AP7960 Yes apc_rackpdu
APC AP7990 Yes apc_rackpdu
APC AP7998 Yes apc_rackpdu
APC AP8941 Yes apc_rackpdu
APC AP8953 Yes apc_rackpdu
APC AP8959 Yes apc_rackpdu
APC AP8961 Yes apc_rackpdu
APC AP8965 Yes apc_rackpdu
Aten all? Yes aten
CyberPower all? Untested cyberpower
EatonPower all? Untested eatonpower
Teltronix all? Yes teltronix
BayTech MRP27 Yes baytech_mrp27
Raritan PX3-5547V-V2 Yes raritan_pdu2
Raritan PX3-5726V Yes raritan_pdu2
Raritan PX3-5776U-N2 Yes raritan_pdu2
Raritan PX3-5969U-V2 Yes raritan_pdu2
Raritan PX3-5961I2U-V2 Yes raritan_pdu2
Vertiv NU30212 Yes vertivgeist_pdu
ServerTech CW-16VE-P32M Yes servertech_sentry3
ServerTech C2WG24SN Yes servertech_sentry4

Software Requirements

Additional python libraries to communicate with SNMP are required. Please see
driver-requirements.txt for an updated list for your release.

Enabling the SNMP Hardware Type

1. Add snmp to the list of enabled_hardware_types in ironic.conf. Also update
enabled_management_interfaces and enabled_power_interfaces in ironic.conf as
shown below:

[DEFAULT]
enabled_hardware_types = snmp
enabled_management_interfaces = noop
enabled_power_interfaces = snmp

2. To enable the network boot fallback, update enable_netboot_fallback in ironic.conf:

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 255

Ironic Documentation, Release 26.1.2.dev21

[pxe]
enable_netboot_fallback = True

Note

It is important to enable the fallback as SNMP hardware type does not support setting of boot
devices. When booting in legacy (BIOS) mode, the generated network booting artifact will
force booting from local disk. In UEFI mode, Ironic will configure the boot order using UEFI
variables.

3. Restart the Ironic conductor service.

service ironic-conductor restart

Ironic Node Configuration

Nodes configured to use the SNMP hardware type should have the driver field set to the hardware type
snmp.

The following property values have to be added to the nodes driver_info field:

• snmp_driver: PDU manufacturer driver name or auto to automatically choose ironic snmp driver
based on SNMPv2-MIB::sysObjectID value as reported by PDU.

• snmp_address: the IPv4 address of the PDU controlling this node.

• snmp_port: (optional) A non-standard UDP port to use for SNMP operations. If not specified,
the default port (161) is used.

• snmp_outlet: The power outlet on the PDU (1-based indexing).

• snmp_version: (optional) SNMP protocol version (permitted values 1, 2c or 3). If not specified,
SNMPv1 is chosen.

• snmp_community: (Required for SNMPv1/SNMPv2c unless snmp_community_read and/or
snmp_community_write properties are present in which case the latter take over) SNMP com-
munity name parameter for reads and writes to the PDU.

• snmp_community_read: SNMP community name parameter for reads to the PDU. Takes prece-
dence over the snmp_community property.

• snmp_community_write: SNMP community name parameter for writes to the PDU. Takes prece-
dence over the snmp_community property.

• snmp_user: (Required for SNMPv3) SNMPv3 User-based Security Model (USM) user name.
Synonym for now obsolete snmp_security parameter.

• snmp_auth_protocol: SNMPv3 message authentication protocol ID. Valid values include:
none, md5, sha for all pysnmp versions and additionally sha224, sha256, sha384, sha512 for
pysnmp versions 4.4.1 and later. Default is none unless snmp_auth_key is provided. In the latter
case md5 is the default.

• snmp_auth_key: SNMPv3 message authentication key. Must be 8+ characters long. Required
when message authentication is used.

256 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• snmp_priv_protocol: SNMPv3 message privacy (encryption) protocol ID. Valid values in-
clude: none, des, 3des, aes, aes192, aes256 for all pysnmp version and additionally
aes192blmt, aes256blmt for pysnmp versions 4.4.3+. Note that message privacy requires using
message authentication. Default is none unless snmp_priv_key is provided. In the latter case
des is the default.

• snmp_priv_key: SNMPv3 message privacy (encryption) key. Must be 8+ characters long. Re-
quired when message encryption is used.

• snmp_context_engine_id: SNMPv3 context engine ID. Default is the value of authoritative
engine ID.

• snmp_context_name: SNMPv3 context name. Default is an empty string.

The following command can be used to enroll a node with the snmp hardware type:

baremetal node create \
--driver snmp --driver-info snmp_driver=<pdu_manufacturer> \
--driver-info snmp_address=<ip_address> \
--driver-info snmp_outlet=<outlet_index> \
--driver-info snmp_community=<community_string>

Fake driver

Overview

The fake-hardware hardware type is what it claims to be: fake. Use of this type or the fake interfaces
should be temporary or limited to non-production environments, as the fake interfaces do not perform
any of the actions typically expected.

The fake interfaces can be configured to be combined with any of the real hardware interfaces, allowing
you to effectively disable one or more hardware interfaces for testing by simply setting that interface to
fake.

Use cases

Development

Developers can use fake-hardware hardware-type to mock out nodes for testing without those nodes
needing to exist with physical or virtual hardware.

Scale testing

The fake drivers have a configurable delay in seconds which will result in those operations taking that
long to complete. Two comma-delimited values will result in a delay with a triangular random distribu-
tion, weighted on the first value. These delays are applied to operations which typically block in other
drivers. This allows more realistic scenarios to be arranged for performance and functional testing of an
Ironic service without requiring real bare metal or faking at the BMC protocol level.

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 257

Ironic Documentation, Release 26.1.2.dev21

[fake]
power_delay = 5
boot_delay = 10
deploy_delay = 60,360
vendor_delay = 1
management_delay = 5
inspect_delay = 360,480
raid_delay = 10
bios_delay = 5
storage_delay = 10
rescue_delay = 120

Adoption

Some OpenStack deployers have used fake interfaces in Ironic to allow an adoption-style workflow with
Nova. By setting a nodes hardware interfaces to fake, its possible to deploy to that node with Nova
without causing any actual changes to the hardware or an OS already deployed on it.

This is generally an unsupported use case, but it is possible. For more information, see the relevant post
from CERN TechBlog.

4.1.3 Changing Hardware Types and Interfaces

Hardware types and interfaces are enabled in the configuration as described in Enabling drivers and
hardware types. Usually, a hardware type is configured on enrolling as described in Enrolling hardware
with Ironic:

baremetal node create --driver <hardware type>

Any hardware interfaces can be specified on enrollment as well:

baremetal node create --driver <hardware type> \
--deploy-interface direct --<other>-interface <other implementation>

For the remaining interfaces the default value is assigned as described in Defaults for hardware interfaces.
Both the hardware type and the hardware interfaces can be changed later via the node update API.

Changing Hardware Interfaces

Hardware interfaces can be changed by the following command:

baremetal node set <NODE> \
--deploy-interface direct \
--<other>-interface <other implementation>

The modified interfaces must be enabled and compatible with the current nodes hardware type.

258 Chapter 4. Administrator Guide

https://techblog.web.cern.ch/techblog/post/ironic-nova-adoption/
https://techblog.web.cern.ch/techblog/post/ironic-nova-adoption/

Ironic Documentation, Release 26.1.2.dev21

Changing Hardware Type

Changing the nodes hardware type can pose a problem. When the driver field is updated, the final result
must be consistent, that is, the resulting hardware interfaces must be compatible with the new hardware
type. This will not work:

baremetal node create --name test --driver fake-hardware
baremetal node set test --driver ipmi

This is because the fake-hardware hardware type defaults to fake implementations for some or all
interfaces, but the ipmi hardware type is not compatible with them. There are three ways to deal with
this situation:

1. Provide new values for all incompatible interfaces, for example:

baremetal node set test --driver ipmi \
--boot-interface pxe \
--deploy-interface direct \
--management-interface ipmitool \
--power-interface ipmitool

2. Request resetting some of the interfaces to their new defaults by using the
--reset-<IFACE>-interface family of arguments, for example:

baremetal node set test --driver ipmi \
--reset-boot-interface \
--reset-deploy-interface \
--reset-management-interface \
--reset-power-interface

Note

This feature is available starting with ironic 11.1.0 (Rocky series, API version 1.45).

3. Request resetting all interfaces to their new defaults:

baremetal node set test --driver ipmi --reset-interfaces

You can still specify explicit values for some interfaces:

baremetal node set test --driver ipmi --reset-interfaces \
--deploy-interface direct

Note

This feature is available starting with ironic 11.1.0 (Rocky series, API version 1.45).

4.1. Drivers, Hardware Types and Hardware Interfaces for Ironic 259

Ironic Documentation, Release 26.1.2.dev21

Static boot order configuration

Some hardware is known to misbehave when changing the boot device through the BMC. To work around
it you can use the noop management interface implementation with the ipmi and redfish hardware
types. In this case the Bare Metal service will not change the boot device for you, leaving the pre-
configured boot order.

For example, in case of the PXE boot:

1. Via any available means configure the boot order on the node as follows:

1. Boot from PXE/iPXE on the provisioning NIC.

Warning

If it is not possible to limit network boot to only provisioning NIC, make sure that no
other DHCP/PXE servers are accessible by the node.

2. Boot from hard drive.

2. Make sure the noop management interface is enabled, for example:

[DEFAULT]
enabled_hardware_types = ipmi,redfish
enabled_management_interfaces = ipmitool,redfish,noop

3. Change the node to use the noop management interface:

baremetal node set <NODE> --management-interface noop

4.1.4 Unsupported drivers

The following drivers were declared as unsupported in ironic Newton release and as of Ocata release they
are removed from ironic:

• AMT driver - available as part of ironic-staging-drivers

• iBoot driver - available as part of ironic-staging-drivers

• Wake-On-Lan driver - available as part of ironic-staging-drivers

• Virtualbox drivers

• SeaMicro drivers

• MSFT OCS drivers

The SSH drivers were removed in the Pike release. Similar functionality can be achieved either with
VirtualBMC or using libvirt drivers from ironic-staging-drivers.

260 Chapter 4. Administrator Guide

http://ironic-staging-drivers.readthedocs.io
http://ironic-staging-drivers.readthedocs.io
http://ironic-staging-drivers.readthedocs.io
https://opendev.org/openstack/virtualbmc
http://ironic-staging-drivers.readthedocs.io

Ironic Documentation, Release 26.1.2.dev21

4.2 Bare Metal Service Features

4.2.1 Hardware Inspection

Overview

Inspection allows Bare Metal service to discover required node properties once required driver_info
fields (for example, IPMI credentials) are set by an operator. Inspection will also create the Bare Metal
service ports for the discovered ethernet MACs. Operators will have to manually delete the Bare Metal
service ports for which physical media is not connected. This is required due to the bug 1405131.

There are three kinds of inspection supported by Bare Metal service:

1. Out-of-band inspection is currently implemented by several hardware types, including ilo, idrac
and irmc.

2. In-band inspection utilizing the ironic-inspector project.

3. New experimental built-in in-band inspection.

The node should be in the manageable state before inspection is initiated. If it is in the enroll or
available state, move it to manageable first:

baremetal node manage <node_UUID>

Then inspection can be initiated using the following command:

baremetal node inspect <node_UUID>

Capabilities discovery

This is an incomplete list of capabilities we want to discover during inspection. The exact support is
hardware and hardware type specific though, the most complete list is provided by the iLO Hardware
Inspection Support.

secure_boot (true or false)
whether secure boot is supported for the node

boot_mode (bios or uefi)
the boot mode the node is using

cpu_vt (true or false)
whether the CPU virtualization is enabled

cpu_aes (true or false)
whether the AES CPU extensions are enabled

max_raid_level (integer, 0-10)
maximum RAID level supported by the node

pci_gpu_devices (non-negative integer)
number of GPU devices on the node

The operator can specify these capabilities in nova flavor for node to be selected for scheduling:

4.2. Bare Metal Service Features 261

https://bugs.launchpad.net/ironic/+bug/1405131
https://pypi.org/project/ironic-inspector

Ironic Documentation, Release 26.1.2.dev21

openstack flavor set my-baremetal-flavor --property capabilities:pci_gpu_
↪→devices="> 0"

openstack flavor set my-baremetal-flavor --property capabilities:secure_boot=
↪→"true"

Please see a specific hardware type page for the exact list of capabilities this hardware type can discover.

In-band inspection

In-band inspection involves booting a ramdisk on the target node and fetching information directly from
it. This process is more fragile and time-consuming than the out-of-band inspection, but it is not vendor-
specific and works across a wide range of hardware.

Inspector Support

Ironic supports in-band inspection using the ironic-inspector project. This is the original in-band inspec-
tion implementation, which is being gradually phased out in favour of a similar implementation inside
Ironic proper.

It is supported by all hardware types, and used by default, if enabled, by the ipmi hardware type. The
inspector inspect interface has to be enabled to use it:

[DEFAULT]
enabled_inspect_interfaces = inspector,no-inspect

If the ironic-inspector service is not registered in the service catalog, set the following option:

[inspector]
endpoint_override = http://inspector.example.com:5050

In order to ensure that ports in Bare Metal service are synchronized with NIC ports on the node, the
following settings in the ironic-inspector configuration file must be set:

[processing]
add_ports = all
keep_ports = present

Managed and unmanaged inspection

There are two modes of in-band inspection: managed inspection and unmanaged inspection. See Man-
aged and unmanaged inspection for more details.

262 Chapter 4. Administrator Guide

https://pypi.org/project/ironic-inspector

Ironic Documentation, Release 26.1.2.dev21

In-Band Inspection

In-band inspection involves booting a ramdisk on the target node and fetching information directly from
it. This process is more fragile and time-consuming than the out-of-band inspection, but it is not vendor-
specific and works across a wide range of hardware.

In the 2023.2 Bobcat release series, Ironic received an experimental implementation of in-band inspection
that does not require the separate ironic-inspector service.

Note

The implementation described in this document is not 100% compatible with the previous one (based
on ironic-inspector). Check the documentation and the release notes for which features are currently
available.

Use Inspector Support for production deployments of Ironic 2023.2 or earlier releases.

Managed and unmanaged inspection

In-band inspection can be managed or unmanaged. This document explains the difference between these
two concepts and applies both to the built-in in-band inspection and to Inspector Support.

Managed inspection

Inspection is managed when the Bare Metal conductor fully configures the node for inspection, including
setting boot device, boot mode and power state. This is the only way to conduct inspection using Virtual
media boot or with Layer 3 or DHCP-less ramdisk booting. This mode is engaged automatically when
the node has sufficient information to configure boot (e.g. ports in case of iPXE).

For network interfaces based on OpenStack Networking (e.g. flat and neutron), the UUID or name
of the inspection network must be provided via configuration or driver_info, for example:

[neutron]
inspection_network = <NETWORK UUID>

There are a few configuration options that tune managed inspection, the most important is
extra_kernel_params, which allows adding kernel parameters for inspection specifically. This is
where you can configure inspection collectors and other parameters, for example:

[inspector]
extra_kernel_params = ipa-inspection-collectors=default,logs ipa-collect-
↪→lldp=1

For the callback URL the ironic-inspector endpoint from the service catalog is used. If you want to
override the endpoint for callback only, set the following option:

[inspector]
callback_endpoint_override = https://example.com/baremetal-introspection/v1/
↪→continue

For the built-in inspection, the bare metal API endpoint can be overridden instead:

4.2. Bare Metal Service Features 263

https://pypi.org/project/ironic-inspector
https://pypi.org/project/ironic-inspector
https://docs.openstack.org/ironic-python-agent/2024.2/admin/how_it_works.html#inspection

Ironic Documentation, Release 26.1.2.dev21

[service_catalog]
endpoint_override = https://example.com/baremetal

Unmanaged inspection

Under unmanaged inspection we understand in-band inspection where the boot configuration (iPXE
scripts, DHCP options, etc) is not provided by the Bare Metal service. In this case, the node is sim-
ply set to boot from network and powered on. The operator is responsible for the correct network boot
configuration, e.g. as explained in Configuring unmanaged in-band inspection.

Unmanaged inspection was the only inspection mode before the Ussuri release, and it is still used when the
nodes boot cannot be configured by the conductor. The options described above do not affect unmanaged
inspection.

Because of the complex installation and operation requirements, unmanaged inspection is disabled by
default. To enable it, set require_managed_boot to False:

[inspector]
require_managed_boot = False

Inspection data

The in-band inspection processes collects a lot of information about the node. This data consists of two
parts:

• Inventory is hardware inventory reported by the agent.

• Plugin data is data populated by ramdisk-side and server-side plug-ins.

After a successful inspection, you can get both parts as JSON with:

$ baremetal node inventory save <NODE>

Use jq to filter the parts you need, e.g. only the inventory itself:

$ # System vendor information from the inventory
$ baremetal node inventory save <NODE> | jq .inventory.system_vendor
{

"product_name": "KVM (9.2.0)",
"serial_number": "",
"manufacturer": "Red Hat",
"firmware": {
"vendor": "EDK II",
"version": "edk2-20221207gitfff6d81270b5-7.el9",
"build_date": "12/07/2022"

}
}

$ # Interfaces used to create ports
$ baremetal node inventory save <NODE> | jq .plugin_data.valid_interfaces

(continues on next page)

264 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/2024.2/admin/how_it_works.html#hardware-inventory

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

{
"eth0": {
"name": "eth0",
"mac_address": "52:54:00:5e:09:ff",
"ipv4_address": "192.168.122.164",
"ipv6_address": "fe80::5054:ff:fe5e:9ff",
"has_carrier": true,
"lldp": null,
"vendor": "0x1af4",
"product": "0x0001",
"client_id": null,
"biosdevname": null,
"speed_mbps": null,
"pxe_enabled": true

}
}

Plugin data

Plugin data is the storage for all information that is collected or processed by various plugins. Its format
is not a part of the API stability promise and may change depending on your configuration.

Plugin data comes from two sources:

• inspection collectors - ramdisk-side inspection plug-ins.

• Inspection hooks - server-side inspection plug-ins.

Data storage

There are several options to store the inspection data, specified via the inventory.data_backend
option:

none
Do not store inspection data at all. The API will always return 404 NOT FOUND.

database
Store inspection data in a separate table in the main database.

swift
Store inspection data in the Object Store service (swift) in the container specified by the
inventory.swift_data_container option.

Warning

There is currently no way to migrate data between backends. Changing the backend will remove
access to existing data.

4.2. Bare Metal Service Features 265

https://docs.openstack.org/ironic-python-agent/2024.2/admin/how_it_works.html#inspection-data

Ironic Documentation, Release 26.1.2.dev21

Inspection hooks

Inspection hooks are a type of the Bare Metal service plug-ins responsible for processing data from in-
band inspection. By configuring these hooks, an operator can fully customize the inspection processing
phase. How the data is collected can be configured with inspection collectors.

Configuring hooks

Two configuration options are responsible for inspection hooks: inspector.default_hooks defines
which hooks run by default, while inspector.hooks defines which hooks to run in your deployment.
Only the second option should be modified by operators, while the first one is to provide the defaults
without hardcoding them:

[inspector]
hooks = $default_hooks

To make a hook run after the default ones, append it to the list, e.g.

[inspector]
hooks = $default_hooks,extra-hardware

Default hooks

In the order they go in the inspector.default_hooks option:

ramdisk-error
Processes the error field from the ramdisk, aborting inspection if it is not empty.

validate-interfaces
Validates network interfaces and stores the result in the plugin_data in two fields:

• all_interfaces - all interfaces that pass the basic sanity check.

• valid_interfaces - interfaces that satisfy the configuration in the inspector.
add_ports option.

In both cases, interfaces get an addition field:

• pxe_enabled - whether PXE was enabled on this interface during the inspection boot.

ports
Creates ports for interfaces in valid_interfaces as set by the validate-interfaces hook.

Deletes ports that dont match the inspector.keep_ports setting.

architecture
Populates the cpu_arch property on the node.

266 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/latest/admin/how_it_works.html#inspection-data

Ironic Documentation, Release 26.1.2.dev21

Optional hooks

accelerators
Populates the accelerators property based on the reported PCI devices. The known accelerators
are specified in the YAML file linked in the inspector.known_accelerators option. The
default file is the following:

pci_devices:
- vendor_id: "10de"
device_id: "1eb8"
type: GPU
device_info: NVIDIA Corporation Tesla T4

- vendor_id: "10de"
device_id: "1df6"
type: GPU
device_info: NVIDIA Corporation GV100GL

boot-mode
Sets the boot_mode capability based on the observed boot mode, see Boot mode support.

cpu-capabilities
Uses the CPU flags to discover CPU capabilities. The exact mapping can be customized via con-
figuration:

[inspector]
cpu_capabilities = vmx:cpu_vt,svm:cpu_vt

See inspector.cpu_capabilities for the default mapping.

extra-hardware
Converts the data collected by python-hardware from its raw format into nested dictionaries under
the extra plugin data field.

local-link-connection
Uses the LLDP information from the ramdisk to populate the local_link_connection field on
ports with the physical switch information.

memory
Populates the memory_mb property based on physical RAM information from DMI.

parse-lldp
Parses the raw binary LLDP information from the ramdisk and populates the parsed_lldp dictio-
nary in plugin data. The keys are network interface names, the values are dictionaries with LLDP
values. Example:

"parsed_lldp": {
"eth0": {

"switch_chassis_id": "11:22:33:aa:bb:cc",
"switch_system_name": "sw01-dist-1b-b12"

}
}

pci-devices

4.2. Bare Metal Service Features 267

https://github.com/redhat-cip/hardware

Ironic Documentation, Release 26.1.2.dev21

Populates the capabilities based on PCI devices. The mapping is provided by the inspector.
pci_device_alias option.

physical-network
Populates the physical_network port field for Multi-tenancy in the Bare Metal ser-
vice based on the detected IP addresses. The mapping is provided by the inspector.
physical_network_cidr_map option.

raid-device
Detects the newly created RAID device and populates the root_device property used in root
device hints. Requires two inspections: one before and one after the RAID creation.

root-device
Uses root device hints on the node and the storage device information from the ramdisk to cal-
culate the expected root device and populate the local_gb property (taking the inspector.
disk_partitioning_spacing option into account).

Node auto-discovery

The Bare Metal service is capable of automatically enrolling new nodes that somehow (through external
means, e.g. Configuring unmanaged in-band inspection) boot into an IPA ramdisk and call back with
inspection data. This feature must be enabled explicitly in the configuration:

[DEFAULT]
default_inspect_interface = agent

[auto_discovery]
enabled = True
driver = ipmi

The newly created nodes will appear in the enroll provision state with the driver field set to the value
specified in the configuration, as well as a boolean auto_discovered flag in the Plugin data.

After the node is enrolled, it will automatically go through the normal inspection process, which in-
cludes, among other things, creating ports. Any errors during this process will be reflected in the nodes
last_error field (the node will not be deleted).

Limitations

• Setting BMC credentials is a manual task. The Bare Metal service does not generate new creden-
tials for you even on those machines where its possible through ipmitool.

• Node uniqueness is checked using the supplied MAC addresses. In rare cases, it is possible to
create duplicate nodes.

• Enabling discovery allows anyone with API access to create nodes with given MAC addresses and
store inspection data of arbitrary size for them. This can be used for denial-of-service attacks.

• Setting default_inspect_interface is required for the inspection flow to continue correctly
after the node creation.

268 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

PXE filter service

The PXE filter service is responsible for managing the dnsmasq instance that is responsible for Unman-
aged inspection. Running it allows this dnsmasq instance to co-exist with the OpenStack Networking
services DHCP server on the same physical network.

Warning

The PXE filter service is currently experimental. For a production grade solution, please stay with
ironic-inspector for the time being.

How it works?

At the core of the PXE filter service is a periodic task that fetches all ports and compares the node IDs
with the IDs of the nodes undergoing in-band inspection. All of the MAC addresses are added to the
dnsmasq host files: to the allowlist of nodes on inspection and to the denylist for the rest.

Additionally, when any nodes are on inspection, unknown MACs are also allowed. Otherwise, access
from unknown MACs to the dnsmasq service is denied.

Installation

Start with Configuring unmanaged in-band inspection. Then create a hostsdir writable by the PXE filter
service and readable by dnsmasq. Configure it in the dnsmasq configuration file

dhcp-hostsdir=/var/lib/ironic/hostsdir

and in the Bare Metal service configuration

[pxe_filter]
dhcp_hostsdir = /var/lib/ironic/hostsdir

Then create a systemd service to start ironic-pxe-filter alongside dnsmasq, e.g.

[Unit]
Description=Ironic PXE filter

[Service]
Type=notify
Restart=on-failure
ExecStart=/usr/bin/ironic-pxe-filter --config-file /etc/ironic/ironic.conf
User=ironic
Group=ironic

Note that because of technical limitations, the PXE filter process cannot clean up the hostsdir it-
self. You may want to do it on the service start-up, e.g. like this (assuming the dnsmasq service is
ironic-dnsmasq and its PID is stored in /run/ironic/dnsmasq.pid):

4.2. Bare Metal Service Features 269

Ironic Documentation, Release 26.1.2.dev21

[Unit]
Description=Ironic PXE filter
Requires=ironic-dnsmasq.service
After=ironic-dnsmasq.service

[Service]
Type=notify
Restart=on-failure
ExecStartPre=+/bin/bash -c "rm -f /usr/lib/ironic/hostsdir/* && kill -HUP
↪→$(cat /run/ironic/dnsmasq.pid) || true"
ExecStart=/usr/bin/ironic-pxe-filter --config-file /etc/ironic/ironic.conf
User=ironic
Group=ironic

Scale considerations

The PXE filter service should be run once per each dnsmasq instance dedicated to unmanaged inspection.
In most clouds, that will be 1 instance.

Migrating from ironic-inspector

This document outlines the process of migrating from a separate ironic-inspector service to the built-in
in-band inspection.

Note

This is a live document that is updated as more ironic-inspector features are supported in ironic. If
youre upgrading to a branch other than master, use the version of this document from the target
branch.

Understand the feature differences

Removed

Some rarely used or controversial features have not been migrated to ironic. This list currently includes:

• Retrieving unprocesses inspection data

• Reapplying the processing pipeline on new data

• Node auto-discovery is no longer based on plug-ins.

• Introspection of nodes in the active provision state.

• PXE filters based on iptables.

• Certain client commands are not available in ironicclient, for example, the ones that display the
network interface information from the LLDP data.

Inspection rules are also currently not implemented but are planned for the 2024.2 release or later.

270 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-inspector/
https://docs.openstack.org/api-ref/baremetal-introspection/#get-unprocessed-introspection-data
https://docs.openstack.org/api-ref/baremetal-introspection/#reapply-introspection-on-data
https://docs.openstack.org/python-ironicclient/latest/
https://docs.openstack.org/python-ironic-inspector-client/latest/cli/index.html#list-interface-data
https://docs.openstack.org/python-ironic-inspector-client/latest/cli/index.html#list-interface-data
https://docs.openstack.org/ironic-inspector/2024.2/user/usage.html#introspection-rules

Ironic Documentation, Release 26.1.2.dev21

New defaults

• The database data storage backend is used by default.

• The list of default hooks is limited to only most commonly used ones (see also Built-in hooks).

Built-in hooks

Most of the introspection hooks have been migrated to ironic, although many have been migrated for
clarity and consistency.

Table 6: Hooks mapping

Inspector ironic default_hooks?Notes
accelerators accelerators No
capabilities boot-mode,

cpu-capabilities
No Split into two logical parts.

extra_hardware extra-hardware No python-hardware is not actively
maintained any more.

lldp_basic parse-lldp No
local_link_connectionlocal-link-connectionNo
pci_devices pci-devices No
physnet_cidr_mapphysical-network No
raid_device raid-device No
root_device root-device No
ramdisk_error ramdisk-error Yes
scheduler architecture,

memory
Only
architecture

Split, dropped local_gb and vcpus
support.

validate_interfacesvalidate-interfaces,
ports

Yes Split into two logical parts.

Custom hooks

A custom hook (called processing hook in ironic-inspector) has to be derived from the base class
InspectionHook . It differs from the older ProcessingHook in a few important ways, requiring cus-
tom hooks to be adapted for ironic:

• Hooks operate on the regular task instead of the inspector-specific NodeInfo object.

• Since changes to nodes and ports no longer require an API call, hooks are expected to commit their
changes immediately rather than letting them accumulate on the task object.

• The hook methods have been renamed: before_processing is called preprocess, the
__call__ method is used instead of before_update.

• Introspection data has been split into its inventory part and plugin data. Hooks should not update
the inventory.

• New hooks use the entry point ironic.inspection.hooks instead of ironic_inspector.
hooks.processing.

4.2. Bare Metal Service Features 271

https://docs.openstack.org/ironic-inspector/2024.2/user/usage.html#plugins
https://github.com/redhat-cip/hardware
https://docs.openstack.org/ironic-inspector/2024.2/contributor/api/ironic_inspector.plugins.base.html#ironic_inspector.plugins.base.ProcessingHook

Ironic Documentation, Release 26.1.2.dev21

Other concerns

• There is no way to migrate the inspection data automatically. You need to repeat inspections or
copy the data over manually.

Migration process

1. Make sure youre running at ironic 2024.1 or newer.

2. Enable the new inspection implementation as described in In-Band Inspection.

3. Carefully research options in the inventory and inspector sections. Update options to match
similar ones in the ironic-inspector configuration.

4. Enable the required Built-in hooks, taking into the account the new names and composition.

5. If using network boot and unmanaged inspection or auto-discovery, configure unmanaged boot.

6. If using the OpenStack Networking, consider configuring (but not starting yet) the PXE filter ser-
vice.

7. Make sure no inspection are running.

8. Stop ironic-inspector or at least disable its PXE filter (it may conflict with the one used here).

9. Start PXE filter service if needed. Restart the Bare Metal service.

10. Change all nodes to use the new inspection interface, for example:

baremetal node list --fields uuid inspect_interface -f value | while read␣
↪→uuid iface; do
if ["$iface" = "inspector"]; then

baremetal node set --inspect-interface agent "$uuid"
fi

done

11. Make sure your scripts use ironicclient and the Bare Metal API in OpenStackSDK instead of the
client API that is specific to ironic-inspector.

Configuration

In-band inspection is supported by all hardware types. The agent inspect interface has to be enabled to
use it:

[DEFAULT]
enabled_inspect_interfaces = agent,no-inspect

You can make it the default if you want all nodes to use it automatically:

[DEFAULT]
default_inspect_interface = agent

Of course, you can configure it per node:

272 Chapter 4. Administrator Guide

https://docs.openstack.org/python-ironicclient/latest/

Ironic Documentation, Release 26.1.2.dev21

$ baremetal node set --inspect-interface agent <NODE>

4.2.2 Using deploy steps and templates

Contents

• Using deploy steps and templates

– Overview

– Deploy Steps

– Deploy Templates

Overview

Node deployment is performed by the Bare Metal service to prepare a node for use by a workload. The
exact work flow used depends on a number of factors, including the hardware type and interfaces assigned
to a node.

Deploy Steps

The Bare Metal service implements deployment by collecting a list of deploy steps to perform on a
node from the Power, Deploy, Management, BIOS, and RAID interfaces of the driver assigned to the
node. These steps are then ordered by priority and executed on the node when the node is moved to the
deploying state.

Nodes move to the deploying state when attempting to move to the active state (when the hardware is
prepared for use by a workload). For a full understanding of all state transitions into deployment, please
see Bare Metal State Machine.

The Bare Metal service added support for deploy steps in the Rocky release.

Order of execution

Deploy steps are ordered from higher to lower priority, where a larger integer is a higher priority. If
the same priority is used by deploy steps on different interfaces, the following resolution order is used:
Power, Management, Deploy, BIOS, and RAID interfaces.

4.2. Bare Metal Service Features 273

Ironic Documentation, Release 26.1.2.dev21

Agent steps

All deploy interfaces based on ironic-python-agent (i.e. direct, ansible and any derivatives) expose
the following deploy steps:

deploy.deploy (priority 100)
In this step the node is booted using a provisioning image.

deploy.write_image (priority 80)
An out-of-band (ansible) or in-band (direct) step that downloads and writes the image to the
node.

deploy.tear_down_agent (priority 40)
In this step the provisioning image is shut down.

deploy.switch_to_tenant_network (priority 30)
In this step networking for the node is switched from provisioning to tenant networks.

deploy.boot_instance (priority 20)
In this step the node is booted into the user image.

Additionally, the direct deploy interfaces has:

deploy.prepare_instance_boot (priority 60)
In this step the boot device is configured and the bootloader is installed.

Note

For the ansible deploy interface these steps are done in deploy.write_image.

Accordingly, the following priority ranges can be used for custom deploy steps:

> 100
Out-of-band steps to run before deployment.

81 to 99
In-band deploy steps to run before the image is written.

61 to 79
In-band deploy steps to run after the image is written but before the bootloader is installed.

41 to 59
In-band steps to run after the image is written the bootloader is installed.

21 to 39
Out-of-band steps to run after the provisioning image is shut down.

1 to 19
Any steps that are run when the user instance is already running.

274 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

In-band steps

More deploy steps can be provided by the ramdisk, see IPA hardware managers documentation for a
listing.

Requesting steps

Starting with Bare Metal API version 1.69 user can optionally supply deploy steps for node deployment
when invoking deployment or rebuilding. Overlapping steps will take precedence over Agent steps and
Deploy Templates steps.

Using baremetal client deploy steps can be passed via --deploy-steps argument. The argument
--deploy-steps is one of:

• a JSON string

• path to a JSON file whose contents are passed to the API

• -, to read from stdin. This allows piping in the deploy steps.

An example by passing a JSON string:

baremetal node deploy <node> \
--deploy-steps '[{"interface": "bios", "step": "apply_configuration",

↪→"args": {"settings": [{"name": "LogicalProc", "value": "Enabled"}]},
↪→"priority": 150}]'

Format of JSON for deploy steps argument is described in Deploy step format section.

Note

Starting with ironicclient 4.6.0 you can provide a YAML file for --deploy-steps.

Excluding the default steps

Starting with the Xena release, you can use the new Custom agent deploy interface to exclude the default
step write_image and skip bootloader installation in the prepare_instance_boot step.

Writing a Deploy Step

Please refer to Developing deploy and clean steps.

4.2. Bare Metal Service Features 275

https://docs.openstack.org/ironic-python-agent/2024.2/admin/hardware_managers.html

Ironic Documentation, Release 26.1.2.dev21

FAQ

What deploy step is running?

To check what deploy step the node is performing or attempted to perform and failed, run the following
command; it will return the value in the nodes driver_internal_info field:

baremetal node show <node> -f value -c driver_internal_info

The deploy_steps field will contain a list of all remaining steps with their priorities, and the first one
listed is the step currently in progress or that the node failed before going into deploy failed state.

Troubleshooting

If deployment fails on a node, the node will be put into the deploy failed state until the node is
deprovisioned. A deprovisioned node is moved to the available state after the cleaning process has
been performed successfully.

Strategies for determining why a deploy step failed include checking the ironic conductor logs, checking
logs from the ironic-python-agent that have been stored on the ironic conductor, or performing general
hardware troubleshooting on the node.

Deploy Templates

Starting with the Stein release, with Bare Metal API version 1.55, deploy templates offer a way to define
a set of one or more deploy steps to be executed with particular sets of arguments and priorities.

Each deploy template has a name, which must be a valid trait. Traits can be either standard or custom.
Standard traits are listed in the os_traits library. Custom traits must meet the following requirements:

• prefixed with CUSTOM_

• contain only upper case characters A to Z, digits 0 to 9, or underscores

• no longer than 255 characters in length

Deploy step format

An invocation of a deploy step is defined in a deploy template as follows:

{
"interface": "<name of the driver interface>",
"step": "<name of the step>",
"args": {

"<arg1>": "<value1>",
"<arg2>": "<value2>"

},
"priority": <priority of the step>

}

276 Chapter 4. Administrator Guide

https://docs.openstack.org/os-traits/2024.2/

Ironic Documentation, Release 26.1.2.dev21

A deploy template contains a list of one or more such steps. Each combination of interface and step may
only be specified once in a deploy template.

Matching deploy templates

During deployment, if any of the traits in a nodes instance_info.traits field match the name of a
deploy template, then the steps from that deploy template will be added to the list of steps to be executed
by the node.

When using the Compute service, any traits in the instances flavor properties or image properties are
stored in instance_info.traits during deployment. See Scheduling based on traits for further in-
formation on how traits are used for scheduling when the Bare Metal service is used with the Compute
service.

Note that there is no ongoing relationship between a node and any templates that are matched during
deployment. The set of matching deploy templates is checked at deployment time. Any subsequent
updates to or deletion of those templates will not be reflected in the nodes configuration unless it is
redeployed or rebuilt. Similarly, if a node is rebuilt and the set of matching deploy templates has changed
since the initial deployment, then the resulting configuration of the node may be different from the initial
deployment.

Overriding default deploy steps

A deploy step is enabled by default if it has a non-zero default priority. A default deploy step may be
overridden in a deploy template. If the steps priority is a positive integer it will be executed with the
specified priority and arguments. If the steps priority is zero, the step will not be executed.

If the deploy.deploy step is included in a deploy template, it can only be assigned a priority of zero to
disable it.

Creating a deploy template via API

A deploy template can be created using the Bare Metal API:

POST /v1/deploy_templates

Here is an example of the body of a request to create a deploy template with a single step:

{
"name": "CUSTOM_HYPERTHREADING_ON",
"steps": [

{
"interface": "bios",
"step": "apply_configuration",
"args": {

"settings": [
{

"name": "LogicalProc",
"value": "Enabled"

}
(continues on next page)

4.2. Bare Metal Service Features 277

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

]
},
"priority": 150

}
]

}

Further information on this API is available here.

Creating a deploy template via baremetal client

A deploy template can be created via the baremetal deploy template create command, starting
with python-ironicclient 2.7.0.

The argument --steps must be specified. Its value is one of:

• a JSON string

• path to a JSON file whose contents are passed to the API

• -, to read from stdin. This allows piping in the deploy steps.

Example of creating a deploy template with a single step using a JSON string:

baremetal deploy template create \
CUSTOM_HYPERTHREADING_ON \
--steps '[{"interface": "bios", "step": "apply_configuration", "args": {

↪→"settings": [{"name": "LogicalProc", "value": "Enabled"}]}, "priority": 150}
↪→]'

Or with a file:

baremetal deploy template create \
CUSTOM_HYPERTHREADING_ON \
---steps my-deploy-steps.txt

Or with stdin:

cat my-deploy-steps.txt | baremetal deploy template create \
CUSTOM_HYPERTHREADING_ON \
--steps -

Example of use with the Compute service

Note

The deploy steps used in this example are for example purposes only.

In the following example, we first add the trait CUSTOM_HYPERTHREADING_ON to the node represented
by <node>:

278 Chapter 4. Administrator Guide

https://docs.openstack.org/api-ref/baremetal/index.html?expanded=create-deploy-template-detail#create-deploy-template

Ironic Documentation, Release 26.1.2.dev21

baremetal node add trait <node> CUSTOM_HYPERTHREADING_ON

We also update the flavor bm-hyperthreading-on in the Compute service with the following property:

openstack flavor set --property trait:CUSTOM_HYPERTHREADING_ON=required bm-
↪→hyperthreading-on

Creating a Compute instance with this flavor will ensure that the instance is scheduled only to Bare Metal
nodes with the CUSTOM_HYPERTHREADING_ON trait.

We could then create a Bare Metal deploy template with the name CUSTOM_HYPERTHREADING_ON and a
deploy step that enables Hyperthreading:

{
"name": "CUSTOM_HYPERTHREADING_ON",
"steps": [

{
"interface": "bios",
"step": "apply_configuration",
"args": {

"settings": [
{

"name": "LogicalProc",
"value": "Enabled"

}
]

},
"priority": 150

}
]

}

When an instance is created using the bm-hyperthreading-on flavor, then the deploy steps of deploy
template CUSTOM_HYPERTHREADING_ON will be executed during the deployment of the scheduled node,
causing Hyperthreading to be enabled in the nodes BIOS configuration.

To make this example more dynamic, lets add a second trait CUSTOM_HYPERTHREADING_OFF to the node:

baremetal node add trait <node> CUSTOM_HYPERTHREADING_OFF

We could also update a second flavor, bm-hyperthreading-off, with the following property:

openstack flavor set --property trait:CUSTOM_HYPERTHREADING_OFF=required bm-
↪→hyperthreading-off

Finally, we create a deploy template with the name CUSTOM_HYPERTHREADING_OFF and a deploy step
that disables Hyperthreading:

{
"name": "CUSTOM_HYPERTHREADING_OFF",
"steps": [

{
(continues on next page)

4.2. Bare Metal Service Features 279

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"interface": "bios",
"step": "apply_configuration",
"args": {

"settings": [
{

"name": "LogicalProc",
"value": "Disabled"

}
]

},
"priority": 150

}
]

}

Creating a Compute instance with the bm-hyperthreading-off instance will cause the scheduled node
to have Hyperthreading disabled in the BIOS during deployment.

We now have a way to create Compute instances with different configurations, by choosing between
different Compute flavors, supported by a single Bare Metal node that is dynamically configured during
deployment.

4.2.3 Node cleaning

Overview

Ironic provides two modes for node cleaning: automated and manual.

Automated cleaning is automatically performed before the first workload has been assigned to a node
and when hardware is recycled from one workload to another.

Manual cleaning must be invoked by the operator.

Automated cleaning

When hardware is recycled from one workload to another, ironic performs automated cleaning on the
node to ensure its ready for another workload. This ensures the tenant will get a consistent bare metal
node deployed every time.

Ironic implements automated cleaning by collecting a list of cleaning steps to perform on a node from
the Power, Deploy, Management, BIOS, and RAID interfaces of the driver assigned to the node. These
steps are then ordered by priority and executed on the node when the node is moved to cleaning state,
if automated cleaning is enabled.

With automated cleaning, nodes move to cleaning state when moving from active -> available
state (when the hardware is recycled from one workload to another). Nodes also traverse cleaning when
going from manageable -> available state (before the first workload is assigned to the nodes). For a
full understanding of all state transitions into cleaning, please see Bare Metal State Machine.

Ironic added support for automated cleaning in the Kilo release.

280 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Enabling automated cleaning

To enable automated cleaning, ensure that your ironic.conf is set as follows:

[conductor]
automated_clean=true

This will enable the default set of cleaning steps, based on your hardware and ironic hardware types used
for nodes. This includes, by default, erasing all of the previous tenants data.

You may also need to configure a Cleaning Network.

Cleaning steps

Cleaning steps used for automated cleaning are ordered from higher to lower priority, where a larger inte-
ger is a higher priority. In case of a conflict between priorities across interfaces, the following resolution
order is used: Power, Management, Deploy, BIOS, and RAID interfaces.

You can skip a cleaning step by setting the priority for that cleaning step to zero or None.

You can reorder the cleaning steps by modifying the integer priorities of the cleaning steps.

See How do I change the priority of a cleaning step? for more information.

Storage cleaning options

Warning

Ironics storage cleaning options by default will remove data from the disk permanently during auto-
mated cleaning.

Clean steps specific to storage are erase_devices, erase_devices_metadata and (added in Yoga)
erase_devices_express.

erase_devices aims to ensure that the data is removed in the most secure way available. On
devices that support hardware assisted secure erasure (many NVMe and some ATA drives) this
is the preferred option. If hardware-assisted secure erasure is not available and if deploy.
continue_if_disk_secure_erase_fails is set to True, cleaning will fall back to using shred to
overwrite the contents of the device. By default, if erase_devices is enabled and Ironic is unable to
erase the device, cleaning will fail to ensure data security.

Note

erase_devices may take a very long time (hours or even days) to complete, unless fast, hardware
assisted data erasure is supported by all the devices in a system.

erase_devices_metadata clean step doesnt provide as strong assurance of irreversible destruction
of data as erase_devices. However, it has the advantage of a reasonably quick runtime (seconds to
minutes). It operates by destroying metadata of the storage device without erasing every bit of the data

4.2. Bare Metal Service Features 281

Ironic Documentation, Release 26.1.2.dev21

itself. Attempts of restoring data after running erase_devices_metadatamay be successful but would
certainly require relevant expertise and specialized tools.

Lastly, erase_devices_express combines some of the perks of both erase_devices and
erase_devices_metadata. It attempts to utilize hardware assisted data erasure features if available
(currently only NVMe devices are supported). In case hardware-asssisted data erasure is not available, it
falls back to metadata erasure for the device (which is identical to erase_devices_metadata). It can
be considered a time optimized mode of storage cleaning, aiming to perform as thorough data erasure as it
is possible within a short period of time. This clean step is particularly well suited for environments with
hybrid NVMe-HDD storage configuration as it allows fast and secure erasure of data stored on NVMes
combined with equally fast but more basic metadata-based erasure of data on commodity HDDs.

By default, Ironic will use erase_devices_metadata early in cleaning for reliability (ensuring a node
cannot reboot into its old workload) and erase_devices later in cleaning to securely erase the drive;
erase_devices_express is disabled.

Operators can use deploy.erase_devices_priority and deploy.
erase_devices_metadata_priority to change the priorities of the default device erase meth-
ods or disable them entirely by setting 0. Other cleaning steps can have their priority modified
via the conductor.clean_step_priority_override option. For example, the configuration
snippet below disables erase_devices_metadata and erase_devices and instead performs an
erase_devices_express erase step.

[deploy]
erase_devices_priority=0
erase_devices_metadata_priority=0

[conductor]
clean_step_priority_override=deploy.erase_devices_express:95

This ensures that erase_devices and erase_devices_metadata are disabled so that storage is not
cleaned twice and then assigns a non-zero priority to erase_devices_express, hence enabling it. Any
non-zero priority specified in the priority override will work; larger values will cause the disk erasure to
run earlier in the cleaning process if multiple steps are enabled.

Other configurations that can modify how Ironic erases disks are below. This list may not be compre-
hensive. Please review ironic.conf.sample (linked) for more details:

• deploy.enable_ata_secure_erase, default True

• deploy.enable_nvme_secure_erase, default True

• deploy.shred_random_overwrite_iterations, default 1

• deploy.shred_final_overwrite_with_zeros, default True

• deploy.disk_erasure_concurrency, default 4

Warning

Ironic automated cleaning is defaulted to a secure configuration. You should not modify settings
related to it unless you are have special hardware needs, or a unique use case. Misconfigurations can
lead to data exposure vulnerabilities.

282 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

4.2. Bare Metal Service Features 283

Ironic Documentation, Release 26.1.2.dev21

Management Interface

Table 7: idrac-redfish cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

clear_job_queue Clear iDRAC job queue. 0 no
clear_secure_boot_keysClear all secure boot keys. 0 no
export_configuration(Deprecated) Export the

configuration of the server.
Exports the configuration of
the server against which the
step is run and stores it in
specific format in indicated
location.
Uses Dells Server Config-
uration Profile (SCP) from
sushy-oem-idrac library to
get ALL configuration for
cloning.

param task
A task
from
TaskMan-
ager.

param ex-
port_configuration_location

URL of
location
to save
the con-
figuration
to.

0 no export_configuration_location
(required) URL of location
to save the configuration to.

import_configuration(Deprecated) Import and ap-
ply the configuration to the
server.
Gets pre-created configura-
tion from storage by given
location and imports that
into given server. Uses Dells
Server Configuration Profile
(SCP).

param task
A task
from
TaskMan-
ager.

param im-
port_configuration_location

URL of
location
to fetch
desired
configura-
tion from.

0 no import_configuration_location
(required) URL of location
to fetch desired configura-
tion from.

import_export_configurationImport and export configu-
ration in one go.
Gets pre-created configura-
tion from storage by given
name and imports that into
given server. After that ex-
ports the configuration of the
server against which the step
is run and stores it in spe-
cific format in indicated stor-
age as configured by Ironic.

0 no export_configuration_location
(required) URL of location
to save the configuration to.
import_configuration_location
(required) URL of location
to fetch desired configura-
tion from.

known_good_stateReset iDRAC to known
good state.
An iDRAC is reset to a
known good state by reset-
ting it and clearing its job
queue.

0 no

reset_idrac Reset the iDRAC. 0 no
reset_secure_boot_keys_to_defaultReset secure boot keys to

manufacturing defaults.
0 no

update_firmware Updates the firmware on the
node.

0 no firmware_images (re-
quired) A list of firmware
images to apply.

284 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Table 8: ilo cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

activate_licenseActivates iLO Advanced li-
cense.

0 no ilo_license_key (re-
quired) The HPE iLO
Advanced license key to
activate enterprise features.

add_https_certificateAdds the signed HTTPS cer-
tificate to the iLO.

0 no cert_file (required) This
argument represents the path
to the signed HTTPS certifi-
cate which will be added to
the iLO.

clear_secure_boot_keysClear all secure boot keys.
Clears all the secure boot
keys. This operation is sup-
ported only on HP Proliant
Gen9 and above servers.

0 no

create_csr Creates the CSR. 0 no csr_params (required)
This arguments represents
the information needed to
create the CSR certificate.
The keys to be provided
are City, CommonName,
OrgName, State.

reset_bios_to_defaultResets the BIOS settings to
default values.
Resets BIOS to default set-
tings. This operation is
currently supported only on
HP Proliant Gen9 and above
servers.

10 no

reset_ilo Resets the iLO. 0 no
reset_ilo_credentialResets the iLO password. 30 no
reset_secure_boot_keys_to_defaultReset secure boot keys to

manufacturing defaults.
Resets the secure boot keys
to manufacturing defaults.
This operation is supported
only on HP Proliant Gen9
and above servers.

20 no

security_parameters_updateUpdates the security param-
eters.

0 no security_parameters
(required) This argument
represents the ordered list
of JSON dictionaries of
security parameters. Each
security parameter consists
of three fields, namely
param, ignore and enable
from which param field
will be mandatory. These
fields represent security
parameter name, ignore flag
and state of the security
parameter. The supported
security parameter names
are password_complexity,
require_login_for_ilo_rbsu,
ipmi_over_lan, se-
cure_boot, re-
quire_host_authentication.
The security parameters
will be updated (in the order
given) one by one on the
baremetal server.

update_auth_failure_logging_thresholdUpdates the Auth Failure
Logging Threshold security
parameter.

0 no ignore This argument rep-
resents boolean parameter.
If set True the security pa-
rameters will be ignored by
iLO while computing the
overall iLO security status.
If not specified, default will
be False.
logging_threshold This
argument represents the au-
thentication failure logging
threshold that can be set for
ilo. If not specified, default
will be 1.

update_firmware Updates the firmware. 0 no firmware_images (re-
quired) This argument
represents the ordered list
of JSON dictionaries of
firmware images. Each
firmware image dictionary
consists of three mandatory
fields, namely url, checksum
and component. These
fields represent firmware
image location URL, md5
checksum of image file and
firmware component type
respectively. The supported
firmware URL schemes are
file, http, https and swift.
The supported values for
firmware component are
ilo, cpld, power_pic, bios
and chassis. The firmware
images will be applied
(in the order given) one
by one on the baremetal
server. For more infor-
mation, see https://docs.
openstack.org/ironic/latest/
admin/drivers/ilo.html#
initiating-firmware-update-as-manual-clean-step
firmware_update_mode
(required) This argument
indicates the mode (or
mechanism) of firmware up-
date procedure. Supported
value is ilo.

update_firmware_sumClean step to update the
firmware using Smart Up-
date Manager (SUM)

0 no checksum (required) The
md5 checksum of the SPP
image file.
components The list
of firmware component
filenames. If not speci-
fied, SUM updates all the
firmware components.
url (required) The image
location for SPP (Service
Pack for Proliant) ISO.

update_minimum_password_lengthUpdates the Minimum Pass-
word Length security pa-
rameter.

0 no ignore This argument rep-
resents boolean parameter.
If set True the security pa-
rameters will be ignored by
iLO while computing the
overall iLO security status.
If not specified, default will
be False.
password_length This ar-
gument represents the min-
imum password length that
can be set for ilo. If not spec-
ified, default will be 8.

4.2. Bare Metal Service Features 285

https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step

Ironic Documentation, Release 26.1.2.dev21

Table 9: ilo5 cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

activate_licenseActivates iLO Advanced li-
cense.

0 no ilo_license_key (re-
quired) The HPE iLO
Advanced license key to
activate enterprise features.

add_https_certificateAdds the signed HTTPS cer-
tificate to the iLO.

0 no cert_file (required) This
argument represents the path
to the signed HTTPS certifi-
cate which will be added to
the iLO.

clear_ca_certificatesClears the certificates pro-
vided in the list of files to
iLO.

0 no certificate_files (re-
quired) The list of files
containing the certificates to
be cleared. If empty list is
specified, all the certificates
on the ilo will be cleared,
except the certificates in
the file configured with
configuration parameter
webserver_verify_ca are
spared as they are required
for booting the deploy image
for some boot interfaces.

clear_secure_boot_keysClear all secure boot keys.
Clears all the secure boot
keys. This operation is sup-
ported only on HP Proliant
Gen9 and above servers.

0 no

create_csr Creates the CSR. 0 no csr_params (required)
This arguments represents
the information needed to
create the CSR certificate.
The keys to be provided
are City, CommonName,
OrgName, State.

erase_devices Erase all the drives on the
node.
This method performs out-
of-band sanitize disk erase
on all the supported physi-
cal drives in the node. This
erase cannot be performed
on logical drives.

0 no erase_pattern Dic-
tionary of disk type and
corresponding erase pattern
to be used to perform spe-
cific out-of-band sanitize
disk erase. Supported
values are, for hdd: (over-
write, crypto, zero), for
ssd: (block, crypto, zero).
Default pattern is: {hdd:
overwrite, ssd: block}.

one_button_secure_eraseErase the whole system se-
curely.
The One-button secure
erase process resets iLO and
deletes all licenses stored
there, resets BIOS settings,
and deletes all Active Health
System (AHS) and warranty
data stored on the system.
It also erases supported
non-volatile storage data
and deletes any deployment
setting profiles.

0 no

reset_bios_to_defaultResets the BIOS settings to
default values.
Resets BIOS to default set-
tings. This operation is
currently supported only on
HP Proliant Gen9 and above
servers.

10 no

reset_ilo Resets the iLO. 0 no
reset_ilo_credentialResets the iLO password. 30 no
reset_secure_boot_keys_to_defaultReset secure boot keys to

manufacturing defaults.
Resets the secure boot keys
to manufacturing defaults.
This operation is supported
only on HP Proliant Gen9
and above servers.

20 no

security_parameters_updateUpdates the security param-
eters.

0 no security_parameters
(required) This argument
represents the ordered list
of JSON dictionaries of
security parameters. Each
security parameter consists
of three fields, namely
param, ignore and enable
from which param field
will be mandatory. These
fields represent security
parameter name, ignore flag
and state of the security
parameter. The supported
security parameter names
are password_complexity,
require_login_for_ilo_rbsu,
ipmi_over_lan, se-
cure_boot, re-
quire_host_authentication.
The security parameters
will be updated (in the order
given) one by one on the
baremetal server.

update_auth_failure_logging_thresholdUpdates the Auth Failure
Logging Threshold security
parameter.

0 no ignore This argument rep-
resents boolean parameter.
If set True the security pa-
rameters will be ignored by
iLO while computing the
overall iLO security status.
If not specified, default will
be False.
logging_threshold This
argument represents the au-
thentication failure logging
threshold that can be set for
ilo. If not specified, default
will be 1.

update_firmware Updates the firmware. 0 no firmware_images (re-
quired) This argument
represents the ordered list
of JSON dictionaries of
firmware images. Each
firmware image dictionary
consists of three mandatory
fields, namely url, checksum
and component. These
fields represent firmware
image location URL, md5
checksum of image file and
firmware component type
respectively. The supported
firmware URL schemes are
file, http, https and swift.
The supported values for
firmware component are
ilo, cpld, power_pic, bios
and chassis. The firmware
images will be applied
(in the order given) one
by one on the baremetal
server. For more infor-
mation, see https://docs.
openstack.org/ironic/latest/
admin/drivers/ilo.html#
initiating-firmware-update-as-manual-clean-step
firmware_update_mode
(required) This argument
indicates the mode (or
mechanism) of firmware up-
date procedure. Supported
value is ilo.

update_firmware_sumClean step to update the
firmware using Smart Up-
date Manager (SUM)

0 no checksum (required) The
md5 checksum of the SPP
image file.
components The list
of firmware component
filenames. If not speci-
fied, SUM updates all the
firmware components.
url (required) The image
location for SPP (Service
Pack for Proliant) ISO.

update_minimum_password_lengthUpdates the Minimum Pass-
word Length security pa-
rameter.

0 no ignore This argument rep-
resents boolean parameter.
If set True the security pa-
rameters will be ignored by
iLO while computing the
overall iLO security status.
If not specified, default will
be False.
password_length This ar-
gument represents the min-
imum password length that
can be set for ilo. If not spec-
ified, default will be 8.

286 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step

Ironic Documentation, Release 26.1.2.dev21

Table 10: irmc cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

clear_secure_boot_keysClear all secure boot keys. 0 no
reset_secure_boot_keys_to_defaultReset secure boot keys to

manufacturing defaults.
0 no

restore_irmc_bios_configRestore BIOS config for a
node.

0 no

update_firmware Updates the firmware on the
node.

0 no firmware_images (re-
quired) A list of firmware
images to apply.

Table 11: redfish cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

clear_secure_boot_keysClear all secure boot keys. 0 no
reset_secure_boot_keys_to_defaultReset secure boot keys to

manufacturing defaults.
0 no

update_firmware Updates the firmware on the
node.

0 no firmware_images (re-
quired) A list of firmware
images to apply.

Bios Interface

Table 12: idrac-redfish cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

apply_configurationApply the BIOS settings to
the node.

0 no settings (required) A list
of BIOS settings to be ap-
plied

factory_reset Reset the BIOS settings of
the node to the factory de-
fault.

0 no

Table 13: ilo cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

apply_configurationApplies the provided config-
uration on the node.

0 no settings (required) Dic-
tionary with current BIOS
configuration.

factory_reset Reset the BIOS settings to
factory configuration.

0 no

4.2. Bare Metal Service Features 287

Ironic Documentation, Release 26.1.2.dev21

Table 14: irmc cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

apply_configurationApplies BIOS configuration
on the given node.
This method takes the
BIOS settings from the
settings param and applies
BIOS configuration on
the given node. After the
BIOS configuration is done,
self.cache_bios_settings()
may be called to sync
the nodes BIOS-related
information with the BIOS
configuration applied on the
node. It will also validate
the given settings before
applying any settings and
manage failures when set-
ting an invalid BIOS config.
In the case of needing pass-
word to update the BIOS
config, it will be taken from
the driver_info properties.

0 no settings (required) Dic-
tionary containing the BIOS
configuration.

Table 15: redfish cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

apply_configurationApply the BIOS settings to
the node.

0 no settings (required) A list
of BIOS settings to be ap-
plied

factory_reset Reset the BIOS settings of
the node to the factory de-
fault.

0 no

288 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Raid Interface

Table 16: agent cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

create_configurationCreate a RAID configura-
tion on a bare metal using
agent ramdisk.
This method creates a RAID
configuration on the given
node.

0 no

delete_configurationDeletes RAID configuration
on the given node.

0 no

Table 17: idrac-redfish cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

create_configurationCreate RAID configuration
on the node.
This method creates
the RAID configu-
ration as read from
node.target_raid_config.
This method by default will
create all logical disks.

0 no create_nonroot_volumes
This specifies whether to
create the non-root volumes.
Defaults to True.
create_root_volume
This specifies whether to
create the root volume.
Defaults to True.
delete_existing Setting
this to True indicates to
delete existing RAID config-
uration prior to creating the
new configuration. Default
value is False.

delete_configurationDelete RAID configuration
on the node.

0 no

4.2. Bare Metal Service Features 289

Ironic Documentation, Release 26.1.2.dev21

Table 18: ilo5 cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

create_configurationCreate a RAID configura-
tion on a bare metal using
agent ramdisk.
This method creates a RAID
configuration on the given
node.

0 no create_nonroot_volumes
This specifies whether to
create the non-root volumes.
Defaults to True.
create_root_volume
This specifies whether to
create the root volume.
Defaults to True.

delete_configurationDelete the RAID configura-
tion.

0 no

Table 19: irmc cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

create_configurationCreate the RAID configura-
tion.
This method creates the
RAID configuration on the
given node.

0 no create_nonroot_volumes
This specifies whether to
create the non-root volumes.
Defaults to True.
create_root_volume
This specifies whether
to create the root vol-
ume.Defaults to True.

delete_configurationDelete the RAID configura-
tion.

0 no

290 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Table 20: redfish cleaning steps

Name Details Prior-
ity

Stop-
pable

Arguments

create_configurationCreate RAID configuration
on the node.
This method creates
the RAID configu-
ration as read from
node.target_raid_config.
This method by default will
create all logical disks.

0 no create_nonroot_volumes
This specifies whether to
create the non-root volumes.
Defaults to True.
create_root_volume
This specifies whether to
create the root volume.
Defaults to True.
delete_existing Setting
this to True indicates to
delete existing RAID config-
uration prior to creating the
new configuration. Default
value is False.

delete_configurationDelete RAID configuration
on the node.

0 no

Manual cleaning

Manual cleaning is typically used to handle long running, manual, or destructive tasks that an operator
wishes to perform either before the first workload has been assigned to a node or between workloads.
When initiating a manual clean, the operator specifies the cleaning steps to be performed. Manual clean-
ing can only be performed when a node is in the manageable state. Once the manual cleaning is finished,
the node will be put in the manageable state again.

Ironic added support for manual cleaning in the 4.4 (Mitaka series) release.

Setup

In order for manual cleaning to work, you may need to configure a Cleaning Network.

Starting manual cleaning via API

Manual cleaning can only be performed when a node is in the manageable state. The REST API request
to initiate it is available in API version 1.15 and higher:

PUT /v1/nodes/<node_ident>/states/provision

(Additional information is available here.)

This API will allow operators to put a node directly into cleaning provision state from manageable
state via target: clean. The PUT will also require the argument clean_steps to be specified. This is an
ordered list of cleaning steps. A cleaning step is represented by a dictionary (JSON), in the form:

4.2. Bare Metal Service Features 291

https://docs.openstack.org/api-ref/baremetal/index.html?expanded=change-node-provision-state-detail#change-node-provision-state

Ironic Documentation, Release 26.1.2.dev21

{
"interface": "<interface>",
"step": "<name of cleaning step>",
"args": {"<arg1>": "<value1>", ..., "<argn>": <valuen>}

}

The interface and step keys are required for all steps. If a cleaning step method takes keyword arguments,
the args key may be specified. It is a dictionary of keyword variable arguments, with each keyword-
argument entry being <name>: <value>.

If any step is missing a required keyword argument, manual cleaning will not be performed and the node
will be put in clean failed provision state with an appropriate error message.

If, during the cleaning process, a cleaning step determines that it has incorrect keyword arguments, all
earlier steps will be performed and then the node will be put in clean failed provision state with an
appropriate error message.

An example of the request body for this API:

{
"target":"clean",
"clean_steps": [{
"interface": "raid",
"step": "create_configuration",
"args": {"create_nonroot_volumes": false}

},
{
"interface": "deploy",
"step": "erase_devices"

}]
}

In the above example, the nodes RAID interface would configure hardware RAID without non-root vol-
umes, and then all devices would be erased (in that order).

Alternatively, you can specify a runbook instead of clean_steps:

{
"target":"clean",
"runbook": "<runbook_name_or_uuid>"

}

The specified runbook must match one of the nodes traits to be used.

292 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Starting manual cleaning via openstack baremetal CLI

Manual cleaning is available via the baremetal node clean command, starting with Bare Metal API
version 1.15.

The argument --clean-steps must be specified. Its value is one of:

• a JSON string

• path to a JSON file whose contents are passed to the API

• -, to read from stdin. This allows piping in the clean steps. Using - to signify stdin is common in
Unix utilities.

The following examples assume that the Bare Metal API version was set via the
OS_BAREMETAL_API_VERSION environment variable. (The alternative is to add
--os-baremetal-api-version 1.15 to the command.):

export OS_BAREMETAL_API_VERSION=1.15

Examples of doing this with a JSON string:

baremetal node clean <node> \
--clean-steps '[{"interface": "deploy", "step": "erase_devices_metadata"}]

↪→'

baremetal node clean <node> \
--clean-steps '[{"interface": "deploy", "step": "erase_devices"}]'

Or with a file:

baremetal node clean <node> \
--clean-steps my-clean-steps.txt

Or with stdin:

cat my-clean-steps.txt | baremetal node clean <node> \
--clean-steps -

To use a runbook instead of specifying clean steps:

baremetal node clean <node> runbook <runbook_name_or_uuid>

Runbooks for Manual Cleaning

Instead of passing a list of clean steps, operators can now use runbooks. Runbooks are curated lists of
steps that can be associated with nodes via traits which simplifies the process of performing consistent
cleaning operations across similar nodes.

To use a runbook for manual cleaning:

baremetal node clean <node> runbook <runbook_name_or_uuid>

Runbooks must be created and associated with nodes beforehand. Only runbooks that match the nodes
traits can be used for cleaning that node.

4.2. Bare Metal Service Features 293

Ironic Documentation, Release 26.1.2.dev21

Cleaning Network

If you are using the Neutron DHCP provider (the default) you will also need to ensure you have configured
a cleaning network. This network will be used to boot the ramdisk for in-band cleaning. You can use the
same network as your tenant network. For steps to set up the cleaning network, please see Configure the
Bare Metal service for cleaning.

In-band vs out-of-band

Ironic uses two main methods to perform actions on a node: in-band and out-of-band. Ironic supports
using both methods to clean a node.

In-band

In-band steps are performed by ironic making API calls to a ramdisk running on the node using a deploy
interface. Currently, all the deploy interfaces support in-band cleaning. By default, ironic-python-agent
ships with a minimal cleaning configuration, only erasing disks. However, you can add your own cleaning
steps and/or override default cleaning steps with a custom Hardware Manager.

Out-of-band

Out-of-band are actions performed by your management controller, such as IPMI, iLO, or DRAC. Out-
of-band steps will be performed by ironic using a power or management interface. Which steps are
performed depends on the hardware type and hardware itself.

For Out-of-Band cleaning operations supported by iLO hardware types, refer to Node Cleaning Support.

FAQ

How are cleaning steps ordered?

For automated cleaning, cleaning steps are ordered by integer priority, where a larger integer is a higher
priority. In case of a conflict between priorities across hardware interfaces, the following resolution order
is used:

1. Power interface

2. Management interface

3. Deploy interface

4. BIOS interface

5. RAID interface

For manual cleaning, the cleaning steps should be specified in the desired order.

294 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

How do I skip a cleaning step?

For automated cleaning, cleaning steps with a priority of 0 or None are skipped.

How do I change the priority of a cleaning step?

For manual cleaning, specify the cleaning steps in the desired order.

For automated cleaning, it depends on whether the cleaning steps are out-of-band or in-band.

Most out-of-band cleaning steps have an explicit configuration option for priority.

Changing the priority of an in-band (ironic-python-agent) cleaning step requires use of conductor.
clean_step_priority_override, a configuration option which allows specifying priority of each
step using multiple configuration values:

[conductor]
clean_step_priority_override=deploy.erase_devices_metadata:123
clean_step_priority_override=management.reset_bios_to_default:234
clean_step_priority_override=management.clean_priority_reset_ilo:345

This parameter can be specified as many times as required to define priorities for several cleaning steps
- the values will be combined.

What cleaning step is running?

To check what cleaning step the node is performing or attempted to perform and failed, run the following
command; it will return the value in the nodes driver_internal_info field:

baremetal node show $node_ident -f value -c driver_internal_info

The clean_steps field will contain a list of all remaining steps with their priorities, and the first one
listed is the step currently in progress or that the node failed before going into clean failed state.

Should I disable automated cleaning?

Automated cleaning is recommended for ironic deployments, however, there are some tradeoffs to hav-
ing it enabled. For instance, ironic cannot deploy a new instance to a node that is currently cleaning,
and cleaning can be a time consuming process. To mitigate this, we suggest using NVMe drives with
support for NVMe Secure Erase (based on nvme-cli format command) or ATA drives with support for
cryptographic ATA Security Erase, as typically the erase_devices step in the deploy interface takes the
longest time to complete of all cleaning steps.

4.2. Bare Metal Service Features 295

Ironic Documentation, Release 26.1.2.dev21

Why cant I power on/off a node while its cleaning?

During cleaning, nodes may be performing actions that shouldnt be interrupted, such as BIOS or
Firmware updates. As a result, operators are forbidden from changing power state via the ironic API
while a node is cleaning.

Advanced topics

Parent Nodes

The concept of a parent_node is where a node is configured to have a parent, and allows for actions
upon the parent, to in some cases take into account child nodes. Mainly, the concept of executing clean
steps in relation to child nodes.

In this context, a child node is primarily intended to be an embedded device with its own management
controller. For example SmartNICs or Data Processing Units (DPUs) which may have their own man-
agement controller and power control.

The relationship between a parent node and a child node is established on the child node. Example:

baremetal node set --parent-node <parent_node_uuid> <child_node_uuid>

Child Node Clean Step Execution

You can execute steps which perform actions on child nodes. For example, turn them on (via step
power_on), off (via step power_off), or to signal a BMC controlled reboot (via step reboot).

For example, if you need to explicitly power off child node power, before performing another step, you
can articulate it with a step such as:

[{
"interface": "power",
"step": "power_off",
"execute_on_child_nodes": True,
"limit_child_node_execution": ['f96c8601-0a62-4e99-97d6-1e0d8daf6dce']

},
{

"interface": "deploy",
"step": "erase_devices"

}]

As one would imagine, this step will power off a singular child node, as a limit has been expressed to
a singular known node, and that child nodes power will be turned off via the management interface.
Afterwards, the erase_devices step will be executed on the parent node.

Note

While the deployment step framework also supports the execute_on_child_nodes and
limit_child_node_execution parameters, all of the step frameworks have a fundamental lim-
itation in that child node step execution is intended for synchronous actions which do not rely upon

296 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

the ironic-python-agent running on any child nodes. This constraint may be changed in the
future.

Troubleshooting

If cleaning fails on a node, the node will be put into clean failed state. If the failure happens while
running a clean step, the node is also placed in maintenance mode to prevent ironic from taking actions
on the node. The operator should validate that no permanent damage has been done to the node and no
processes are still running on it before removing the maintenance mode.

Note

Older versions of ironic may put the node to maintenance even when no clean step has been running.

Nodes in clean failed will not be powered off, as the node might be in a state such that powering it
off could damage the node or remove useful information about the nature of the cleaning failure.

A clean failed node can be moved to manageable state, where it cannot be scheduled by nova and
you can safely attempt to fix the node. To move a node from clean failed to manageable:

baremetal node manage $node_ident

You can now take actions on the node, such as replacing a bad disk drive.

Strategies for determining why a cleaning step failed include checking the ironic conductor logs, viewing
logs on the still-running ironic-python-agent (if an in-band step failed), or performing general hardware
troubleshooting on the node.

When the node is repaired, you can move the node back to available state, to allow it to be scheduled
by nova.

First, move it out of maintenance mode
baremetal node maintenance unset $node_ident

Now, make the node available for scheduling by nova
baremetal node provide $node_ident

The node will begin automated cleaning from the start, and move to available state when complete.

4.2.4 Node adoption

Overview

As part of hardware inventory lifecycle management, it is not an unreasonable need to have the capability
to be able to add hardware that should be considered in-use by the Bare Metal service, that may have been
deployed by another Bare Metal service installation or deployed via other means.

As such, the node adoption feature allows a user to define a node as active while skipping the
available and deploying states, which will prevent the node from being seen by the Compute service
as ready for use.

4.2. Bare Metal Service Features 297

Ironic Documentation, Release 26.1.2.dev21

This feature is leveraged as part of the state machine workflow, where a node in manageable can be
moved to active state via the provision_state verb adopt. To view the state transition capabilities,
please see Bare Metal State Machine.

Note

For deployments using Ironic in conjunction with Nova, Ironics node adoption feature is not suitable.
If you need to adopt production nodes into Ironic and Nova, you can find a high-level recipe in
Adoption with Nova.

How it works

A node initially enrolled begins in the enroll state. An operator must then move the node to
manageable state, which causes the nodes power interface to be validated. Once in manageable state,
an operator can then explicitly choose to adopt a node.

Adoption of a node results in the validation of its boot interface, and upon success the process leverages
what is referred to as the takeover logic. The takeover process is intended for conductors to take over the
management of nodes for a conductor that has failed.

The takeover process involves the deploy interfaces prepare and take_over methods being called.
These steps take specific actions such as downloading and staging the deployment kernel and ramdisk,
ISO image, any required boot image, or boot ISO image and then places any PXE or virtual media
configuration necessary for the node should it be required.

The adoption process makes no changes to the physical node, with the exception of operator supplied
configurations where virtual media is used to boot the node under normal circumstances. An operator
should ensure that any supplied configuration defining the node is sufficient for the continued operation
of the node moving forward.

Possible Risk

The main risk with this feature is that supplied configuration may ultimately be incorrect or invalid which
could result in potential operational issues:

• rebuild verb - Rebuild is intended to allow a user to re-deploy the node to a fresh state. The risk
with adoption is that the image defined when an operator adopts the node may not be the valid
image for the pre-existing configuration.

If this feature is utilized for a migration from one deployment to another, and pristine original
images are loaded and provided, then ultimately the risk is the same with any normal use of the
rebuild feature, the server is effectively wiped.

• When deleting a node, the deletion or cleaning processes may fail if the incorrect deployment
image is supplied in the configuration as the node may NOT have been deployed with the supplied
image and driver or compatibility issues may exist as a result.

Operators will need to be cognizant of that possibility and should plan accordingly to ensure that
deployment images are known to be compatible with the hardware in their environment.

• Networking - Adoption will assert no new networking configuration to the newly adopted node as
that would be considered modifying the node.

298 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Operators will need to plan accordingly and have network configuration such that the nodes will
be able to network boot.

How to use

Note

The power state that the ironic-conductor observes upon the first successful power state check, as part
of the transition to the manageable state will be enforced with a node that has been adopted. This
means a node that is in power off state will, by default, have the power state enforced as power
off moving forward, unless an administrator actively changes the power state using the Bare Metal
service.

Requirements

Requirements for use are essentially the same as to deploy a node:

• Sufficient driver information to allow for a successful power management validation.

• Sufficient instance_info to pass deploy interface preparation.

Each driver may have additional requirements dependent upon the configuration that is supplied. An
example of this would be defining a node to always boot from the network, which will cause the conductor
to attempt to retrieve the pertinent files. Inability to do so will result in the adoption failing, and the node
being placed in the adopt failed state.

Example

This is an example to create a new node, named testnode, with sufficient information to pass basic
validation in order to be taken from the manageable state to active state:

Explicitly set the client API version environment variable to
1.17, which introduces the adoption capability.
export OS_BAREMETAL_API_VERSION=1.17

baremetal node create --name testnode \
--driver ipmi \
--driver-info ipmi_address=<ip_address> \
--driver-info ipmi_username=<username> \
--driver-info ipmi_password=<password> \
--driver-info deploy_kernel=<deploy_kernel_id_or_url> \
--driver-info deploy_ramdisk=<deploy_ramdisk_id_or_url>

baremetal port create <node_mac_address> --node <node_uuid>

baremetal node set testnode \
--instance-info image_source="http://localhost:8080/blankimage"

baremetal node manage testnode --wait
(continues on next page)

4.2. Bare Metal Service Features 299

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

baremetal node adopt testnode --wait

Note

In the above example, the image_source setting must reference a valid image or file, however that
image or file can ultimately be empty.

Note

The above example utilizes a capability that defines the boot operation to be local. It is recommended
to define the node as such unless network booting is desired.

Note

The above example will fail a re-deployment as a fake image is defined and no in-
stance_info/image_checksum value is defined. As such any actual attempt to write the image out
will fail as the image_checksum value is only validated at time of an actual deployment operation.

Note

A user may wish to assign an instance_uuid to a node, which could be used to match an instance in
the Compute service. Doing so is not required for the proper operation of the Bare Metal service.

baremetal node set <node name or uuid> instance-uuid <uuid>

Note

In Newton, coupled with API version 1.20, the concept of a network_interface was introduced. A
user of this feature may wish to add new nodes with a network_interface of noop and then change the
interface at a later point and time.

Troubleshooting

Should an adoption operation fail for a node, the error that caused the failure will be logged in the nodes
last_error field when viewing the node. This error, in the case of node adoption, will largely be due
to failure of a validation step. Validation steps are dependent upon what driver is selected for the node.

Any node that is in the adopt failed state can have the adopt verb re-attempted. Example:

baremetal node adopt <node name or uuid>

If a user wishes to abort their attempt at adopting, they can then move the node back to manageable
from adopt failed state by issuing the manage verb. Example:

300 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal node manage <node name or uuid>

If all else fails the hardware node can be removed from the Bare Metal service. The node delete
command, which is not the same as setting the provision state to deleted, can be used while the node
is in adopt failed state. This will delete the node without cleaning occurring to preserve the nodes
current state. Example:

baremetal node delete <node name or uuid>

Adoption with Nova

Since there is no mechanism to create bare metal instances in Nova when nodes are adopted into Ironic,
the node adoption feature described above cannot be used to add in production nodes to deployments
which use Ironic together with Nova.

One option to add in production nodes to an Ironic/Nova deployment is to use the fake drivers. The overall
idea is that for Nova the nodes are instantiated normally to ensure the instances are properly created in
the compute project while Ironic does not touch them.

Here are some high level steps to be used as a guideline:

• create a bare metal flavor and a hosting project for the instances

• enroll the nodes into Ironic, create the ports, move them to manageable

• change the hardware type and the interfaces to fake drivers

• provide the nodes to make them available

• one by one, add the nodes to the placement aggregate and create instances

• change the hardware type and the interfaces back to the real ones

Make sure you change the drivers to the fake ones before providing the nodes as cleaning will otherwise
wipe your production servers!

The reason to make all nodes available and manage access via the aggregate is that this is much faster
than providing nodes one by one and relying on the resource tracker to find them. Enabling them one by
one is required to make sure the instance name and the (pre-adoption) name of the server match.

The above recipe does not cover Neutron which, depending on your deployment, may need to be handled
in addition.

4.2.5 Retiring a node in Ironic

Overview

Retiring nodes is a natural part of a servers life cycle, for instance when the end of the warranty is reached
and the physical space is needed for new deliveries to install replacement capacity.

However, depending on the type of the deployment, removing nodes from service can be a full workflow
by itself as it may include steps like moving applications to other hosts, cleaning sensitive data from disks
or the BMC, or tracking the dismantling of servers from their racks.

4.2. Bare Metal Service Features 301

Ironic Documentation, Release 26.1.2.dev21

Ironic provides some means to support such workflows by allowing to tag nodes as retired which will
prevent any further scheduling of instances, but will still allow for other operations, such as cleaning, to
happen (this marks an important difference to nodes which have the maintenance flag set).

Requirements

The use of the retirement feature requires that automated cleaning be enabled. The default conductor.
automated_clean setting must not be disabled as the retirement feature is only engaged upon the com-
pletion of cleaning as it sets forth the expectation of removing sensitive data from a node.

If youre uncomfortable with full cleaning, but want to make use of the the retirement feature, a
compromise may be to explore use of metadata erasure, however this will leave additional data on
disk which you may wish to erase completely. Please consult the configuration for the deploy.
erase_devices_metadata_priority and deploy.erase_devices_priority settings, and do
note that clean steps can be manually invoked through manual cleaning should you wish to trigger
the erase_devices clean step to completely wipe all data from storage devices. Alternatively, au-
tomated cleaning can also be enabled on an individual node level using the baremetal node set
--automated-clean <node_id> command.

How to use

When it is known that a node shall be retired, set the retired flag on the node with:

baremetal node set --retired node-001

This can be done irrespective of the state the node is in, so in particular while the node is active.

Note

An exception are nodes which are in available. For backwards compatibility reasons, these nodes
need to be moved to manageable first. Trying to set the retired flag for available nodes will
result in an error.

Optionally, a reason can be specified when a node is retired, e.g.:

baremetal node set --retired node-001 \
--retired-reason "End of warranty for delivery abc123"

Upon instance deletion, an active node with the retired flag set will not move to available, but to
manageable. The node will hence not be eligible for scheduling of new instances.

Equally, nodes with retired set to True cannot move from manageable to available: the provide
verb is blocked. This is to prevent accidental reuse of nodes tagged for removal from the fleet. In order
to move these nodes to available none the less, the retired field needs to be removed first. This can
be done via:

baremetal node unset --retired node-001

In order to facilitate the identification of nodes marked for retirement, e.g. by other teams, ironic also
allows to list all nodes which have the retired flag set:

302 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal node list --retired

4.2.6 RAID Configuration

Overview

Ironic supports RAID configuration for bare metal nodes. It allows operators to specify the desired RAID
configuration via the OpenStackClient CLI or REST API. The desired RAID configuration is applied on
the bare metal during manual cleaning.

The examples described here use the OpenStackClient CLI; please see the REST API reference for their
corresponding REST API requests.

Prerequisites

The bare metal node needs to use a hardware type that supports RAID configuration. RAID interfaces
may implement RAID configuration either in-band or out-of-band. Software RAID is supported on all
hardware, although with some caveats - see Software RAID for details.

In-band RAID configuration (including software RAID) is done using the Ironic Python Agent ramdisk.
For in-band hardware RAID configuration, a hardware manager which supports RAID should be bundled
with the ramdisk.

Whether a node supports RAID configuration could be found using the CLI command baremetal node
validate <node>. In-band RAID is usually implemented by the agent RAID interface.

Build agent ramdisk which supports RAID configuration

For doing in-band hardware RAID configuration, Ironic needs an agent ramdisk bundled with a hard-
ware manager which supports RAID configuration for your hardware. For example, the DIB support for
Proliant Hardware Manager should be used for HPE Proliant Servers.

Note

For in-band software RAID, the agent ramdisk does not need to be bundled with a hardware manager
as the generic hardware manager in the Ironic Python Agent already provides (basic) support for
software RAID.

RAID configuration JSON format

The desired RAID configuration and current RAID configuration are represented in JSON format.

4.2. Bare Metal Service Features 303

https://docs.openstack.org/api-ref/baremetal/

Ironic Documentation, Release 26.1.2.dev21

Target RAID configuration

This is the desired RAID configuration on the bare metal node. Using the OpenStackClient CLI (or
REST API), the operator sets target_raid_config field of the node. The target RAID configuration
will be applied during manual cleaning.

Target RAID configuration is a dictionary having logical_disks as the key. The value for the
logical_disks is a list of JSON dictionaries. It looks like:

{
"logical_disks": [
{<desired properties of logical disk 1>},
{<desired properties of logical disk 2>},
...

]
}

If the target_raid_config is an empty dictionary, it unsets the value of target_raid_config if the
value was set with previous RAID configuration done on the node.

Each dictionary of logical disk contains the desired properties of logical disk supported by the hardware
type. These properties are discoverable by:

baremetal driver raid property list <driver name>

Mandatory properties

These properties must be specified for each logical disk and have no default values:

• size_gb - Size (Integer) of the logical disk to be created in GiB. MAXmay be specified if the logical
disk should use all of the remaining space available. This can be used only when backing physical
disks are specified (see below).

• raid_level - RAID level for the logical disk. Ironic supports the following RAID levels: 0, 1, 2,
5, 6, 1+0, 5+0, 6+0.

Optional properties

These properties have default values and they may be overridden in the specification of any logical disk.
None of these options are supported for software RAID.

• volume_name - Name of the volume. Should be unique within the Node. If not specified, volume
name will be auto-generated.

• is_root_volume - Set to true if this is the root volume. At most one logical disk can have this
set to true; the other logical disks must have this set to false. The root device hint will be
saved, if the RAID interface is capable of retrieving it. This is false by default.

304 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Backing physical disk hints

These hints are specified for each logical disk to let Ironic find the desired disks for RAID configuration.
This is machine-independent information. This serves the use-case where the operator doesnt want to
provide individual details for each bare metal node. None of these options are supported for software
RAID.

• share_physical_disks - Set to true if this logical disk can share physical disks with other
logical disks. The default value is false, except for software RAID which always shares disks.

• disk_type - hdd or ssd. If this is not specified, disk type will not be a criterion to find backing
physical disks.

• interface_type - sata or scsi or sas. If this is not specified, interface type will not be a
criterion to find backing physical disks.

• number_of_physical_disks - Integer, number of disks to use for the logical disk. Defaults to
minimum number of disks required for the particular RAID level, except for software RAID which
always spans all disks.

Backing physical disks

These are the actual machine-dependent information. This is suitable for environments where the op-
erator wants to automate the selection of physical disks with a 3rd-party tool based on a wider range
of attributes (eg. S.M.A.R.T. status, physical location). The values for these properties are hardware
dependent.

• controller - The name of the controller as read by the RAID interface. In order to trigger the
setup of a Software RAID via the Ironic Python Agent, the value of this property needs to be set
to software.

• physical_disks - A list of physical disks to use as read by the RAID interface.

For software RAID physical_disks is a list of device hints in the same format as used for Spec-
ifying the disk for deployment (root device hints). The number of provided hints must match the
expected number of backing devices (repeat the same hint if necessary).

Note

If properties from both Backing physical disk hints or Backing physical disks are specified, they
should be consistent with each other. If they are not consistent, then the RAID configuration will fail
(because the appropriate backing physical disks could not be found).

4.2. Bare Metal Service Features 305

Ironic Documentation, Release 26.1.2.dev21

Examples for target_raid_config

Example 1. Single RAID disk of RAID level 5 with all of the space available. Make this the root volume
to which Ironic deploys the image:

{
"logical_disks": [
{
"size_gb": "MAX",
"raid_level": "5",
"is_root_volume": true

}
]

}

Example 2. Two RAID disks. One with RAID level 5 of 100 GiB and make it root volume and use SSD.
Another with RAID level 1 of 500 GiB and use HDD:

{
"logical_disks": [
{
"size_gb": 100,
"raid_level": "5",
"is_root_volume": true,
"disk_type": "ssd"

},
{
"size_gb": 500,
"raid_level": "1",
"disk_type": "hdd"

}
]

}

Example 3. Single RAID disk. I know which disks and controller to use:

{
"logical_disks": [
{
"size_gb": 100,
"raid_level": "5",
"controller": "Smart Array P822 in Slot 3",
"physical_disks": ["6I:1:5", "6I:1:6", "6I:1:7"],
"is_root_volume": true

}
]

}

Example 4. Using backing physical disks:

{
(continues on next page)

306 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"logical_disks": [
{
"size_gb": 50,
"raid_level": "1+0",
"controller": "RAID.Integrated.1-1",
"volume_name": "root_volume",
"is_root_volume": true,
"physical_disks": [
"Disk.Bay.0:Encl.Int.0-1:RAID.Integrated.1-1",
"Disk.Bay.1:Encl.Int.0-1:RAID.Integrated.1-1"

]
},
{
"size_gb": 100,
"raid_level": "5",
"controller": "RAID.Integrated.1-1",
"volume_name": "data_volume",
"physical_disks": [
"Disk.Bay.2:Encl.Int.0-1:RAID.Integrated.1-1",
"Disk.Bay.3:Encl.Int.0-1:RAID.Integrated.1-1",
"Disk.Bay.4:Encl.Int.0-1:RAID.Integrated.1-1"

]
}

]
}

Example 5. Software RAID with two RAID devices:

{
"logical_disks": [
{
"size_gb": 100,
"raid_level": "1",
"controller": "software"

},
{
"size_gb": "MAX",
"raid_level": "0",
"controller": "software"

}
]

}

Example 6. Software RAID, limiting backing block devices to exactly two devices with the size exceeding
100 GiB:

{
"logical_disks": [
{
"size_gb": "MAX",

(continues on next page)

4.2. Bare Metal Service Features 307

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"raid_level": "0",
"controller": "software",
"physical_disks": [
{"size": "> 100"},
{"size": "> 100"}

]
}

]
}

Current RAID configuration

After target RAID configuration is applied on the bare metal node, Ironic populates the current RAID
configuration. This is populated in the raid_config field in the Ironic node. This contains the details
about every logical disk after they were created on the bare metal node. It contains details like RAID con-
troller used, the backing physical disks used, WWN of each logical disk, etc. It also contains information
about each physical disk found on the bare metal node.

To get the current RAID configuration:

baremetal node show <node-uuid-or-name>

Workflow

• Operator configures the bare metal node with a hardware type that has a RAIDInterface other
than no-raid. For instance, for Software RAID, this would be agent.

• For in-band RAID configuration, operator builds an agent ramdisk which supports RAID con-
figuration by bundling the hardware manager with the ramdisk. See Build agent ramdisk which
supports RAID configuration for more information.

• Operator prepares the desired target RAID configuration as mentioned in Target RAID configura-
tion. The target RAID configuration is set on the Ironic node:

baremetal node set <node-uuid-or-name> \
--target-raid-config <JSON file containing target RAID configuration>

The CLI command can accept the input from standard input also:

baremetal node set <node-uuid-or-name> \
--target-raid-config -

• Create a JSON file with the RAID clean steps for manual cleaning. Add other clean steps as desired:

[{
"interface": "raid",
"step": "delete_configuration"

},
{

(continues on next page)

308 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"interface": "raid",
"step": "create_configuration"

}]

Note

create_configuration doesnt remove existing disks. It is recommended to add
delete_configuration before create_configuration to make sure that only the desired logi-
cal disks exist in the system after manual cleaning.

• Bring the node to manageable state and do a clean action to start cleaning on the node:

baremetal node clean <node-uuid-or-name> \
--clean-steps <JSON file containing clean steps created above>

• After manual cleaning is complete, the current RAID configuration is reported in the
raid_config field when running:

baremetal node show <node-uuid-or-name>

Software RAID

Building Linux software RAID in-band (via the Ironic Python Agent ramdisk) is supported starting with
the Train release. It is requested by using the agent RAID interface and RAID configuration with all
controllers set to software. You can find a software RAID configuration example in Examples for
target_raid_config.

There are certain limitations to be aware of:

• Only the mandatory properties (plus the required controller property) from Target RAID con-
figuration are currently supported.

• The number of created Software RAID devices must be 1 or 2. If there is only one Software RAID
device, it has to be a RAID-1. If there are two, the first one has to be a RAID-1, while the RAID
level for the second one can be 0, 1, 1+0, 5, or 6. As the first RAID device will be the deployment
device, enforcing a RAID-1 reduces the risk of ending up with a non-booting node in case of a
disk failure.

• Building RAID will fail if the target disks are already partitioned. Wipe the disks using e.g. the
erase_devices_metadata clean step before building RAID:

[{
"interface": "raid",
"step": "delete_configuration"

},
{
"interface": "deploy",
"step": "erase_devices_metadata"

},
{

(continues on next page)

4.2. Bare Metal Service Features 309

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"interface": "raid",
"step": "create_configuration"

}]

• The final instance image must have the mdadm utility installed and needs to be able to detect soft-
ware RAID devices at boot time (which is usually done by having the RAID drivers embedded in
the images initrd).

• Regular cleaning will not remove RAID configuration (similarly to hardware RAID). To destroy
RAID run the delete_configuration manual clean step.

• There is no support for partition images, only whole-disk images are supported with Software
RAID. See Add images to the Image service. This includes flavors requesting dynamic creation of
swap filesystems. Swap should be pre-allocated inside of a disk image partition layout.

• Images utilizing LVM for their root filesystem are not supported. Patches are welcome to explicitly
support such functionality.

• If the root filesystem UUID is not known to Ironic via metadata, then the disk image layout MUST
have the first partition consist of the root filesystem. Ironic is agnostic if the partition table is a
DOS MBR or a GPT partition.

Starting in Ironic 14.0.0 (Ussuri), the root filesystem UUID can be set and passed through to Ironic
through the Glance Image Service properties sub-field rootfs_uuid for the image to be de-
ployed.

Starting in Ironic 16.1.0 (Wallaby), similar functionality is available via the baremetal node
instance_info field value image_rootfs_uuid. See Using Bare Metal service as a standalone
service for more details on standalone usage including an example command.

• In UEFI mode, the Ironic Python Agent creates EFI system partitions (ESPs) for the bootloader and
the boot configuration (grub.cfg or grubenv) on all holder devices. The content of these partitions
is populated upon deployment from the deployed user image. Depending on how the partitions are
mounted, the content of the partitions may get out of sync, e.g. when new kernels are installed
or the bootloader is updated, so measures to keep these partitions in sync need to be taken. Note
that starting with the Victoria release, the Ironic Python Agent configures a RAID-1 mirror for the
ESPs, so no additional measures to ensure consistency of the ESPs should be required any longer.

• In BIOS mode, the Ironic Python Agent installs the boot loader onto all disks. While nothing is
required for kernel or grub package updates, re-installing the bootloader on one disk, e.g. during a
disk replacement, may require to re-install the bootloader on all disks. Otherwise, there is a risk of
an incompatibility of the grub components stored on the device (i.e. stage1/boot.img in the MBR
and stage1.5/core.img in the MBR gap) with the ones stored in /boot (stage2). This incompatibility
can render the node unbootable if the wrong disk is selected for booting.

• Linux kernel device naming is not consistent across reboots for RAID devices and may be num-
bered in a distribution specific pattern. Operators will need to be mindful of this if a root device
hint is utilized. A particular example of this is that the first md0 device on a Ubuntu based ramdisk
may start as device md0, whereas on a Centos or Red Hat Enterprise Linux based ramdisk may
start at device md127. After a reboot, these device names may change entirely.

Note

Root device hints should not be explicitly required to utilize software RAID. Candidate devices

310 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

are chosen by sorting the usable device list looking for the smallest usable device which is
then sorted by name. The secondary sort by name improves the odds for matching the first
initialized block device. In the case of software RAID, they are always a little smaller than
the primary block devices due to metadata overhead, which helps make them the most likely
candidate devices.

Image requirements

Since Ironic needs to perform additional steps when deploying nodes with software RAID, there are some
requirements the deployed images need to fulfill. Up to and including the Train release, the image needs
to have its root file system on the first partition. Starting with Ussuri, the image can also have additional
metadata to point Ironic to the partition with the root file system: for this, the image needs to set the
rootfs_uuid property with the file system UUID of the root file system. One way to extract this UUID
from an existing image is to download the image, mount it as a loopback device, and use blkid:

$ sudo losetup -f
$ sudo losetup /dev/loop0 /tmp/myimage.raw
$ sudo kpartx -a /dev/loop0
$ blkid

The pre-Ussuri approach, i.e. to have the root file system on the first partition, is kept as a fallback and
hence allows software RAID deployments where Ironic does not have access to any image metadata (e.g.
Ironic stand-alone).

Using RAID in nova flavor for scheduling

The operator can specify the raid_level capability in nova flavor for node to be selected for scheduling:

openstack flavor set my-baremetal-flavor --property capabilities:raid_level=
↪→"1+0"

Developer documentation

In-band RAID configuration is done using IPA ramdisk. IPA ramdisk has support for pluggable hardware
managers which can be used to extend the functionality offered by IPA ramdisk using stevedore plugins.
For more information, see Ironic Python Agent Hardware Manager documentation.

The hardware manager that supports RAID configuration should do the following:

1. Implement a method named create_configuration. This method creates the RAID config-
uration as given in target_raid_config. After successful RAID configuration, it returns the
current RAID configuration information which ironic uses to set node.raid_config.

2. Implement a method named delete_configuration. This method deletes all the RAID disks
on the bare metal.

3. Return these two clean steps in get_clean_steps method with priority as 0. Example:

4.2. Bare Metal Service Features 311

https://docs.openstack.org/ironic-python-agent/2024.2/install/index.html#hardware-managers

Ironic Documentation, Release 26.1.2.dev21

return [{'step': 'create_configuration',
'interface': 'raid',
'priority': 0},
{'step': 'delete_configuration',
'interface': 'raid',
'priority': 0}]

4.2.7 BIOS Configuration

Overview

The Bare Metal service supports BIOS configuration for bare metal nodes. It allows administrators to
retrieve and apply the desired BIOS settings via CLI or REST API. The desired BIOS settings are applied
during manual cleaning.

Prerequisites

Bare metal servers must be configured by the administrator to be managed via ironic hardware type that
supports BIOS configuration.

Enabling hardware types

Enable a specific hardware type that supports BIOS configuration. Refer to Enabling drivers and hard-
ware types for how to enable a hardware type.

Enabling hardware interface

To enable the bios interface:

[DEFAULT]
enabled_bios_interfaces = no-bios

Append the actual bios interface name supported by the enabled hardware type to
enabled_bios_interfaces with comma separated values in ironic.conf.

All available in-tree bios interfaces are listed in setup.cfg file in the source code tree, for example:

ironic.hardware.interfaces.bios =
fake = ironic.drivers.modules.fake:FakeBIOS
no-bios = ironic.drivers.modules.noop:NoBIOS

312 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Retrieve BIOS settings

To retrieve the cached BIOS configuration from a specified node:

$ baremetal node bios setting list <node>

BIOS settings are cached on each node cleaning operation or when settings have been applied successfully
via BIOS cleaning steps. The return of above command is a table of last cached BIOS settings from
specified node. If -f json is added as suffix to above command, it returns BIOS settings as following:

[
{
"setting name":

{
"name": "setting name",
"value": "value"

}
},
{
"setting name":

{
"name": "setting name",
"value": "value"

}
},
...

]

To get a specified BIOS setting for a node:

$ baremetal node bios setting show <node> <setting-name>

If -f json is added as suffix to above command, it returns BIOS settings as following:

{
"setting name":
{

"name": "setting name",
"value": "value"

}
}

4.2. Bare Metal Service Features 313

Ironic Documentation, Release 26.1.2.dev21

Configure BIOS settings

Two Manual cleaning steps are available for managing nodes BIOS settings:

Factory reset

This cleaning step resets all BIOS settings to factory default for a given node:

{
"target":"clean",
"clean_steps": [
{

"interface": "bios",
"step": "factory_reset"

}
]

}

The factory_reset cleaning step does not require any arguments, as it resets all BIOS settings to
factory defaults.

Apply BIOS configuration

This cleaning step applies a set of BIOS settings for a node:

{
"target":"clean",
"clean_steps": [
{

"interface": "bios",
"step": "apply_configuration",
"args": {
"settings": [
{
"name": "name",
"value": "value"

},
{
"name": "name",
"value": "value"

}
]

}
}

]
}

The representation of apply_configuration cleaning step follows the same format of Manual clean-
ing. The desired BIOS settings can be provided via the settings argument which contains a list of
BIOS options to be applied, each BIOS option is a dictionary with name and value keys.

314 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

To check whether the desired BIOS configuration is set properly, use the command mentioned in the
Retrieve BIOS settings section.

Note

When applying BIOS settings to a node, vendor-specific driver may take the given BIOS settings from
the argument and compare them with the current BIOS settings on the node and only apply when there
is a difference.

4.2.8 Firmware update using manual cleaning

The firmware update cleaning step allows one or more firmware updates to be applied to a node. If mul-
tiple updates are specified, then they are applied sequentially in the order given. The server is rebooted
once per update. If a failure occurs, the cleaning step immediately fails which may result in some updates
not being applied. If the node is placed into maintenance mode while a firmware update cleaning step is
running that is performing multiple firmware updates, the update in progress will complete, and process-
ing of the remaining updates will pause. When the node is taken out of maintenance mode, processing
of the remaining updates will continue.

Note

Only Redfish driver supports firmware updates currently.

When updating the BMC firmware, the BMC may become unavailable for a period of time as it resets.
In this case, it may be desirable to have the cleaning step wait after the update has been applied before
indicating that the update was successful. This allows the BMC time to fully reset before further opera-
tions are carried out against it. To cause the cleaning step to wait after applying an update, an optional
wait argument may be specified in the firmware image dictionary. The value of this argument indicates
the number of seconds to wait following the update. If the wait argument is not specified, then this
is equivalent to wait 0, meaning that it will not wait and immediately proceed with the next firmware
update if there is one, or complete the cleaning step if not.

How it works

The update_firmware cleaning step accepts JSON in the following format:

[{
"interface": "management",
"step": "update_firmware",
"args": {

"firmware_images":[
{

"url": "<url_to_firmware_image1>",
"checksum": "<checksum for image, uses SHA1, SHA256, or␣

↪→SHA512>",
"source": "<optional override source setting for image>",
"wait": <number_of_seconds_to_wait>

},
(continues on next page)

4.2. Bare Metal Service Features 315

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

{
"url": "<url_to_firmware_image2>"

},
...

]
}

}]

The different attributes of the update_firmware cleaning step are as follows:

Attribute Description
interface Interface of the cleaning step. Must be management for firmware update
step Name of cleaning step. Must be update_firmware for firmware update
args Keyword-argument entry (<name>: <value>) being passed to cleaning step
args.
firmware_images

Ordered list of dictionaries of firmware images to be applied

Each firmware image dictionary, is of the form:

{
"url": "<URL of firmware image file>",
"checksum": "<checksum for image, uses SHA1>",
"source": "<Optional override source setting for image>",
"wait": <Optional time in seconds to wait after applying update>

}

The url and checksum arguments in the firmware image dictionary are mandatory, while the source
and wait arguments are optional.

For url currently http, https, swift and file schemes are supported.

source corresponds to redfish.firmware_source and by setting it here, it is possible to override
global setting per firmware image in clean step arguments.

Note

At the present time, targets for the firmware update cannot be specified. In testing, the BMC applied
the update to all applicable targets on the node. It is assumed that the BMC knows what components
a given firmware image is applicable to.

316 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Applying updates

To perform a firmware update, first download the firmware to a web server, Swift or filesystem that the
Ironic conductor or BMC has network access to. This could be the ironic conductor web server or another
web server on the BMC network. Using a web browser, curl, or similar tool on a server that has network
access to the BMC or Ironic conductor, try downloading the firmware to verify that the URLs are correct
and that the web server is configured properly.

Next, construct the JSON for the firmware update cleaning step to be executed. When launching the
firmware update, the JSON may be specified on the command line directly or in a file. The following
example shows one cleaning step that installs four firmware updates. All except 3rd entry that has explicit
source added, uses setting from redfish.firmware_source to determine if and where to stage the
files:

[{
"interface": "management",
"step": "update_firmware",
"args": {

"firmware_images":[
{

"url": "http://192.0.2.10/BMC_4_22_00_00.EXE",
"checksum": "<sha1-checksum-of-the-file>",
"wait": 300

},
{

"url": "https://192.0.2.10/NIC_19.0.12_A00.EXE",
"checksum": "<sha1-checksum-of-the-file>"

},
{

"url": "file:///firmware_images/idrac/9/PERC_WN64_6.65.65.65_
↪→A00.EXE",

"checksum": "<sha1-checksum-of-the-file>",
"source": "http"

},
{

"url": "swift://firmware_container/BIOS_W8Y0W_WN64_2.1.7.EXE",
"checksum": "<sha1-checksum-of-the-file>"

}
]

}
}]

Finally, launch the firmware update cleaning step against the node. The following example assumes the
above JSON is in a file named firmware_update.json:

$ baremetal node clean <ironic_node_uuid> --clean-steps firmware_update.json

In the following example, the JSON is specified directly on the command line:

$ baremetal node clean <ironic_node_uuid> --clean-steps \
'[{"interface": "management", "step": "update_firmware", "args": {

↪→"firmware_images":[{"url": "http://192.0.2.10/BMC_4_22_00_00.EXE", "wait":␣
(continues on next page)

4.2. Bare Metal Service Features 317

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

↪→300}, {"url": "https://192.0.2.10/NIC_19.0.12_A00.EXE"}]}}]'

Note

Firmware updates may take some time to complete. If a firmware update cleaning step consis-
tently times out, then consider performing fewer firmware updates in the cleaning step or increasing
clean_callback_timeout in ironic.conf to increase the timeout value.

Warning

Warning: Removing power from a server while it is in the process of updating firmware may result
in devices in the server, or the server itself becoming inoperable.

4.2.9 Rescue Mode

Overview

The Bare Metal Service supports putting nodes in rescue mode using hardware types that support res-
cue interfaces. The hardware types utilizing ironic-python-agent with PXE/Virtual Media based boot
interface can support rescue operation when configured appropriately.

Note

The rescue operation is currently supported only when tenant networks use DHCP to obtain IP ad-
dresses.

Rescue operation can be used to boot nodes into a rescue ramdisk so that the rescue user can access the
node, in order to provide the ability to access the node in case access to OS is not possible. For example,
if there is a need to perform manual password reset or data recovery in the event of some failure, rescue
operation can be used.

Configuring The Bare Metal Service

Configure the Bare Metal Service appropriately so that the service has the information needed to boot
the ramdisk before a user tries to initiate rescue operation. This will differ somewhat between different
deploy environments, but an example of how to do this is outlined below:

1. Create and configure ramdisk that supports rescue operation. Please see Building or downloading
a deploy ramdisk image for detailed instructions to build a ramdisk.

2. Configure a network to use for booting nodes into the rescue ramdisk in neutron, and note the UUID
or name of this network. This is required if youre using the neutron DHCP provider and have Bare
Metal Service managing ramdisk booting (the default). This can be the same network as your
cleaning or tenant network (for flat network). For an example of how to configure new networks
with Bare Metal Service, see the Configure the Networking service for bare metal provisioning
documentation.

318 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

3. Add the unique name or UUID of your rescue network to ironic.conf:

[neutron]
rescuing_network=<RESCUE_UUID_OR_NAME>

Note

This can be set per node via driver_info[rescuing_network]

4. Restart the ironic conductor service.

5. Specify a rescue kernel and ramdisk or rescue ISO compatible with the nodes driver for pxe based
boot interface or virtual-media based boot interface respectively.

Example for pxe based boot interface:

baremetal node set $NODE_UUID \
--driver-info rescue_ramdisk=$RESCUE_INITRD_UUID \
--driver-info rescue_kernel=$RESCUE_VMLINUZ_UUID

See Add images to the Image service for details. If you are not using Image service, it is possible
to provide images to Bare Metal service via hrefs.

After this, The Bare Metal Service should be ready for rescue operation. Test it out by attempting to
rescue an active node and connect to the instance using ssh, as given below:

baremetal node rescue $NODE_UUID \
--rescue-password <PASSWORD> --wait

ssh rescue@$INSTANCE_IP_ADDRESS

To move a node back to active state after using rescue mode you can use unrescue. Please unmount
any filesystems that were manually mounted before proceeding with unrescue. The node unrescue can
be done as given below:

baremetal node unrescue $NODE_UUID

rescue and unrescue operations can also be triggered via the Compute Service using the following
commands:

openstack server rescue --password <password> <server>

openstack server unrescue <server>

4.2. Bare Metal Service Features 319

Ironic Documentation, Release 26.1.2.dev21

4.2.10 Boot From Volume

Overview

The Bare Metal service supports booting from a Cinder iSCSI volume as of the Pike release. This guide
will primarily deal with this use case, but will be updated as more paths for booting from a volume, such
as FCoE, are introduced.

The boot from volume is supported on both legacy BIOS and UEFI (iPXE binary for EFI booting) boot
mode. We need to perform with suitable images which will be created by diskimage-builder tool.

How this works - From Ironics point of view

In essence, ironic sets the stage for the process, by providing the required information to the boot interface
to facilitate the configuration of the the node OR the iPXE boot templates such that the node CAN be
booted.

User API Conductor Storage Boot Network Deploy

User or intermediate service s
uch as nova supplies volume ta
rget configuration.

Sends deployment request.

API transmits the action to th
e conductor service

Conductor calls the storage_in
terface to perform attachment

of volume to node

Conductor calls the boot interface signaling preparation of an
instance

Conductor attaches the machine to network requested by the user VIF

Conductor starts deployment steps which just turn the power on.

In this example, the boot interface does the heavy lifting. For drivers the irmc and ilo hardware types
with hardware type specific boot interfaces, they are able to signal via an out of band mechanism to the
baremetal nodes BMC that the integrated iSCSI initiators are to connect to the supplied volume target
information.

In most hardware this would be the network cards of the machine.

In the case of the ipxe boot interface, templates are created on disk which point to the iscsi target infor-
mation that was either submitted as part of the volume target, or when integrated with Nova, what was
requested as the baremetals boot from volume disk upon requesting the instance.

In terms of network access, both interface methods require connectivity to the iscsi target. In the vendor
driver specific path, additional network configuration options may be available to allow separation of
standard network traffic and instance network traffic. In the iPXE case, this is not possible as the OS
userspace re-configures the iSCSI connection after detection inside the OS ramdisk boot.

An iPXE user may be able to leverage multiple VIFs, one specifically set to be set with pxe_enabled
to handle the initial instance boot and back-end storage traffic where as external facing network traffic
occurs on a different interface. This is a common pattern in iSCSI based deployments in the physical
realm.

320 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Prerequisites

Currently booting from a volume requires:

• Bare Metal service version 9.0.0

• Bare Metal API microversion 1.33 or later

• A driver that utilizes the PXE boot mechanism. Currently booting from a volume is supported by
the reference drivers that utilize PXE boot mechanisms when iPXE is enabled.

• iPXE is an explicit requirement, as it provides the mechanism that attaches and initiates booting
from an iSCSI volume.

• Metadata services need to be configured and available for the instance images to obtain configura-
tion such as keys. Configuration drives are not supported due to minimum disk extension sizes.

Conductor Configuration

In ironic.conf, you can specify a list of enabled storage interfaces. Check DEFAULT.
enabled_storage_interfaces in your ironic.conf to ensure that your desired interface is enabled.
For example, to enable the cinder and noop storage interfaces:

[DEFAULT]
enabled_storage_interfaces = cinder,noop

If you want to specify a default storage interface rather than setting the storage interface on a per node ba-
sis, set DEFAULT.default_storage_interface in ironic.conf. The default_storage_interface
will be used for any node that doesnt have a storage interface defined.

Node Configuration

Storage Interface

You will need to specify what storage interface the node will use to handle storage operations. For
example, to set the storage interface to cinder on an existing node:

baremetal node set --storage-interface cinder $NODE_UUID

A default storage interface can be specified in ironic.conf. See the Conductor Configuration section for
details.

iSCSI Configuration

In order for a bare metal node to boot from an iSCSI volume, the iscsi_boot capability for the node
must be set to True. For example, if you want to update an existing node to boot from volume:

baremetal node set --property capabilities=iscsi_boot:True $NODE_UUID

You will also need to create a volume connector for the node, so the storage interface will know how
to communicate with the node for storage operation. In the case of iSCSI, you will need to provide an

4.2. Bare Metal Service Features 321

Ironic Documentation, Release 26.1.2.dev21

iSCSI Qualifying Name (IQN) that is unique to your SAN. For example, to create a volume connector
for iSCSI:

baremetal volume connector create \
--node $NODE_UUID --type iqn --connector-id iqn.2017-08.org.

↪→openstack.$NODE_UUID

Image Creation

We use disk-image-create in diskimage-builder tool to create images for boot from volume feature.
Some required elements for this mechanism for corresponding boot modes are as following:

• Legacy BIOS boot mode: iscsi-boot element.

• UEFI boot mode: iscsi-boot and block-device-efi elements.

An example below:

export IMAGE_NAME=<image_name>
export DIB_CLOUD_INIT_DATASOURCES="ConfigDrive, OpenStack"
disk-image-create centos7 vm cloud-init-datasources dhcp-all-interfaces iscsi-
↪→boot dracut-regenerate block-device-efi -o $IMAGE_NAME

Note

• For CentOS images, we must add dependent element named dracut-regenerate during im-
age creation. Otherwise, the image creation will fail with an error.

• For Ubuntu images, we only support iscsi-boot element without dracut-regenerate el-
ement during image creation.

Advanced Topics

Use without the Compute Service

As discussed in other sections, the Bare Metal service has a concept of a connector that is used to repre-
sent an interface that is intended to be utilized to attach the remote volume.

In addition to the connectors, we have a concept of a target that can be defined via the API. While a user
of this feature through the Compute service would automatically have a new target record created for
them, it is not explicitly required, and can be performed manually.

A target record can be created using a command similar to the example below:

baremetal volume target create \
--node $NODE_UUID --type iscsi --boot-index 0 --volume $VOLUME_UUID

Note

322 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

A boot-index value of 0 represents the boot volume for a node. As the boot-index is per-node in
sequential order, only one boot volume is permitted for each node.

Use Without Cinder

In the Rocky release, an external storage interface is available that can be utilized without a Block
Storage Service installation.

Under normal circumstances the cinder storage interface interacts with the Block Storage Service to
orchestrate and manage attachment and detachment of volumes from the underlying block service system.

The external storage interface contains the logic to allow the Bare Metal service to determine if the
Bare Metal node has been requested with a remote storage volume for booting. This is in contrast to the
default noop storage interface which does not contain logic to determine if the node should or could boot
from a remote volume.

It must be noted that minimal configuration or value validation occurs with the external storage inter-
face. The cinder storage interface contains more extensive validation, that is likely un-necessary in a
external scenario.

Setting the external storage interface:

baremetal node set --storage-interface external $NODE_UUID

Setting a volume:

baremetal volume target create --node $NODE_UUID \
--type iscsi --boot-index 0 --volume-id $VOLUME_UUID \
--property target_iqn="iqn.2010-10.com.example:vol-X" \
--property target_lun="0" \
--property target_portal="192.168.0.123:3260" \
--property auth_method="CHAP" \
--property auth_username="ABC" \
--property auth_password="XYZ" \

Ensure that no image_source is defined:

baremetal node unset \
--instance-info image_source $NODE_UUID

Deploy the node:

baremetal node deploy $NODE_UUID

Upon deploy, the boot interface for the baremetal node will attempt to either create iPXE configuration
OR set boot parameters out-of-band via the management controller. Such action is boot interface specific
and may not support all forms of volume target configuration. As of the Rocky release, the bare metal
service does not support writing an Operating System image to a remote boot from volume target, so that
also must be ensured by the user in advance.

Records of volume targets are removed upon the node being undeployed, and as such are not persistent
across deployments.

4.2. Bare Metal Service Features 323

Ironic Documentation, Release 26.1.2.dev21

Cinder Multi-attach

Volume multi-attach is a function that is commonly performed in computing clusters where dedicated
storage subsystems are utilized. For some time now, the Block Storage service has supported the concept
of multi-attach. However, the Compute service, as of the Pike release, does not yet have support to
leverage multi-attach. Concurrently, multi-attach requires the backend volume driver running as part of
the Block Storage service to contain support for multi-attach volumes.

When support for storage interfaces was added to the Bare Metal service, specifically for the cinder
storage interface, the concept of volume multi-attach was accounted for, however has not been fully
tested, and is unlikely to be fully tested until there is Compute service integration as well as volume
driver support.

The data model for storage of volume targets in the Bare Metal service has no constraints on the same
target volume from being utilized. When interacting with the Block Storage service, the Bare Metal
service will prevent the use of volumes that are being reported as in-use if they do not explicitly support
multi-attach.

4.2.11 Configuring Web or Serial Console

Overview

There are two types of console which are available in Bare Metal service, one is web console (Node web
console) which is available directly from web browser, another is serial console (Node serial console).

Node web console

The web console can be configured in Bare Metal service in the following way:

• Install shellinabox in ironic conductor node. For RHEL/CentOS, shellinabox package is not present
in base repositories, user must enable EPEL repository, you can find more from FedoraProject page.

Note

shellinabox is no longer maintained by the authorized author. This is a fork of the project on
GitHub that aims to continue with maintenance of the shellinabox project.

Installation example:

Ubuntu:

sudo apt-get install shellinabox

RHEL8/CentOS8/Fedora:

sudo dnf install shellinabox

You can find more about shellinabox on the shellinabox page.

You can optionally use the SSL certificate in shellinabox. If you want to use the SSL certificate in
shellinabox, you should install openssl and generate the SSL certificate.

324 Chapter 4. Administrator Guide

https://fedoraproject.org/wiki/Infrastructure/Mirroring
https://github.com/shellinabox/shellinabox
https://code.google.com/archive/p/shellinabox/

Ironic Documentation, Release 26.1.2.dev21

1. Install openssl, for example:

Ubuntu:

sudo apt-get install openssl

RHEL8/CentOS8/Fedora:

sudo dnf install openssl

2. Generate the SSL certificate, here is an example, you can find more about openssl on the
openssl page:

cd /tmp/ca
openssl genrsa -des3 -out my.key 1024
openssl req -new -key my.key -out my.csr
cp my.key my.key.org
openssl rsa -in my.key.org -out my.key
openssl x509 -req -days 3650 -in my.csr -signkey my.key -out my.crt
cat my.crt my.key > certificate.pem

• Customize the console section in the Bare Metal service configuration file (/etc/ironic/ironic.conf),
if you want to use SSL certificate in shellinabox, you should specify terminal_cert_dir. for
example:

[console]

#
Options defined in ironic.drivers.modules.console_utils
#

Path to serial console terminal program. Used only by Shell
In A Box console. (string value)
#terminal=shellinaboxd

Directory containing the terminal SSL cert (PEM) for serial
console access. Used only by Shell In A Box console. (string
value)
terminal_cert_dir=/tmp/ca

Directory for holding terminal pid files. If not specified,
the temporary directory will be used. (string value)
#terminal_pid_dir=<None>

Time interval (in seconds) for checking the status of
console subprocess. (integer value)
#subprocess_checking_interval=1

Time (in seconds) to wait for the console subprocess to
start. (integer value)
#subprocess_timeout=10

• Append console parameters for bare metal PXE boot in the Bare Metal service configuration file

4.2. Bare Metal Service Features 325

https://www.openssl.org/

Ironic Documentation, Release 26.1.2.dev21

(/etc/ironic/ironic.conf). See the reference for configuration in Appending kernel parameters to
boot instances.

• Enable the ipmitool-shellinabox console interface, for example:

[DEFAULT]
enabled_console_interfaces = ipmitool-shellinabox,no-console

• Configure node web console.

If the node uses a hardware type, for example ipmi, set the nodes console interface to
ipmitool-shellinabox:

baremetal node set <node> --console-interface ipmitool-shellinabox

Enable the web console, for example:

baremetal node set <node> \
--driver-info <terminal_port>=<customized_port>

baremetal node console enable <node>

Check whether the console is enabled, for example:

baremetal node validate <node>

Disable the web console, for example:

baremetal node console disable <node>
baremetal node unset <node> --driver-info <terminal_port>

The <terminal_port> is driver dependent. The actual name of this field can be checked in driver
properties, for example:

baremetal driver property list <driver>

For the ipmi hardware type, this option is ipmi_terminal_port. Give a customized port number
to <customized_port>, for example 8023, this customized port is used in web console url.

Get web console information for a node as follows:

baremetal node console show <node>
+-----------------+---
↪→---------------+
| Property | Value ␣
↪→ |
+-----------------+---
↪→---------------+
| console_enabled | True ␣
↪→ |
| console_info | {u'url': u'http://<url>:<customized_port>', u'type': u
↪→'shellinabox'} |
+-----------------+---
↪→---------------+

326 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

You can open web console using above url through web browser. If console_enabled is false,
console_info is None, web console is disabled. If you want to launch web console, see the
Configure node web console part.

Note

An error message you may encounter when enabling the console can read Console
subprocess failed to start. Timeout or error while waiting for console
subprocess to start for node along with [server] Failed to find any
available port!. This error is coming from shellinabox itself, not from the commu-
nication with the BMC. One potential cause for this issue is that there are already shellinabox
daemons running which block the configured port (remove them if appropriate and retry to
enable the console).

Node serial console

Serial consoles for nodes are implemented using socat. It is supported by the ipmi and irmc hardware
types.

Serial consoles can be configured in the Bare Metal service as follows:

• Install socat on the ironic conductor node. Also, socat needs to be in the $PATH environment
variable that the ironic-conductor service uses.

Installation example:

Ubuntu:

sudo apt-get install socat

RHEL8/CentOS8/Fedora:

sudo dnf install socat

• Append console parameters for bare metal PXE boot in the Bare Metal service configuration file.
See the reference on how to configure them in Appending kernel parameters to boot instances.

• Enable the ipmitool-socat console interface, for example:

[DEFAULT]
enabled_console_interfaces = ipmitool-socat,no-console

• Configure node console.

If the node uses a hardware type, for example ipmi, set the nodes console interface to
ipmitool-socat:

baremetal node set <node> --console-interface ipmitool-socat

Enable the serial console, for example:

baremetal node set <node> --driver-info ipmi_terminal_port=<port>
baremetal node console enable <node>

4.2. Bare Metal Service Features 327

http://www.dest-unreach.org/socat

Ironic Documentation, Release 26.1.2.dev21

Check whether the serial console is enabled, for example:

baremetal node validate <node>

Disable the serial console, for example:

baremetal node console disable <node>
baremetal node unset <node> --driver-info <ipmi_terminal_port>

Serial console information is available from the Bare Metal service. Get serial console information for a
node from the Bare Metal service as follows:

baremetal node console show <node>
+-----------------+---
↪→-----------+
| Property | Value ␣
↪→ |
+-----------------+---
↪→-----------+
| console_enabled | True ␣
↪→ |
| console_info | {u'url': u'tcp://<host>:<port>', u'type': u'socat'} ␣
↪→ |
+-----------------+---
↪→-----------+

If console_enabled is false or console_info is None then the serial console is disabled. If you
want to launch serial console, see the Configure node console.

Node serial console of the Bare Metal service is compatible with the serial console of the Compute
service. Hence, serial consoles to Bare Metal nodes can be seen and interacted with via the Dashboard
service. In order to achieve that, you need to follow the documentation for Serial Console from the
Compute service.

Configuring HA

When using Bare Metal serial console under High Availability (HA) configuration, you may consider
some settings below.

• If you use HAProxy, you may need to set the timeout for both client and server sides with appro-
priate values. Here is an example of the configuration for the timeout parameter.

frontend nova_serial_console
bind 192.168.20.30:6083
timeout client 10m # This parameter is necessary
use_backend nova_serial_console if <...>

backend nova_serial_console
balance source
timeout server 10m # This parameter is necessary
option tcpka
option tcplog

(continues on next page)

328 Chapter 4. Administrator Guide

https://docs.openstack.org/nova/2024.2/admin/remote-console-access.html#serial

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

server controller01 192.168.30.11:6083 check inter 2000 rise 2 fall 5
server controller02 192.168.30.12:6083 check inter 2000 rise 2 fall 5

• The Compute services caching feature may need to be enabled in order to make the Bare Metal
serial console work under a HA configuration. Here is an example of caching configuration in
nova.conf.

[cache]
enabled = true
backend = dogpile.cache.memcached
memcache_servers = memcache01:11211,memcache02:11211,memcache03:11211

4.2.12 Notifications

Ironic, when configured to do so, will emit notifications over a message bus that indicate different events
that occur within the service. These can be consumed by any external service. Examples may include a
billing or usage system, a monitoring data store, or other OpenStack services. This page describes how to
enable notifications and the different kinds of notifications that ironic may emit. The external consumer
will see notifications emitted by ironic as JSON objects structured in the following manner:

{
"priority": <string, defined by the sender>,
"event_type": <string, defined by the sender>,
"timestamp": <string, the isotime of when the notification emitted>,
"publisher_id": <string, defined by the sender>,
"message_id": <uuid, generated by oslo>,
"payload": <json serialized dict, defined by the sender>

}

Configuration

To enable notifications with ironic, there are two configuration options in ironic.conf that must be ad-
justed.

The first option is the notification_level option in the [DEFAULT] section of the configuration file.
This can be set to debug, info, warning, error, or critical, and determines the minimum priority level for
which notifications are emitted. For example, if the option is set to warning, all notifications with priority
level warning, error, or critical are emitted, but not notifications with priority level debug or info. For
information about the semantics of each log level, see the OpenStack logging standards1. If this option
is unset, no notifications will be emitted. The priority level of each available notification is documented
below.

The second option is the transport_url option in the [oslo_messaging_notifications] section
of the configuration. This determines the message bus used when sending notifications. If this is unset,
the default transport used for RPC is used.

All notifications are emitted on the ironic_versioned_notifications topic in the message bus. Generally,
each type of message that traverses the message bus is associated with a topic describing what the message

1 https://wiki.openstack.org/wiki/LoggingStandards#Log_level_definitions

4.2. Bare Metal Service Features 329

https://wiki.openstack.org/wiki/LoggingStandards#Log_level_definitions

Ironic Documentation, Release 26.1.2.dev21

is about. For more information, see the documentation of your chosen message bus, such as the RabbitMQ
documentation2.

Note that notifications may be lossy, and theres no guarantee that a notification will make it across the
message bus to a consumer.

Versioning

Each notification has an associated version in the ironic_object.version field of the payload. Consumers
are guaranteed that microversion bumps will add new fields, while macroversion bumps are backwards-
incompatible and may have fields removed.

Versioned notifications are emitted by default to the ironic_versioned_notifications topic. This can be
changed and it is configurable in the ironic.conf with the versioned_notifications_topics config option.

Available notifications

The notifications that ironic emits are described here. They are listed (alphabetically) by service first,
then by event_type. All examples below show payloads before serialization to JSON.

ironic-api notifications

Resources CRUD notifications

These notifications are emitted from API service when ironic resources are modified as part of create,
update, or delete (CRUD)3 procedures. All CRUD notifications are emitted at INFO level, except for
error status that is emitted at ERROR level.

List of CRUD notifications for chassis:

• baremetal.chassis.create.start

• baremetal.chassis.create.end

• baremetal.chassis.create.error

• baremetal.chassis.update.start

• baremetal.chassis.update.end

• baremetal.chassis.update.error

• baremetal.chassis.delete.start

• baremetal.chassis.delete.end

• baremetal.chassis.delete.error

Example of chassis CRUD notification:

2 https://www.rabbitmq.com/documentation.html
3 https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

330 Chapter 4. Administrator Guide

https://www.rabbitmq.com/documentation.html
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Ironic Documentation, Release 26.1.2.dev21

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"ChassisCRUDPayload",
"ironic_object.version":"1.0",
"ironic_object.data":{

"created_at": "2016-04-10T10:13:03+00:00",
"description": "bare 28",
"extra": {},
"updated_at": "2016-04-27T21:11:03+00:00",
"uuid": "1910f669-ce8b-43c2-b1d8-cf3d65be815e"

}
},
"event_type":"baremetal.chassis.update.end",
"publisher_id":"ironic-api.hostname02"
}

List of CRUD notifications for deploy template:

• baremetal.deploy_template.create.start

• baremetal.deploy_template.create.end

• baremetal.deploy_template.create.error

• baremetal.deploy_template.update.start

• baremetal.deploy_template.update.end

• baremetal.deploy_template.update.error

• baremetal.deploy_template.delete.start

• baremetal.deploy_template.delete.end

• baremetal.deploy_template.delete.error

Example of deploy template CRUD notification:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"DeployTemplateCRUDPayload",
"ironic_object.version":"1.0",
"ironic_object.data":{

"created_at": "2019-02-10T10:13:03+00:00",
"extra": {},
"name": "CUSTOM_HYPERTHREADING_ON",
"steps": [

{
"interface": "bios",
"step": "apply_configuration",
"args": {

(continues on next page)

4.2. Bare Metal Service Features 331

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"settings": [
{

"name": "LogicalProc",
"value": "Enabled"

}
]

},
"priority": 150

}
],
"updated_at": "2019-02-27T21:11:03+00:00",
"uuid": "1910f669-ce8b-43c2-b1d8-cf3d65be815e"

}
},
"event_type":"baremetal.deploy_template.update.end",
"publisher_id":"ironic-api.hostname02"
}

List of CRUD notifications for node:

• baremetal.node.create.start

• baremetal.node.create.end

• baremetal.node.create.error

• baremetal.node.update.start

• baremetal.node.update.end

• baremetal.node.update.error

• baremetal.node.delete.start

• baremetal.node.delete.end

• baremetal.node.delete.error

Example of node CRUD notification:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"NodeCRUDPayload",
"ironic_object.version":"1.13",
"ironic_object.data":{

"chassis_uuid": "db0eef9d-45b2-4dc0-94a8-fc283c01171f",
"clean_step": None,
"conductor_group": "",
"console_enabled": False,
"created_at": "2016-01-26T20:41:03+00:00",
"deploy_step": None,
"description": "my sample node",

(continues on next page)

332 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"driver": "ipmi",
"driver_info": {

"ipmi_address": "192.168.0.111",
"ipmi_username": "root"},

"extra": {},
"inspection_finished_at": None,
"inspection_started_at": None,
"instance_info": {},
"instance_uuid": None,
"last_error": None,
"lessee": None,
"maintenance": False,
"maintenance_reason": None,
"fault": None,
"bios_interface": "no-bios",
"boot_interface": "pxe",
"console_interface": "no-console",
"deploy_interface": "direct",
"inspect_interface": "no-inspect",
"management_interface": "ipmitool",
"network_interface": "flat",
"power_interface": "ipmitool",
"raid_interface": "no-raid",
"rescue_interface": "no-rescue",
"storage_interface": "noop",
"vendor_interface": "no-vendor",
"name": None,
"owner": None,
"power_state": "power off",
"properties": {

"memory_mb": 4096,
"cpu_arch": "x86_64",
"local_gb": 10,
"cpus": 8},

"protected": False,
"protected_reason": None,
"provision_state": "deploying",
"provision_updated_at": "2016-01-27T20:41:03+00:00",
"resource_class": None,
"retired": None,
"retired_reason": None,
"target_power_state": None,
"target_provision_state": "active",
"traits": [

"CUSTOM_TRAIT1",
"HW_CPU_X86_VMX"],

"updated_at": "2016-01-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123"

}

(continues on next page)

4.2. Bare Metal Service Features 333

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

},
"event_type":"baremetal.node.update.end",
"publisher_id":"ironic-api.hostname02"
}

List of CRUD notifications for port:

• baremetal.port.create.start

• baremetal.port.create.end

• baremetal.port.create.error

• baremetal.port.update.start

• baremetal.port.update.end

• baremetal.port.update.error

• baremetal.port.delete.start

• baremetal.port.delete.end

• baremetal.port.delete.error

Example of port CRUD notification:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"PortCRUDPayload",
"ironic_object.version":"1.3",
"ironic_object.data":{

"address": "77:66:23:34:11:b7",
"created_at": "2016-02-11T15:23:03+00:00",
"node_uuid": "5b236cab-ad4e-4220-b57c-e827e858745a",
"extra": {},
"is_smartnic": True,
"local_link_connection": {},
"physical_network": "physnet1",
"portgroup_uuid": "bd2f385e-c51c-4752-82d1-7a9ec2c25f24",
"pxe_enabled": True,
"updated_at": "2016-03-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123"

}
},
"event_type":"baremetal.port.update.end",
"publisher_id":"ironic-api.hostname02"
}

List of CRUD notifications for port group:

• baremetal.portgroup.create.start

• baremetal.portgroup.create.end

334 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• baremetal.portgroup.create.error

• baremetal.portgroup.update.start

• baremetal.portgroup.update.end

• baremetal.portgroup.update.error

• baremetal.portgroup.delete.start

• baremetal.portgroup.delete.end

• baremetal.portgroup.delete.error

Example of portgroup CRUD notification:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"PortgroupCRUDPayload",
"ironic_object.version":"1.0",
"ironic_object.data":{

"address": "11:44:32:87:61:e5",
"created_at": "2017-01-11T11:33:03+00:00",
"node_uuid": "5b236cab-ad4e-4220-b57c-e827e858745a",
"extra": {},
"mode": "7",
"name": "portgroup-node-18",
"properties": {},
"standalone_ports_supported": True,
"updated_at": "2017-01-31T11:41:07+00:00",
"uuid": "db033a40-bfed-4c84-815a-3db26bb268bb",

}
},
"event_type":"baremetal.portgroup.update.end",
"publisher_id":"ironic-api.hostname02"
}

List of CRUD notifications for volume connector:

• baremetal.volumeconnector.create.start

• baremetal.volumeconnector.create.end

• baremetal.volumeconnector.create.error

• baremetal.volumeconnector.update.start

• baremetal.volumeconnector.update.end

• baremetal.volumeconnector.update.error

• baremetal.volumeconnector.delete.start

• baremetal.volumeconnector.delete.end

• baremetal.volumeconnector.delete.error

Example of volume connector CRUD notification:

4.2. Bare Metal Service Features 335

Ironic Documentation, Release 26.1.2.dev21

{
"priority": "info",
"payload": {

"ironic_object.namespace": "ironic",
"ironic_object.name": "VolumeConnectorCRUDPayload",
"ironic_object.version": "1.0",
"ironic_object.data": {

"connector_id": "iqn.2017-05.org.openstack:01:d9a51732c3f",
"created_at": "2017-05-11T05:57:36+00:00",
"extra": {},
"node_uuid": "4dbb4e69-99a8-4e13-b6e8-dd2ad4a20caf",
"type": "iqn",
"updated_at": "2017-05-11T08:28:58+00:00",
"uuid": "19b9f3ab-4754-4725-a7a4-c43ea7e57360"

}
},
"event_type": "baremetal.volumeconnector.update.end",
"publisher_id":"ironic-api.hostname02"
}

List of CRUD notifications for volume target:

• baremetal.volumetarget.create.start

• baremetal.volumetarget.create.end

• baremetal.volumetarget.create.error

• baremetal.volumetarget.update.start

• baremetal.volumetarget.update.end

• baremetal.volumetarget.update.error

• baremetal.volumetarget.delete.start

• baremetal.volumetarget.delete.end

• baremetal.volumetarget.delete.error

Example of volume target CRUD notification:

{
"priority": "info",
"payload": {

"ironic_object.namespace": "ironic",
"ironic_object.version": "1.0",
"ironic_object.name": "VolumeTargetCRUDPayload"
"ironic_object.data": {

"boot_index": 0,
"created_at": "2017-05-11T09:38:59+00:00",
"extra": {},
"node_uuid": "4dbb4e69-99a8-4e13-b6e8-dd2ad4a20caf",
"properties": {

"access_mode": "rw",
(continues on next page)

336 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"auth_method": "CHAP"
"auth_password": "***",
"auth_username": "urxhQCzAKr4sjyE8DivY",
"encrypted": false,
"qos_specs": null,
"target_discovered": false,
"target_iqn": "iqn.2010-10.org.openstack:volume-f0d9b0e6-b242-

↪→9105-91d4-a20331693ad8",
"target_lun": 1,
"target_portal": "192.168.12.34:3260",
"volume_id": "f0d9b0e6-b042-4105-91d4-a20331693ad8",

},
"updated_at": "2017-05-11T09:52:04+00:00",
"uuid": "82a45833-9c58-4ec1-943c-2091ab10e47b",
"volume_id": "f0d9b0e6-b242-9105-91d4-a20331693ad8",
"volume_type": "iscsi"

}
},
"event_type": "baremetal.volumetarget.update.end",
"publisher_id":"ironic-api.hostname02"
}

Node maintenance notifications

These notifications are emitted from API service when maintenance mode is changed via API service.
List of maintenance notifications for a node:

• baremetal.node.maintenance_set.start

• baremetal.node.maintenance_set.end

• baremetal.node.maintenance_set.error

start and end notifications have INFO level, error has ERROR. Example of node maintenance notification:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"NodePayload",
"ironic_object.version":"1.15",
"ironic_object.data":{

"clean_step": None,
"conductor_group": "",
"console_enabled": False,
"created_at": "2016-01-26T20:41:03+00:00",
"deploy_step": None,
"description": "my sample node",
"driver": "ipmi",
"extra": {},

(continues on next page)

4.2. Bare Metal Service Features 337

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"inspection_finished_at": None,
"inspection_started_at": None,
"instance_info": {},
"instance_uuid": None,
"last_error": None,
"lessee": None,
"maintenance": True,
"maintenance_reason": "hw upgrade",
"fault": None,
"bios_interface": "no-bios",
"boot_interface": "pxe",
"console_interface": "no-console",
"deploy_interface": "direct",
"inspect_interface": "no-inspect",
"management_interface": "ipmitool",
"network_interface": "flat",
"power_interface": "ipmitool",
"raid_interface": "no-raid",
"rescue_interface": "no-rescue",
"storage_interface": "noop",
"vendor_interface": "no-vendor",
"name": None,
"owner": None,
"power_state": "power off",
"properties": {

"memory_mb": 4096,
"cpu_arch": "x86_64",
"local_gb": 10,
"cpus": 8},

"protected": False,
"protected_reason": None,
"provision_state": "available",
"provision_updated_at": "2016-01-27T20:41:03+00:00",
"resource_class": None,
"retired": None,
"retired_reason": None,
"target_power_state": None,
"target_provision_state": None,
"traits": [

"CUSTOM_TRAIT1",
"HW_CPU_X86_VMX"],

"updated_at": "2016-01-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123"

}
},
"event_type":"baremetal.node.maintenance_set.start",
"publisher_id":"ironic-api.hostname02"
}

338 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

ironic-conductor notifications

Node console notifications

These notifications are emitted by the ironic-conductor service when conductor service starts or stops
console for the node. The notification event types for a node console are:

• baremetal.node.console_set.start

• baremetal.node.console_set.end

• baremetal.node.console_set.error

• baremetal.node.console_restore.start

• baremetal.node.console_restore.end

• baremetal.node.console_restore.error

console_set action is used when start or stop console is initiated. The console_restore action
is used when the console was already enabled, but a driver must restart the console because an ironic-
conductor was restarted. This may also be sent when an ironic-conductor takes over a node that was being
managed by another ironic-conductor. start and end notifications have INFO level, error has ERROR.
Example of node console notification:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"NodePayload",
"ironic_object.version":"1.15",
"ironic_object.data":{

"clean_step": None,
"conductor_group": "",
"console_enabled": True,
"created_at": "2016-01-26T20:41:03+00:00",
"deploy_step": None,
"description": "my sample node",
"driver": "ipmi",
"extra": {},
"inspection_finished_at": None,
"inspection_started_at": None,
"instance_info": {},
"instance_uuid": None,
"last_error": None,
"lessee": None,
"maintenance": False,
"maintenance_reason": None,
"fault": None,
"bios_interface": "no-bios",
"boot_interface": "pxe",
"console_interface": "no-console",
"deploy_interface": "direct",
"inspect_interface": "no-inspect",

(continues on next page)

4.2. Bare Metal Service Features 339

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"management_interface": "ipmitool",
"network_interface": "flat",
"power_interface": "ipmitool",
"raid_interface": "no-raid",
"rescue_interface": "no-rescue",
"storage_interface": "noop",
"vendor_interface": "no-vendor",
"name": None,
"owner": None,
"power_state": "power off",
"properties": {

"memory_mb": 4096,
"cpu_arch": "x86_64",
"local_gb": 10,
"cpus": 8},

"protected": False,
"protected_reason": None,
"provision_state": "available",
"provision_updated_at": "2016-01-27T20:41:03+00:00",
"resource_class": None,
"retired": None,
"retired_reason": None,
"target_power_state": None,
"target_provision_state": None,
"traits": [

"CUSTOM_TRAIT1",
"HW_CPU_X86_VMX"],

"updated_at": "2016-01-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123"

}
},
"event_type":"baremetal.node.console_set.end",
"publisher_id":"ironic-conductor.hostname01"
}

baremetal.node.power_set

• baremetal.node.power_set.start is emitted by the ironic-conductor service when it begins
a power state change. It has notification level info.

• baremetal.node.power_set.end is emitted when ironic-conductor successfully completes a
power state change task. It has notification level info.

• baremetal.node.power_set.error is emitted by ironic-conductor when it fails to set a nodes
power state. It has notification level error. This can occur when ironic fails to retrieve the old power
state prior to setting the new one on the node, or when it fails to set the power state if a change is
requested.

Here is an example payload for a notification with this event type. The to_power payload field indicates
the power state to which the ironic-conductor is attempting to change the node:

340 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"NodeSetPowerStatePayload",
"ironic_object.version":"1.15",
"ironic_object.data":{

"clean_step": None,
"conductor_group": "",
"console_enabled": False,
"created_at": "2016-01-26T20:41:03+00:00",
"deploy_step": None,
"description": "my sample node",
"driver": "ipmi",
"extra": {},
"inspection_finished_at": None,
"inspection_started_at": None,
"instance_uuid": "d6ea00c1-1f94-4e95-90b3-3462d7031678",
"last_error": None,
"lessee": None,
"maintenance": False,
"maintenance_reason": None,
"fault": None,
"bios_interface": "no-bios",
"boot_interface": "pxe",
"console_interface": "no-console",
"deploy_interface": "direct",
"inspect_interface": "no-inspect",
"management_interface": "ipmitool",
"network_interface": "flat",
"power_interface": "ipmitool",
"raid_interface": "no-raid",
"rescue_interface": "no-rescue",
"storage_interface": "noop",
"vendor_interface": "no-vendor",
"name": None,
"owner": None,
"power_state": "power off",
"properties": {

"memory_mb": 4096,
"cpu_arch": "x86_64",
"local_gb": 10,
"cpus": 8},

"protected": False,
"protected_reason": None
"provision_state": "available",
"provision_updated_at": "2016-01-27T20:41:03+00:00",
"resource_class": None,
"retired": None,
"retired_reason": None,

(continues on next page)

4.2. Bare Metal Service Features 341

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"target_power_state": None,
"target_provision_state": None,
"traits": [

"CUSTOM_TRAIT1",
"HW_CPU_X86_VMX"],

"updated_at": "2016-01-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123",
"to_power": "power on"

}
},
"event_type":"baremetal.node.power_set.start",
"publisher_id":"ironic-conductor.hostname01"
}

baremetal.node.power_state_corrected

• baremetal.node.power_state_corrected.success is emitted by ironic-conductor when the
power state on the baremetal hardware is different from the previous known power state of the node
and the database is corrected to reflect this new power state. It has notification level info.

Here is an example payload for a notification with this event_type. The from_power payload field indi-
cates the previous power state on the node, prior to the correction:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"NodeCorrectedPowerStatePayload",
"ironic_object.version":"1.15",
"ironic_object.data":{

"clean_step": None,
"conductor_group": "",
"console_enabled": False,
"created_at": "2016-01-26T20:41:03+00:00",
"deploy_step": None,
"description": "my sample node",
"driver": "ipmi",
"extra": {},
"inspection_finished_at": None,
"inspection_started_at": None,
"instance_uuid": "d6ea00c1-1f94-4e95-90b3-3462d7031678",
"last_error": None,
"lessee": None,
"maintenance": False,
"maintenance_reason": None,
"fault": None,
"bios_interface": "no-bios",
"boot_interface": "pxe",
"console_interface": "no-console",

(continues on next page)

342 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"deploy_interface": "direct",
"inspect_interface": "no-inspect",
"management_interface": "ipmitool",
"network_interface": "flat",
"power_interface": "ipmitool",
"raid_interface": "no-raid",
"rescue_interface": "no-rescue",
"storage_interface": "noop",
"vendor_interface": "no-vendor",
"name": None,
"owner": None,
"power_state": "power off",
"properties": {

"memory_mb": 4096,
"cpu_arch": "x86_64",
"local_gb": 10,
"cpus": 8},

"protected": False,
"protected_reason": None,
"provision_state": "available",
"provision_updated_at": "2016-01-27T20:41:03+00:00",
"resource_class": None,
"retired": None,
"retired_reason": None,
"target_power_state": None,
"target_provision_state": None,
"traits": [

"CUSTOM_TRAIT1",
"HW_CPU_X86_VMX"],

"updated_at": "2016-01-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123",
"from_power": "power on"

}
},
"event_type":"baremetal.node.power_state_corrected.success",
"publisher_id":"ironic-conductor.cond-hostname02"
}

baremetal.node.provision_set

• baremetal.node.provision_set.start is emitted by the ironic-conductor service when it
begins a provision state transition. It has notification level INFO.

• baremetal.node.provision_set.end is emitted when ironic-conductor successfully com-
pletes a provision state transition. It has notification level INFO.

• baremetal.node.provision_set.success is emitted when ironic-conductor successfully
changes provision state instantly, without any intermediate work required (example is AVAIL-
ABLE to MANAGEABLE). It has notification level INFO.

4.2. Bare Metal Service Features 343

Ironic Documentation, Release 26.1.2.dev21

• baremetal.node.provision_set.error is emitted by ironic-conductor when it changes pro-
vision state as result of error event processing. It has notification level ERROR.

Here is an example payload for a notification with this event type. The previous_provision_state and
previous_target_provision_state payload fields indicate a nodes provision states before state change, event
is the FSM (finite state machine) event that triggered the state change:

{
"priority": "info",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"NodeSetProvisionStatePayload",
"ironic_object.version":"1.16",
"ironic_object.data":{

"clean_step": None,
"conductor_group": "",
"console_enabled": False,
"created_at": "2016-01-26T20:41:03+00:00",
"deploy_step": None,
"description": "my sample node",
"driver": "ipmi",
"driver_internal_info": {

"is_whole_disk_image": True},
"extra": {},
"inspection_finished_at": None,
"inspection_started_at": None,
"instance_info": {},
"instance_uuid": None,
"last_error": None,
"lessee": None,
"maintenance": False,
"maintenance_reason": None,
"fault": None,
"bios_interface": "no-bios",
"boot_interface": "pxe",
"console_interface": "no-console",
"deploy_interface": "direct",
"inspect_interface": "no-inspect",
"management_interface": "ipmitool",
"network_interface": "flat",
"power_interface": "ipmitool",
"raid_interface": "no-raid",
"rescue_interface": "no-rescue",
"storage_interface": "noop",
"vendor_interface": "no-vendor",
"name": None,
"owner": None,
"power_state": "power off",
"properties": {

"memory_mb": 4096,
"cpu_arch": "x86_64",

(continues on next page)

344 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"local_gb": 10,
"cpus": 8},

"protected": False,
"protected_reason": None,
"provision_state": "deploying",
"provision_updated_at": "2016-01-27T20:41:03+00:00",
"resource_class": None,
"retired": None,
"retired_reason": None,
"target_power_state": None,
"target_provision_state": "active",
"traits": [

"CUSTOM_TRAIT1",
"HW_CPU_X86_VMX"],

"updated_at": "2016-01-27T20:41:03+00:00",
"uuid": "1be26c0b-03f2-4d2e-ae87-c02d7f33c123",
"previous_provision_state": "available",
"previous_target_provision_state": None,
"event": "deploy"

}
},
"event_type":"baremetal.node.provision_set.start",
"publisher_id":"ironic-conductor.hostname01"
}

4.2.13 Node Multi-Tenancy

This guide explains the steps needed to enable node multi-tenancy. This feature enables non-admins to
perform API actions on nodes, limited by policy configuration. The Bare Metal service supports two
kinds of non-admin users:

• Owner: owns specific nodes and performs administrative actions on them

• Lessee: receives temporary and limited access to a node

4.2. Bare Metal Service Features 345

Ironic Documentation, Release 26.1.2.dev21

Setting the Owner and Lessee

Non-administrative access to a node is controlled through a nodes owner or lessee attribute:

baremetal node set --owner 080925ee2f464a2c9dce91ee6ea354e2 node-7
baremetal node set --lessee 2a210e5ff114c8f2b6e994218f51a904 node-10

Configuring the Bare Metal Service Policy

By default, the Bare Metal service policy is configured so that a node owner or lessee has no access to
any node APIs. However, the policy policy file contains rules that can be used to enable node API access:

Owner of node
#"is_node_owner": "project_id:%(node.owner)s"

Lessee of node
#"is_node_lessee": "project_id:%(node.lessee)s"

An administrator can then modify the policy file to expose individual node APIs as follows:

Change Node provision status
PUT /nodes/{node_ident}/states/provision
#"baremetal:node:set_provision_state": "rule:is_admin"
"baremetal:node:set_provision_state": "rule:is_admin or rule:is_node_owner or␣
↪→rule:is_node_lessee"

Update Node records
PATCH /nodes/{node_ident}
#"baremetal:node:update": "rule:is_admin or rule:is_node_owner"

In addition, it is safe to expose the baremetal:node:list rule, as the node list function now filters
non-admins by owner and lessee:

Retrieve multiple Node records, filtered by owner
GET /nodes
GET /nodes/detail
#"baremetal:node:list": "rule:baremetal:node:get"
"baremetal:node:list": ""

Note that baremetal:node:list_all permits users to see all nodes regardless of owner/lessee, so it
should remain restricted to admins.

346 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Ports

Port APIs can be similarly exposed to node owners and lessees:

Retrieve Port records
GET /ports/{port_id}
GET /nodes/{node_ident}/ports
GET /nodes/{node_ident}/ports/detail
GET /portgroups/{portgroup_ident}/ports
GET /portgroups/{portgroup_ident}/ports/detail
#"baremetal:port:get": "rule:is_admin or rule:is_observer"
"baremetal:port:get": "rule:is_admin or rule:is_observer or rule:is_node_
↪→owner or rule:is_node_lessee"

Retrieve multiple Port records, filtered by owner
GET /ports
GET /ports/detail
#"baremetal:port:list": "rule:baremetal:port:get"
"baremetal:port:list": ""

Allocations

Allocations respect node tenancy as well. A restricted allocation creates an allocation tied to a project,
and that can only match nodes where that project is the owner or lessee. Here is a sample set of allocation
policy rules that allow non-admins to use allocations effectively:

Retrieve Allocation records
GET /allocations/{allocation_id}
GET /nodes/{node_ident}/allocation
#"baremetal:allocation:get": "rule:is_admin or rule:is_observer"
"baremetal:allocation:get": "rule:is_admin or rule:is_observer or rule:is_
↪→allocation_owner"

Retrieve multiple Allocation records, filtered by owner
GET /allocations
#"baremetal:allocation:list": "rule:baremetal:allocation:get"
"baremetal:allocation:list": ""

Retrieve multiple Allocation records
GET /allocations
#"baremetal:allocation:list_all": "rule:baremetal:allocation:get"

Create Allocation records
POST /allocations
#"baremetal:allocation:create": "rule:is_admin"

Create Allocation records that are restricted to an owner
POST /allocations
#"baremetal:allocation:create_restricted": "rule:baremetal:allocation:create"

(continues on next page)

4.2. Bare Metal Service Features 347

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"baremetal:allocation:create_restricted": ""

Delete Allocation records
DELETE /allocations/{allocation_id}
DELETE /nodes/{node_ident}/allocation
#"baremetal:allocation:delete": "rule:is_admin"
"baremetal:allocation:delete": "rule:is_admin or rule:is_allocation_owner"

Change name and extra fields of an allocation
PATCH /allocations/{allocation_id}
#"baremetal:allocation:update": "rule:is_admin"
"baremetal:allocation:update": "rule:is_admin or rule:is_allocation_owner"

Deployment and Metalsmith

Provisioning a node requires a specific set of APIs to be made available. The following policy specifica-
tions are enough to allow a node owner to use Metalsmith to deploy upon a node:

"baremetal:node:get": "rule:is_admin or rule:is_observer or rule:is_node_owner
↪→"
"baremetal:node:list": ""
"baremetal:node:update_extra": "rule:is_admin or rule:is_node_owner"
"baremetal:node:update_instance_info": "rule:is_admin or rule:is_node_owner"
"baremetal:node:validate": "rule:is_admin or rule:is_node_owner"
"baremetal:node:set_provision_state": "rule:is_admin or rule:is_node_owner"
"baremetal:node:vif:list": "rule:is_admin or rule:is_node_owner"
"baremetal:node:vif:attach": "rule:is_admin or rule:is_node_owner"
"baremetal:node:vif:detach": "rule:is_admin or rule:is_node_owner"
"baremetal:allocation:get": "rule:is_admin or rule:is_observer or rule:is_
↪→allocation_owner"
"baremetal:allocation:list": ""
"baremetal:allocation:create_restricted": ""
"baremetal:allocation:delete": "rule:is_admin or rule:is_allocation_owner"
"baremetal:allocation:update": "rule:is_admin or rule:is_allocation_owner"

348 Chapter 4. Administrator Guide

https://docs.openstack.org/metalsmith/2024.2/index.html

Ironic Documentation, Release 26.1.2.dev21

4.2.14 Booting a Ramdisk or an ISO

Ironic supports booting a user provided ramdisk or an ISO image (starting with the Victoria release)
instead of deploying a node. Most commonly this is performed when an instance is booted via PXE,
iPXE or Virtual Media, with the only local storage contents being those in memory. It is supported by
pxe, ipxe, redfish-virtual-media and ilo-virtual-media boot interfaces.

Configuration

Ramdisk/ISO boot requires using the ramdisk deploy interface. It is enabled by default starting with the
Zed release cycle. On an earlier release, it must be enabled explicitly:

[DEFAULT]
...
enabled_deploy_interfaces = direct,ramdisk
...

Once enabled and the conductor(s) have been restarted, the interface can be set upon creation of a new
node:

baremetal node create --driver <driver> \
--deploy-interface ramdisk \
--boot-interface ipxe

or update an existing node:

baremetal node set <NODE> --deploy-interface ramdisk

You can also use it with redfish virtual media instead of iPXE.

Creating a ramdisk

A ramdisk can be created using the ironic-ramdisk-base element from ironic-python-agent-builder,
e.g. with Debian:

export ELEMENTS_PATH=/opt/stack/ironic-python-agent-builder/dib
disk-image-create -o /output/ramdisk \

debian-minimal ironic-ramdisk-base openssh-server dhcp-all-interfaces

You should consider using the following elements:

• openssh-server to install the SSH server since its not provided by default by some minimal images.

• devuser or dynamic-login to provide SSH access.

• dhcp-all-interfaces or simple-init to configure networking.

The resulting files (/output/ramdisk.kernel and /output/ramdisk.initramfs in this case) can
then be used when Booting a ramdisk.

4.2. Bare Metal Service Features 349

https://opendev.org/openstack/ironic-python-agent-builder
https://docs.openstack.org/diskimage-builder/latest/elements/openssh-server/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/devuser/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/dynamic-login/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/dhcp-all-interfaces/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html

Ironic Documentation, Release 26.1.2.dev21

Booting a ramdisk

Pass the kernel and ramdisk as normally, also providing the ramdisk as an image source, for example,

baremetal node set <NODE> \
--instance-info kernel=http://path/to/ramdisk.kernel \
--instance-info ramdisk=http://path/to/ramdisk.initramfs

baremetal node deploy <NODE>

Booting an ISO

The ramdisk deploy interface can also be used to boot an ISO image. For example,

baremetal node set <NODE> \
--instance-info boot_iso=http://path/to/boot.iso

baremetal node deploy <NODE>

Note

While this interface example utilizes a HTTP URL, as with all fields referencing file artifacts in the
instance_info field, a user is able to request a file path URL, or an HTTPS URL, or as a Glance
Image Service object UUID.

Warning

This feature, when utilized with the ipxe boot_interface, will only allow a kernel and ramdisk to
be booted from the supplied ISO file. Any additional contents, such as additional ramdisk contents or
installer package files will be unavailable after the boot of the Operating System. Operators wishing
to leverage this functionality for actions such as OS installation should explore use of the standard
ramdisk deploy_interface along with the instance_info/kernel_append_params setting
to pass arbitrary settings such as a mirror URL for the initial ramdisk to load data from. This is a
limitation of iPXE and the overall boot process of the operating system where memory allocated by
iPXE is released.

When choosing your boot ISO, your ISO image will need to be sufficient to boot the hardware under
normal conditions. For example, if the ISO is only compatible with BIOS booting, then a host in UEFI
mode will not boot. This is not a limitation of Ironic, but an architectural limitation.

By default the Bare Metal service will cache the ISO locally and serve from its HTTP server. If you want
to avoid that, set the following:

baremetal node set <NODE> \
--instance-info ramdisk_image_download_source=http

ISO images are also cached across deployments, similarly to how it is done for normal instance images.
The URL together with the last modified response header are used to determine if an image needs updat-
ing.

350 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Limitations

The intended use case is for advanced scientific and ephemeral workloads where the step of writing an
image to the local storage is not required or desired. As such, this interface does come with several
caveats:

• Configuration drives are not supported with network boot, only with Redfish virtual media.

• Disk image contents are not written to the bare metal node.

• Users and Operators who intend to leverage this interface should expect to leverage a metadata ser-
vice, custom ramdisk images, or the instance_info/ramdisk_kernel_arguments parameter
to add options to the kernel boot command line.

• When using PXE/iPXE boot, bare metal nodes must continue to have network access to PXE and
iPXE network resources. This is contrary to most tenant networking enabled configurations where
this access is restricted to the provisioning and cleaning networks

• As with all deployment interfaces, automatic cleaning of the node will still occur with the contents
of any local storage being wiped between deployments.

Common options

Disable persistent boot device for ramdisk iso boot

For iso boot, Ironic sets the boot target to continuously boot from the iso attached over virtual me-
dia. This behaviour may not always be desired e.g. if the vmedia is installing to hard drive and
then rebooting. In order to instead set the virtual media to be one time boot Ironic provides the
force_persistent_boot_device flag in the nodes driver_info. Which can be set to Never:

$ openstack baremetal node set --driver-info force_persistent_boot_device=
↪→'Never' <node>

4.2.15 Hardware Burn-in

Overview

Workflows to onboard new hardware often include a stress-testing step to provoke early failures and
to avoid that these load-triggered issues only occur when the nodes have already moved to production.
These burn-in tests typically include CPU, memory, disk, and network. With the Xena release, Ironic
supports such tests as part of the cleaning framework.

The burn-in steps rely on standard tools such as stress-ng for CPU and memory, or fio for disk and
network. The burn-in cleaning steps are part of the generic hardware manager in the Ironic Python Agent
(IPA) and therefore the agent ramdisk does not need to be bundled with a specific IPA hardware manager
to have them available.

Each burn-in step accepts (or in the case of network: needs) some basic configuration options, mostly to
limit the duration of the test and to specify the amount of resources to be used. The options are set on a
nodes driver-info and prefixed with agent_burnin_. The options available for the individual tests
will be outlined below.

4.2. Bare Metal Service Features 351

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://fio.readthedocs.io/en/latest/
https://docs.openstack.org/ironic-python-agent/2024.2/admin/hardware_managers.html

Ironic Documentation, Release 26.1.2.dev21

CPU burn-in

The options, following a agent_burnin_ + stress-ng stressor (cpu) + stress-ng option schema, are:

• agent_burnin_cpu_timeout (default: 24 hours)

• agent_burnin_cpu_cpu (default: 0, meaning all CPUs)

to limit the overall runtime and to pick the number of CPUs to stress.

For instance, in order to limit the time of the CPU burn-in to 10 minutes do:

baremetal node set --driver-info agent_burnin_cpu_timeout=600 \
$NODE_NAME_OR_UUID

Then launch the test with:

baremetal node clean --clean-steps '[{"step": "burnin_cpu", \
"interface": "deploy"}]' $NODE_NAME_OR_UUID

Memory burn-in

The options, following a agent_burnin_ + stress-ng stressor (vm) + stress-ng option schema, are:

• agent_burnin_vm_timeout (default: 24 hours)

• agent_burnin_vm_vm-bytes (default: 98%)

to limit the overall runtime and to set the fraction of RAM to stress.

For instance, in order to limit the time of the memory burn-in to 1 hour and the amount of RAM to be
used to 75% run:

baremetal node set --driver-info agent_burnin_vm_timeout=3600 \
$NODE_NAME_OR_UUID

baremetal node set --driver-info agent_burnin_vm_vm-bytes=75% \
$NODE_NAME_OR_UUID

Then launch the test with:

baremetal node clean --clean-steps '[{"step": "burnin_memory", \
"interface": "deploy"}]' $NODE_NAME_OR_UUID

Disk burn-in

The options, following a agent_burnin_ + fio stressor (fio_disk) + fio option schema, are:

• agent_burnin_fio_disk_runtime (default: 0, meaning no time limit)

• agent_burnin_fio_disk_loops (default: 4)

to set the time limit and the number of iterations when going over the disks.

For instance, in order to limit the number of loops to 2 set:

352 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal node set --driver-info agent_burnin_fio_disk_loops=2 \
$NODE_NAME_OR_UUID

Then launch the test with:

baremetal node clean --clean-steps '[{"step": "burnin_disk", \
"interface": "deploy"}]' $NODE_NAME_OR_UUID

In order to launch a parallel SMART self test on all devices after the disk burn-in (which will fail the
step if any of the tests fail), set:

baremetal node set --driver-info agent_burnin_fio_disk_smart_test=True \
$NODE_NAME_OR_UUID

Network burn-in

Burning in the network needs a little more config, since we need a pair of nodes to perform the test. This
pairing can be done either in a static way, i.e. pairs are defined upfront, or dynamically via a distributed
coordination backend which orchestrates the pair matching. While the static approach is more predictable
in terms of which nodes test each other, the dynamic approach avoids nodes being blocked in case there
are issues with servers and simply pairs all available nodes.

Static network burn-in configuration

To define pairs of nodes statically, each node can be assigned a agent_burnin_fio_network_config
JSON which requires a role field (values: reader, writer) and a partner field (value is the hostname
of the other node to test), like:

baremetal node set --driver-info agent_burnin_fio_network_config= \
'{"role": "writer", "partner": "$HOST2"}' $NODE_NAME_OR_UUID1

baremetal node set --driver-info agent_burnin_fio_network_config= \
'{"role": "reader", "partner": "$HOST1"}' $NODE_NAME_OR_UUID2

Dynamic network burn-in configuration

In order to use dynamic pair matching, a coordination backend is used via tooz. The corresponding
backend URL then needs to be added to the node, e.g. for a Zookeeper backend it would look similar to:

baremetal node set --driver-info \
agent_burnin_fio_network_pairing_backend_url= \
'zookeeper://zk1.xyz.com:2181,zk2.xyz.com:2181,zk3.xyz.com:2181' \
$NODE_NAME_OR_UUID1

baremetal node set --driver-info \
agent_burnin_fio_network_pairing_backend_url= \
'zookeeper://zk1.xyz.com:2181,zk2.xyz.com:2181,zk3.xyz.com:2181' \
$NODE_NAME_OR_UUID2

...
(continues on next page)

4.2. Bare Metal Service Features 353

https://docs.openstack.org/tooz/latest/

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

baremetal node set --driver-info \
agent_burnin_fio_network_pairing_backend_url= \
'zookeeper://zk1.xyz.com:2181,zk2.xyz.com:2181,zk3.xyz.com:2181' \
$NODE_NAME_OR_UUIDN

Different deliveries or network ports can be separated by creating different rooms on the backend with:

baremetal node set --driver-info \
agent_burnin_fio_network_pairing_group_name=$DELIVERY $NODE_NAME_OR_UUID

This allows to control which nodes (or interfaces) connect with which other nodes (or interfaces).

Launching network burn-in

In addition and similar to the other tests, there is a runtime option to be set (only on the writer):

baremetal node set --driver-info agent_burnin_fio_network_runtime=600 \
$NODE_NAME_OR_UUID

The actual network burn-in can then be launched with:

baremetal node clean --clean-steps '[{"step": "burnin_network",\
"interface": "deploy"}]' $NODE_NAME_OR_UUID1

baremetal node clean --clean-steps '[{"step": "burnin_network",\
"interface": "deploy"}]' $NODE_NAME_OR_UUID2

Both nodes will wait for the other node to show up and block while waiting. If the partner does not show
up, the cleaning timeout will step in.

Logging

Since most of the burn-in steps are also providing information about the performance of the stressed
components, keeping this information for verification or acceptance purposes may be desirable. By
default, the output of the burn-in tools goes to the journal of the Ironic Python Agent and is therefore
sent back as an archive to the conductor. In order to consume the output of the burn-in steps more easily,
or even in real-time, the nodes can be configured to store the output of the individual steps to files in the
ramdisk (from where they can be picked up by a logging pipeline).

The configuration of the output file is done via one of agent_burnin_cpu_outputfile,
agent_burnin_vm_outputfile, agent_burnin_fio_disk_outputfile, and
agent_burnin_fio_network_outputfile parameters which need to be added to a node like:

baremetal node set --driver-info agent_burnin_cpu_outputfile=\
'/var/log/burnin.cpu' $NODE_NAME_OR_UUID

354 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Additional Information

All tests can be aborted at any moment with

baremetal node abort $NODE_NAME_OR_UUID

One can also launch multiple tests which will be run in sequence, e.g.:

baremetal node clean --clean-steps '[{"step": "burnin_cpu",\
"interface": "deploy"}, {"step": "burnin_memory",\
"interface": "deploy"}]' $NODE_NAME_OR_UUID

If desired, configuring fast-track may be helpful here as it allows to keep the node up between con-
secutive calls of baremetal node clean.

4.2.16 Vendor Passthru

The bare metal service allows drivers to expose vendor-specific API known as vendor passthru.

Node Vendor Passthru

Drivers may implement a passthrough API, which is accessible via the /v1/nodes/<Node UUID or
Name>/vendor_passthru?method={METHOD} endpoint. Beyond basic checking, Ironic does not in-
trospect the message body and simply passes it through to the relevant driver.

A method:

• can support one or more HTTP methods (for example, GET, POST)

• is asynchronous or synchronous

– For asynchronous methods, a 202 (Accepted) HTTP status code is returned to indicate that the
request was received, accepted and is being acted upon. No body is returned in the response.

– For synchronous methods, a 200 (OK) HTTP status code is returned to indicate that the
request was fulfilled. The response may include a body.

• can require an exclusive lock on the node. This only occurs if the method doesnt specify re-
quire_exclusive_lock=False in the decorator. If an exclusive lock is held on the node, other requests
for the node will be delayed and may fail with an HTTP 409 (Conflict) error code.

This endpoint exposes a nodes driver directly, and as such, it is expressly not part of Ironics standard
REST API. There is only a single HTTP endpoint exposed, and the semantics of the message body are
determined solely by the driver. Ironic makes no guarantees about backwards compatibility; this is solely
up to the discretion of each drivers author.

To get information about all the methods available via the vendor_passthru endpoint for a particular node,
use CLI:

$ baremetal node passthru list <redfish-node>
+-----------------------+------------------------+-------+--------------------
↪→--
↪→--
↪→----------------------------+------------------------+

(continues on next page)

4.2. Bare Metal Service Features 355

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

| Name | Supported HTTP methods | Async | Description ␣
↪→ ␣
↪→ ␣
↪→ | Response is attachment |
+-----------------------+------------------------+-------+--------------------
↪→--
↪→--
↪→----------------------------+------------------------+
| create_subscription | POST | False | Creates a␣
↪→subscription on a node. Required argument: a dictionary of {'destination':
↪→'destination_url'} ␣
↪→ | False |
| delete_subscription | DELETE | False | Delete a␣
↪→subscription on a node. Required argument: a dictionary of {'id':
↪→'subscription_bmc_id'} ␣
↪→ | False |
| eject_vmedia | POST | True | Eject a virtual␣
↪→media device. If no device is provided then all attached devices will be␣
↪→ejected. Optional arguments: 'boot_device' - the boot device to eject,␣
↪→either 'cd', 'dvd', 'usb', or 'floppy' | False |
| get_all_subscriptions | GET | False | Returns all␣
↪→subscriptions on the node. ␣
↪→ ␣
↪→ | False |
| get_subscription | GET | False | Get a subscription␣
↪→on the node. Required argument: a dictionary of {'id': 'subscription_bmc_id
↪→'} ␣
↪→ | False |
+-----------------------+------------------------+-------+--------------------
↪→--
↪→--
↪→----------------------------+------------------------+

The response will contain information for each method, such as the methods name, a description, the
HTTP methods supported, and whether its asynchronous or synchronous.

You can call a method with CLI, for example:

$ baremetal node passthru call <redfish-node> eject_vmedia

Driver Vendor Passthru

Drivers may implement an API for requests not related to any node, at /v1/drivers/<driver name>/
vendor_passthru?method={METHOD}.

A method:

• can support one or more HTTP methods (for example, GET, POST)

• is asynchronous or synchronous

356 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

– For asynchronous methods, a 202 (Accepted) HTTP status code is returned to indicate that the
request was received, accepted and is being acted upon. No body is returned in the response.

– For synchronous methods, a 200 (OK) HTTP status code is returned to indicate that the
request was fulfilled. The response may include a body.

Note

Unlike methods in Node Vendor Passthru, a request does not lock any resource, so it will not delay
other requests and will not fail with an HTTP 409 (Conflict) error code.

Ironic makes no guarantees about the semantics of the message BODY sent to this endpoint. That is left
up to each drivers author.

To get information about all the methods available via the driver vendor_passthru endpoint, use CLI:

$ baremetal driver passthru list redfish

The response will contain information for each method, such as the methods name, a description, the
HTTP methods supported, and whether its asynchronous or synchronous.

Warning

Currently only the methods available in the default interfaces of the hardware type are available.

You can call a method with CLI, for example:

$ baremetal driver passthru call <driver> <method>

4.2.17 Node servicing

Overview

In order to better enable operators to modify existing nodes, Ironic has introduced the model of Node
Servicing, where you can take a node in active state, modify it using steps similar to Deploy Steps or
manual cleaning through the Cleaning subsystem.

For more information on cleaning, please see Node cleaning.

Major differences

Service steps do not contain an automatic execution model, which is intrinisc to the standard deployment
and automated cleaning workflows. This may change at some point in the future.

This also means that while a priority value can be supplied, it is not presently utilized.

4.2. Bare Metal Service Features 357

Ironic Documentation, Release 26.1.2.dev21

Similarities to Cleaning and Deployment

Similar to Clean and Deploy steps, when invoked an operator can validate the current running steps by
viewing the driver_internal_info field looking for a service_steps field. The current step being
executed can be viewed using the baremetal node service_step field, which is a top level field.

Service steps are internally decorated on driver interface methods utilizing decorator. This means service
steps do not automatically expose clean and deploy steps to be executed at any time. The Ironic develop-
ment team took a cautious and intentional approach behind methods which are decorated. Besides, some
clean and deployment steps are geared explicitly for operating in that mode, and would not be suitable to
be triggered outside of the original workflow it was designed for use in.

Available Steps

Executing Service Steps

In order for manual cleaning to work, you may need to configure a Servicing Network.

Starting manual servicing via API

Servicing can only be performed when a node is in the active provision state. The REST API request
to initiate it is available in API version 1.87 and higher:

PUT /v1/nodes/<node_ident>/states/provision

(Additional information is available here.)

This API will allow operators to put a node directly into servicing provision state from active provi-
sion state via target: service. The PUT will also require the argument service_steps to be specified. This
is an ordered list of steps. A step is represented by a dictionary (JSON), in the form:

{
"interface": "<interface>",
"step": "<name of step>",
"args": {"<arg1>": "<value1>", ..., "<argn>": <valuen>}

}

The interface and step keys are required for all steps. If a servicing step method takes keyword arguments,
the args key may be specified. It is a dictionary of keyword variable arguments, with each keyword-
argument entry being <name>: <value>.

If any step is missing a required keyword argument, servicing will not be performed and the node will
be put in service failed provision state with an appropriate error message.

If, during the servicing process, a service step determines that it has incorrect keyword arguments, all
earlier steps will be performed and then the node will be put in service failed provision state with
an appropriate error message.

An example of the request body for this API:

{
"target":"service",

(continues on next page)

358 Chapter 4. Administrator Guide

https://docs.openstack.org/api-ref/baremetal/index.html?expanded=change-node-provision-state-detail#change-node-provision-state

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"sevice_steps": [{
"interface": "raid",
"step": "apply_configuration",
"args": {"create_nonroot_volumes": True}

},
{
"interface": "vendor",
"step": "send_raw",
"args": {"raw_bytes": "0x00 0x00 0x00 0x00"}

}]
}

In the above example, the nodes RAID interface would apply the set RAID configuration, and then the
vendor interfaces send_raw step would be called to send a raw command to the BMC. Please note,
send_raw is only available for the ipmi hardware type.

Alternatively, you can specify a runbook instead of service_steps:

{
"target":"service",
"runbook": "<runbook_name_or_uuid>"

}

The specified runbook must match one of the nodes traits to be used.

Starting servicing via openstack baremetal CLI

Servicing is available via the baremetal node service command, starting with Bare Metal API ver-
sion 1.87.

The argument --service-steps must be specified. Its value is one of:

• a JSON string

• path to a JSON file whose contents are passed to the API

• -, to read from stdin. This allows piping in the service steps. Using - to signify stdin is common
in Unix utilities.

Examples of doing this with a JSON string:

baremetal node service <node> \
--service-steps '[{"interface": "deploy", "step": "example_task"}]'

Or with a file:

baremetal node service <node> \
--service-steps my-service-steps.txt

Or with stdin:

cat my-clean-steps.txt | baremetal node service <node> \
--service-steps -

4.2. Bare Metal Service Features 359

Ironic Documentation, Release 26.1.2.dev21

To use a runbook instead of specifying service steps:

baremetal node service <node> runbook <runbook_name_or_uuid>

Using Runbooks for Servicing

Similar to manual cleaning, you can use runbooks for node servicing. Runbooks provide a predefined
list of service steps associated with nodes via traits.

To use a runbook for servicing:

baremetal node service <node> runbook <runbook_name_or_uuid>

Ensure that the runbook matches one of the nodes traits before using it for servicing.

Available Steps in Ironic

ipmi hardware type

vendor.send_raw

This step is covered in the IPMI driver documentation and is usable as a service step in addition to a
deploy step.

redfish hardware type

bios.apply_configuration

This is covered in the BIOS Configuration configuration documentation as it started as a cleaning step.
It is a standardized cross-interface name.

management.update_firmware

This step is covered in the Redfish driver and is intended to facilitate firmware updates via the BMC.

raid.apply_configuration

This step is covered in the Redfish driver and is intended to facilitate applying raid configuration.

360 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

raid.delete_configuration

This step is covered in the Redfish driver and is intended to delete configuration.

Agent

raid.apply_configuration

This is the standardized RAID passthrough interface for the agent, and can be leveraged like other RAID
interfaces.

Available steps in Ironic-Python-Agent

Note

Steps available from the agent will be populated once support has merged in the agent to expose the
steps to the ironic deployment.

Servicing Network

If you are using the Neutron DHCP provider (the default) you will also need to ensure you have configured
a servicing network. This network will be used to boot the ramdisk for in-band service operations. This
setting is configured utilizing the neutron.servicing_network configuration parameter.

4.2.18 Building images for Windows

We can use New-WindowsOnlineImage in windows-openstack-imaging-tools tool as an option to create
Windows images (whole disk images) corresponding boot modes which will support for Windows NIC
Teaming. And allow the utilization of link aggregation when the instance is spawned on hardware servers
(Bare metals).

Requirements:

• A Microsoft Windows Server Operating System along with Hyper-V virtualization enabled,
PowerShell version >=4 supported, Windows Assessment and Deployment Kit, in short
Windows ADK.

• The windows Server compatible drivers.

• Working git environment.

4.2. Bare Metal Service Features 361

https://github.com/cloudbase/windows-openstack-imaging-tools

Ironic Documentation, Release 26.1.2.dev21

Preparation:

• Download a Windows Server 2012R2/ 2016 installation ISO.

• Install Windows Server 2012R2/ 2016 OS on workstation PC along with following feature:

– Enable Hyper-V virtualization.

– Install PowerShell 4.0.

– Install Git environment & import git proxy (if have).

– Create new Path in Microsoft Windows Server Operating System which support for sub-
module update via git submodule update init command:

- Variable name: Path
- Variable value: C:\Windows\System32\WindowsPowerShell\v1.0\;C:\
↪→Program Files\Git\bin

– Rename virtual switch name in Windows Server 2012R2/ 2016 in Virtual Switch
Manager into external.

Implementation:

• Step 1: Create folders: C:\<folder_name_1> where output images will be located, C:\
<folder_name_2> where you need to place the necessary hardware drivers.

• Step 2: Copy and extract necessary hardware drivers in C:\<folder_name_2>.

• Step 3: Insert or burn Windows Server 2016 ISO to D:\.

• Step 4: Download windows-openstack-imaging-tools tools.

git clone https://github.com/cloudbase/windows-openstack-imaging-tools.git

• Step 5: Create & running script create-windows-cloud-image.ps1:

git submodule update --init
Import-Module WinImageBuilder.psm1
$windowsImagePath = "C:\<folder_name_1>\<output_file_name>.qcow2"
$VirtIOISOPath = "C:\<folder_name_1>\virtio.iso"
$virtIODownloadLink = "https://fedorapeople.org/groups/virt/virtio-win/
↪→direct-downloads/archive-virtio/virtio-win-0.1.133-2/virtio-win.iso"
(New-Object System.Net.WebClient).DownloadFile($virtIODownloadLink,
↪→$VirtIOISOPath)
$wimFilePath = "D:\sources\install.wim"
$extraDriversPath = "C:\<folder_name_2>\"
$image = (Get-WimFileImagesInfo -WimFilePath $wimFilePath)[1]
$switchName = 'external'
New-WindowsOnlineImage -WimFilePath $wimFilePath
-ImageName $image.ImageName ` -WindowsImagePath $windowsImagePath -Type

↪→'KVM' -ExtraFeatures @() `
-SizeBytes 20GB -CpuCores 2 -Memory 2GB -SwitchName $switchName ` -

↪→ProductKey $productKey -DiskLayout 'BIOS' `
-ExtraDriversPath $extraDriversPath ` -InstallUpdates:$false -

(continues on next page)

362 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

↪→AdministratorPassword 'Pa$$w0rd' `
-PurgeUpdates:$true -DisableSwap:$true

After executing this command you will get two output files, first one being
C:<folder_name_1><output_file_name>.qcow2, which is the resulting windows whole disk
image and C:<folder_name_1>virtio.iso, which is virtio iso contains all the synthetic drivers for
the KVM hypervisor.

See example_windows_images for more details and examples.

Note

We can change SizeBytes, CpuCores and Memory depending on requirements.

4.2.19 Deploying without BMC Credentials

The Bare Metal service usually requires BMC credentials for all provisioning operations. Starting with
the Victoria release series there is limited support for inspection, cleaning and deployments without the
credentials.

Warning

This feature is experimental and only works in a limited scenario. When using it, you have to be
prepared to provide BMC credentials in case of a failure or any non-supported actions.

How it works

The expected workflow is as follows:

1. The node is discovered by manually powering it on and gets the manual-management hardware
type and agent power interface.

If discovery is not used, a node can be enrolled through the API and then powered on manually.

2. The operator moves the node to manageable. It works because the agent power only requires to be
able to connect to the agent.

3. The operator moves the node to available. Cleaning happens normally via the already running
agent. If a reboot is needed, it is done by telling the agent to reboot the node in-band.

4. A user deploys the node. Deployment happens normally via the already running agent.

5. In the end of the deployment, the node is rebooted via the reboot command instead of power off+on.

4.2. Bare Metal Service Features 363

https://github.com/cloudbase/windows-openstack-imaging-tools/blob/master/Examples

Ironic Documentation, Release 26.1.2.dev21

Enabling

Fast-Track Deployment is a requirement for this feature to work. After enabling it, adds the agent power
interface and the manual-management hardware type to the enabled list:

[DEFAULT]
enabled_hardware_types = manual-management
enabled_management_interfaces = noop
enabled_power_interfaces = agent

[deploy]
fast_track = true

As usual with the noop management, enable the networking boot fallback:

[pxe]
enable_netboot_fallback = true

If using discovery, configure discovery in ironic-inspector with the default driver set to
manual-management.

Limitations

• Only the noop network interface is supported.

• Undeploy and rescue are not supported, you need to add BMC credentials first.

• If any errors happen in the process, recovery will likely require BMC credentials.

• Only rebooting is possible through the API, power on/off commands will fail.

4.2.20 Layer 3 or DHCP-less ramdisk booting

Booting nodes via PXE, while universally supported, suffers from one disadvantage: it requires a direct
L2 connectivity between the node and the control plane for DHCP. Using virtual media it is possible to
avoid not only the unreliable TFTP protocol, but DHCP altogether.

When network data is provided for a node as explained below, the generated virtual media ISO will also
serve as a configdrive, and the network data will be stored in the standard OpenStack location.

The simple-init element needs to be used when creating the deployment ramdisk. The Glean tool will
look for a media labeled as config-2. If found, the network information from it will be read, and the
nodes networking stack will be configured accordingly.

ironic-python-agent-builder -o /output/ramdisk \
debian-minimal -e simple-init

Warning

Ramdisks based on distributions with NetworkManager require Glean 1.19.0 or newer to work.

364 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-inspector/2024.2/user/usage.html#discovery
https://docs.openstack.org/nova/queens/user/config-drive.html
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html
https://docs.openstack.org/infra/glean/
https://docs.openstack.org/infra/glean/

Ironic Documentation, Release 26.1.2.dev21

Note

If desired, some interfaces can still be configured to use DHCP.

Hardware type support

This feature is known to work with the following hardware types:

• Redfish with redfish-virtual-media boot

• iLO with ilo-virtual-media boot

Configuring network data

When the Bare Metal service is running within OpenStack, no additional configuration is required - the
network configuration will be fetched from the Network service.

Alternatively, the user can build and pass network configuration in form of a network_data JSON to a
node via the network_data field. Node-based configuration takes precedence over the configuration
generated by the Network service and also works in standalone mode.

baremetal node set --network-data ~/network_data.json <node>

An example network data:

{
"links": [

{
"id": "port-92750f6c-60a9-4897-9cd1-090c5f361e18",
"type": "phy",
"ethernet_mac_address": "52:54:00:d3:6a:71"

}
],
"networks": [

{
"id": "network0",
"type": "ipv4",
"link": "port-92750f6c-60a9-4897-9cd1-090c5f361e18",
"ip_address": "192.168.122.42",
"netmask": "255.255.255.0",
"network_id": "network0",
"routes": []

}
],
"services": []

}

Note

4.2. Bare Metal Service Features 365

https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/metadata-service-network-info.html

Ironic Documentation, Release 26.1.2.dev21

Some fields are redundant with the port information. Were looking into simplifying the format, but
currently all these fields are mandatory.

Youll need the deployed image to support network data, e.g. by pre-installing cloud-init or Glean on
it (most cloud images have the former). Then you can provide the network data when deploying, for
example:

baremetal node deploy <node> \
--config-drive "{\"network_data\": $(cat ~/network_data.json)}"

Some first-boot services, such as Ignition, dont support network data. You can provide their configuration
as part of user data instead:

baremetal node deploy <node> \
--config-drive "{\"user_data\": \"... ignition config ...\"}"

Deploying outside of the provisioning network

If you need to combine traditional deployments using a provisioning network with virtual media de-
ployments over L3, you may need to provide an alternative IP address for the remote nodes to connect
to:

[deploy]
http_url = <HTTP server URL internal to the provisioning network>
external_http_url = <HTTP server URL with a routable IP address>

You may also need to override the callback URL, which is normally fetched from the service catalog or
configured in the [service_catalog] section:

[deploy]
external_callback_url = <Bare Metal API URL with a routable IP address>

In case you need specific URLs for each node, you can use the driver_info[external_http_url]
node property. When used it overrides the deploy.http_url and deploy.external_http_url set-
tings in the configuration file.

baremetal node set node-0 \
--driver-info external_http_url="<your_node_external_url>"

4.2.21 Deploying with anaconda deploy interface

Ironic supports deploying an OS with the anaconda installer. This anaconda deploy interface works with
pxe and ipxe boot interfaces.

366 Chapter 4. Administrator Guide

https://cloudinit.readthedocs.io/en/latest/
https://docs.openstack.org/infra/glean/
https://coreos.github.io/ignition/
https://fedoraproject.org/wiki/Anaconda

Ironic Documentation, Release 26.1.2.dev21

Configuration

The anaconda deploy interface is not enabled by default. To enable this, add anaconda to the value of
the enabled_deploy_interfaces configuration option in ironic.conf. For example:

[DEFAULT]
...
enabled_deploy_interfaces = direct,anaconda
...

This change takes effect after all the ironic conductors have been restarted.

The default kickstart template is specified via the configuration option anaconda.
default_ks_template. It is set to this ks.cfg.template but can be modified to be some other
template.

[anaconda]
default_ks_template = file:///etc/ironic/ks.cfg.template

When creating an ironic node, specify anaconda as the deploy interface. For example:

baremetal node create --driver ipmi \
--deploy-interface anaconda \
--boot-interface ipxe

You can also set the anaconda deploy interface via --deploy-interface on an existing node:

baremetal node set <node> --deploy-interface anaconda

Creating an OS Image

While anaconda allows installing individual RPMs, the default kickstart file expects an OS tarball to be
used as the OS image.

This baremetal.yum file contains all the yum/dnf commands that need to be run in order to generate
the OS tarball. These commands install packages and package groups that need to be in the image:

group install 'Minimal Install'
install cloud-init
ts run

An OS tarball can be created using the following set of commands, along with the above baremetal.yum
file:

export CHROOT=/home/<user>/os-image
mkdir -p $(CHROOT)
mkdir -p $(CHROOT)/{dev,proc,run,sys}
chown -hR root:root $(CHROOT)
mount --bind /var/cache/yum $(CHROOT)/var/cache/yum
mount --bind /dev $(CHROOT)/dev
mount -t proc proc $(CHROOT)/proc
mount -t tmpfs tmpfs $(CHROOT)/run

(continues on next page)

4.2. Bare Metal Service Features 367

https://opendev.org/openstack/ironic/src/branch/master/ironic/drivers/modules/ks.cfg.template

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

mount -t sysfs sysfs $(CHROOT)/sys
dnf -y --installroot=$(CHROOT) makecache
dnf -y --installroot=$(CHROOT) shell baremetal.yum
rpm --root $(CHROOT) --import $(CHROOT)/etc/pki/rpm-gpg/RPM-GPG-KEY-*
truncate -s 0 $(CHROOT)/etc/machine-id
umount $(CHROOT)/var/cache/yum
umount $(CHROOT)/dev
umount $(CHROOT)/proc
umount $(CHROOT)/run
umount $(CHROOT)/sys
tar cpzf os-image.tar.gz --xattrs --acls --selinux -C $(CHROOT) .

Configuring the OS Image in glance

Anaconda is a two-stage installer stage 1 consists of the kernel and ramdisk and stage 2 lives in a squashfs
file. All these components can be found in the CentOS/RHEL/Fedora ISO images.

The kernel and ramdisk can be found at /images/pxeboot/vmlinuz and /images/pxeboot/
initrd.img respectively in the ISO. The stage 2 squashfs image can be normally found at /LiveOS/
squashfs.img or /images/install.img.

The OS tarball must be configured with the following properties in glance, in order to be used with the
anaconda deploy driver:

• kernel_id

• ramdisk_id

• stage2_id

• disk_file_extension (optional)

Valid disk_file_extension values are .img, .tar, .tbz, .tgz, .txz, .tar.gz, .tar.bz2, and .
tar.xz. When disk_file_extension property is not set to one of the above valid values the anaconda
installer will assume that the image provided is a mountable OS disk.

This is an example of adding the anaconda-related images and the OS tarball to glance:

openstack image create --file ./vmlinuz --container-format bare \
--disk-format raw --shared anaconda-kernel-<version>

openstack image create --file ./initrd.img --container-format bare \
--disk-format raw --shared anaconda-ramdisk-<version>

openstack image create --file ./squashfs.img --container-format bare \
--disk-format raw --shared anaconda-stage-<version>

openstack image create --file ./os-image.tar.gz \
--container-format bare --disk-format raw --shared \
--property kernel_id=<glance_uuid_vmlinuz> \
--property ramdisk_id=<glance_uuid_ramdisk> \
--property stage2_id=<glance_uuid_stage2> disto-name-version \
--property disk_file_extension=.tgz

368 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Creating a bare metal server

Apart from uploading a custom kickstart template to glance and associating it with the OS image via
the ks_template property in glance, operators can also set the kickstart template in the ironic nodes
instance_info field. The kickstart template set in instance_info takes precedence over the one
specified via the OS image in glance. If no kickstart template is specified (via the nodes instance_info
or ks_template glance image property), the default kickstart template will be used to deploy the OS.

This is an example of how to set the kickstart template for a specific ironic node:

openstack baremetal node set <node> \
--instance_info ks_template=glance://uuid

Warning

In the Ironic Project terminology, the word template often refers to a file that is supplied to the
deployment, which Ironic supplies parameters to render a specific output. One critical example of
this in the Ironic workflow, specifically with this driver, is that the generated agent token is con-
veyed to the booting ramdisk, facilitating it to call back to Ironic and indicate the state. This token is
randomly generated for every deploy, and is required. Specifically, this is leveraged in the templates
pre, onerror, and post steps. For more information on Agent Token, please see Agent Token.

Standalone deployments

While this deployment interface driver was developed around the use of other OpenStack services, it is
not explicitly required. For example, HTTP(S) URLs can be supplied by the API user to explicitly set
the expected baremetal node instance_info fields

baremetal node set <node> \
--instance_info image_source=<Mirror URL> \
--instance_info kernel=<Kernel URL> \
--instance_info ramdisk=<Initial Ramdisk URL> \
--instance_info stage2=<Installer Stage2 Ramdisk URL>

When doing so, you may wish to also utilize a customized kickstart template, which can also be a URL.
Please reference the ironic community provided template ks.cfg.template and use it as a basis for your
own kickstart as it accounts for the particular stages and appropriate callbacks to Ironic.

Warning

The default template (for the kickstart liveimg command) expects an instance_info\image_info
setting to be provided by the user, which serves as a base operating system image. In the context of
the anaconda driver, it should be thought of almost like stage3. If youre using a custom template, it
may not be required, but proceed with caution. See pykickstart documentation for more information
on liveimg file format, structure, and use.

baremetal node set <node> \
--instance_info ks_template=<URL>

4.2. Bare Metal Service Features 369

https://pykickstart.readthedocs.io/en/latest/kickstart-docs.html#liveimg

Ironic Documentation, Release 26.1.2.dev21

If you do choose to use a liveimg with a customized template, or if you wish to use the stock template
with a liveimg, you will need to provide this setting.

baremetal node set <node> \
--instance_info image_info=<URL>

Warning

This is required if you do not utilize a customised template. As in use Ironics stock template.

The pattern of deployment in this case is identical to a deployment case where Ironic is integrated with
OpenStack, however in this case Ironic collects the files, and stages them appropriately.

At this point, you should be able to request the baremetal node to deploy.

Standalone using a repository

Anaconda supports a concept of passing a repository as opposed to a dedicated URL path which has a .
treeinfo file, which tells the initial boot scripts where to get various dependencies, such as what would
be used as the anaconda stage2 ramdisk. Unfortunately, this functionality is not well documented.

An example .treeinfo file can be found at http://mirror.stream.centos.org/9-stream/BaseOS/x86_64/
os/.treeinfo.

Note

In the context of the .treeinfo file and the related folder structure for a deployment utilizing the
anaconda deployment interface, images/install.img file represents a stage2 ramdisk.

In the context of one wishing to deploy Centos Stream-9, the following may be useful.

baremetal node set <node> \
--instance_info image_source=http://mirror.stream.centos.org/9-stream/

↪→BaseOS/x86_64/os/ \
--instance_info kernel=http://mirror.stream.centos.org/9-stream/BaseOS/

↪→x86_64/os/images/pxeboot/vmlinuz \
--instance_info ramdisk=http://mirror.stream.centos.org/9-stream/BaseOS/

↪→x86_64/os/images/pxeboot/initrd.img

Once set, a kickstart template can be provided via an instance_info parameter, and the node deployed.

370 Chapter 4. Administrator Guide

http://mirror.stream.centos.org/9-stream/BaseOS/x86_64/os/.treeinfo
http://mirror.stream.centos.org/9-stream/BaseOS/x86_64/os/.treeinfo

Ironic Documentation, Release 26.1.2.dev21

Deployment Process

At a high level, the mechanics of the anaconda driver work in the following flow, where we also note the
stages and purpose of each part for informational purposes.

1. Network Boot Program (Such as iPXE) downloads the kernel, and initial ramdisk.

2. Kernel launches, uncompresses initial ramdisk, and executes init inside of the ramdisk.

3. The initial ramdisk boot scripts, such as Dracut, recognize the kernel command line parameters
Ironic supplied with the boot configuration, and downloads the second stage artifacts, in this case
called the stage2 image. This image contains Anaconda and base dependencies.

4. Anaconda downloads and parses the kickstart configuration which was also supplied on the kernel
command line, and executes the commands as defined in the kickstart template.

5. The kickstart template, if specified in its contents, downloads a liveimg which is used as the base
operating system image to start with.

Configuration Considerations

When using the anaconda deployment interface, some configuration parameters may need to be adjusted
in your environment. This is in large part due to the general defaults being set to much lower values for
image based deployments, but the way the anaconda deployment interface works, you may need to make
some adjustments.

• conductor.deploy_callback_timeout likely needs to be adjusted for most anaconda deploy-
ment interface users. By default, this is a timer that looks for agents that have not checked in with
Ironic, or agents which may have crashed or failed after they started. If the value is reached, then
the current operation is failed. This value should be set to a number of seconds which exceeds your
average anaconda deployment time.

• pxe.boot_retry_timeout can also be triggered and result in an anaconda deployment in
progress getting reset as it is intended to reboot nodes that might have failed their initial PXE
operation. Depending on the sizes of images, and the exact nature of what was deployed, it may
be necessary to ensure this is a much higher value.

Limitations

• This deploy interface has only been tested with Red Hat based operating systems that use anaconda.
Other systems are not supported.

• Runtime TLS certificate injection into ramdisks is not supported. Assets such as ramdisk or a
stage2 ramdisk image need to have trusted Certificate Authority certificates present within the
images or the Ironic API endpoint utilized should utilize a known trusted Certificate Authority.

• The anaconda tooling deploying the instance/workload does not heartbeat to Ironic like the
ironic-python-agent driven ramdisks. As such, you may need to adjust some timers. See
Configuration Considerations for some details on this.

4.2. Bare Metal Service Features 371

Ironic Documentation, Release 26.1.2.dev21

4.3 Configuration and Operation

4.3.1 Ironic Python Agent

Overview

Ironic Python Agent (also often called IPA or just agent) is a Python-based agent which handles ironic
bare metal nodes in a variety of actions such as inspect, configure, clean and deploy images. IPA is
distributed over nodes and runs, inside of a ramdisk, the process of booting this ramdisk on the node.

For more information see the ironic-python-agent documentation.

Drivers

Starting with the Kilo release all deploy interfaces (except for fake ones) are using IPA. For nodes using
the Direct deploy interface, the conductor prepares a swift temporary URL or a local HTTP URL for the
image. IPA then handles the whole deployment process: downloading an image from swift, putting it on
the machine and doing any post-deploy actions.

Requirements

Using IPA requires it to be present and configured on the deploy ramdisk, see Building or downloading
a deploy ramdisk image

Using proxies for image download

Overview

When using the Direct deploy, IPA supports using proxies for downloading the user image. For example,
this could be used to speed up download by using a caching proxy.

Steps to enable proxies

1. Configure the proxy server of your choice (for example Squid, Apache Traffic Server). This will
probably require you to configure the proxy server to cache the content even if the requested URL
contains a query, and to raise the maximum cached file size as images can be pretty big. If you
have HTTPS enabled in swift (see swift deployment guide), it is possible to configure the proxy
server to talk to swift via HTTPS to download the image, store it in the cache unencrypted and
return it to the node via HTTPS again. Because the image will be stored unencrypted in the cache,
this approach is recommended for images that do not contain sensitive information. Refer to your
proxy servers documentation to complete this step.

2. Set glance.swift_temp_url_cache_enabled in the ironic conductor config file to True. The
conductor will reuse the cached swift temporary URLs instead of generating new ones each time an
image is requested, so that the proxy server does not create new cache entries for the same image,
based on the query part of the URL (as it contains some query parameters that change each time it
is regenerated).

372 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/2024.2/
http://www.squid-cache.org/Doc/
https://docs.trafficserver.apache.org/en/latest/index.html
https://docs.openstack.org/swift/2024.2/deployment_guide.html

Ironic Documentation, Release 26.1.2.dev21

3. Set glance.swift_temp_url_expected_download_start_delay option in the ironic con-
ductor config file to the value appropriate for your hardware. This is the delay (in seconds) from
the time of the deploy request (when the swift temporary URL is generated) to when the URL is
used for the image download. You can think of it as roughly the time needed for IPA ramdisk to
startup and begin download. This value is used to check if the swift temporary URL duration is
large enough to let the image download begin. Also if temporary URL caching is enabled, this
will determine if a cached entry will still be valid when the download starts. It is used only if
glance.swift_temp_url_cache_enabled is True.

4. Increase glance.swift_temp_url_duration option in the ironic conductor config file, as only
non-expired links to images will be returned from the swift temporary URLs cache. This means
that if swift_temp_url_duration=1200 then after 20 minutes a new image will be cached by
the proxy server as the query in its URL will change. The value of this option must be greater than
or equal to glance.swift_temp_url_expected_download_start_delay.

5. Add one or more of image_http_proxy, image_https_proxy, image_no_proxy to
driver_info properties in each node that will use the proxy.

Advanced configuration

Out-of-band vs. in-band power off on deploy

After deploying an image onto the nodes hard disk, Ironic will reboot the machine into the new image.
By default this power action happens in-band, meaning that the ironic-conductor will instruct the IPA
ramdisk to power itself off.

Some hardware may have a problem with the default approach and would require Ironic to talk directly
to the management controller to switch the power off and on again. In order to tell Ironic to do that, you
have to update the nodes driver_info field and set the deploy_forces_oob_reboot parameter with
the value of True. For example, the below command sets this configuration in a specific node:

baremetal node set <UUID or name> --driver-info deploy_forces_oob_reboot=True

4.3.2 Multi-tenancy in the Bare Metal service

Overview

It is possible to use dedicated tenant networks for provisioned nodes, which extends the current Bare
Metal service capabilities of providing flat networks. This works in conjunction with the Networking
service to allow provisioning of nodes in a separate provisioning network. The result of this is that
multiple tenants can use nodes in an isolated fashion. However, this configuration does not support trunk
ports belonging to multiple networks.

4.3. Configuration and Operation 373

Ironic Documentation, Release 26.1.2.dev21

Concepts

Network interfaces

Network interface is one of the driver interfaces that manages network switching for nodes. There are 3
network interfaces available in the Bare Metal service:

• noop interface is used for standalone deployments, and does not perform any network switching;

• flat interface places all nodes into a single provider network that is pre-configured on the Net-
working service and physical equipment. Nodes remain physically connected to this network dur-
ing their entire life cycle.

• neutron interface provides tenant-defined networking through the Networking service, separating
tenant networks from each other and from the provisioning and cleaning provider networks. Nodes
will move between these networks during their life cycle. This interface requires Networking ser-
vice support for the switches attached to the baremetal servers so they can be programmed.

Local link connection

The Bare Metal service allows local_link_connection information to be associated with Bare Metal
ports. This information is provided to the Networking services ML2 driver when a Virtual Interface
(VIF) is attached. The ML2 driver uses the information to plug the specified port to the tenant network.

Table 21: local_link_connection fields

Field Description
switch_id Required. Identifies a switch and can be a MAC address or an OpenFlow-based

datapath_id.
port_id Required. Port ID on the switch/Smart NIC, for example, Gig0/1, rep0-0.
switch_infoOptional. Used to distinguish different switch models or other vendor-specific identifier.

Some ML2 plugins may require this field.
hostname Required in case of a Smart NIC port. Hostname of Smart NIC device.

Note

This isnt applicable to Infiniband ports because the network topology is discoverable by the Infiniband
Subnet Manager. If specified, local_link_connection information will be ignored. If port is Smart NIC
port then:

1. port_id is the representor port name on the Smart NIC.

2. switch_id is not mandatory.

374 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Physical networks

A Bare Metal port may be associated with a physical network using its physical_network field. The
Bare Metal service uses this information when mapping between virtual ports in the Networking service
and physical ports and port groups in the Bare Metal service. A ports physical network field is optional,
and if not set then any virtual port may be mapped to that port, provided that no free Bare Metal port
with a suitable physical network assignment exists.

The physical network of a port group is defined by the physical network of its constituent ports. The Bare
Metal service ensures that all ports in a port group have the same value in their physical network field.

When attaching a virtual interface (VIF) to a node, the following ordered criteria are used to select a
suitable unattached port or port group:

• Require ports or port groups to not have a physical network or to have a physical network that
matches one of the VIFs allowed physical networks.

• Prefer ports and port groups that have a physical network to ports and port groups that do not have
a physical network.

• Prefer port groups to ports. Prefer ports with PXE enabled.

Configuring the Bare Metal service

See the Configure tenant networks section in the installation guide for the Bare Metal service.

Configuring nodes

1. Ensure that your python-ironicclient version and requested API version are sufficient for your re-
quirements.

• Multi-tenancy support was added in API version 1.20, and is supported by python-ironicclient
version 1.5.0 or higher.

• Physical network support for ironic ports was added in API version 1.34, and is supported by
python-ironicclient version 1.15.0 or higher.

• Smart NIC support for ironic ports was added in API version 1.53, and is supported by
python-ironicclient version 2.7.0 or higher.

The following examples assume you are using python-ironicclient version 2.7.0 or higher.

Export the following variable:

export OS_BAREMETAL_API_VERSION=<API version>

2. The nodes network_interface field should be set to a valid network interface. Valid interfaces
are listed in the [DEFAULT]/enabled_network_interfaces configuration option in the ironic-
conductors configuration file. Set it to neutron to use the Networking services ML2 driver:

baremetal node create --network-interface neutron --driver ipmi

4.3. Configuration and Operation 375

Ironic Documentation, Release 26.1.2.dev21

Note

If the [DEFAULT]/default_network_interface configuration option is set, the
--network-interface option does not need to be specified when creating the node.

3. To update an existing nodes network interface to neutron, use the following commands:

baremetal node set $NODE_UUID_OR_NAME \
--network-interface neutron

4. Create a port as follows:

baremetal port create $HW_MAC_ADDRESS --node $NODE_UUID \
--local-link-connection switch_id=$SWITCH_MAC_ADDRESS \
--local-link-connection switch_info=$SWITCH_HOSTNAME \
--local-link-connection port_id=$SWITCH_PORT \
--pxe-enabled true \
--physical-network physnet1

An Infiniband port requires client ID, while local link connection information will be pop-
ulated by Infiniband Subnet Manager. The client ID consists of <12-byte vendor pre-
fix>:<8 byte port GUID>. There is no standard process for deriving the ports MAC address
($HW_MAC_ADDRESS); it is vendor specific. For example, Mellanox ConnectX Family De-
vices prefix is ff:00:00:00:00:00:02:00:00:02:c9:00. If port GUID was f4:52:14:03:00:38:39:81
the client ID would be ff:00:00:00:00:00:02:00:00:02:c9:00:f4:52:14:03:00:38:39:81. Mellanox
ConnectX Family Devices HW_MAC_ADDRESS consists of 6 bytes; the port GUIDs lower 3
and higher 3 bytes. In this example it would be f4:52:14:38:39:81. Putting it all together, create
an Infiniband port as follows:

baremetal port create $HW_MAC_ADDRESS --node $NODE_UUID \
--pxe-enabled true \
--extra client-id=$CLIENT_ID \
--physical-network physnet1

5. Create a Smart NIC port as follows:

baremetal port create $HW_MAC_ADDRESS --node $NODE_UUID \
--local-link-connection hostname=$HOSTNAME \
--local-link-connection port_id=$REP_NAME \
--pxe-enabled true \
--physical-network physnet1 \
--is-smartnic

A Smart NIC port requires hostname which is the hostname of the Smart NIC, and port_id
which is the representor port name within the Smart NIC.

6. Check the port configuration:

baremetal port show $PORT_UUID

After these steps, the provisioning of the created node will happen in the provisioning network, and then
the node will be moved to the tenant network that was requested.

376 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Configuring the Networking service

In addition to configuring the Bare Metal service some additional configuration of the Networking service
is required to ensure ports for bare metal servers are correctly programmed. This configuration will be
determined by the Bare Metal service network interfaces you have enabled and which top of rack switches
you have in your environment.

flat network interface

In order for Networking service ports to correctly operate with the Bare Metal service flat network
interface the baremetal ML2 mechanism driver from networking-baremetal needs to be loaded into the
Networking service configuration. This driver understands that the switch should be already configured
by the admin, and will mark the networking service ports as successfully bound as nothing else needs to
be done.

1. Install the networking-baremetal library

$ pip install networking-baremetal

2. Enable the baremetal driver in the Networking service ML2 configuration file

[ml2]
mechanism_drivers = ovs,baremetal

neutron network interface

The neutron network interface allows the Networking service to program the physical top of rack
switches for the bare metal servers. To do this an ML2 mechanism driver which supports the baremetal
VNIC type for the make and model of top of rack switch in the environment must be installed and enabled.

This is a list of known top of rack ML2 mechanism drivers which work with the neutron network
interface:

Cisco Nexus 9000 series
To install and configure this ML2 mechanism driver see Nexus Mechanism Driver Installation
Guide.

FUJITSU CFX2000
networking-fujitsu ML2 driver supports this switch. The documentation is available here.

Networking Generic Switch
This is an ML2 mechanism driver built for testing against virtual bare metal environments and some
switches that are not covered by hardware specific ML2 mechanism drivers. More information is
available in the projects README.

4.3. Configuration and Operation 377

https://opendev.org/openstack/networking-baremetal
https://networking-cisco.readthedocs.io/projects/test/en/latest/install/ml2-nexus.html#nexus-mechanism-driver-installation-guide
https://networking-cisco.readthedocs.io/projects/test/en/latest/install/ml2-nexus.html#nexus-mechanism-driver-installation-guide
https://opendev.org/x/networking-fujitsu/src/branch/master/doc/source/ml2_cfab.rst
https://opendev.org/openstack/networking-generic-switch/src/branch/master/README.rst

Ironic Documentation, Release 26.1.2.dev21

4.3.3 Port groups support

The Bare Metal service supports static configuration of port groups (bonds) in the instances via config-
drive. See kernel documentation on bonding to see why it may be useful and how it is setup in linux.
The sections below describe how to make use of them in the Bare Metal service.

Switch-side configuration

If port groups are desired in the ironic deployment, they need to be configured on the switches. It needs
to be done manually, and the mode and properties configured on the switch have to correspond to the
mode and properties that will be configured on the ironic side, as bonding mode and properties may be
named differently on your switch, or have possible values different from the ones described in kernel
documentation on bonding. Please refer to your switch configuration documentation for more details.

Provisioning and cleaning cannot make use of port groups if they need to boot the deployment ramdisk
via (i)PXE. If your switches or desired port group configuration do not support port group fall-
back, which will allow port group members to be used by themselves, you need to set port groups
standalone_ports_supported value to be False in ironic, as it is True by default.

Physical networks

If any port in a port group has a physical network, then all ports in that port group must have the same
physical network.

In order to change the physical network of the ports in a port group, all ports must first be removed from
the port group, before changing their physical networks (to the same value), then adding them back to
the port group.

See physical networks for further information on using physical networks in the Bare Metal service.

Port groups configuration in the Bare Metal service

Port group configuration is supported in ironic API microversions 1.26, the CLI commands below specify
it for completeness.

1. When creating a port group, the node to which it belongs must be specified, along with, optionally,
its name, address, mode, properties, and if it supports fallback to standalone ports:

baremetal port group create \
--node $NODE_UUID --name test --address fa:ab:25:48:fd:ba --mode 802.3ad \
--property miimon=100 --property xmit_hash_policy="layer2+3" \
--support-standalone-ports

A port group can also be updated with baremetal port group set command, see its help for
more details.

If an address is not specified, the port group address on the deployed instance will be the same as
the address of the neutron port that is attached to the port group. If the neutron port is not attached,
the port group will not be configured.

378 Chapter 4. Administrator Guide

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Ironic Documentation, Release 26.1.2.dev21

Note

In standalone mode, port groups have to be configured manually. It can be done either statically
inside the image, or by generating the configdrive and adding it to the nodes instance_info.
For more information on how to configure bonding via configdrive, refer to cloud-init docu-
mentation and code. cloud-init version 0.7.7 or later is required for bonding configuration to
work.

The following is a simple sample for configuring bonding via configdrive:

When booting an instance, it needs to add user-data file for configuring bonding via
--user-data option. For example:

{
"networks": [
{
"type": "physical",
"name": "eth0",
"mac_address": "fa:ab:25:48:fd:ba"

},
{
"type": "physical",
"name": "eth1",
"mac_address": "fa:ab:25:48:fd:ab"

},
{
"type": "bond",
"name": "bond0",
"bond_interfaces": [

"eth0", "eth1"
],
"mode": "active-backup"

}
]

}

If the port groups address is not explicitly set in standalone mode, it will be set automatically
by the process described in kernel documentation on bonding.

During interface attachment, port groups have higher priority than ports, so they will be used
first. (It is not yet possible to specify which one is desired, a port group or a port, in an interface
attachment request). Port groups that dont have any ports will be ignored.

The mode and properties values are described in the kernel documentation on bonding. The default
port group mode is active-backup, and this default can be changed by setting the DEFAULT.
default_portgroup_mode configuration option in the ironic API service configuration file.

2. Associate ports with the created port group.

It can be done on port creation:

baremetal port create \
--node $NODE_UUID --address fa:ab:25:48:fd:ba --port-group test

4.3. Configuration and Operation 379

https://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html#version-2
https://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html#version-2
https://git.launchpad.net/cloud-init/tree/cloudinit
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Ironic Documentation, Release 26.1.2.dev21

Or by updating an existing port:

baremetal port set $PORT_UUID --port-group $PORT_GROUP_UUID

When updating a port, the node associated with the port has to be in enroll, manageable, or
inspecting states. A port group can have the same or different address as individual ports.

3. Boot an instance (or node directly, in case of using standalone ironic) providing an image that has
cloud-init version 0.7.7 or later and supports bonding.

When the deployment is done, you can check that the port group is set up properly by running the fol-
lowing command in the instance:

cat /proc/net/bonding/bondX

where X is a number autogenerated by cloud-init for each configured port group, in no particular order.
It starts with 0 and increments by 1 for every configured port group.

Link aggregation/teaming on windows

Portgroups are supported for Windows Server images, which can created by Building images for Windows
instruction.

You can customise an instance after it is launched along with script file in Configuration of Instance
and selected Configuration Drive option. Then ironic virt driver will generate network metadata and
add all the additional information, such as bond mode, transmit hash policy, MII link monitoring interval,
and of which links the bond consists. The information in InstanceMetadata will be used afterwards to
generate the config drive.

4.3.4 Conductor Groups

Overview

Large scale operators tend to have needs that involve creating well defined and delinated resources. In
some cases, these systems may reside close by or in far away locations. Reasoning may be simple or
complex, and yet is only known to the deployer and operator of the infrastructure.

A common case is the need for delineated high availability domains where it would be much more efficient
to manage a datacenter in Antarctica with a conductor in Antarctica, as opposed to a conductor in New
York City.

How it works

Starting in ironic 11.1, each node has a conductor_group field which influences how the ironic con-
ductor calculates (and thus allocates) baremetal nodes under ironics management. This calculation is
performed independently by each operating conductor and as such if a conductor has a conductor.
conductor_group configuration option defined in its ironic.conf configuration file, the conductor will
then be limited to only managing nodes with a matching conductor_group string.

380 Chapter 4. Administrator Guide

https://opendev.org/openstack/ironic/src/branch/master/tools/link_aggregation_on_windows.ps1

Ironic Documentation, Release 26.1.2.dev21

Note

Any conductor without a conductor.conductor_group setting will only manage baremetal nodes
without a conductor_group value set upon node creation. If no such conductor is present when
conductor groups are configured, node creation will fail unless a conductor_group is specified
upon node creation.

Warning

Nodes without a conductor_group setting can only be managed when a conductor exists that does
not have a conductor.conductor_group defined. If all conductors have been migrated to use a
conductor group, such nodes are effectively orphaned.

How to use

A conductor group value may be any case insensitive string up to 255 characters long which matches the
^[a-zA-Z0-9_\-\.]*$ regular expression.

1. Set the conductor.conductor_group option in ironic.conf on one or more, but not all conduc-
tors:

[conductor]
conductor_group = OperatorDefinedString

2. Restart the ironic-conductor service.

3. Set the conductor group on one or more nodes:

baremetal node set \
--conductor-group "OperatorDefinedString" <uuid>

4. As desired and as needed, remaining conductors can be updated with the first two steps. Please be
mindful of the constraints covered earlier in the document related to ability to manage nodes.

4.3.5 Security Overview

While the Bare Metal service is intended to be a secure application, it is important to understand what it
does and does not cover today.

Deployers must properly evaluate their use case and take the appropriate actions to secure their envi-
ronment(s). This document is intended to provide an overview of what risks an operator of the Bare
Metal service should be aware of. It is not intended as a How-To guide for securing a data center or an
OpenStack deployment.

4.3. Configuration and Operation 381

Ironic Documentation, Release 26.1.2.dev21

Image Checksums

Ironic has long provided a capacity to supply and check a checksum for disk images being deployed.
However, one aspect which Ironic has not asserted is Why? in terms of Is it for security? or Is it for data
integrity?.

The answer is both to ensure a higher level of security with remote image files, and provide faster feedback
should a image being transferred happens to be corrupted.

Normally checksums are verified by the ironic-python-agent OR the deployment interface respon-
sible for overall deployment operation. That being said, not every deployment interface relies on disk
images which have checksums, and those deployment interfaces are for specific use cases which Ironic
users leverage, outside of the general use case capabilities provided by the direct deployment interface.

Note

Use of the node instance_info/image_checksum field is discouraged for integrated OpenStack
Users as usage of the matching Glance Image Service field is also deprecated. That being said,
Ironic retains this feature by popular demand while also enabling also retain simplified opera-
tor interaction. The newer field values supported by Glance are also specifically supported by
Ironic as instance_info/image_os_hash_value for checksum values and instance_info/
image_os_hash_algo field for the checksum algorithm.

Warning

Setting a checksum value to a URL is supported, however doing this is making a tradeoff with security
as the remote checksum can change. Conductor support this functionality can be disabled using the
conductor.disable_support_for_checksum_files setting.

REST API: user roles and policy settings

By default, users are authenticated and authorization details are provided to Ironic as part web APIs
operating security model and interaction with keystone.

Default REST API user roles and policy settings have evolved, starting in the Wallaby development cycle,
into a model often referred to in the OpenStack community as Secure RBAC. This model is intended
balance usability, while leaning towards a secure-by-default state. You can find more information on this
at Secure RBAC.

Operators may choose to override default, in-code, Role Based Access Control policies by utilizing over-
ride policies, which you can learn about at Policies.

382 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Conductor Operation

Ironic relies upon the REST API to validate, authenticate, and authorize user requests and interactions.
While the conductor service can be operated with the REST API in a single process, the normal operating
mode is as separate services either connected to a Message bus or use of an authenticated JSON-RPC
endpoint.

Multi-tenancy

There are two aspects of multitenancy to consider when evaluating a deployment of the Bare Metal
Service: interactions between tenants on the network, and actions one tenant can take on a machine that
will affect the next tenant.

Network Interactions

Interactions between tenants workloads running simultaneously on separate servers include, but are not
limited to: IP spoofing, packet sniffing, and network man-in-the-middle attacks.

By default, the Bare Metal service provisions all nodes on a flat network, and does not take any pre-
cautions to avoid or prevent interaction between tenants. This can be addressed by integration with the
OpenStack Identity, Compute, and Networking services, so as to provide tenant-network isolation. Ad-
ditional documentation on network multi-tenancy is available.

Lingering Effects

Interactions between tenants placed sequentially on the same server include, but are not limited to:
changes in BIOS settings, modifications to firmware, or files left on disk or peripheral storage devices (if
these devices are not erased between uses).

By default, the Bare Metal service will erase (clean) the local disk drives during the cleaning phase,
after deleting an instance. It does not reset BIOS or reflash firmware or peripheral devices. This can
be addressed through customizing the utility ramdisk used during the cleaning phase. See details in the
Firmware security section.

Firmware security

When the Bare Metal service deploys an operating system image to a server, that image is run natively
on the server without virtualization. Any user with administrative access to the deployed instance has
administrative access to the underlying hardware.

Most servers default settings do not prevent a privileged local user from gaining direct access to hardware
devices. Such a user could modify device or firmware settings, and potentially flash new firmware to the
device, before deleting their instance and allowing the server to be allocated to another user.

If the [conductor]/automated_clean configuration option is enabled (and the [deploy]/
erase_devices_priority configuration option is not zero), the Bare Metal service will securely erase
all local disk devices within a machine during instance deletion. However, the service does not ship with
any code that will validate the integrity of, or make any modifications to, system or device firmware or
firmware settings.

4.3. Configuration and Operation 383

Ironic Documentation, Release 26.1.2.dev21

Operators are encouraged to write their own hardware manager plugins for the ironic-python-agent
ramdisk. This should include custom clean steps that would be run during the Node cleaning process,
as part of Node de-provisioning. The clean steps would perform the specific actions necessary within
that environment to ensure the integrity of each servers firmware.

Ideally, an operator would work with their hardware vendor to ensure that proper firmware security mea-
sures are put in place ahead of time. This could include:

• installing signed firmware for BIOS and peripheral devices

• using a TPM (Trusted Platform Module) to validate signatures at boot time

• booting machines in UEFI secure boot mode, rather than BIOS mode, to validate kernel signatures

• disabling local (in-band) access from the host OS to the management controller (BMC)

• disabling modifications to boot settings from the host OS

Additional references:

• Node cleaning

UEFI secure boot mode

Secure Boot is an interesting topic because exists at an intersection of hardware, security, vendors, and
what you are willing to put in place to in terms of process, controls, or further mechanisms to enable
processes and capabilities.

At a high level, Secure Boot is where an artifact such as an operating system kernel or Preboot eXecution
Environment (PXE) binary is read by the UEFI firmware, and executed if the artifact is signed with a
trusted key. Once a piece of code has been loaded and executed, it may read more bytecode in and verify
additional signed artifacts which were signed utilizing different keys.

This is fundamentally how most Linux operating systems boot today. A shim loader is signed by an
authority, Microsoft, which is generally trusted by hardware vendors. The shim loader then loads a boot
loader such as Grub, which then loads an operating system.

Underlying challenges

A major challenge for Secure Boot is the state of Preboot eXecution Environment binaries. Operating
System distribution vendors tend not to request the authority with the general signing keys to sign these
binary artifacts. The result of this, is that it is nearly impossible to network boot a machine which has
Secure Boot enabled.

There are reports in the Open Source community that Microsoft has been willing to sign iPXE binaries,
however the requirements are a bit steep for Open Source and largely means that Vendors would need to
shoulder the burden for signed iPXE binaries to become common place. The iPXE developers provide
further details on their website, but it provides the details which solidify why were unlikely to see a signed
iPXE loader.

That is, unless, you sign iPXE yourself.

Which you can do, but you need to put in place your own key management infrastructure and teach the
hardware to trust your signature, which is no simple feat in itself.

384 Chapter 4. Administrator Guide

https://ipxe.org/appnote/etoken

Ironic Documentation, Release 26.1.2.dev21

Note

The utility to manage keys in Linux on a local machine is mokutil, however its modeled for manual
invocation. One may be able to manage keys via Baseboard Management Controller, and Ironic may
add such capabilities at some point in time.

There is a possibility of utilizing shim and Grub2 to network boot a machine, however Grub2s capabilities
for booting a machine are extremely limited when compared to a tool like iPXE. It is also worth noting the
bulk of Ironics example configurations utilize iPXE, including whole activities like unmanaged hardware
introspection with ironic-inspector.

For extra context, unmanaged introspection is when you ask ironic-inspector to inspect a machine
instead of asking ironic. In other words, using openstack baremetal introspection start
<node> versus baremetal node inspect <node> commands. This does require the inspector.
require_managed_boot setting be set to true.

Driver support for Deployment with Secure Boot

Some hardware types support turning UEFI secure boot dynamically when deploying an instance. Cur-
rently these are iLO driver, iRMC driver and Redfish driver.

Other drivers, such as IPMI driver, may be able to be manually configured on the host, but as there is not
standardization of Secure Boot support in the IPMI protocol, you may encounter unexpected behavior.

Support for the UEFI secure boot is declared by adding the secure_boot capability in the
capabilities parameter in the properties field of a node. secure_boot is a boolean parameter
and takes value as true or false.

To enable secure_boot on a node add it to capabilities:

baremetal node set <node> --property capabilities='secure_boot:true'

Alternatively use Hardware Inspection to automatically populate the secure boot capability.

Warning

UEFI secure boot only works in UEFI boot mode, see Boot mode support for how to turn it on and
off.

Compatible images

Most mainstream and vendor backed Linux based public cloud images are already compatible with use
of secure boot.

4.3. Configuration and Operation 385

https://wiki.debian.org/SecureBoot#Shim
https://en.wikipedia.org/wiki/UEFI#Secure_Boot

Ironic Documentation, Release 26.1.2.dev21

Using Shim and Grub2 for Secure Boot

To utilize Shim and Grub to boot a baremetal node, actions are required by the administrator of the Ironic
deployment as well as the user of Ironics API.

For the Ironic Administrator

To enable use of grub to network boot baremetal nodes for activities such as managed introspection, node
cleaning, and deployment, some configuration is required in ironic.conf.:

[DEFAULT]
enabled_boot_interfaces = pxe
[pxe]
uefi_pxe_config_template = $pybasedir/drivers/modules/pxe_grub_config.template
tftp_root = /tftpboot
loader_file_paths = bootx64.efi:/usr/lib/shimx64.efi.signed,grubx64.efi:/usr/
↪→lib/grub/x86_64-efi-signed/grubnetx64.efi.signed

Note

You may want to leverage the pxe.loader_file_paths feature, which automatically copies boot
loaders into the tftp_root folder, but this functionality is not required if you manually copy the
named files into the Preboot eXecution Environment folder(s), by default the [pxe]tftp_root, and [de-
ploy]http_root folders.

Warning

Shim/Grub artifact paths will vary by distribution. The example above is taken from Ironics Contin-
uous Integration test jobs where this functionality is exercised.

For the Ironic user

To set a node to utilize the pxe boot_interface, execute the baremetal command:

baremetal node set --boot-interface pxe <node>

Alternatively, if your hardware supports HttpBoot and your Ironic is at least 2023.2, you can set the http
boot_interface instead:

baremetal node set --boot-interface http <node>

386 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Enabling with OpenStack Compute

Nodes having secure_boot set to true may be requested by adding an extra_spec to the nova flavor:

openstack flavor set <flavor> --property capabilities:secure_boot="true"
openstack server create --flavor <flavor> --image <image> instance-1

If capabilities is used in extra_spec as above, nova scheduler (ComputeCapabilitiesFilter)
will match only ironic nodes which have the secure_boot set appropriately in properties/
capabilities. It will filter out rest of the nodes.

The above facility for matching in nova can be used in heterogeneous environments where there is a mix
of machines supporting and not supporting UEFI secure boot, and operator wants to provide a choice to
the user regarding secure boot. If the flavor doesnt contain secure_boot then nova scheduler will not
consider secure boot mode as a placement criteria, hence user may get a secure boot capable machine
that matches with user specified flavors but deployment would not use its secure boot capability. Secure
boot deploy would happen only when it is explicitly specified through flavor.

Enabling standalone

To request secure boot for an instance in standalone mode (without OpenStack Compute), you must
explicitly inform Ironic:

baremetal node set secure boot on <node>

Which can also be disabled by exeuting negative form of the command:

baremetal node set secure boot off <node>

Other considerations

Internal networks

Access to networks which the Bare Metal service uses internally should be prohibited from outside. These
networks are the ones used for management (with the nodes BMC controllers), provisioning, cleaning (if
used) and rescuing (if used).

This can be done with physical or logical network isolation, traffic filtering, etc.

While the Ironic project has made strives to enable the API to be utilized by end users directly, we still
encourage operators to be as mindful as possible to ensure appropriate security controls are in place to
also restrict access to the service.

4.3. Configuration and Operation 387

Ironic Documentation, Release 26.1.2.dev21

Management interface technologies

Some nodes support more than one management interface technology (vendor and IPMI for example).
If you use only one modern technology for out-of-band node access, it is recommended that you disable
IPMI since the IPMI protocol is not secure. If IPMI is enabled, in most cases a local OS administra-
tor is able to work in-band with IPMI settings without specifying any credentials, as this is a DCMI
specification requirement.

Tenant network isolation

If you use tenant network isolation, services (TFTP or HTTP) that handle the nodes boot files should
serve requests only from the internal networks that are used for the nodes being deployed and cleaned.

TFTP protocol does not support per-user access control at all.

For HTTP, there is no generic and safe way to transfer credentials to the node.

Also, tenant network isolation is not intended to work with network-booting a node by default, once the
node has been provisioned.

API endpoints for RAM disk use

There are three (unauthorized) endpoints in the Bare Metal API that are intended for use by the ironic-
python-agent RAM disk. They are not intended for public use.

These endpoints can potentially cause security issues even though the logic around these endpoints is
intended to be defensive in nature. Access to these endpoints from external or untrusted networks should
be prohibited. An easy way to do this is to:

• set up two groups of API services: one for external requests, the second for deploy RAM disks
requests.

• to disable unauthorized access to these endpoints in the (first) API services group that serves ex-
ternal requests, the following lines should be added to the policy.yaml file:

Send heartbeats from IPA ramdisk
"baremetal:node:ipa_heartbeat": "!"

Access IPA ramdisk functions
"baremetal:driver:ipa_lookup": "!"

Continue introspection IPA ramdisk endpoint
"baremetal:driver:ipa_continue_inspection": "!"

388 Chapter 4. Administrator Guide

https://docs.openstack.org/api-ref/baremetal/#utility
https://docs.openstack.org/ironic/2024.2/configuration/sample-policy.html

Ironic Documentation, Release 26.1.2.dev21

Rate Limiting

Ironic has a concept of a concurrent action limit, which allows operators to restrict concurrent, long
running, destructive actions.

The overall use case this was implemented for was to help provide backstop for runaway processes and
actions which one may apply to an environment, such as batch deletes of nodes. The appropriate set-
tings for these settings are the conductor.max_concurrent_deploy with a default value of 250, and
conductor.max_concurrent_clean with a default value of 50. These settings are reasonable defaults
for medium to large deployments, but depending on load and usage patterns and can be safely tuned to
be in line with an operators comfort level.

Memory Limiting

Because users of the Ironic API can request activities which can consume large amounts of memory, for
example, disk image format conversions as part of a deployment operations. The Ironic conductor service
has a minimum memory available check which is executed before launching these operations. It defaults
to 1024 Megabytes, and can be tuned using the DEFAULT.minimum_required_memory setting.

Operators with a higher level of concurrency may wish to increase the default value.

Disk Images

Ironic relies upon the qemu-img tool to convert images from a supplied disk image format, to a raw
format in order to write the contents of a disk image to the remote device.

By default, only qcow2 format is supported for this operation, however there have been reports other for-
mats work when so enabled using the [conductor]permitted_image_formats configuration option.

Ironic takes several steps by default.

1. Ironic checks and compares supplied metadata with a remote authoritative source, such as the
Glance Image Service, if available.

2. Ironic attempts to fingerprint the file type based upon available metadata and file structure. A file
format which is not known to the image format inspection code may be evaluated as raw, which
means the image would not be passed through qemu-img. When in doubt, use a raw image which
you can verify is in the desirable and expected state.

3. The image then has a set of safety and sanity checks executed which look for unknown or unsafe
feature usage in the base format which could permit an attacker to potentially leverage functionality
in qemu-img which should not be utilized. This check, by default, occurs only through images
which transverse through the conductor.

4. Ironic then checks if the fingerprint values and metadata values match. If they do not match, the
requested image is rejected and the operation fails.

5. The image is then provided to the ironic-python-agent.

Images which are considered pass-through, as in they are supplied by an API user as a URL, or
are translated to a temporary URL via available service configuration, are supplied as a URL to the
ironic-python-agent.

4.3. Configuration and Operation 389

Ironic Documentation, Release 26.1.2.dev21

Ironic can be configured to intercept this interaction and have the conductor download and inspect these
items before the ironic-python-agent will do so, however this can increase the temporary disk uti-
lization of the Conductor along with network traffic to facilitate the transfer. This check is disabled by
default, but can be enabled using the [conductor]conductor_always_validates_images configu-
ration option.

An option exists which forces all files to be served from the conductor, and thus force image inspection
before involvement of the ironic-python-agent is the use of the [agent]image_download_source
configuration parameter when set to local which proxies all disk images through the conductor. This
setting is also available in the node driver_info and instance_info fields.

Mitigating Factors to disk images

In a fully integrated OpenStack context, Ironic requires images to be set to public in the Image Service.

A direct API user with sufficient elevated access rights can submit a URL for the baremetal node
instance_info dictionary field with an image_source key value set to a URL. To do so explicitly
requires elevated (trusted) access rights of a System scoped Member, or Project scoped Owner-Member,
or a Project scoped Lessee-Admin via the baremetal:node:update_instance_info policy permis-
sion rule. Before the Wallaby release of OpenStack, this was restricted to admin and baremetal_admin
roles and remains similarly restrictive in the newer Secure RBAC model.

4.3.6 Troubleshooting Ironic

Nova returns No valid host was found Error

Sometimes Nova Conductor log file nova-conductor.log or a message returned from Nova API contains
the following error:

NoValidHost: No valid host was found. There are not enough hosts available.

No valid host was found means that the Nova Scheduler could not find a bare metal node suitable for
booting the new instance.

This in turn usually means some mismatch between resources that Nova expects to find and resources
that Ironic advertised to Nova.

A few things should be checked in this case:

1. Make sure that enough nodes are in available state, not in maintenance mode and not already
used by an existing instance. Check with the following command:

baremetal node list --provision-state available --no-maintenance --
↪→unassociated

If this command does not show enough nodes, use generic baremetal node list to check other
nodes. For example, nodes in manageable state should be made available:

baremetal node provide <IRONIC NODE>

The Bare metal service automatically puts a node in maintenance mode if there are issues with
accessing its management interface. See Power fault and recovery for details.

390 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

The node validate command can be used to verify that all required fields are present. The
following command should not return anything:

baremetal node validate <IRONIC NODE> | grep -E '(power|management)\
↪→W*False'

Maintenance mode will be also set on a node if automated cleaning has failed for it previously.

2. Make sure that you have Compute services running and enabled:

$ openstack compute service list --service nova-compute
+----+--------------+-------------+------+---------+-------+--------------
↪→--------------+
| ID | Binary | Host | Zone | Status | State | Updated At ␣
↪→ |
+----+--------------+-------------+------+---------+-------+--------------
↪→--------------+
| 7 | nova-compute | example.com | nova | enabled | up | 2017-09-
↪→04T13:14:03.000000 |
+----+--------------+-------------+------+---------+-------+--------------
↪→--------------+

By default, a Compute service is disabled after 10 consecutive build failures on it. This is to ensure
that new build requests are not routed to a broken Compute service. If it is the case, make sure to
fix the source of the failures, then re-enable it:

openstack compute service set --enable <COMPUTE HOST> nova-compute

3. Starting with the Pike release, check that all your nodes have the resource_class field set using
the following command:

baremetal node list --fields uuid name resource_class

Then check that the flavor(s) are configured to request these resource classes via their properties:

openstack flavor show <FLAVOR NAME> -f value -c properties

For example, if your node has resource class baremetal-large, it will be matched by a flavor
with property resources:CUSTOM_BAREMETAL_LARGE set to 1. See Create flavors for use with
the Bare Metal service for more details on the correct configuration.

4. Upon scheduling, Nova will query the Placement API service for the available resource providers
(in the case of Ironic: nodes with a given resource class). If placement does not have any allocation
candidates for the requested resource class, the request will result in a No valid host was found error.
It is hence sensible to check if Placement is aware of resource providers (nodes) for the requested
resource class with:

$ openstack allocation candidate list --resource CUSTOM_BAREMETAL_LARGE='1
↪→'

+---+-----------------------------+--------------------------------------
↪→+-------------------------------+
| # | allocation | resource provider ␣
↪→| inventory used/capacity |

(continues on next page)

4.3. Configuration and Operation 391

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

+---+-----------------------------+--------------------------------------
↪→+-------------------------------+
| 1 | CUSTOM_BAREMETAL_LARGE=1 | 2f7b9c69-c1df-4e40-b94e-5821a4ea0453␣
↪→| CUSTOM_BAREMETAL_LARGE=0/1 |
+---+-----------------------------+--------------------------------------
↪→+-------------------------------+

For Ironic, the resource provider is the UUID of the available Ironic node. If this command returns
an empty list (or does not contain the targeted resource provider), the operator needs to understand
first, why the resource tracker has not reported this provider to placement. Potential explanations
include:

• the resource tracker cycle has not finished yet and the resource provider will appear once it
has (the time to finish the cycle scales linearly with the number of nodes the corresponding
nova-compute service manages);

• the node is in a state where the resource tracker does not consider it to be eligible for schedul-
ing, e.g. when the node has maintenance set to True; make sure the target nodes are in
available and maintenance is False;

5. The Nova flavor that you are using does not match any properties of the available Ironic nodes.
Use

openstack flavor show <FLAVOR NAME>

to compare. The extra specs in your flavor starting with capability: should match ones in
node.properties['capabilities'].

Note

The format of capabilities is different in Nova and Ironic. E.g. in Nova flavor:

$ openstack flavor show <FLAVOR NAME> -c properties
+------------+----------------------------------+
| Field | Value |
+------------+----------------------------------+
| properties | capabilities:boot_mode='uefi' |
+------------+----------------------------------+

But in Ironic node:
$ baremetal node show <IRONIC NODE> --fields properties
+------------+---+
| Property | Value |
+------------+---+
| properties | {u'capabilities': u'boot_mode:uefi'} |
+------------+---+

6. After making changes to nodes in Ironic, it takes time for those changes to propagate from Ironic
to Nova. Check that

openstack hypervisor stats show

392 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

correctly shows total amount of resources in your system. You can also check openstack
hypervisor show <IRONIC NODE> to see the status of individual Ironic nodes as reported to
Nova.

7. Figure out which Nova Scheduler filter ruled out your nodes. Check the nova-scheduler logs
for lines containing something like:

Filter ComputeCapabilitiesFilter returned 0 hosts

The name of the filter that removed the last hosts may give some hints on what exactly was not
matched. See Nova filters documentation for more details.

8. If none of the above helped, check Ironic conductor log carefully to see if there are any conductor-
related errors which are the root cause for No valid host was found. If there are any Error in deploy
of node <IRONIC-NODE-UUID>: [Errno 28] error messages in Ironic conductor log, it means
the conductor run into a special error during deployment. So you can check the log carefully to fix
or work around and then try again.

Patching the Deploy Ramdisk

When debugging a problem with deployment and/or inspection you may want to quickly apply a change
to the ramdisk to see if it helps. Of course you can inject your code and/or SSH keys during the ramdisk
build (depends on how exactly youve built your ramdisk). But its also possible to quickly modify an
already built ramdisk.

Create an empty directory and unpack the ramdisk content there:

$ mkdir unpack
$ cd unpack
$ gzip -dc /path/to/the/ramdisk | cpio -id

The last command will result in the whole Linux file system tree unpacked in the current directory. Now
you can modify any files you want. The actual location of the files will depend on the way youve built
the ramdisk.

Note

On a systemd-based system you can use the systemd-nspawn tool (from the systemd-container
package) to create a lightweight container from the unpacked filesystem tree:

$ sudo systemd-nspawn --directory /path/to/unpacked/ramdisk/ /bin/bash

This will allow you to run commands within the filesystem, e.g. use package manager. If the ramdisk
is also systemd-based, and you have login credentials set up, you can even boot a real ramdisk envi-
ronment with
$ sudo systemd-nspawn --directory /path/to/unpacked/ramdisk/ --boot

After youve done the modifications, pack the whole content of the current directory back:

$ find . | cpio -H newc -o | gzip -c > /path/to/the/new/ramdisk

4.3. Configuration and Operation 393

https://docs.openstack.org/nova/2024.2/filter_scheduler.html

Ironic Documentation, Release 26.1.2.dev21

Note

You dont need to modify the kernel (e.g. tinyipa-master.vmlinuz), only the ramdisk part.

API Errors

The debug_tracebacks_in_api config option may be set to return tracebacks in the API response for all
4xx and 5xx errors.

Retrieving logs from the deploy ramdisk

When troubleshooting deployments (specially in case of a deploy failure) its important to have access to
the deploy ramdisk logs to be able to identify the source of the problem. By default, Ironic will retrieve
the logs from the deploy ramdisk when the deployment fails and save it on the local filesystem at /var/
log/ironic/deploy.

To change this behavior, operators can make the following changes to /etc/ironic/ironic.conf
under the [agent] group:

• deploy_logs_collect: Whether Ironic should collect the deployment logs on deployment.
Valid values for this option are:

– on_failure (default): Retrieve the deployment logs upon a deployment failure.

– always: Always retrieve the deployment logs, even if the deployment succeed.

– never: Disable retrieving the deployment logs.

• deploy_logs_storage_backend: The name of the storage backend where the logs will be
stored. Valid values for this option are:

– local (default): Store the logs in the local filesystem.

– swift: Store the logs in Swift.

• deploy_logs_local_path: The path to the directory where the logs should be stored, used when
the deploy_logs_storage_backend is configured to local. By default logs will be stored at
/var/log/ironic/deploy.

• deploy_logs_swift_container: The name of the Swift container to store the
logs, used when the deploy_logs_storage_backend is configured to swift. By default
ironic_deploy_logs_container.

• deploy_logs_swift_days_to_expire: Number of days before a log object is marked as ex-
pired in Swift. If None, the logs will be kept forever or until manually deleted. Used when the
deploy_logs_storage_backend is configured to swift. By default 30 days.

When the logs are collected, Ironic will store a tar.gz file containing all the logs according to the
deploy_logs_storage_backend configuration option. All log objects will be named with the fol-
lowing pattern:

<node>[_<instance-uuid>]_<timestamp yyyy-mm-dd-hh:mm:ss>.tar.gz

394 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Note

The instance_uuid field is not required for deploying a node when Ironic is configured to be used in
standalone mode. If present it will be appended to the name.

Accessing the log data

When storing in the local filesystem

When storing the logs in the local filesystem, the log files can be found at the path configured in
the deploy_logs_local_path configuration option. For example, to find the logs from the node
5e9258c4-cfda-40b6-86e2-e192f523d668:

$ ls /var/log/ironic/deploy | grep 5e9258c4-cfda-40b6-86e2-e192f523d668
5e9258c4-cfda-40b6-86e2-e192f523d668_88595d8a-6725-4471-8cd5-c0f3106b6898_
↪→2016-08-08-13:52:12.tar.gz
5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_
↪→2016-08-08-14:07:25.tar.gz

Note

When saving the logs to the filesystem, operators may want to enable some form of rotation for the
logs to avoid disk space problems.

When storing in Swift

When using Swift, operators can associate the objects in the container with the nodes in Ironic and search
for the logs for the node 5e9258c4-cfda-40b6-86e2-e192f523d668 using the prefix parameter. For
example:

$ swift list ironic_deploy_logs_container -p 5e9258c4-cfda-40b6-86e2-
↪→e192f523d668
5e9258c4-cfda-40b6-86e2-e192f523d668_88595d8a-6725-4471-8cd5-c0f3106b6898_
↪→2016-08-08-13:52:12.tar.gz
5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_
↪→2016-08-08-14:07:25.tar.gz

To download a specific log from Swift, do:

$ swift download ironic_deploy_logs_container "5e9258c4-cfda-40b6-86e2-
↪→e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_2016-08-08-14:07:25.tar.gz
↪→"
5e9258c4-cfda-40b6-86e2-e192f523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_
↪→2016-08-08-14:07:25.tar.gz [auth 0.341s, headers 0.391s, total 0.391s, 0.
↪→531 MB/s]

4.3. Configuration and Operation 395

Ironic Documentation, Release 26.1.2.dev21

The contents of the log file

The log is just a .tar.gz file that can be extracted as:

$ tar xvf <file path>

The contents of the file may differ slightly depending on the distribution that the deploy ramdisk is using:

• For distributions using systemd there will be a file called journal which contains all the system
logs collected via the journalctl command.

• For other distributions, the ramdisk will collect all the contents of the /var/log directory.

For all distributions, the log file will also contain the output of the following commands (if present): ps,
df, ip addr and iptables.

Heres one example when extracting the content of a log file for a distribution that uses systemd:

$ tar xvf 5e9258c4-cfda-40b6-86e2-e192f523d668_88595d8a-6725-4471-8cd5-
↪→c0f3106b6898_2016-08-08-13:52:12.tar.gz
df
ps
journal
ip_addr
iptables

DHCP during PXE or iPXE is inconsistent or unreliable

This can be caused by the spanning tree protocol delay on some switches. The delay prevents the switch
port moving to forwarding mode during the nodes attempts to PXE, so the packets never make it to the
DHCP server. To resolve this issue you should set the switch port that connects to your baremetal nodes
as an edge or PortFast type port. Configured in this way the switch port will move to forwarding mode
as soon as the link is established. An example on how to do that for a Cisco Nexus switch is:

$ config terminal
$ (config) interface eth1/11
$ (config-if) spanning-tree port type edge

Why does X issue occur when I am using LACP bonding with iPXE?

If you are using iPXE, an unfortunate aspect of its design and interaction with networking is an automatic
response as a Link Aggregation Control Protocol (or LACP) peer to remote switches. iPXE does this for
only the single port which is used for network booting.

In theory, this may help establish the port link-state faster with some switch vendors, but the official
reasoning as far as the Ironic Developers are aware is not documented for iPXE. The end result of this
is that once iPXE has stopped responding to LACP messages from the peer port, which occurs as part
of the process of booting a ramdisk and iPXE handing over control to a full operating-system, switches
typically begin a timer to determine how to handle the failure. This is because, depending on the mode
of LACP, this can be interpreted as a switch or network fabric failure.

396 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

This may demonstrate as any number of behaviors or issues from ramdisks finding they are unable to
acquire DHCP addresses over the network interface to downloads abruptly stalling, to even minor issues
such as LLDP port data being unavailable in introspection.

Overall:

• Ironics agent doesnt officially support LACP and the Ironic community generally believes this may
cause more problems than it would solve. During the Victoria development cycle, we added retry
logic for most actions in an attempt to navigate the worst-known default hold-down timers to help
ensure a deployment does not fail due to a short-lived transitory network connectivity failure in the
form of a switch port having moved to a temporary blocking state. Where applicable and possible,
many of these patches have been backported to supported releases. These patches also require that
the switchport has an eventual fallback to a non-bonded mode. If the port remains in a blocking
state, then traffic will be unable to flow and the deployment is likely to time out.

• If you must use LACP, consider passive LACP negotiation settings in the network switch as
opposed to active. The difference being with passive the connected workload is likely a server
where it should likely request the switch to establish the Link Aggregate. This is instead of being
treated as if its possibly another switch.

• Consult your switch vendors support forums. Some vendors have recommended port settings for
booting machines using iPXE with their switches.

IPMI errors

When working with IPMI, several settings need to be enabled depending on vendors.

Enable IPMI over LAN

Machines may not have IPMI access over LAN enabled by default. This could cause the IPMI port to be
unreachable through ipmitool, as shown:

$ ipmitool -I lan -H ipmi_host -U ipmi_user -P ipmi_pass chassis power status
Error: Unable to establish LAN session

To fix this, enable IPMI over lan setting using your BMC tool or web app.

Troubleshooting lanplus interface

When working with lanplus interfaces, you may encounter the following error:

$ ipmitool -I lanplus -H ipmi_host -U ipmi_user -P ipmi_pass power status
Error in open session response message : insufficient resources for session
Error: Unable to establish IPMI v2 / RMCP+ session

To fix that issue, please enable RMCP+ Cipher Suite3 Configuration setting using your BMC tool or web
app.

4.3. Configuration and Operation 397

Ironic Documentation, Release 26.1.2.dev21

Why are my nodes stuck in a -ing state?

The Ironic conductor uses states ending with ing as a signifier that the conductor is actively working on
something related to the node.

Often, this means there is an internal lock or reservation set on the node and the conductor is down-
loading, uploading, or attempting to perform some sort of Input/Output operation - see Why does API
return Node is locked by host? for details.

In the case the conductor gets stuck, these operations should timeout, but there are cases in operating
systems where operations are blocked until completion. These sorts of operations can vary based on the
specific environment and operating configuration.

What can cause these sorts of failures?

Typical causes of such failures are going to be largely rooted in the concept of iowait, either in the form
of downloading from a remote host or reading or writing to the disk of the conductor. An operator can
use the iostat tool to identify the percentage of CPU time spent waiting on storage devices.

The fields that will be particularly important are the iowait, await, and tps ones, which can be read
about in the iostat manual page.

In the case of network file systems, for backing components such as image caches or distributed tftpboot
or httpboot folders, IO operations failing on these can, depending on operating system and underlying
client settings, cause threads to be stuck in a blocking wait state, which is realistically undetectable short
the operating system logging connectivity errors or even lock manager access errors.

For example with nfs, the underlying client recovery behavior, in terms of soft, hard, softreval,
nosoftreval, will largely impact this behavior, but also NFS server settings can impact this behavior.
A solid sign that this is a failure, is when an ls /path/to/nfs command hangs for a period of time.
In such cases, the Storage Administrator should be consulted and network connectivity investigated for
errors before trying to recover to proceed.

The bad news for IO related failures

If the node has a populated reservation field, and has not timed out or proceeded to a fail state, then
the conductor process will likely need to be restarted. This is because the worker thread is hung with-in
the conductor.

Manual intervention with-in Ironics database is not advised to try and un-wedge the machine in this state,
and restarting the conductor is encouraged.

Note

Ironics conductor, upon restart, clears reservations for nodes which were previously managed by the
conductor before restart.

If a distributed or network file system is in use, it is highly recommended that the operating system of
the node running the conductor be rebooted as the running conductor may not even be able to exit in the
state of an IO failure, again dependent upon site and server configuration.

398 Chapter 4. Administrator Guide

https://man7.org/linux/man-pages/man1/iostat.1.html
https://www.man7.org/linux/man-pages/man5/nfs.5.html

Ironic Documentation, Release 26.1.2.dev21

File Size != Disk Size

An easy to make misconception is that a 2.4 GB file means that only 2.4 GB is written to disk. But if
that files virtual size is 20 GB, or 100 GB things can become very problematic and extend the amount of
time the node spends in deploying and deploy wait states.

Again, these sorts of cases will depend upon the exact configuration of the deployment, but hopefully
these are areas where these actions can occur.

• Conversion to raw image files upon download to the conductor, from the DEFAULT.
force_raw_images option. Users using Glance may also experience issues here as the conductor
will cache the image to be written which takes place when the agent.image_download_source
is set to http instead of swift.

Note

The QCOW2 image conversion utility does consume quite a bit of memory when converting images
or writing them to the end storage device. This is because the files are not sequential in nature, and
must be re-assembled from an internal block mapping. Internally Ironic limits this to 1GB of RAM.
Operators performing large numbers of deployments may wish to disable raw images in these sorts
of cases in order to minimize the conductor becoming a limiting factor due to memory and network
IO.

Why are my nodes stuck in a wait state?

The Ironic conductor uses states containing wait as a signifier that the conductor is waiting for a callback
from another component, such as the Ironic Python Agent or the Inspector. If this feedback does not
arrive, the conductor will time out and the node will eventually move to a failed state. Depending on
the configuration and the circumstances, however, a node can stay in a wait state for a long time or even
never time out. The list of such wait states includes:

• clean wait for cleaning,

• inspect wait for introspection,

• rescue wait for rescuing, and

• wait call-back for deploying.

Communication issues between the conductor and the node

One of the most common issues when nodes seem to be stuck in a wait state occur when the node never
received any instructions or does not react as expected: the conductor moved the node to a wait state but
the node will never call back. Examples include wrong ciphers which will make ipmitool get stuck or
BMCs in a state where they accept commands, but dont do the requested task (or only a part of it, like
shutting off, but not starting). It is useful in these cases to see via a ping or the console if and which action
the node is performing. If the node does not seem to react to the requests sent be the conductor, it may
be worthwhile to try the corresponding action out-of-band, e.g. confirm that power on/off commands
work when directly sent to the BMC. The section on IPMI errors. above gives some additional points to
check. In some situations, a BMC reset may be necessary.

4.3. Configuration and Operation 399

Ironic Documentation, Release 26.1.2.dev21

Ironic Python Agent stuck

Nodes can also get remain in a wait state when the component the conductor is waiting for gets stuck,
e.g. when a hardware manager enters a loop or is waiting for an event that is never happening. In these
cases, it might be helpful to connect to the IPA and inspect its logs, see the trouble shooting guide of the
ironic-python-agent (IPA) on how to do this.

Stopping the operation

Cleaning, inspection and rescuing can be stopped while in clean wait, inspect wait and rescue
wait states using the abort command. It will move the node to the corresponding failure state (clean
failed, inspect failed or rescue failed):

baremetal node abort <node>

Deploying can be aborted while in the wait call-back state by starting an undeploy (normally resulting
in cleaning):

baremetal node undeploy <node>

See Bare Metal State Machine for more details.

Note

Since the Bare Metal service is not doing anything actively in waiting states, the nodes are not moved
to failed states on conductor restart.

Deployments fail with failed to update MAC address

The design of the integration with the Networking service (neutron) is such that once virtual ports have
been created in the API, their MAC address must be updated in order for the DHCP server to be able to
appropriately reply.

This can sometimes result in errors being raised indicating that the MAC address is already in use. This
is because at some point in the past, a virtual interface was orphaned either by accident or by some
unexpected glitch, and a previous entry is still present in Neutron.

This error looks something like this when reported in the ironic-conductor log output.:

Failed to update MAC address on Neutron port 305beda7-0dd0-4fec-b4d2-78b7aa4e8e6a.:
MacAddressInUseClient: Unable to complete operation for network 1e252627-6223-4076-
a2b9-6f56493c9bac. The mac address 52:54:00:7c:c4:56 is in use.

Because we have no idea about this entry, we fail the deployment process as we cant make a number of
assumptions in order to attempt to automatically resolve the conflict.

400 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/2024.2/

Ironic Documentation, Release 26.1.2.dev21

How did I get here?

Originally this was a fairly easy issue to encounter. The retry logic path which resulted between the
Orchestration (heat) and Compute (nova) services, could sometimes result in additional un-necessary
ports being created.

Bugs of this class have been largely resolved since the Rocky development cycle. Since then, the way this
can become encountered is due to Networking (neutron) VIF attachments not being removed or deleted
prior to deleting a port in the Bare Metal service.

Ultimately, the key of this is that the port is being deleted. Under most operating circumstances, there
really is no need to delete the port, and VIF attachments are stored on the port object, so deleting the port
CAN result in the VIF not being cleaned up from Neutron.

Under normal circumstances, when deleting ports, a node should be in a stable state, and the node should
not be provisioned. If the baremetal port delete command fails, this may indicate that a known VIF
is still attached. Generally if they are transitory from cleaning, provisioning, rescuing, or even inspection,
getting the node to the available state will unblock your delete operation, that is unless there is a tenant
VIF attahment. In that case, the vif will need to be removed from with-in the Bare Metal service using
the baremetal node vif detach command.

A port can also be checked to see if there is a VIF attachment by consulting the ports internal_info
field.

Warning

The maintenance flag can be used to force the nodes port to be deleted, however this will disable
any check that would normally block the user from issuing a delete and accidentally orphaning the
VIF attachment record.

How do I resolve this?

Generally, you need to identify the port with the offending MAC address. Example:

$ openstack port list --mac-address 52:54:00:7c:c4:56

From the commands output, you should be able to identify the id field. Using that, you can delete the
port. Example:

$ openstack port delete <id>

Warning

Before deleting a port, you should always verify that it is no longer in use or no longer seems applica-
ble/operable. If multiple deployments of the Bare Metal service with a single Neutron, the possibility
that a inventory typo, or possibly even a duplicate MAC address exists, which could also produce the
same basic error message.

4.3. Configuration and Operation 401

Ironic Documentation, Release 26.1.2.dev21

My test VM image does not deploy mount point does not exist

What is likely occurring

The image attempting to be deployed likely is a partition image where the file system that the user wishes
to boot from lacks the required folders, such as /dev and /proc, which are required to install a bootloader
for a Linux OS image

It should be noted that similar errors can also occur with whole disk images where we are attempting
to setup the UEFI bootloader configuration. That being said, in this case, the image is likely invalid or
contains an unexpected internal structure.

Users performing testing may choose something that they believe will work based on it working for
virtual machines. These images are often attractive for testing as they are generic and include basic
support for establishing networking and possibly installing user keys. Unfortunately, these images often
lack drivers and firmware required for many different types of physical hardware which makes using them
very problematic. Additionally, images such as Cirros do not have any contents in the root filesystem (i.e.
an empty filesystem), as they are designed for the ramdisk to write the contents to disk upon boot.

How do I not encounter this issue?

We generally recommend using diskimage-builder or vendor supplied images. Centos, Ubuntu, Fedora,
and Debian all publish operating system images which do generally include drivers and firmware for
physical hardware. Many of these published cloud images, also support auto-configuration of networking
AND population of user keys.

Issues with autoconfigured TLS

These issues will manifest as an error in ironic-conductor logs looking similar to (lines are wrapped
for readability):

ERROR ironic.drivers.modules.agent_client [-]
Failed to connect to the agent running on node d7c322f0-0354-4008-92b4-
↪→f49fb2201001
for invoking command clean.get_clean_steps. Error:
HTTPSConnectionPool(host='192.168.123.126', port=9999): Max retries exceeded␣
↪→with url:
/v1/commands/?wait=true&agent_token=<token> (Caused by
SSLError(SSLError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify␣
↪→failed (_ssl.c:897)'),)):
requests.exceptions.SSLError: HTTPSConnectionPool(host='192.168.123.126',␣
↪→port=9999):
Max retries exceeded with url: /v1/commands/?wait=true&agent_token=<token>
(Caused by SSLError(SSLError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate␣
↪→verify failed (_ssl.c:897)'),))

The cause of the issue is that the Bare Metal service cannot access the ramdisk with the TLS certificate
provided by the ramdisk on first heartbeat. You can inspect the stored certificate in /var/lib/ironic/
certificates/<node>.crt.

You can try connecting to the ramdisk using the IP address in the log message:

402 Chapter 4. Administrator Guide

https://download.cirros-cloud.net
https://docs.openstack.org/diskimage-builder

Ironic Documentation, Release 26.1.2.dev21

curl -vL https://<IP address>:9999/v1/commands \
--cacert /var/lib/ironic/certificates/<node UUID>.crt

You can get the detailed information about the certificate using openSSL:

openssl x509 -text -noout -in /var/lib/ironic/certificates/<node UUID>.crt

Clock skew

One possible source of the problem is a discrepancy between the hardware clock on the node and the
time on the machine with the Bare Metal service. It can be detected by comparing the Not Before field
in the openssl output with the timestamp of a log message.

The recommended solution is to enable the NTP support in ironic-python-agent by passing the
ipa-ntp-server argument with an address of an NTP server reachable by the node.

If it is not possible, you need to ensure the correct hardware time on the machine. Keep in mind a potential
issue with timezones: an ability to store timezone in hardware is pretty recent and may not be available.
Since ironic-python-agent is likely operating in UTC, the hardware clock should also be set in UTC.

Note

Microsoft Windows uses local time by default, so a machine that has previously run Windows will
likely have wrong time.

I changed ironic.conf, and now I cant edit my nodes.

Whenever a node is created in ironic, default interfaces are identified as part of driver composition. This
maybe sourced from explicit default values which have been set in ironic.conf or by the interface
order for the enabled interfaces list. The result of this is that the ironic-conductor cannot spawn a
task using the composed driver, as a portion of the driver is no longer enabled. This makes it difficult
to edit or update the node if the settings have been changed.

For example, with networking interfaces, if you have default_network_interface=neutron or
enabled_network_interfaces=neutron,flat in your ironic.conf, nodes would have been cre-
ated with the neutron network interface.

This is because default_network_interface overrides the setting for new nodes, and that setting is
saved to the database nodes table.

Similarly, the order of enabled_network_interfaces takes priority, and the first entry in the list is
generally set to the default for the node upon creation, and that record is saved to the database nodes
table.

The only case where driver composition does not calculate a default is if an explicit value is provided
upon the creation of the node.

4.3. Configuration and Operation 403

Ironic Documentation, Release 26.1.2.dev21

Example failure

A node in this state, when the network_interface was saved as neutron, yet the neutron interface
is no longer enabled will fail basic state transition requests:

$ baremetal node manage 7164efca-37ab-1213-1112-b731cf795a5a
Could not find the following interface in the 'ironic.hardware.interfaces.
↪→network' entrypoint: neutron. Valid interfaces are ['flat']. (HTTP 400)

How to fix this?

Revert the changes you made to ironic.conf.

This applies to any changes to any default_*_interface options or the order of interfaces in the for
the enabled_*_interfaces options.

Once the conductor has been restarted with the updated configuration, you should now be able
to update the interface using the baremetal node set command. In this example we use the
network_interface as this is most commonly where it is encountered:

$ baremetal node set $NAME_OR_UUID --network-interface flat

Note

There are additional paths one can take to remedy this sort of issue, however we encourage operators
to be mindful of operational consistency when making major configuration changes.

Once you have updated the saved interfaces, you should be able to safely return the ironic.conf con-
figuration change in changing what interfaces are enabled by the conductor.

Im getting Out of Memory errors

This issue, also known as the the OOMKiller got my conductor case, is where your OS system memory
reaches a point where the operating system engages measures to shed active memory consumption in
order to prevent a complete failure of the machine. Unfortunately this can cause unpredictable behavior.

How did I get here?

One of the major consumers of memory in a host running an ironic-conductor is transformation of disk
images using the qemu-img tool. This tool, because the disk images it works with are both compressed
and out of linear block order, requires a considerable amount of memory to efficiently re-assemble and
write-out a disk to a device, or to simply convert the format such as to a raw image.

By default, ironics configuration limits this conversion to 1 GB of RAM for the process, but each conver-
sion does cause additional buffer memory to be used, which increases overall system memory pressure.
Generally memory pressure alone from buffers will not cause an out of memory condition, but the multi-
ple conversions or deployments running at the same time CAN cause extreme memory pressure and risk
the system running out of memory.

404 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

How do I resolve this?

This can be addressed a few different ways:

• Use raw images, however these images can be substantially larger and require more data to be
transmitted over the wire.

• Add more physical memory.

• Add swap space.

• Reduce concurrency, possibly via another conductor or changing the nova-compute.conf
max_concurrent_builds parameter.

• Or finally, adjust the DEFAULT.minimum_required_memory parameter in your ironic.conf file.
The default should be considered a default of last resort and you may need to reserve addi-
tional memory. You may also wish to adjust the DEFAULT.minimum_memory_wait_retries
and DEFAULT.minimum_memory_wait_time parameters.

Why does API return Node is locked by host?

This error usually manifests as HTTP error 409 on the client side:

Node d7e2aed8-50a9-4427-baaa-f8f595e2ceb3 is locked by host 192.168.122.1, please retry
after the current operation is completed.

It happens, because an operation that modifies a node is requested, while another such operation is run-
ning. The conflicting operation may be user requested (e.g. a provisioning action) or related to the
internal processes (e.g. changing power state during Power Synchronization). The reported host name
corresponds to the conductor instance that holds the lock.

Normally, these errors are transient and safe to retry after a few seconds. If the lock is held for significant
time, these are the steps you can take.

First of all, check the current provision_state of the node:

verifying
means that the conductor is trying to access the nodes BMC. If it happens for minutes, it means that
the BMC is either unreachable or misbehaving. Double-check the information in driver_info,
especially the BMC address and credentials.

If the access details seem correct, try resetting the BMC using, for example, its web UI.

deploying/inspecting/cleaning
means that the conductor is doing some active work. It may include downloading or converting
images, executing synchronous out-of-band deploy or clean steps, etc. A node can stay in this state
for minutes, depending on various factors. Consult the conductor logs.

available/manageable/wait call-back/clean wait
means that some background process is holding the lock. Most commonly its the power synchro-
nization loop. Similarly to the verifying state, it may mean that the BMC access is broken or
too slow. The conductor logs will provide you insights on what is happening.

To trace the process using conductor logs:

1. Isolate the relevant log parts. Lock messages come from the ironic.conductor.task_manager
module. You can also check the ironic.common.states module for any state transitions:

4.3. Configuration and Operation 405

Ironic Documentation, Release 26.1.2.dev21

$ grep -E '(ironic.conductor.task_manager|ironic.common.states|NodeLocked)
↪→' \

conductor.log > state.log

2. Find the first instance of NodeLocked. It may look like this (stripping timestamps and request IDs
here and below for readability):

DEBUG ironic.conductor.task_manager [-] Attempting to get exclusive lock␣
↪→on node d7e2aed8-50a9-4427-baaa-f8f595e2ceb3 (for node update) __init__␣
↪→/usr/lib/python3.6/site-packages/ironic/conductor/task_manager.py:233
DEBUG ironic_lib.json_rpc.server [-] RPC error NodeLocked: Node d7e2aed8-
↪→50a9-4427-baaa-f8f595e2ceb3 is locked by host 192.168.57.53, please␣
↪→retry after the current operation is completed. _handle_error /usr/lib/
↪→python3.6/site-packages/ironic_lib/json_rpc/server.py:179

The events right before this failure will provide you a clue on why the lock is held.

3. Find the last successful exclusive locking event before the failure, for example:

DEBUG ironic.conductor.task_manager [-] Attempting to get exclusive lock␣
↪→on node d7e2aed8-50a9-4427-baaa-f8f595e2ceb3 (for provision action␣
↪→manage) __init__ /usr/lib/python3.6/site-packages/ironic/conductor/task_
↪→manager.py:233
DEBUG ironic.conductor.task_manager [-] Node d7e2aed8-50a9-4427-baaa-
↪→f8f595e2ceb3 successfully reserved for provision action manage (took 0.
↪→01 seconds) reserve_node /usr/lib/python3.6/site-packages/ironic/
↪→conductor/task_manager.py:350
DEBUG ironic.common.states [-] Exiting old state 'enroll' in response to␣
↪→event 'manage' on_exit /usr/lib/python3.6/site-packages/ironic/common/
↪→states.py:307
DEBUG ironic.common.states [-] Entering new state 'verifying' in response␣
↪→to event 'manage' on_enter /usr/lib/python3.6/site-packages/ironic/
↪→common/states.py:313

This is your root cause, the lock is held because of the BMC credentials verification.

4. Find when the lock is released (if at all). The messages look like this:

DEBUG ironic.conductor.task_manager [-] Successfully released exclusive␣
↪→lock for provision action manage on node d7e2aed8-50a9-4427-baaa-
↪→f8f595e2ceb3 (lock was held 60.02 sec) release_resources /usr/lib/
↪→python3.6/site-packages/ironic/conductor/task_manager.py:447

The message tells you the reason the lock was held (for provision action manage) and the
amount of time it was held (60.02 seconds, which is way too much for accessing a BMC).

Unfortunately, due to the way the conductor is designed, it is not possible to gracefully break a stuck lock
held in *-ing states. As the last resort, you may need to restart the affected conductor. See Why are my
nodes stuck in a -ing state?.

406 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

What is ConcurrentActionLimit?

ConcurrentActionLimit is an exception which is raised to clients when an operation is requested, but
cannot be serviced at that moment because the overall threshold of nodes in concurrent Deployment or
Cleaning operations has been reached.

These limits exist for two distinct reasons.

The first is they allow an operator to tune a deployment such that too many concurrent deployments
cannot be triggered at any given time, as a single conductor has an internal limit to the number of overall
concurrent tasks, this restricts only the number of running concurrent actions. As such, this accounts for
the number of nodes in deploy and deploy wait states. In the case of deployments, the default value
is relatively high and should be suitable for most larger operators.

The second is to help slow down the ability in which an entire population of baremetal nodes can be moved
into and through cleaning, in order to help guard against authenticated malicious users, or accidental
script driven operations. In this case, the total number of nodes in deleting, cleaning, and clean
wait are evaluated. The default maximum limit for cleaning operations is 50 and should be suitable for
the majority of baremetal operators.

These settings can be modified by using the conductor.max_concurrent_deploy and conductor.
max_concurrent_clean settings from the ironic.conf file supporting the ironic-conductor service.
Neither setting can be explicitly disabled, however there is also no upper limit to the setting.

Note

This was an infrastructure operator requested feature from actual lessons learned in the operation of
Ironic in large scale production. The defaults may not be suitable for the largest scale operators.

Why do I have an error that an NVMe Partition is not a block device?

In some cases, you can encounter an error that suggests a partition that has been created on an NVMe
block device, is not a block device.

Example:

lsblk: /dev/nvme0n1p2: not a block device

What has happened is the partition contains a partition table inside of it which is confusing the NVMe
device interaction. While basically valid in some cases to have nested partition tables, for example, with
software raid, in the NVMe case the driver and possibly the underlying device gets quite confused. This
is in part because partitions in NVMe devices are higher level abstracts.

The way this occurs is you likely had a whole-disk image, and it was configured as a partition image.
If using glance, your image properties may have a img_type field, which should be whole-disk, or
you have a kernel_id and ramdisk_id value in the glance image properties field. Definition of a
kernel and ramdisk value also indicates that the image is of a partition image type. This is because a
whole-disk image is bootable from the contents within the image, and partition images are unable to
be booted without a kernel, and ramdisk.

If you are using Ironic in standalone mode, the optional instance_info/image_type setting may
be advisable to be checked. Very similar to Glance usage above, if you have set Ironics node level
instance_info/kernel and instance_info/ramdisk parameters, Ironic will proceed with deploy-

4.3. Configuration and Operation 407

Ironic Documentation, Release 26.1.2.dev21

ing an image as if it is a partition image, and create a partition table on the new block device, and then
write the contents of the image into the newly created partition.

Note

As a general reminder, the Ironic community recommends the use of whole disk images over the use
of partition images.

Why cant I use Secure Erase/Wipe with RAID controllers?

Situations have been reported where an infrastructure operator is expecting particular device types to be
Secure Erased or Wiped when they are behind a RAID controller.

For example, the server may have NVMe devices attached to a RAID controller which could be in pass-
through or single disk volume mode. The same scenario exists basically regardless of the disk/storage
medium/type.

The basic reason why is that RAID controllers essentially act as command translators with a buffer cache.
They tend to offer a simplified protocol to the Operating System, and interact with the storage device in
whatever protocol is native to the device. This is the root of the underlying problem.

Protocols such as SCSI are rooted in quite a bit of computing history, but never evolved to include prim-
itives like Secure Erase which evolved in the ATA protocol.

The closest primitives in SCSI to ATA Secure Erase is the FORMAT UNIT and UNMAP commands.

FORMAT UNIT might be a viable solution, and a tool named sg_format exists, but there has not been
a sufficient call upstream to implement this and test it sufficiently that the Ironic community would be
comfortable shipping such a capability. The possibility also exists that a RAID controller might not
translate this command through to an end device, just as some RAID controllers know how to handle
and pass through ATA commands to disk devices which support them. It is entirely dependent upon the
hardware configuration scenario.

The UNMAP command is similar to the ATA TRIM command. Unfortunately the SCSI protocol requires
this be performed at block level, and similar to FORMAT UNIT, it may not be supported or just passed
through.

If your interested in working on this area, or are willing to help test, please feel free to contact the Ironic
development community. An additional option is the creation of your own custom Hardware Manager
which can contain your preferred logic, however this does require some Python development experience.

One last item of note, depending on the RAID controller, the BMC, and a number of other variables, you
may be able to leverage the RAID configuration interface to delete volumes/disks, and recreate them.
This may have the same effect as a clean disk, however that too is RAID controller dependent behavior.

408 Chapter 4. Administrator Guide

https://en.wikipedia.org/wiki/Parallel_ATA#HDD_passwords_and_security
https://linux.die.net/man/8/sg_format
https://opendev.org/openstack/ironic-python-agent/src/branch/master/examples/custom-disk-erase

Ironic Documentation, Release 26.1.2.dev21

Im in clean failed state, what do I do?

There is only one way to exit the clean failed state. But before we visit the answer as to how, we need
to stress the importance of attempting to understand why cleaning failed. On the simple side of things,
this may be as simple as a DHCP failure, but on a complex side of things, it could be that a cleaning
action failed against the underlying hardware, possibly due to a hardware failure.

As such, we encourage everyone to attempt to understand why before exiting the clean failed state,
because you could potentially make things worse for yourself. For example if firmware updates were
being performed, you may need to perform a rollback operation against the physical server, depending
on what, and how the firmware was being updated. Unfortunately this also borders the territory of no
simple answer.

This can be counter balanced with sometimes there is a transient networking failure and a DHCP address
was not obtained. An example of this would be suggested by the last_error field indicating some-
thing about Timeout reached while cleaning the node, however we recommend following several basic
troubleshooting steps:

• Consult the last_error field on the node, utilizing the baremetal node show <uuid> com-
mand.

• If the version of ironic supports the feature, consult the node history log, baremetal node
history list and baremetal node history get <uuid>.

• Consult the actual console screen of the physical machine. If the ramdisk booted, you will generally
want to investigate the controller logs and see if an uploaded agent log is being stored on the
conductor responsible for the baremetal node. Consult Retrieving logs from the deploy ramdisk.
If the node did not boot for some reason, you can typically just retry at this point and move on.

How to get out of the state, once youve understood why you reached it in the first place, is to utilize the
baremetal node manage <node_id> command. This returns the node to manageable state, from
where you can retry cleaning through automated cleaning with the provide command, or manual clean-
ing with clean command. or the next appropriate action in the workflow process you are attempting to
follow, which may be ultimately be decommissioning the node because it could have failed and is being
removed or replaced.

I cant seem to introspect newly added nodes in a large cluster

With larger clusters, the act of synchronizing DHCP for introspection and hardware discovery can take
quite a bit of time because of the operational overhead. What happens is we spend so much time trying
to perform the update that the processes stay continuously busy, which can have a side effect such as
impacting the ability to successfully introspect nodes which were very recently added to the cluster.

To remedy this, try setting [pxe_filter]sync_period to be less frequent, i.e. a larger value to enable
conductors to have time between running syncs.

Note

It is anticipated that as part of the 2024.1 release, Ironic will have this functionality also merged
into Ironic directly as part of the merge of the ironic-inspector service into ironic itself. This
merger will result in a slightly more performant implementation, which may necessitate re-evaluation
and tuning of the [pxe_filter]sync_period parameter.

4.3. Configuration and Operation 409

Ironic Documentation, Release 26.1.2.dev21

Some or all of my baremetal nodes disappeared! Help?!

If you just upgraded, and this has occurred:

1) Dont Panic

2) Dont try to re-enroll the nodes. They should still be there, you just cant see them at the moment.

Over the past few years, Ironic and OpenStack project as a whole has been working to improve the model
of Role Based Access Control. For users of Ironic, this means an extended role based access control
model allowing delineation of nodes and the ability for projects to both self-manage.

The result is that users inside of a project are only permitted to see baremetal nodes, through the owner
and lessee field, which has been granted access to the project.

However, as with any complex effort, there can be hiccups, and you have encountered one. Specifically
that based upon large scale operator feedback, Ironic kept logic behind System scoped user usage, which
OpenStack largely avoided due to concerns over effort.

As such, you have a couple different paths you can take, and your ideal path is also going to vary upon
your model of usage and comfort level. We recommend reading the rest of this answer section before
taking any further action.

A good starting point is obtaining a system scoped account with an admin or member role. Either
of those roles will permit a nodes owner or lessee fields to be changed. Executing baremetal node
list commands with this account should show you all baremetal nodes across all projects. Alternatively,
if you just want to enable the legacy RBAC policies temporarily to change the fields, that is also an
option, although not encouraged, and can be done utilizing the [oslo_policy] enforce_scope and
[oslo_policy] enforce_new_defaults settings.

System Scoped Accounts

A system scoped account is one which has access and authority over the whole of the of an OpenStack
deployment. A simplified way to think of this is when deployed, a username and password is utilized to
bootstrap keystone. The rights granted to that user are inherently a system scoped admin role level of
access. You can use this level of access to check the status, or run additional commands.

In this example below, which if successful, should return a list of all baremetal nodes known to Ironic,
once the executing user supplies the valid password. In this case the admin account keystone was boot-
strapped with. As a minor note, you will not be able to have any OS_* environment variables loaded into
your current command shell, including OS_CLOUD for this command to be successful.

$ openstack --os-username=admin --os-user-domain-name=default --os-system-
↪→scope all baremetal node list

You can alternatively issue a system-scoped token and reuse further commands with that token, or even
generate a new system scoped account with a role of member.

410 Chapter 4. Administrator Guide

https://docs.openstack.org/keystone/latest/admin/tokens-overview.html#operation_create_system_token

Ironic Documentation, Release 26.1.2.dev21

Changing/Assigning an Owner

Ironic performs matching based upon Project ID. The owner field can be set to a projects ID value, which
allows baremetal nodes to be visible.

$ PROJECT_ID=$(openstack project show -c id -f value $PROJECT_NAME)
$ baremetal node set --owner $PROJECT_ID $NODE_UUID_OR_NAME

Why am I only seeing some of the nodes?

During the Zed development cycle of Ironic, Ironic added an option which defaulted to True, which
enabled project scoped admin users to be able to create their own baremetal nodes without needing
higher level access. This default enabled option, [api] project_admin_can_manage_own_nodes,
automatically stamps the requestors project ID on to a baremetal node if an owner is not otherwise
specified upon creation. Obviously, this can create a mixed perception if an operator never paid attention
to the owner field before now.

If your bare metal management processes require that full machine management is made using a project
scoped account, please configure an appropriate node owner for the nodes which need to be managed.
Ironic recognizes this is going to vary based upon processes and preferences.

Config Drives in Swift, but rebuilds fails?

When deploying instances, Ironic can be configured such that configuration drives are stored in Swift.
The pointer to the configuration drive is saved in Ironic as a Temporary URL which has a time expiration.

When you issue the rebuild request for a node, Ironic expects that you will supply new configuration drive
contents with your request, however this is also optional.

Because Swift has been set as the optional configuration drive storage location, a rebuild can fail if the
prior configuration drive file is no longer accessible and no new configuration drive has been supplied to
Ironic.

To resolve this case, you can either supply new configuration drive contents with your request, or dis-
able configuration from being stored in Swift for new baremetal node deployments by changing setting
deploy.configdrive_use_object_store to false.

Ironic says my Image is Invalid

As a result of security fixes which were added to Ironic, resulting from the security posture of the
qemu-img utility, Ironic enforces certain aspects related to image files.

• Enforces that the file format of a disk image matches what Ironic is told by an API user. Any
mismatch will result in the image being declared as invalid. A mismatch with the file contents and
what is stored in the Image service will necessitate uploading a new image as that property cannot
be changed in the image service after creation of an image.

• Enforces that the input file format to be written is qcow2 or raw. This can be extended by modifying
[conductor]permitted_image_formats in ironic.conf.

4.3. Configuration and Operation 411

Ironic Documentation, Release 26.1.2.dev21

• Performs safety and sanity check assessment against the file, which can be disabled by modifying
[conductor]disable_deep_image_inspection and setting it to True. Doing so is not con-
sidered safe and should only be done by operators accepting the inherent risk that the image they
are attempting to use may have a bad or malicious structure. Image safety checks are generally
performed as the deployment process begins and stages artifacts, however a late stage check is
performed when needed by the ironic-python-agent.

4.3.7 Power Synchronization

Baremetal Power Sync

Each Baremetal conductor process runs a periodic task which synchronizes the power state of
the nodes between its database and the actual hardware. If the value of the conductor.
force_power_state_during_sync option is set to true the power state in the database will be forced
on the hardware and if it is set to false the hardware state will be forced on the database. If this periodic
task is enabled, it runs at an interval defined by the conductor.sync_power_state_interval config
option for those nodes which are not in maintenance. The requests sent to Baseboard Management Con-
trollers (BMCs) are done with a parallelism controlled by conductor.sync_power_state_workers.
The motivation to send out requests to BMCs in parallel is to handle misbehaving BMCs which may
delay or even block the synchronization otherwise.

Note

In deployments with many nodes and IPMI as the configured BMC protocol, the default values of
a 60 seconds power sync interval and 8 worker threads may lead to a high rate of required retries
due to client-side UDP packet loss (visible via the corresponding warnings in the conductor logs).
While Ironic automatically retries to get the power status for the affected nodes, the failure rate may
be reduced by increasing the power sync cycle, e.g. to 300 seconds, and/or by reducing the number
of power sync workers, e.g. to 2. Please keep in mind, however, that depending on the concrete setup
increasing the power sync interval may have an impact on other components relying on up-to-date
power states.

Compute-Baremetal Power Sync

Each nova-compute process in the Compute service runs a periodic task which synchronizes the power
state of servers between its database and the compute driver. If enabled, it runs at an interval defined
by the sync_power_state_interval config option on the nova-compute process. In case of the compute
driver being baremetal driver, this sync will happen between the databases of the compute and baremetal
services. Since the sync happens on the nova-compute process, the state in the compute database will
be forced on the baremetal database in case of inconsistencies. Hence a node which was put down using
the compute service API cannot be brought up through the baremetal service API since the power sync
task will regard the compute services knowledge of the power state as the source of truth. In order to
get around this disadvantage of the compute-baremetal power sync, baremetal service does power state
change callbacks to the compute service using external events.

412 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Power State Change Callbacks to the Compute Service

Whenever the Baremetal service changes the power state of a node, it can issue a notification to the
Compute service. The Compute service will consume this notification and update the power state of the
instance in its database. By conveying all the power state changes to the compute service, the baremetal
service becomes the source of truth thus preventing the compute service from forcing wrong power states
on the physical instance during the compute-baremetal power sync. It also adds the possibility of bringing
up/down a physical instance through the baremetal service API even if it was put down/up through the
compute service API.

This change requires the nova section and the necessary authentication options like the nova.auth_url
to be defined in the configuration file of the baremetal service. If it is not configured the baremetal service
will not be able to send notifications to the compute service and it will fall back to the behaviour of the
compute service forcing power states on the baremetal service during the power sync. See nova group
for more details on the available config options.

In case of baremetal stand alone deployments where there is no compute service running, the nova.
send_power_notifications config option should be set to False to disable power state change call-
backs to the compute service.

Note

The baremetal service sends notifications to the compute service only if the target power state is
power on or power off. Other error and None states will be ignored. In situations where the power
state change is originally coming from the compute service, the notification will still be sent by the
baremetal service and it will be a no-op on the compute service side with a debug log stating the node
is already powering on/off.

Note

Although an exclusive lock is used when sending notifications to the compute service, there can still
be a race condition if the compute-baremetal power sync happens to happen a nano-second before the
power state change event is received from the baremetal service in which case the power state from
compute services database will be forced on the node.

Power fault and recovery

When Baremetal Power Sync is enabled, and the Bare Metal service loses access to a node
(usually because of invalid credentials, BMC issues or networking interruptions), the node enters
maintenance mode and its fault field is set to power failure. The exact reason is stored in the
maintenance_reason field.

As always with maintenance mode, only a subset of operations will work on such nodes, and both the
Compute service and the Ironics native allocation API will refuse to pick them. Any in-progress opera-
tions will either pause or fail.

The conductor responsible for the node will try to recover the connection periodically (with the interval
configured by the conductor.power_failure_recovery_interval option). If the power sync is
successful, the fault field is unset and the node leaves the maintenance mode.

4.3. Configuration and Operation 413

Ironic Documentation, Release 26.1.2.dev21

Note

This only applies to automatic maintenance mode with the fault field set. Maintenance mode set
manually is never left automatically.

Alternatively, you can disable maintenance mode yourself once the problem is resolved:

baremetal node maintenance unset <IRONIC NODE>

4.3.8 Fast-Track Deployment

Fast track is a mode of operation where the Bare Metal service keeps a machine powered on with the
agent running between provisioning operations. It is first booted during in-band inspection or cleaning
(whatever happens first) and is only shut down before rebooting into the final instance. Depending on the
configuration, this mode can save several reboots and is particularly useful for scenarios where nodes are
enrolled, prepared and provisioned within a short period of time.

Warning

Fast track deployment targets standalone use cases and is only tested with the noop networking. The
case where inspection, cleaning and provisioning networks are different is not supported.

Note

Fast track mode is very sensitive to long-running processes on the conductor side that may prevent
agent heartbeats from being registered.

For example, converting a large image to the raw format may take long enough to reach the fast track
timeout. In this case, you can either use raw images or move the conversion to the agent side with:

[DEFAULT]
force_raw_images = False

Enabling

Fast track is off by default and should be enabled in the configuration:

[deploy]
fast_track = true

Starting with the Yoga release series, it can also be enabled or disabled per node:

baremetal node set <node> --driver-info fast_track=true

414 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Inspection

If using In-band inspection, you need to tell ironic or ironic-inspector not to power off nodes afterwards.
Depending on the inspection mode (managed or unmanaged, with ironic-inspector or without), you need
to configure two places. In ironic.conf:

[inspector]
power_off = false

And in inspector.conf (if needed):

[processing]
power_off = false

Finally, you need to update the inspection PXE/iPXE configuration to include the ipa-api-url kernel
parameter, pointing at the ironic endpoint, in addition to the existing ipa-inspection-callback-url.

4.3.9 HTTP(s) Authentication strategy for user image servers

How to enable the feature via global configuration options

There are 3 variables that could be used to manage image server authentication strategy. The 3 variables
are structured such a way that 1 of them image_server_auth_strategy (string) provides the option
to specify the desired authentication strategy. Currently the only supported authentication strategy is
http_basic that represents the HTTP(S) Basic Authentication also known as the RFC 7616 internet
standard.

The other two variables image_server_password and image_server_user provide username and
password credentials for any authentication strategy that requires username and credentials to enable the
authentication during image download processes. image_server_auth_strategy not just enables the
feature but enforces checks on the values of the 2 related credentials. Currently only the http_basic
strategy is utilizing the image_server_password and image_server_user variables.

When a authentication strategy is selected against the user image server an exception will be raised in
case any of the credentials are None or an empty string. The variables belong to the deploy configuration
group and could be configured via the global Ironic configuration file.

The authentication strategy configuration affects the download process for images downloaded by the
conductor or the ironic-python-agent.

Example

Example of activating the http-basic strategy via /etc/ironic/ironic.conf:

[deploy]
...
image_server_auth_strategy = http_basic
image_server_user = username
image_server_password = password
...

4.3. Configuration and Operation 415

Ironic Documentation, Release 26.1.2.dev21

Known limitations

This implementation of the authentication strategy for user image handling is implemented via the global
Ironic configuration thus it doesnt provide node specific customization options.

When image_server_auth_strategy is set to any valid value all image sources will be treated with
the same authentication strategy and Ironic will use the same credentials against all sources.

4.3.10 Use of OVN Networking

Overview

OVN is largely considered an evolution of OVS. While it is recommended that operators continue to
utilize OVS with Ironic, OVN has an attractive a superset of capabilities and shifts some of the configu-
ration of networking away from configuration files, towards a service modeled at serving a more scalable
software defined networking experience. However, as with all newer technologies, there are caveats and
issues. The purpose of this documentation is to help convey OVNs state, capabilities, and provide oper-
ators with the context required to navigate their path forward.

Warning

OVN is under quite a bit of active development, and this information may grow out of date quickly.
Weve provided links to help spread the information and enable operators to learn the current status.

Challenges

DHCP

Historically, while OVN has included a DHCP server, this DHCP server has not had the capability to
handle clients needing custom attributes such as those used by PXE and iPXE to enable network boot
operations.

Typically, this has resulted in operators who use OVN with Bare Metal to continue to operate the
neutron-dhcp-agent service, along with setting OVN configuration appropriate to disable OVN from
responding to DHCP requests for baremetal ports. Please see routed networks for more information on
this setting.

As of the 2023.2 Release of Ironic, The Ironic project can confirm that OVNs DHCP server does work
for PXE and iPXE operations when using IPv4, OVS version 3.11, and OVN version 23.06.0.

Support for IPv6 is presently pending changes to Neutron, as IPv6 requires additional configuration
options and a different pattern of behavior, and thus has not been tested. Your advised to continue to
us the neutron-dhcp-agent if you need IPv6 at this time. Currently this support is being worked in
Neutron change 890683 and bug 20305201.

Warning

Use of OVN with HTTPBoot interfaces has not been explicitly tested by the Ironic project, and is
unlikely to take place until after integrated IPv6 support with Neutron is ready for use. The project

416 Chapter 4. Administrator Guide

https://docs.openstack.org/neutron/2024.2/configuration/ovn.html#ovn.disable_ovn_dhcp_for_baremetal_ports
https://review.opendev.org/c/openstack/neutron/+/890683
https://bugs.launchpad.net/neutron/+bug/20305201

Ironic Documentation, Release 26.1.2.dev21

does not expect any specific issues, but the OVN DHCP server is an entirely different server than the
interfaces were tested upon.

Maximum Transmission Units

OVNs handling of MTUs has been identified by OVN as being incomplete. The reality is that it assumes
the MTU is not further constrained beyond the gateway, which sort of works in some caess for virtual
machines, but might not be applicable with baremetal because your traffic may pass through lower, or
higher MTUs.

Ideally, your environment should have consistent MTUs. If you cannot have consistent MTUs, we rec-
ommend clamping the MTU and Maximum Segment Size (MSS) using your front end router to ensure
igress traffic is sized and fragmented appropriately. Egress traffic should inherent its MTU size based
upon the DHCP service configuration.

A items you can keep track of regarding MTU handling:

• Bug 2032817

• OVN TODO document

To clamp the MTU and MSS on a linux based router, you can utilize the following command:

ip route add $network via $OVN_ROUTER advmss $MAX_SEGMENT_SIZE mtu lock $MTU

NAT of TFTP

Because the NAT and Connection Tracking layer gets applied differently with OVN, as the router doesnt
appear as a namespace or to the local OS kernel, you will not be able to enable NAT translation for Bare
Metal Networks under the direct management of OVN, that is if you dont have a separate TFTP service
running from with-in that network.

This is a result of the kernel of the OVN gateway being unable to associate and handle return packet
directly as part of the connection tracking layer. No direct work around for this is known, but generally
Ironic encourages the use of Virtual Media where possible to sidestep this sort of issue and ensure a
higher operational security posture for the deployment. Users of the redfish hardware type can learn
about Virtual media boot in our Redfish documentation.

Warning

Creation of FIPs, such as those which may be used grant SSH access to a internal node on a network,
for example which may be used by Tempest, establishes a 1:1 NAT rule. When this is the case, TFTP
packets cannot transit OVN and network boot operations will fail.

4.3. Configuration and Operation 417

https://bugs.launchpad.net/neutron/+bug/2032817
https://github.com/ovn-org/ovn/blob/main/TODO.rst

Ironic Documentation, Release 26.1.2.dev21

Rescue

Due to the aforementioned NAT issues, we know Rescue operations may not work.

This is being tracked as bug 2033083.

PXE boot of GRUB

Initial testing has revelaed that EFI booting Grub2 via OVN does not appear to work with OVN. For some
reason, Grub2 believes the network mask is incorrect based upon the DHCP interaction, and results in a
belief that the TFTP server is locally attached.

For example, if a client is assigned 10.1.0.13/28, with a default gateway of 10.1.0.1, and a tftp-sever
of 10.203.101.230, then grub2 believes its default route is 10.0.0.0/8.

This is being tracked as bug 2033430 until were better able to understand the root cause and file a bug
with the appropriate project.

Required Configuration

OVN is designed to provide packet handling in a distributed fashion for a each compute hypervisor in
a cloud of virtual machines. However with Bare Metal instances, you will likely need to have a pool of
dedicated network nodes to handle OVN traffic.

Chassis as Gateway

The networking node chassis must be configured to operate as a gateway.

This can be configured manually, but should (as far as Ironic is aware) be configured by Neutron and set
on interfaces matching the bridge mappings. At least, it works that way in Devstack.

ML2 Plugins

The ovn-router and trunk ml2 plugins as supplied with Neutron must be enabled.

If you need to attach to the network

For example if you need to bind something into a network for baremetal, above and beyond a dedicated
interface, you will need to make the attachment on the br-ex integration bridge, as opposed to br-int
as one would have done with OVS.

418 Chapter 4. Administrator Guide

https://bugs.launchpad.net/ironic/+bug/2033083
https://bugs.launchpad.net/ironic/+bug/2033430

Ironic Documentation, Release 26.1.2.dev21

VTEP Switch Support

Alpha-quality support was added to Ironic for OVN VTEP switches in API version 1.90. When
the keys vtep-logical-switch, vtep-physical-switch, and port_id are set in port.
local_link_connection, Ironic will pass them on to Neutron to be included in the binding profile
to enable OVN support.

There are reports of this approach working, but Ironic developers do not have access to physical hardware
to fully test this feature. If you have any feedback for this feature, please reach out to the Ironic community.

Unknowns

It is presently unknown if it is possible for OVN to perform and enable VXLAN attachments to physical
ports on integrated devices, thus operators are advised to continue to use vlan networking with their
hosts with existing ML2 integrations.

4.3.11 Ceph Object Gateway support

Overview

Ceph project is a powerful distributed storage system. It contains object store and provides a RADOS
Gateway Swift API which is compatible with OpenStack Swift API.

Ironic added support for RADOS Gateway temporary URL in the Mitaka release.

Configure Ironic and Glance with RADOS Gateway

1. Install Ceph storage with RADOS Gateway. See Ceph documentation.

2. Configure RADOS Gateway to use keystone for authentication. See Integrating with OpenStack
Keystone

3. Register RADOS Gateway endpoint in the keystone catalog, with the same format swift uses, as
the object-store service. URL example:

http://rados.example.com:8080/swift/v1/AUTH_$(project_id)s.

In the ceph configuration, make sure radosgw is configured with the following value:

rgw swift account in url = True

4. Configure Glance API service for RADOS Swift API as backend. Edit the configuration file for
the Glance API service (is typically located at /etc/glance/glance-api.conf):

[glance_store]

stores = file, http, swift
default_store = swift
default_swift_reference=ref1
swift_store_config_file=/etc/glance/glance-swift-creds.conf
swift_store_container = glance
swift_store_create_container_on_put = True

4.3. Configuration and Operation 419

https://bugs.launchpad.net/ironic/+bug/2034953
http://docs.ceph.com/docs
http://docs.ceph.com/docs/master/radosgw/keystone/
http://docs.ceph.com/docs/master/radosgw/keystone/

Ironic Documentation, Release 26.1.2.dev21

In the file referenced in swift_store_config_file option, add the following:

[ref1]
user = <service project>:<service user name>
key = <service user password>
user_domain_id = default
project_domain_id = default
auth_version = 3
auth_address = http://keystone.example.com/identity

Values for user and key options correspond to keystone credentials for RADOS Gateway service
user.

Note: RADOS Gateway uses FastCGI protocol for interacting with HTTP server. Read your HTTP
server documentation if you want to enable HTTPS support.

5. Restart Glance API service and upload all needed images.

6. If youre using custom container name in RADOS, change Ironic configuration file on the conductor
host(s) as follows:

[glance]

swift_container = glance

7. Restart Ironic conductor service(s).

4.3.12 Emitting Software Metrics

Beginning with the Newton (6.1.0) release, the ironic services support emitting internal performance
data to statsd. This allows operators to graph and understand performance bottlenecks in their system.

This guide assumes you have a statsd server setup. For information on using and configuring statsd,
please see the statsd README and documentation.

These performance measurements, herein referred to as metrics, can be emitted from the Bare Metal
service, including ironic-api, ironic-conductor, and ironic-python-agent. By default, none of the services
will emit metrics.

It is important to stress that not only statsd is supported for metrics collection and transmission. This is
covered later on in our documentation.

Configuring the Bare Metal Service to Enable Metrics with Statsd

Enabling metrics in ironic-api and ironic-conductor

The ironic-api and ironic-conductor services can be configured to emit metrics to statsd by adding the
following to the ironic configuration file, usually located at /etc/ironic/ironic.conf:

[metrics]
backend = statsd

420 Chapter 4. Administrator Guide

https://github.com/etsy/statsd
https://github.com/etsy/statsd

Ironic Documentation, Release 26.1.2.dev21

If a statsd daemon is installed and configured on every host running an ironic service, listening on the
default UDP port (8125), no further configuration is needed. If you are using a remote statsd server, you
must also supply connection information in the ironic configuration file:

[metrics_statsd]
Point this at your environments' statsd host
statsd_host = 192.0.2.1
statsd_port = 8125

Enabling metrics in ironic-python-agent

The ironic-python-agent process receives its configuration in the response from the initial lookup request
to the ironic-api service. This means to configure ironic-python-agent to emit metrics, you must enable
the agent metrics backend in your ironic configuration file on all ironic-conductor hosts:

[metrics]
agent_backend = statsd

In order to reliably emit metrics from the ironic-python-agent, you must provide a statsd server that is
reachable from both the configured provisioning and cleaning networks. The agent statsd connection
information is configured in the ironic configuration file as well:

[metrics_statsd]
Point this at a statsd host reachable from the provisioning and cleaning␣
↪→nets
agent_statsd_host = 198.51.100.2
agent_statsd_port = 8125

Note

Use of a different metrics backend with the agent is not presently supported.

Transmission to the Message Bus Notifier

Regardless if youre using Ceilometer, ironic-prometheus-exporter, or some scripting you wrote to con-
sume the message bus notifications, metrics data can be sent to the message bus notifier from the timer
methods and additional gauge counters by utilizing the metrics.backend configuration option and set-
ting it to collector. When this is the case, Information is cached locally and periodically sent along
with the general sensor data update to the messaging notifier, which can consumed off of the message
bus, or via notifier plugin (such as is done with ironic-prometheus-exporter).

Note

Transmission of timer data only works for the Conductor or single-process Ironic service model.
A separate webserver process presently does not have the capability of triggering the call to retrieve
and transmit the data.

4.3. Configuration and Operation 421

https://docs.openstack.org/ironic-prometheus-exporter/latest/

Ironic Documentation, Release 26.1.2.dev21

Note

This functionality requires ironic-lib version 5.4.0 to be installed.

Types of Metrics Emitted

The Bare Metal service emits timing metrics for every API method, as well as for most driver methods.
These metrics measure how long a given method takes to execute.

A deployer with metrics enabled should expect between 100 and 500 distinctly named data points to be
emitted from the Bare Metal service. This will increase if the metrics.preserve_host option is set to true
or if multiple drivers are used in the Bare Metal deployment. This estimate may be used to determine if
a deployer needs to scale their metrics backend to handle the additional load before enabling metrics. To
see which metrics have changed names or have been removed between releases, refer to the ironic release
notes.

Additional conductor metrics in the form of counts will also be generated in limited locations where
petinant to the activity of the conductor.

Note

With the default statsd configuration, each timing metric may create additional metrics due to how
statsd handles timing metrics. For more information, see statds documentation on metric types.

The ironic-python-agent ramdisk emits timing metrics for every API method.

Deployers who use custom HardwareManagers can emit custom metrics for their hardware. For more in-
formation on custom HardwareManagers, and emitting metrics from them, please see the ironic-python-
agent documentation.

Adding New Metrics

If youre a developer, and would like to add additional metrics to ironic, please see the ironic-lib developer
documentation for details on how to use the metrics library. A release note should also be created each
time a metric is changed or removed to alert deployers of the change.

4.3.13 API Audit Logging

Audit middleware supports the delivery of CADF audit events via the Oslo messaging notifier capability.
Based on the notification_driver configuration, audit events can be routed to messaging infrastructure
(notification_driver = messagingv2) or can be routed to a log file ([oslo_messaging_notifications]/driver
= log).

Audit middleware creates two events per REST API interaction. First event has information extracted
from request data and the second one has request outcome (response).

422 Chapter 4. Administrator Guide

https://docs.openstack.org/releasenotes/ironic/
https://docs.openstack.org/releasenotes/ironic/
https://github.com/etsy/statsd/blob/master/docs/metric_types.md#timing
https://docs.openstack.org/ironic-python-agent/2024.2/
https://docs.openstack.org/ironic-python-agent/2024.2/
https://docs.openstack.org/ironic-lib/2024.2/
https://docs.openstack.org/ironic-lib/2024.2/

Ironic Documentation, Release 26.1.2.dev21

Enabling API Audit Logging

Audit middleware is available as part of keystonemiddleware (>= 1.6) library. For information regarding
how audit middleware functions refer here.

Auditing can be enabled for the Bare Metal service by making the following changes to /etc/ironic/
ironic.conf.

1. To enable audit logging of API requests:

[audit]
...
enabled=true

2. To customize auditing API requests, the audit middleware requires the audit_map_file set-
ting to be defined. Update the value of the configuration setting audit_map_file to set its
location. Audit map file configuration options for the Bare Metal service are included in
the etc/ironic/ironic_api_audit_map.conf.sample file. To understand CADF format specified in
ironic_api_audit_map.conf file, refer to CADF Format.:

[audit]
...
audit_map_file=/etc/ironic/api_audit_map.conf

3. Comma-separated list of Ironic REST API HTTP methods to be ignored during audit. It is used
only when API audit is enabled. For example:

[audit]
...
ignore_req_list=GET,POST

Sample Audit Event

Following is the sample of the audit event for the ironic node list request.

{
"event_type":"audit.http.request",
"timestamp":"2016-06-15 06:04:30.904397",
"payload":{
"typeURI":"http://schemas.dmtf.org/cloud/audit/1.0/event",
"eventTime":"2016-06-15T06:04:30.903071+0000",
"target":{
"id":"ironic",
"typeURI":"unknown",
"addresses":[

{
"url":"http://{ironic_admin_host}:6385",
"name":"admin"

},
{

"url":"http://{ironic_internal_host}:6385",
(continues on next page)

4.3. Configuration and Operation 423

https://docs.openstack.org/keystonemiddleware/2024.2/audit.html
http://www.dmtf.org/sites/default/files/standards/documents/DSP2038_1.0.0.pdf

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"name":"private"
},
{

"url":"http://{ironic_public_host}:6385",
"name":"public"

}
],
"name":"ironic"

},
"observer":{
"id":"target"

},
"tags":[

"correlation_id?value=685f1abb-620e-5d5d-b74a-b4135fb32373"
],
"eventType":"activity",
"initiator":{
"typeURI":"service/security/account/user",
"name":"admin",
"credential":{
"token":"***",
"identity_status":"Confirmed"

},
"host":{
"agent":"python-ironicclient",
"address":"10.1.200.129"

},
"project_id":"d8f52dd7d9e1475dbbf3ba47a4a83313",
"id":"8c1a948bad3948929aa5d5b50627a174"

},
"action":"read",
"outcome":"pending",
"id":"061b7aa7-5879-5225-a331-c002cf23cb6c",
"requestPath":"/v1/nodes/?associated=True"

},
"priority":"INFO",
"publisher_id":"ironic-api",
"message_id":"2f61ebaa-2d3e-4023-afba-f9fca6f21fc2"

}

424 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

4.3.14 Bare Metal Service state report (via Guru Meditation Reports)

The Bare Metal service contains a mechanism whereby developers and system administrators can gen-
erate a report about the state of running Bare Metal executables (ironic-api and ironic-conductor). This
report is called a Guru Meditation Report (GMR for short). GMR provides useful debugging information
that can be used to obtain an accurate view on the current live state of the system. For example, what
threads are running, what configuration parameters are in effect, and more. The eventlet backdoor facility
provides an interactive shell interface for any eventlet based process, allowing an administrator to telnet
to a pre-defined port and execute a variety of commands.

Configuration

The GMR feature is optional and requires the oslo.reports package to be installed. For example, using
pip:

pip install 'oslo.reports>=1.18.0'

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Bare Metal process that supports it. The
GMR will then be output to stderr for that particular process. For example:

Suppose that ironic-api has process ID 6385, and was run with 2>/var/log/ironic/
ironic-api-err.log. Then, sending the USR signal:

kill -USR2 6385

will trigger the Guru Meditation report to be printed to /var/log/ironic/ironic-api-err.log.

Structure of a GMR

The GMR consists of the following sections:

Package
Shows information about the package to which this process belongs, including version information.

Threads
Shows stack traces and thread IDs for each of the threads within this process.

Green Threads
Shows stack traces for each of the green threads within this process (green threads dont have thread
IDs).

Configuration
Lists all the configuration options currently accessible via the CONF object for the current process.

4.3. Configuration and Operation 425

https://opendev.org/openstack/oslo.reports

Ironic Documentation, Release 26.1.2.dev21

4.3.15 Tuning Ironic

Memory Utilization

Memory utilization is a difficult thing to tune in Ironic as largely we may be asked by API consumers to
perform work for which the underlying tools require large amounts of memory.

The biggest example of this is image conversion. Images not in a raw format need to be written out to
disk for conversion (when requested) which requires the conversion process to generate an in-memory
map to re-assemble the image contents into a coherent stream of data. This entire process also stresses
the kernel buffers and cache.

This ultimately comes down to a trade-off of Memory versus Performance, similar to the trade-off of
Performance versus Cost.

On a plus side, an idle Ironic deployment does not need much in the way of memory. On the down side,
a highly bursty environment where a large number of concurrent deployments may be requested should
consider two aspects:

• How is the ironic-api service/process set up? Will more processes be launched automatically?

• Are images prioritized for storage size on disk? Or are they compressed and require format con-
version?

API

Ironics API should have a fairly stable memory footprint with activity, however depending on how the
webserver is running the API, additional processes can be launched.

Under normal conditions, as of Ironic 15.1, the ironic-api service/process consumes approximately
270MB of memory per worker. Depending on how the process is being launched, the number of workers
and maximum request threads per worker may differ. Naturally there are configuration and performance
trade-offs.

• Directly as a native python process, i.e. execute ironic-api processes. Each single worker allows
for multiple requests to be handled and threaded at the same time which can allow high levels of
request concurrency. As of the Victoria cycle, a direct invocation of the ironic-api program will
only launch a maximum of four workers.

• Launched via a wrapper such as Apache+uWSGI may allow for multiple distinct worker processes,
but these workers typically limit the number of request processing threads that are permitted to
execute. This means requests can stack up in the front-end webserver and be released to the
ironic-api as prior requests complete. In environments with long running synchronous calls,
such as use of the vendor passthru interface, this can be very problematic.

• As a combined ironic process. In this case, green threads are used, which allows for a smaller
memory footprint at the expense of only using one CPU core.

When the webserver is launched by the API process directly, the default is based upon the number of
CPU sockets in your machine.

When launching using uwsgi, this will entirely vary upon your configuration, but balancing work-
ers/threads based upon your load and needs is highly advisable. Each worker process is unique and
consumes far more memory than a comparable number of worker threads. At the same time, the sched-
uler will focus on worker processes as the threads are greenthreads.

426 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Note

Host operating systems featuring in-memory de-duplication should see an improvement in the over-
all memory footprint with multiple processes, but this is not something the development team has
measured and will vary based upon multiple factors.

One important item to note: each Ironic API service/process does keep a copy of the hash ring as gen-
erated from the database in-memory. This is done to help allocate load across a cluster in-line with how
individual nodes and their responsible conductors are allocated across the cluster. In other words, your
amount of memory WILL increase corresponding to the number of nodes managed by each ironic con-
ductor. It is important to understand that features such as conductor groups means that only matching
portions of nodes will be considered for the hash ring if needed.

Conductor

A conductor process will launch a number of other processes, as required, in order to complete the
requested work. Ultimately this means it can quickly consume large amounts of memory because it was
asked to complete a substantial amount of work all at once.

The ironic-conductor from ironic 15.1 consumes by default about 340MB of RAM in an idle config-
uration. This process, by default, operates as a single process. Additional processes can be launched, but
they must have unique resolvable hostnames and addresses for JSON-RPC or use a central oslo.messaging
supported message bus in order for Webserver API to Conductor API communication to be functional.

Typically, the most memory intensive operation that can be triggered is a image conversion for deploy-
ment, which is limited to 1GB of RAM per conversion process.

Most deployments, by default, do have a concurrency limit depending on their Compute (See nova.conf
setting max_concurrent_builds) configuration. However, this is only per nova-compute worker, so
naturally this concurrency will scale with additional workers.

Stand-alone users can easily request deployments exceeding the Compute service default maximum con-
current builds. As such, if your environment is used this way, you may wish to carefully consider your
deployment architecture.

With a single nova-compute process talking to a single conductor, asked to perform ten concurrent de-
ployments of images requiring conversion, the memory needed may exceed 10GB. This does however,
entirely depend upon image block structure and layout, and what deploy interface is being used.

Threads

The conductor uses green threads based on Eventlet project to allow a very high concurrency while
keeping the memory footprint low. When a request comes from the API to the conductor over the
RPC, the conductor verifies it, acquires a node-level lock (if needed) and launches a processing thread
for further handling. The maximum number of such threads is limited to the value of conductor.
workers_pool_size configuration option.

Note

Some workers are always or regularly occupied by internal processes, e.g. Power Synchronization.

4.3. Configuration and Operation 427

./conductor-groups.rst
https://docs.openstack.org/nova/latest/configuration/sample-config.html
https://eventlet.net/

Ironic Documentation, Release 26.1.2.dev21

Once the limit is reached, any new requests will be denied with HTTP code 503 (service unavailable).
The clients are expected to be able to handle this code, most likely by retrying after a short delay or by
throttling their requests. If you see a large number of this errors, you may try raising the limit gradually,
while observing the conductor behavior and making sure the requests dont start to take longer because of
switching between threads. A better alternative is to increase the number of conductors because it will
also allow using more than one CPU core.

Note

Running more than one conductor on the same machine is a somewhat uncharted territory. You
need to make sure they either have separate HTTP servers or share the same HTTP server without
conflicting.

If you use JSON RPC, you also need to make sure the ports dont conflict by setting the json_rpc.
port option.

Starting with the 2024.1 Caracal release cycle, a small proportion of the threads (specified by the
conductor.reserved_workers_pool_percentage option) is reserved for API requests and other
critical tasks. Periodic tasks and agent heartbeats cannot use them. This ensures that the API stays
responsive even under extreme internal load.

Database

Query load upon the database is one of the biggest potential bottlenecks which can cascade across a
deployment and ultimately degrade service to an Ironic user.

Often, depending on load, query patterns, periodic tasks, and so on and so forth, additional indexes may
be needed to help provide hints to the database so it can most efficiently attempt to reduce the number of
rows which need to be examined in order to return a result set.

Adding indexes

This example below is specific to MariaDB/MySQL, but the syntax should be easy to modify for operators
using PostgreSQL.

use ironic;
create index owner_idx on nodes (owner) LOCK = SHARED;
create index lessee_idx on nodes (lessee) LOCK = SHARED;
create index driver_idx on nodes (driver) LOCK = SHARED;
create index provision_state_idx on nodes (provision_state) LOCK = SHARED;
create index reservation_idx on nodes (reservation) LOCK = SHARED;
create index conductor_group_idx on nodes (conductor_group) LOCK = SHARED;
create index resource_class_idx on nodes (resource_class) LOCK = SHARED;

Note

The indexes noted have been added automatically by Xena versions of Ironic and later. They are
provided here as an example and operators can add them manually prior with versions of Ironic. The

428 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

database upgrade for the Xena release of Ironic which adds these indexes are only aware of being able
to skip index creation if it already exists on MySQL/MariaDB.

Note

It may be possible to use LOCK = NONE. Basic testing indicates this takes a little bit longer, but
shouldnt result in the database table becoming write locked during the index creation. If the database
engine cannot support this, then the index creation will fail.

Database platforms also have a concept of what is called a compound index where the index is aligned
with the exact query pattern being submitted to the database. The database is able to use this compound
index to attempt to drastically reduce the result set generation time for the remainder of the query. As
of the composition of this document, we do not ship compound indexes in Ironic as we feel the most
general benefit is single column indexes, and depending on data present, an operator may wish to ex-
plore compound indexes with their database administrator, as comound indexes can also have negative
performance impacts if improperly constructed.

use ironic;
create index my_custom_app_query_index on nodes (reservation, provision_state,
↪→ driver);

The risk, and WHY you should engage a Database Administrator, is depending on your configuration,
the actual index may need to include one or more additional fields such as owner or lessee which may
be added on to the index. At the same time, queries with less field matches, or in different orders will
exhibit different performance as the compound index may not be able to be consulted.

Indexes will not fix everything

Indexes are not a magical cure-all for all API or database performance issues, but they are an increadibly
important part depending on data access and query patterns.

The underlying object layer and data conversions including record pagination do add a substantial amount
of overhead to what may otherwise return as a result set on a manual database query. In Ironics case, due
to the object model and the need to extract multiple pieces of data at varying levels of the data model to
handle cases such as upgrades, the entire result set is downloaded and transformed which is an overhead
you do not experience with a command line database client.

BMC interaction

In its default configuration, Ironic runs a periodic task to synchronize the power state of the managed
physical nodes with the Ironic database. For the hardware type ipmi (see IPMI driver) and depending on
the number of nodes, the network connectivity, and the parallelism of these queries, this synchronization
may fail and retries will be triggered. Please find more details on the power synchronization and which
options to adapt in case too many power sync failures occur in the section on Power Synchronization.

4.3. Configuration and Operation 429

Ironic Documentation, Release 26.1.2.dev21

What can I do?

Previously in this document, weve already suggested some architectural constraints and limitations, but
there are some things that can be done to maximize performance. Again, this will vary greatly depending
on your use.

• Use the direct deploy interface. This offloads any final image conversion to the host running the
ironic-python-agent. Additionally, if Swift or other object storage such as RadosGW is used,
downloads can be completely separated from the host running the ironic-conductor.

• Use small/compact raw images. Qcow2 files are generally compressed and require substantial
amounts of memory to decompress and stream.

• Tune the internal memory limit for the conductor using the
[DEFAULT]memory_required_minimum setting. This will help the conductor throttle back
memory intensive operations. The default should prevent Out-of-Memory operations, but under
extreme memory pressure this may still be sub-optimal. Before changing this setting, it is highly
advised to consult with your resident Unix wizard or even the Ironic development team in upstream
IRC. This feature was added in the Wallaby development cycle.

• If network bandwidth is the problem you are seeking to solve for, you may wish to explore a mix
of the direct deploy interface and caching proxies. Such a configuration can be highly beneficial
in wide area deployments. See Using proxies for image download.

• If youre making use of large configuration drives, you may wish to ensure youre using Swift to
store them as opposed to housing them inside of the database. The entire object and contents
are returned whenever Ironic needs to evaluate the entire node, which can become a performance
impact. For more information on configuration drives, please see Enabling the configuration drive.

4.3.16 Secure RBAC

Suggested Reading

It is likely an understatement to say that policy enforcement is a complex subject. It requires operational
context to craft custom policy to meet general use needs. Part of this is why the Secure RBAC effort
was started, to provide consistency and a good starting place for most users who need a higher level of
granularity.

That being said, it would likely help anyone working to implement customization of these policies to
consult some reference material in hopes of understanding the context.

• Keystone Administrator Guide - Service API Protection

• Ironic Scoped Role Based Access Control Specification

430 Chapter 4. Administrator Guide

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://specs.openstack.org/openstack/ironic-specs/specs/17.0/secure-rbac.html

Ironic Documentation, Release 26.1.2.dev21

Historical Context - How we reached our access model

Ironic has reached the access model through an evolution the API and the data stored. Along with the
data stored, the enforcement of policy based upon data stored in these fields.

• Ownership Information Storage

• Allow Node owners to Administer

• Allow Leasable Nodes

System Scoped

System scoped authentication is intended for administrative activities such as those crossing ten-
ants/projects, as all tenants/projects should be visible to system scoped users in Ironic.

System scoped requests do not have an associated project_id value for the Keystone request autho-
rization token utilized to speak with Ironic. These requests are translated through keystonemiddleware
into values which tell Ironic what to do. Or to be more precise, tell the policy enforcement framework
the information necessary to make decisions.

System scoped requests very much align with the access controls of Ironic before the Secure RBAC
effort. The original custom role baremetal_admin privileges are identical to a system scoped admins
privileges. Similarly baremetal_observer is identical to a system scoped reader. In these concepts,
the admin is allowed to create/delete objects/items. The reader is allowed to read details about items and
is intended for users who may need an account with read-only access for or front-line support purposes.

In addition to these concepts, a member role exists in the Secure RBAC use model. Ironic does support
this role, and in general member role users in a system scope are able to perform basic updates/changes,
with the exception of special fields like those to disable cleaning.

Project Scoped

Project scoped authentication is when a request token and associated records indicate an associated
project_id value.

The Secure RBAC model, since the introduction of the base capability has been extended as a result of
an OpenStack community goal to include a manager role in the project scope. By default, this access is
equivalent to a Project scoped admin user, however it may be delineated further as time moves forward.

Legacy Behavior

The legacy behavior of API service is that all requests are treated as project scoped requests where access
is governed using an admin project. This behavior is deprecated. The new behavior is a delineation of
access through system scoped and project scoped requests.

In essence, what would have served as an admin project, is now system scoped usage.

Previously, Ironic API, by default, responded with access denied or permitted based upon the admin
project and associated role. These responses would generate an HTTP 403 if the project was incorrect
or if a user role.

4.3. Configuration and Operation 431

https://specs.openstack.org/openstack/ironic-specs/specs/12.1/ownership-field.html
https://specs.openstack.org/openstack/ironic-specs/specs/14.0/node-owner-policy.html
https://specs.openstack.org/openstack/ironic-specs/specs/15.0/node-lessee.html
https://docs.openstack.org/keystonemiddleware/latest/

Ironic Documentation, Release 26.1.2.dev21

Note

While Ironic has had the concept of an owner and a lessee, they are NOT used by default. They
require custom policy configuration files to be used in the legacy operating mode.

Supported Endpoints

• /nodes

• /nodes/<uuid>/ports

• /nodes/<uuid>/portgroups

• /nodes/<uuid>/volume/connectors

• /nodes/<uuid>/volume/targets

• /nodes/<uuid>/allocation

• /ports

• /portgroups

• /volume/connectors

• /volume/targets

• /allocations

How Project Scoped Works

Ironic has two project use models where access is generally more delegative to an owner and access to
a lessee is generally more utilitarian.

The purpose of an owner, is more to enable the System Operator to delegate much of the administrative
activity of a Node to the owner. This may be because they physically own the hardware, or they are in
charge of the node. Regardless of the use model that the fields and mechanics support, these fields are to
support humans, and possibly services where applicable.

The purpose of a lessee is more for a tenant in their project to be able to have access to perform basic
actions with the API. In some cases that may be to reprovision or rebuild a node. Ultimately that is the
lessees prerogative, but by default there are actions and field updates that cannot be performed by default.
This is also governed by access level within a project.

These policies are applied in the way data is viewed and how data can be updated. Generally, an inability
to view a node is an access permission issue in term of the project ID being correct for owner/lessee.

The ironic project has attempted to generally codify what we believe is reasonable, however operators
may wish to override these policy settings. For details general policy setting details, please see Policies.

432 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Field value visibility restrictions

Ironics API, by default has a concept of filtering node values to prevent sensitive data from being
leaked. System scoped users are subjected to basic restrictions, whereas project scoped users are,
by default, examined further and against additional policies. This threshold is controlled with the
baremetal:node:get:filter_threshold.

By default, the following fields are masked on Nodes and are controlled by the associated policies. By
default, owners are able to see insight into the infrastructure, whereas lessee users CANNOT view these
fields by default.

• last_error - baremetal:node:get:last_error

• reservation - baremetal:node:get:reservation

• driver_internal_info - baremetal:node:get:driver_internal_info

• driver_info - baremetal:node:get:driver_info

Field update restrictions

Some of the fields in this list are restricted to System scoped users, or even only System Administrators.
Some of these default restrictions are likely obvious. Owners cant change the owner. Lessees cant change
the owner.

• driver_info - baremetal:node:update:driver_info

• properties - baremetal:node:update:properties

• chassis_uuid - baremetal:node:update:chassis_uuid

• instance_uuid - baremetal:node:update:instance_uuid

• lessee - baremetal:node:update:lessee

• owner - baremetal:node:update:owner

• driver - baremetal:node:update:driver_interfaces

• *_interface - baremetal:node:update:driver_interfaces

• network_data - baremetal:node:update:network_data

• conductor_group - baremetal:node:update:conductor_group

• name - baremetal:node:update:name

• retired - baremetal:node:update:driver_info

• retired_reason - baremetal:node:update:retired

Warning

The chassis_uuid field is a write-once-only field. As such it is restricted to system scoped admin-
istrators.

More information is available on these fields in Policies.

4.3. Configuration and Operation 433

Ironic Documentation, Release 26.1.2.dev21

Allocations

The allocations endpoint of the API is somewhat different than other endpoints as it allows for the
allocation of physical machines to an admin. In this context, there is not already an owner or project_id
to leverage to control access for the creation process, any project member does have the inherent privilege
of requesting an allocation. That being said, their allocation request will require physical nodes to be
owned or leased to the project_id through the node fields owner or lessee.

Ability to override the owner is restricted to system scoped users by default and any new allocation being
requested with a specific owner, if made in project scope, will have the project_id recorded as the
owner of the allocation.

Ultimately, an operational behavior difference exists between the owner and lessee rights in terms of
allocations. With the standard access rights, lessee users are able to create allocations if they own nodes
which are not allocated or deployed, but they cannot reprovision nodes when using only a member role.
This limitation is not the case for project-scoped users with the admin role.

Warning

The allocation endpoints use is restricted to project scoped interactions un-
til [oslo_policy]enforce_new_defaults has been set to True using the
baremetal:allocation:create_pre_rbac policy rule. This is in order to prevent end-
point misuse. Afterwards all project scoped allocations will automatically populate an owner.
System scoped request are not subjected to this restriction, and operators may change the default
restriction via the baremetal:allocation:create_restricted policy.

Practical differences

Most users, upon implementing the use of system scoped authentication should not notice a difference
as long as their authentication token is properly scoped to system and with the appropriate role for their
access level. For most users who used a baremetal project, or other custom project via a custom policy
file, along with a custom role name such as baremetal_admin, this will require changing the user to be
a system scoped user with admin privileges.

The most noticeable difference for API consumers is the HTTP 403 access code is now mainly a HTTP
404 access code. The access concept has changed from Does the user broadly have access to the API? to
Does user have access to the node, and then do they have access to the specific resource?.

What is an owner or lessee?

An owner or lessee is the project which has been assigned baremetal resources. Generally these should
be service projects as opposed to a project dedicated to a specific user. This will help prevent the need to
involve a system scoped administrator from having to correct ownership records should a project need
to be removed due to an individuals departure.

The underlying project_id is used to represent and associate the owner or lessee.

434 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

How do I assign an owner?

baremetal node set --owner <project_id> <node>

Note

With the default access policy, an owner is able to change the assigned lessee of a node. However
the lessee is unable to do the same.

How do I assign a lessee?

baremetal node set --lessee <project_id> <node>

Ironic will, by default, automatically manage lessee at deployment time, setting the lessee field on deploy
of a node and unset it before the node begins cleaning.

Operators can customize or disable this behavior via conductor.automatic_lessee_source config-
uration.

If conductor.automatic_lessee_source is set to instance (the default), this uses node.
instance_info['project_id'], which is set when OpenStack Nova deploys an instance.

If conductor.automatic_lessee_source is set to request, the lessee is set to the project_id in the
request context ideal for standalone Ironic deployments still utilizing OpenStack Keystone.

If conductor.automatic_lessee_source is set to to none, Ironic not will set a lessee on deploy.

What is the difference between an owner and lessee?

This is largely covered in How Project Scoped Works although as noted it is largely in means of access.
A lessee is far more restrictive and an owner may revoke access to lessee.

Access to the underlying baremetal node is not exclusive between the owner and lessee, and this use
model expects that some level of communication takes place between the appropriate parties.

Can I, a project admin, create a node?

Starting in API version 1.80, the capability was added to allow users with an admin role to be able to
create and delete their own nodes in Ironic.

This functionality is enabled by default, and automatically imparts owner privileges to the created Bare
Metal node.

This functionality can be disabled by setting api.project_admin_can_manage_own_nodes to False.

4.3. Configuration and Operation 435

Ironic Documentation, Release 26.1.2.dev21

Can I use a service role?

In later versions of Ironic, the service role has been added to enable delineation of accounts and access
to Ironics API. As Ironics API was largely originally intended as an admin API service, the service role
enables similar levels of access as a project-scoped user with the admin or manager roles.

In terms of access, this is likely best viewed as a user with the manager role, but with slight elevation in
privilege to enable usage of the service via a service account.

A project scoped user with the service role is able to create baremetal nodes, but is not able to delete
them. To disable the ability to create nodes, set the api.project_admin_can_manage_own_nodes
setting to False. The nodes which can be accessed/managed in the project scope also align with the
owner and lessee access model, and thus if nodes are not matching the users project_id, then Ironics
API will appear not to have any enrolled baremetal nodes.

With the system scope, a user with the service role is able to create baremetal nodes, but also, not
delete them. The access rights are modeled such an admin scoped is needed to delete baremetal nodes
from Ironic.

4.3.17 Dashboard Integration

A plugin for the OpenStack Dashboard (horizon) service is under development. Documentation for that
can be found within the ironic-ui project.

• Dashboard (horizon) plugin

4.4 Administrator Command References

Here are references for commands not elsewhere documented.

4.4.1 ironic-dbsync

The ironic-dbsync utility is used to create the database schema tables that the ironic services will use
for storage. It can also be used to upgrade existing database tables when migrating between different
versions of ironic.

The Alembic library is used to perform the database migrations.

Options

This is a partial list of the most useful options. To see the full list, run the following:

ironic-dbsync --help

-h, --help

Show help message and exit.

--config-dir <DIR>

Path to a config directory with configuration files.

436 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-ui/2024.2/
http://alembic.readthedocs.org

Ironic Documentation, Release 26.1.2.dev21

--config-file <PATH>

Path to a configuration file to use.

-d, --debug

Print debugging output.

--version

Show the programs version number and exit.

upgrade, stamp, revision, version, create_schema,

online_data_migrations

The command to run.

Usage

Options for the various commands for ironic-dbsync are listed when the -h or --help option is used
after the command.

For example:

ironic-dbsync create_schema --help

Information about the database is read from the ironic configuration file used by the API server and
conductor services. This file must be specified with the --config-file option:

ironic-dbsync --config-file /path/to/ironic.conf create_schema

The configuration file defines the database backend to use with the connection database option:

[database]
connection=mysql+pymysql://root@localhost/ironic

If no configuration file is specified with the --config-file option, ironic-dbsync assumes an SQLite
database.

Command Options

ironic-dbsync is given a command that tells the utility what actions to perform. These commands can
take arguments. Several commands are available:

create_schema

-h, --help

Show help for create_schema and exit.

This command will create database tables based on the most current version. It assumes that there are
no existing tables.

An example of creating database tables with the most recent version:

ironic-dbsync --config-file=/etc/ironic/ironic.conf create_schema

4.4. Administrator Command References 437

Ironic Documentation, Release 26.1.2.dev21

online_data_migrations

-h, --help

Show help for online_data_migrations and exit.

--max-count <NUMBER>

The maximum number of objects (a positive value) to migrate. Optional. If not specified, all the
objects will be migrated (in batches of 50 to avoid locking the database for long periods of time).

--option <MIGRATION.KEY=VALUE>

If a migration accepts additional parameters, they can be passed via this argument. It can be
specified several times.

This command will migrate objects in the database to their most recent versions. This command must
be successfully run (return code 0) before upgrading to a future release.

It returns:

• 1 (not completed) if there are still pending objects to be migrated. Before upgrading to a newer
release, this command must be run until 0 is returned.

• 0 (success) after migrations are finished or there are no data to migrate

• 127 (error) if max-count is not a positive value or an option is invalid

• 2 (error) if the database is not compatible with this release. This command needs to be run using
the previous release of ironic, before upgrading and running it with this release.

revision

-h, --help

Show help for revision and exit.

-m <MESSAGE>, --message <MESSAGE>

The message to use with the revision file.

--autogenerate

Compares table metadata in the application with the status of the database and generates migrations
based on this comparison.

This command will create a new revision file. You can use the --message option to comment the
revision.

This is really only useful for ironic developers making changes that require database changes. This
revision file is used during database migration and will specify the changes that need to be made to
the database tables. Further discussion is beyond the scope of this document.

438 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

stamp

-h, --help

Show help for stamp and exit.

--revision <REVISION>

The revision number.

This command will stamp the revision table with the version specified with the --revision option. It
will not run any migrations.

upgrade

-h, --help

Show help for upgrade and exit.

--revision <REVISION>

The revision number to upgrade to.

This command will upgrade existing database tables to the most recent version, or to the version specified
with the --revision option.

Before this upgrade is invoked, the command ironic-dbsync online_data_migrationsmust have
been successfully run using the previous version of ironic (if you are doing an upgrade as opposed to a
new installation of ironic). If it wasnt run, the database will not be compatible with this recent version
of ironic, and this command will return 2 (error).

If there are no existing tables, then new tables are created, beginning with the oldest known version, and
successively upgraded using all of the database migration files, until they are at the specified version.
Note that this behavior is different from the create_schema command that creates the tables based on the
most recent version.

An example of upgrading to the most recent table versions:

ironic-dbsync --config-file=/etc/ironic/ironic.conf upgrade

Note

This command is the default if no command is given to ironic-dbsync.

Warning

The upgrade command is not compatible with SQLite databases since it uses ALTER TABLE com-
mands to upgrade the database tables. SQLite supports only a limited subset of ALTER TABLE.

4.4. Administrator Command References 439

Ironic Documentation, Release 26.1.2.dev21

version

-h, --help

Show help for version and exit.

This command will output the current database version.

4.4.2 ironic-status

Synopsis

ironic-status <category> <command> [<args>]

Description

ironic-status is a tool that provides routines for checking the status of a Ironic deployment.

Options

The standard pattern for executing a ironic-status command is:

ironic-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

ironic-status

Categories are:

• upgrade

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

ironic-status upgrade

These sections describe the available categories and arguments for ironic-status.

Upgrade

ironic-status upgrade check
Performs a release-specific readiness check before restarting services with new code. This com-
mand expects to have complete configuration and access to databases and services.

Return Codes

440 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

12.0.0 (Stein)

• Adds a check for compatibility of the object versions with the release of ironic.

Wallaby

• Adds a check to validate the configured policy file is not JSON based as JSON based policies
have been deprecated.

2024.2

• Adds a check that hardware types and interfaces in the configuration exist, and that nodes are
configured with existing drivers and interfaces.

4.5 Configuration Reference for Ironic

Many aspects of the Bare Metal service are specific to the environment it is deployed in. The following
pages describe configuration options that can be used to adjust the service to your particular situation.

4.5.1 Configuration Options

The following is an overview of all available configuration options in Ironic. For a sample configuration
file, refer to Sample Configuration File.

DEFAULT

auth_strategy

Type
string

Default
keystone

Valid Values
noauth, keystone, http_basic

Authentication strategy used by ironic-api. noauth should not be used in a production environment
because all authentication will be disabled creating insecure operating conditions.

4.5. Configuration Reference for Ironic 441

Ironic Documentation, Release 26.1.2.dev21

Possible values

noauth
no authentication

keystone
use the Identity service for authentication

http_basic
HTTP basic authentication

http_basic_auth_user_file

Type
string

Default
/etc/ironic/htpasswd

Path to Apache format user authentication file used when auth_strategy=http_basic

debug_tracebacks_in_api

Type
boolean

Default
False

Return server tracebacks in the API response for any error responses. WARNING: this is insecure
and should not be used in a production environment.

pecan_debug

Type
boolean

Default
False

Enable pecan debug mode. WARNING: this is insecure and should not be used in a production
environment.

default_resource_class

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Resource class to use for new nodes when no resource class is provided in the creation request.

default_conductor_group

Type
string

442 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
''

Mutable
This option can be changed without restarting.

The conductor_group to use for new nodes when no conductor_group was defined in the creation
request.

enabled_hardware_types

Type
list

Default
['ipmi', 'redfish']

Specify the list of hardware types to load during service initialization. Missing hardware types,
or hardware types which fail to initialize, will prevent the conductor service from starting. This
option defaults to a recommended set of production-oriented hardware types. A complete list of
hardware types present on your system may be found by enumerating the ironic.hardware.types
entrypoint.

enabled_bios_interfaces

Type
list

Default
['no-bios', 'redfish']

Specify the list of bios interfaces to load during service initialization. Missing bios interfaces, or
bios interfaces which fail to initialize, will prevent the ironic-conductor service from starting. At
least one bios interface that is supported by each enabled hardware type must be enabled here,
or the ironic-conductor service will not start. Must not be an empty list. The default value is a
recommended set of production-oriented bios interfaces. A complete list of bios interfaces present
on your system may be found by enumerating the ironic.hardware.interfaces.bios entrypoint. When
setting this value, please make sure that every enabled hardware type will have the same set of
enabled bios interfaces on every ironic-conductor service.

default_bios_interface

Type
string

Default
<None>

Default bios interface to be used for nodes that do not have bios_interface field set. A
complete list of bios interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.bios entrypoint.

enabled_boot_interfaces

Type
list

Default
['ipxe', 'pxe', 'redfish-virtual-media']

4.5. Configuration Reference for Ironic 443

Ironic Documentation, Release 26.1.2.dev21

Specify the list of boot interfaces to load during service initialization. Missing boot interfaces,
or boot interfaces which fail to initialize, will prevent the ironic-conductor service from starting.
At least one boot interface that is supported by each enabled hardware type must be enabled here,
or the ironic-conductor service will not start. Must not be an empty list. The default value is a
recommended set of production-oriented boot interfaces. A complete list of boot interfaces present
on your system may be found by enumerating the ironic.hardware.interfaces.boot entrypoint. When
setting this value, please make sure that every enabled hardware type will have the same set of
enabled boot interfaces on every ironic-conductor service.

default_boot_interface

Type
string

Default
<None>

Default boot interface to be used for nodes that do not have boot_interface field set. A
complete list of boot interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.boot entrypoint.

enabled_console_interfaces

Type
list

Default
['no-console']

Specify the list of console interfaces to load during service initialization. Missing console in-
terfaces, or console interfaces which fail to initialize, will prevent the ironic-conductor service
from starting. At least one console interface that is supported by each enabled hardware type
must be enabled here, or the ironic-conductor service will not start. Must not be an empty
list. The default value is a recommended set of production-oriented console interfaces. A
complete list of console interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.console entrypoint. When setting this value, please make sure that ev-
ery enabled hardware type will have the same set of enabled console interfaces on every ironic-
conductor service.

default_console_interface

Type
string

Default
<None>

Default console interface to be used for nodes that do not have console_interface field set. A
complete list of console interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.console entrypoint.

enabled_deploy_interfaces

Type
list

Default
['direct', 'ramdisk']

444 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Specify the list of deploy interfaces to load during service initialization. Missing deploy interfaces,
or deploy interfaces which fail to initialize, will prevent the ironic-conductor service from starting.
At least one deploy interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented deploy interfaces. A complete list of deploy interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.deploy entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled deploy interfaces on every ironic-conductor service.

default_deploy_interface

Type
string

Default
<None>

Default deploy interface to be used for nodes that do not have deploy_interface field set. A
complete list of deploy interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.deploy entrypoint.

enabled_firmware_interfaces

Type
list

Default
['no-firmware']

Specify the list of firmware interfaces to load during service initialization. Missing firmware
interfaces, or firmware interfaces which fail to initialize, will prevent the ironic-conductor ser-
vice from starting. At least one firmware interface that is supported by each enabled hardware
type must be enabled here, or the ironic-conductor service will not start. Must not be an empty
list. The default value is a recommended set of production-oriented firmware interfaces. A
complete list of firmware interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.firmware entrypoint. When setting this value, please make sure that
every enabled hardware type will have the same set of enabled firmware interfaces on every ironic-
conductor service.

default_firmware_interface

Type
string

Default
<None>

Default firmware interface to be used for nodes that do not have firmware_interface field set. A
complete list of firmware interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.firmware entrypoint.

enabled_inspect_interfaces

Type
list

Default
['no-inspect', 'redfish']

4.5. Configuration Reference for Ironic 445

Ironic Documentation, Release 26.1.2.dev21

Specify the list of inspect interfaces to load during service initialization. Missing inspect interfaces,
or inspect interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one inspect interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value
is a recommended set of production-oriented inspect interfaces. A complete list of inspect inter-
faces present on your system may be found by enumerating the ironic.hardware.interfaces.inspect
entrypoint. When setting this value, please make sure that every enabled hardware type will have
the same set of enabled inspect interfaces on every ironic-conductor service.

default_inspect_interface

Type
string

Default
<None>

Default inspect interface to be used for nodes that do not have inspect_interface field set. A
complete list of inspect interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.inspect entrypoint.

enabled_management_interfaces

Type
list

Default
<None>

Specify the list of management interfaces to load during service initialization. Missing manage-
ment interfaces, or management interfaces which fail to initialize, will prevent the ironic-conductor
service from starting. At least one management interface that is supported by each enabled hard-
ware type must be enabled here, or the ironic-conductor service will not start. Must not be an
empty list. The default value is a recommended set of production-oriented management interfaces.
A complete list of management interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.management entrypoint. When setting this value, please make sure that
every enabled hardware type will have the same set of enabled management interfaces on every
ironic-conductor service.

default_management_interface

Type
string

Default
<None>

Default management interface to be used for nodes that do not have management_interface field
set. A complete list of management interfaces present on your system may be found by enumerating
the ironic.hardware.interfaces.management entrypoint.

enabled_network_interfaces

Type
list

Default
['flat', 'noop']

446 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Specify the list of network interfaces to load during service initialization. Missing network in-
terfaces, or network interfaces which fail to initialize, will prevent the ironic-conductor service
from starting. At least one network interface that is supported by each enabled hardware type
must be enabled here, or the ironic-conductor service will not start. Must not be an empty
list. The default value is a recommended set of production-oriented network interfaces. A
complete list of network interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.network entrypoint. When setting this value, please make sure that ev-
ery enabled hardware type will have the same set of enabled network interfaces on every ironic-
conductor service.

default_network_interface

Type
string

Default
<None>

Default network interface to be used for nodes that do not have network_interface field set. A
complete list of network interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.network entrypoint.

enabled_power_interfaces

Type
list

Default
<None>

Specify the list of power interfaces to load during service initialization. Missing power interfaces,
or power interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one power interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented power interfaces. A complete list of power interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.power entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled power interfaces on every ironic-conductor service.

default_power_interface

Type
string

Default
<None>

Default power interface to be used for nodes that do not have power_interface field set. A
complete list of power interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.power entrypoint.

enabled_raid_interfaces

Type
list

Default
['agent', 'no-raid', 'redfish']

4.5. Configuration Reference for Ironic 447

Ironic Documentation, Release 26.1.2.dev21

Specify the list of raid interfaces to load during service initialization. Missing raid interfaces, or
raid interfaces which fail to initialize, will prevent the ironic-conductor service from starting. At
least one raid interface that is supported by each enabled hardware type must be enabled here,
or the ironic-conductor service will not start. Must not be an empty list. The default value is a
recommended set of production-oriented raid interfaces. A complete list of raid interfaces present
on your system may be found by enumerating the ironic.hardware.interfaces.raid entrypoint. When
setting this value, please make sure that every enabled hardware type will have the same set of
enabled raid interfaces on every ironic-conductor service.

default_raid_interface

Type
string

Default
<None>

Default raid interface to be used for nodes that do not have raid_interface field set. A
complete list of raid interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.raid entrypoint.

enabled_rescue_interfaces

Type
list

Default
['no-rescue']

Specify the list of rescue interfaces to load during service initialization. Missing rescue interfaces,
or rescue interfaces which fail to initialize, will prevent the ironic-conductor service from starting.
At least one rescue interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented rescue interfaces. A complete list of rescue interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.rescue entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled rescue interfaces on every ironic-conductor service.

default_rescue_interface

Type
string

Default
<None>

Default rescue interface to be used for nodes that do not have rescue_interface field set. A
complete list of rescue interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.rescue entrypoint.

enabled_storage_interfaces

Type
list

Default
['cinder', 'noop']

448 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Specify the list of storage interfaces to load during service initialization. Missing storage interfaces,
or storage interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one storage interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value
is a recommended set of production-oriented storage interfaces. A complete list of storage inter-
faces present on your system may be found by enumerating the ironic.hardware.interfaces.storage
entrypoint. When setting this value, please make sure that every enabled hardware type will have
the same set of enabled storage interfaces on every ironic-conductor service.

default_storage_interface

Type
string

Default
noop

Default storage interface to be used for nodes that do not have storage_interface field set. A
complete list of storage interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.storage entrypoint.

enabled_vendor_interfaces

Type
list

Default
['ipmitool', 'redfish', 'no-vendor']

Specify the list of vendor interfaces to load during service initialization. Missing vendor interfaces,
or vendor interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one vendor interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented vendor interfaces. A complete list of vendor interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.vendor entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled vendor interfaces on every ironic-conductor service.

default_vendor_interface

Type
string

Default
<None>

Default vendor interface to be used for nodes that do not have vendor_interface field set. A
complete list of vendor interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.vendor entrypoint.

log_in_db_max_size

Type
integer

Default
4096

4.5. Configuration Reference for Ironic 449

Ironic Documentation, Release 26.1.2.dev21

Max number of characters of any node last_error/maintenance_reason pushed to database.

hash_partition_exponent

Type
integer

Default
5

Exponent to determine number of hash partitions to use when distributing load across conductors.
Larger values will result in more even distribution of load and less load when rebalancing the ring,
but more memory usage. Number of partitions per conductor is (2^hash_partition_exponent). This
determines the granularity of rebalancing: given 10 hosts, and an exponent of the 2, there are 40
partitions in the ring.A few thousand partitions should make rebalancing smooth in most cases.
The default is suitable for up to a few hundred conductors. Configuring for too many partitions has
a negative impact on CPU usage.

hash_ring_reset_interval

Type
integer

Default
15

Time (in seconds) after which the hash ring is considered outdated and is refreshed on the next
access.

hash_ring_algorithm

Type
string

Default
md5

Valid Values
sha3_384, blake2s, sha1, sha3_512, sha3_224, sha512, sha256, md5, blake2b,
shake_128, shake_256, sha224, sha384, sha3_256

Advanced Option
Intended for advanced users and not used by the majority of users, and might have
a significant effect on stability and/or performance.

Hash function to use when building the hash ring. If running on a FIPS system, do not use md5.
WARNING: all ironic services in a cluster MUST use the same algorithm at all times. Changing
the algorithm requires an offline update.

force_raw_images

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

450 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

If True, convert backing images to raw disk image format.

raw_image_growth_factor

Type
floating point

Default
2.0

Minimum Value
1.0

The scale factor used for estimating the size of a raw image converted from compact image formats
such as QCOW2. Default is 2.0, must be greater than 1.0.

isolinux_bin

Type
string

Default
/usr/lib/syslinux/isolinux.bin

Path to isolinux binary file.

isolinux_config_template

Type
string

Default
$pybasedir/common/isolinux_config.template

Template file for isolinux configuration file.

grub_config_path

Type
string

Default
EFI/BOOT/grub.cfg

GRUB2 configuration file location on the UEFI ISO images produced by ironic. The default value
is usually incorrect and should not be relied on. If you use a GRUB2 image from a certain distri-
bution, use a distribution-specific path here, e.g. EFI/ubuntu/grub.cfg

grub_config_template

Type
string

Default
$pybasedir/common/grub_conf.template

Template file for grub configuration file.

ldlinux_c32

Type
string

4.5. Configuration Reference for Ironic 451

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Path to ldlinux.c32 file. This file is required for syslinux 5.0 or later. If not specified, the file is
looked for in /usr/lib/syslinux/modules/bios/ldlinux.c32 and /usr/share/syslinux/ldlinux.c32.

esp_image

Type
string

Default
<None>

Path to EFI System Partition image file. This file is recommended for creating UEFI bootable ISO
images efficiently. ESP image should contain a FAT12/16/32-formatted file system holding EFI
boot loaders (e.g. GRUB2) for each hardware architecture ironic needs to boot. This option is only
used when neither ESP nor ISO deploy image is configured to the node being deployed in which
case ironic will attempt to fetch ESP image from the configured location or extract ESP image from
UEFI-bootable deploy ISO image.

parallel_image_downloads

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Run image downloads and raw format conversions in parallel.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Use image_download_concurrency

image_download_concurrency

Type
integer

Default
20

Minimum Value
1

How many image downloads and raw format conversions to run in parallel. Only affects image
caches.

my_ip

452 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Type
string

Default
127.0.0.1

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

IPv4 address of this host. If unset, will determine the IP programmatically. If unable to do so,
will use 127.0.0.1. NOTE: This field does accept an IPv6 address as an override for templates and
URLs, however it is recommended that [DEFAULT]my_ipv6 is used along with DNS names for
service URLs for dual-stack environments.

my_ipv6

Type
string

Default
2001:db8::1

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

IP address of this host using IPv6. This value must be supplied via the configuration and cannot
be adequately programmatically determined like the [DEFAULT]my_ip parameter for IPv4.

notification_level

Type
string

Default
<None>

Valid Values
debug, info, warning, error, critical

Specifies the minimum level for which to send notifications. If not set, no notifications will be
sent. The default is for this option to be unset.

Possible values

debug
debug level

info
info level

warning
warning level

error
error level

critical
critical level

4.5. Configuration Reference for Ironic 453

Ironic Documentation, Release 26.1.2.dev21

versioned_notifications_topics

Type
list

Default
['ironic_versioned_notifications']

Specifies the topics for the versioned notifications issued by Ironic.

The default value is fine for most deployments and rarely needs to be changed. However, if you
have a third-party service that consumes versioned notifications, it might be worth getting a topic
for that service. Ironic will send a message containing a versioned notification payload to each
topic queue in this list.

The list of versioned notifications is visible in https://docs.openstack.org/ironic/latest/admin/
notifications.html

pybasedir

Type
string

Default
/usr/lib/python/site-packages/ironic/ironic

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Directory where the ironic python module is installed.

bindir

Type
string

Default
$pybasedir/bin

Directory where ironic binaries are installed.

state_path

Type
string

Default
$pybasedir

Top-level directory for maintaining ironics state.

default_portgroup_mode

Type
string

Default
active-backup

Mutable
This option can be changed without restarting.

454 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic/latest/admin/notifications.html
https://docs.openstack.org/ironic/latest/admin/notifications.html

Ironic Documentation, Release 26.1.2.dev21

Default mode for portgroups. Allowed values can be found in the linux kernel documentation on
bonding: https://www.kernel.org/doc/Documentation/networking/bonding.txt.

host

Type
string

Default
localhost

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of this node. This can be an opaque identifier. It is not necessarily a hostname, FQDN, or
IP address. However, the node name must be valid within an AMQP key.

pin_release_version

Type
string

Default
<None>

Valid Values
zed, yoga, antelope, 9.2, 26.1, 26.0, 25.0, 24.1, 24.0, 23.1, 23.0, 22.1, 22.0, 21.4,
21.3, 21.2, 21.1, 21.0, 2024.2, 2024.1, 2023.2, 2023.1, 20.2, 20.1, 20.0, 19.0, 18.2,
18.1, 18.0, 17.0, 16.2, 16.1, 16.0, 15.1, 15.0, 14.0, 13.0, 12.2, 12.1, 12.0, 11.1, 11.0,
10.1, 10.0

Mutable
This option can be changed without restarting.

Used for rolling upgrades. Setting this option downgrades (or pins) the Bare Metal API, the inter-
nal ironic RPC communication, and the database objects to their respective versions, so they are
compatible with older services. When doing a rolling upgrade from version N to version N+1, set
(to pin) this to N. To unpin (default), leave it unset and the latest versions will be used.

Possible values

zed
zed release

yoga
yoga release

antelope
antelope release

9.2
9.2 release

26.1
26.1 release

26.0
26.0 release

4.5. Configuration Reference for Ironic 455

https://www.kernel.org/doc/Documentation/networking/bonding.txt

Ironic Documentation, Release 26.1.2.dev21

25.0
25.0 release

24.1
24.1 release

24.0
24.0 release

23.1
23.1 release

23.0
23.0 release

22.1
22.1 release

22.0
22.0 release

21.4
21.4 release

21.3
21.3 release

21.2
21.2 release

21.1
21.1 release

21.0
21.0 release

2024.2
2024.2 release

2024.1
2024.1 release

2023.2
2023.2 release

2023.1
2023.1 release

20.2
20.2 release

20.1
20.1 release

20.0
20.0 release

19.0
19.0 release

456 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

18.2
18.2 release

18.1
18.1 release

18.0
18.0 release

17.0
17.0 release

16.2
16.2 release

16.1
16.1 release

16.0
16.0 release

15.1
15.1 release

15.0
15.0 release

14.0
14.0 release

13.0
13.0 release

12.2
12.2 release

12.1
12.1 release

12.0
12.0 release

11.1
11.1 release

11.0
11.0 release

10.1
10.1 release

10.0
10.0 release

rpc_transport

Type
string

Default
oslo

4.5. Configuration Reference for Ironic 457

Ironic Documentation, Release 26.1.2.dev21

Valid Values
oslo, json-rpc, none

Which RPC transport implementation to use between conductor and API services

Possible values

oslo
use oslo.messaging transport

json-rpc
use JSON RPC transport

none
No RPC, only use local conductor

minimum_memory_warning_only

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Setting to govern if Ironic should only warn instead of attempting to hold back the request in order
to prevent the exhaustion of system memory.

minimum_required_memory

Type
integer

Default
1024

Mutable
This option can be changed without restarting.

Minimum memory in MiB for the system to have available prior to starting a memory intensive
process on the conductor.

minimum_memory_wait_time

Type
integer

Default
15

Mutable
This option can be changed without restarting.

Seconds to wait between retries for free memory before launching the process. This, combined
with memory_wait_retries allows the conductor to determine how long we should attempt to
directly retry.

458 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

minimum_memory_wait_retries

Type
integer

Default
6

Mutable
This option can be changed without restarting.

Number of retries to hold onto the worker before failing or returning the thread to the pool if the
conductor can automatically retry.

drain_shutdown_timeout

Type
integer

Default
1800

Mutable
This option can be changed without restarting.

Timeout (seconds) after which a server will exit from a drain shutdown. Drain shutdowns are
triggered by sending the signal SIGUSR2. Zero value means shutdown will never be triggered by
a timeout.

tempdir

Type
string

Default
/tmp

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Temporary working directory, default is Python temp dir.

webserver_verify_ca

Type
string

Default
True

Mutable
This option can be changed without restarting.

CA certificates to be used for certificate verification. This can be either a Boolean value or a path
to a CA_BUNDLE file.If set to True, the certificates present in the standard path are used to verify
the host certificates.If set to False, the conductor will ignore verifying the SSL certificate presented
by the host.If its a path, conductor uses the specified certificate for SSL verification. If the path
does not exist, the behavior is same as when this value is set to True i.e the certificates present in
the standard path are used for SSL verification.Defaults to True.

4.5. Configuration Reference for Ironic 459

Ironic Documentation, Release 26.1.2.dev21

webserver_connection_timeout

Type
integer

Default
60

Connection timeout when accessing/interacting with remote web servers with images or other arti-
facts being accessed. An excessive value here is not advisable as excessive requests to an unreach-
able endpoint can result in Ironic service resources being consumed waiting for the connection to
timeout.

rbac_service_role_elevated_access

Type
boolean

Default
False

Enable elevated access for users with service role belonging to the rbac_service_project_name
project when using default policy. The default setting of disabled causes all service role requests
to be scoped to the project the service account belongs to.

rbac_service_project_name

Type
string

Default
service

The project name utilized for Role Based Access Control checks for the reserved service project.
This project is utilized for services to have accounts for cross-service communication. Often these
accounts require higher levels of access, and effectively this permits accounts from the service to
not be restricted to project scoping of responses. i.e. The service project user with a service role
will be able to see nodes across all projects, similar to System scoped access. If not set to a value,
and all service role access will be filtered matching an owner or lessee, if applicable. If an operator
wishes to make behavior visible for all service role users across all projects, then a custom policy
must be used to override the default service_role rule. It should be noted that the value of service
is a default convention for OpenStack deployments, but the requisite access and details around end
configuration are largely up to an operator if they are doing an OpenStack deployment manually.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.

460 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Table 22: Deprecated Variations

Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

Table 23: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url

Type
string

Default
rabbit://

4.5. Configuration Reference for Ironic 461

Ironic Documentation, Release 26.1.2.dev21

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type
string

Default
openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type
boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

run_external_periodic_tasks

Type
boolean

Default
True

Some periodic tasks can be run in a separate process. Should we run them here?

backdoor_port

Type
string

Default
<None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

backdoor_socket

Type
string

462 Chapter 4. Administrator Guide

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options

Type
boolean

Default
True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout

Type
integer

Default
60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

debug

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

4.5. Configuration Reference for Ironic 463

Ironic Documentation, Release 26.1.2.dev21

Table 24: Deprecated Variations

Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type
string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 25: Deprecated Variations

Group Name
DEFAULT logfile

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 26: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file

Type
boolean

464 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This function is known to have bene broken for long time, and depends on
the unmaintained library

use_syslog

Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type
boolean

Default
False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

4.5. Configuration Reference for Ironic 465

Ironic Documentation, Release 26.1.2.dev21

use_stderr

Type
boolean

Default
False

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type
boolean

Default
False

Log output to Windows Event Log.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Windows support is no longer maintained.

log_color

Type
boolean

Default
False

(Optional) Set the color key according to log levels. This option takes effect only when logging to
stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval

Type
integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type
string

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

466 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type
integer

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type
integer

Default
200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.

size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

logging_context_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

4.5. Configuration Reference for Ironic 467

Ironic Documentation, Release 26.1.2.dev21

logging_default_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type
string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type
list

Default
['amqp=WARNING', 'amqplib=WARNING', 'qpid.messaging=INFO',
'oslo.messaging=INFO', 'oslo_messaging=INFO',
'stevedore=INFO', 'eventlet.wsgi.server=INFO',
'iso8601=WARNING', 'requests=WARNING', 'urllib3.
connectionpool=WARNING', 'keystonemiddleware.auth_token=INFO',

468 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

'keystoneauth.session=INFO', 'openstack=WARNING',
'oslo_policy=WARNING', 'oslo_concurrency.lockutils=WARNING']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type
string

4.5. Configuration Reference for Ironic 469

Ironic Documentation, Release 26.1.2.dev21

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG,

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

agent

manage_agent_boot

Type
boolean

Default
True

Whether Ironic will manage booting of the agent ramdisk. If set to False, you will need to configure
your mechanism to allow booting the agent ramdisk. Deprecated for removal in 2025.2 release.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

memory_consumed_by_agent

Type
integer

Default
0

Mutable
This option can be changed without restarting.

The memory size in MiB consumed by agent when it is booted on a bare metal node. This is used
for checking if the image can be downloaded and deployed on the bare metal node after booting
agent ramdisk. This may be set according to the memory consumed by the agent ramdisk image.

stream_raw_images

Type
boolean

470 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
True

Mutable
This option can be changed without restarting.

Whether the agent ramdisk should stream raw images directly onto the disk or not. By streaming
raw images directly onto the disk the agent ramdisk will not spend time copying the image to a
tmpfs partition (therefore consuming less memory) prior to writing it to the disk. Unless the disk
where the image will be copied to is really slow, this option should be set to True. Defaults to True.

post_deploy_get_power_state_retries

Type
integer

Default
6

Number of times to retry getting power state to check if bare metal node has been powered off after
a soft power off.

post_deploy_get_power_state_retry_interval

Type
integer

Default
5

Amount of time (in seconds) to wait between polling power state after trigger soft poweroff.

agent_api_version

Type
string

Default
v1

API version to use for communicating with the ramdisk agent.

deploy_logs_collect

Type
string

Default
on_failure

Valid Values
always, on_failure, never

Mutable
This option can be changed without restarting.

Whether Ironic should collect the deployment logs on deployment failure (on_failure), always or
never.

4.5. Configuration Reference for Ironic 471

Ironic Documentation, Release 26.1.2.dev21

Possible values

always
always collect the logs

on_failure
only collect logs if there is a failure

never
never collect logs

deploy_logs_storage_backend

Type
string

Default
local

Valid Values
local, swift

Mutable
This option can be changed without restarting.

The name of the storage backend where the logs will be stored.

Possible values

local
store the logs locally

swift
store the logs in Object Storage service

deploy_logs_local_path

Type
string

Default
/var/log/ironic/deploy

Mutable
This option can be changed without restarting.

The path to the directory where the logs should be stored, used when the de-
ploy_logs_storage_backend is configured to local.

deploy_logs_swift_container

Type
string

Default
ironic_deploy_logs_container

472 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

The name of the Swift container to store the logs, used when the deploy_logs_storage_backend is
configured to swift.

deploy_logs_swift_days_to_expire

Type
integer

Default
30

Mutable
This option can be changed without restarting.

Number of days before a log object is marked as expired in Swift. If None, the logs will be kept
forever or until manually deleted. Used when the deploy_logs_storage_backend is configured to
swift.

image_download_source

Type
string

Default
http

Valid Values
swift, http, local

Mutable
This option can be changed without restarting.

Specifies whether direct deploy interface should try to use the image source directly or if ironic
should cache the image on the conductor and serve it from ironics own http server.

Possible values

swift
IPA ramdisk retrieves instance image from the Object Storage service.

http
IPA ramdisk retrieves instance image from HTTP service served at conductor nodes.

local
Same as http, but HTTP images are also cached locally, converted and served from the con-
ductor

command_timeout

Type
integer

Default
60

4.5. Configuration Reference for Ironic 473

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

Timeout (in seconds) for IPA commands. A large timeout value may result in the conductor free
worker pool becoming exhausted should a multi-node network connectivity issue arise during in-
band operations. These commands also cause the individual node lock to be held while in progress,
which prevents new requests from being acted upon for the impacted nodes until the issue has been
resolved.

max_command_attempts

Type
integer

Default
3

This is the maximum number of attempts that will be done for IPA commands that fails due to
network problems.

command_wait_attempts

Type
integer

Default
100

Number of attempts to check for asynchronous commands completion before timing out.

command_wait_interval

Type
integer

Default
6

Number of seconds to wait for between checks for asynchronous commands completion.

neutron_agent_poll_interval

Type
integer

Default
2

Mutable
This option can be changed without restarting.

The number of seconds Neutron agent will wait between polling for device changes. This value
should be the same as CONF.AGENT.polling_interval in Neutron configuration.

neutron_agent_max_attempts

Type
integer

Default
100

474 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Max number of attempts to validate a Neutron agent status before raising network error for a dead
agent.

neutron_agent_status_retry_interval

Type
integer

Default
10

Wait time in seconds between attempts for validating Neutron agent status.

require_tls

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

If set to False, callback URLs without https:// will be permitted by the conductor, which may be
needed for backwards compatibility outside of the supported version window.

certificates_path

Type
string

Default
/var/lib/ironic/certificates

Path to store auto-generated TLS certificates used to validate connections to the ramdisk.

verify_ca

Type
string

Default
True

Path to the TLS CA to validate connection to the ramdisk. Set to True to use the system default
CA storage. Set to False to disable validation. Ignored when automatic TLS setup is used.

api_ca_file

Type
string

Default
<None>

Path to the TLS CA that is used to start the bare metal API. In some boot methods this file can be
passed to the ramdisk.

4.5. Configuration Reference for Ironic 475

https://

Ironic Documentation, Release 26.1.2.dev21

allow_md5_checksum

Type
boolean

Default
True

When enabled, the agent will be notified it is permitted to consider MD5 checksums. This option
is expected to change to a default of False in a 2024 release of Ironic.

anaconda

default_ks_template

Type
string

Default
$pybasedir/drivers/modules/ks.cfg.template

Mutable
This option can be changed without restarting.

kickstart template to use when no kickstart template is specified in the instance_info or the glance
OS image.

insecure_heartbeat

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Option to allow the kickstart configuration to be informed if SSL/TLS certificate verification should
be enforced, or not. This option exists largely to facilitate easy testing and use of the anaconda
deployment interface. When this option is set, heartbeat operations, depending on the contents of
the utilized kickstart template, may not enforce TLS certificate verification.

ansible

ansible_extra_args

Type
string

Default
<None>

Extra arguments to pass on every invocation of Ansible.

476 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

verbosity

Type
integer

Default
<None>

Minimum Value
0

Maximum Value
4

Set ansible verbosity level requested when invoking ansible-playbook command. 4 includes de-
tailed SSH session logging. Default is 4 when global debug is enabled and 0 otherwise.

ansible_playbook_script

Type
string

Default
ansible-playbook

Path to ansible-playbook script. Default will search the $PATH configured for user running ironic-
conductor process. Provide the full path when ansible-playbook is not in $PATH or installed in
not default location.

playbooks_path

Type
string

Default
$pybasedir/drivers/modules/ansible/playbooks

Path to directory with playbooks, roles and local inventory.

config_file_path

Type
string

Default
$pybasedir/drivers/modules/ansible/playbooks/ansible.cfg

Path to ansible configuration file. If set to empty, system default will be used.

post_deploy_get_power_state_retries

Type
integer

Default
6

Minimum Value
0

4.5. Configuration Reference for Ironic 477

Ironic Documentation, Release 26.1.2.dev21

Number of times to retry getting power state to check if bare metal node has been powered off after
a soft power off. Value of 0 means do not retry on failure.

post_deploy_get_power_state_retry_interval

Type
integer

Default
5

Minimum Value
0

Amount of time (in seconds) to wait between polling power state after trigger soft poweroff.

extra_memory

Type
integer

Default
10

Extra amount of memory in MiB expected to be consumed by Ansible-related processes on the
node. Affects decision whether image will fit into RAM.

image_store_insecure

Type
boolean

Default
False

Skip verifying SSL connections to the image store when downloading the image. Setting it to True
is only recommended for testing environments that use self-signed certificates.

image_store_cafile

Type
string

Default
<None>

Specific CA bundle to use for validating SSL connections to the image store. If not specified, CA
available in the ramdisk will be used. Is not used by default playbooks included with the driver.
Suitable for environments that use self-signed certificates.

image_store_certfile

Type
string

Default
<None>

Client cert to use for SSL connections to image store. Is not used by default playbooks included
with the driver.

478 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

image_store_keyfile

Type
string

Default
<None>

Client key to use for SSL connections to image store. Is not used by default playbooks included
with the driver.

default_username

Type
string

Default
ansible

Name of the user to use for Ansible when connecting to the ramdisk over SSH. It may be overridden
by per-node ansible_username option in nodes driver_info field.

default_key_file

Type
string

Default
<None>

Absolute path to the private SSH key file to use by Ansible by default when connecting to the
ramdisk over SSH. Default is to use default SSH keys configured for the user running the ironic-
conductor service. Private keys with password must be pre-loaded into ssh-agent. It may be over-
ridden by per-node ansible_key_file option in nodes driver_info field.

default_deploy_playbook

Type
string

Default
deploy.yaml

Path (relative to $playbooks_path or absolute) to the default playbook used for deployment. It may
be overridden by per-node ansible_deploy_playbook option in nodes driver_info field.

default_shutdown_playbook

Type
string

Default
shutdown.yaml

Path (relative to $playbooks_path or absolute) to the default playbook used for graceful in-band
shutdown of the node. It may be overridden by per-node ansible_shutdown_playbook option in
nodes driver_info field.

4.5. Configuration Reference for Ironic 479

Ironic Documentation, Release 26.1.2.dev21

default_clean_playbook

Type
string

Default
clean.yaml

Path (relative to $playbooks_path or absolute) to the default playbook used for node cleaning. It
may be overridden by per-node ansible_clean_playbook option in nodes driver_info field.

default_clean_steps_config

Type
string

Default
clean_steps.yaml

Path (relative to $playbooks_path or absolute) to the default auxiliary cleaning steps file used dur-
ing the node cleaning. It may be overridden by per-node ansible_clean_steps_config option in
nodes driver_info field.

default_python_interpreter

Type
string

Default
<None>

Absolute path to the python interpreter on the managed machines. It may be overridden by
per-node ansible_python_interpreter option in nodes driver_info field. By default, ansible uses
/usr/bin/python

api

host_ip

Type
host address

Default
0.0.0.0

The IP address or hostname on which ironic-api listens.

port

Type
port number

Default
6385

Minimum Value
0

480 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Maximum Value
65535

The TCP port on which ironic-api listens.

unix_socket

Type
string

Default
<None>

Unix socket to listen on. Disables host_ip and port.

unix_socket_mode

Type
unknown type

Default
<None>

File mode (an octal number) of the unix socket to listen on. Ignored if unix_socket is not set.

max_limit

Type
integer

Default
1000

Mutable
This option can be changed without restarting.

The maximum number of items returned in a single response from a collection resource.

public_endpoint

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Public URL to use when building the links to the API resources (for example, https://ironic.rocks:
6384). If None the links will be built using the requests host URL. If the API is operating behind a
proxy, you will want to change this to represent the proxys URL. Defaults to None. Ignored when
proxy headers parsing is enabled via [oslo_middleware]enable_proxy_headers_parsing option.

api_workers

Type
integer

Default
<None>

4.5. Configuration Reference for Ironic 481

https://ironic.rocks:6384
https://ironic.rocks:6384

Ironic Documentation, Release 26.1.2.dev21

Number of workers for OpenStack Ironic API service. The default is equal to the number of CPUs
available, but not more than 4. One worker is used if the CPU number cannot be detected.

enable_ssl_api

Type
boolean

Default
False

Enable the integrated stand-alone API to service requests via HTTPS instead of HTTP.
If there is a front-end service performing HTTPS offloading from the service, this
option should be False; note, you will want to enable proxy headers parsing with
[oslo_middleware]enable_proxy_headers_parsing option or configure [api]public_endpoint option
to set URLs in responses to the SSL terminated one.

restrict_lookup

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Whether to restrict the lookup API to only nodes in certain states. Setting this to False can be
insecure and is not advisable.

ramdisk_heartbeat_timeout

Type
integer

Default
300

Mutable
This option can be changed without restarting.

Maximum interval (in seconds) for agent heartbeats.

network_data_schema

Type
string

Default
$pybasedir/api/controllers/v1/network-data-schema.json

Schema for network data used by this deployment.

project_admin_can_manage_own_nodes

Type
boolean

Default
True

482 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

If a project scoped administrative user is permitted to create/delete baremetal nodes in their project.

disallowed_enrollment_boot_modes

Type
list

Default
[]

Mutable
This option can be changed without restarting.

Specifies a list of boot modes that are not allowed during enrollment. Eg: [bios]

audit

enabled

Type
boolean

Default
False

Enable auditing of API requests (for ironic-api service).

audit_map_file

Type
string

Default
/etc/ironic/api_audit_map.conf

Path to audit map file for ironic-api service. Used only when API audit is enabled.

ignore_req_list

Type
string

Default
''

Comma separated list of Ironic REST API HTTP methods to be ignored during audit logging. For
example: auditing will not be done on any GET or POST requests if this is set to GET,POST. It is
used only when API audit is enabled.

4.5. Configuration Reference for Ironic 483

Ironic Documentation, Release 26.1.2.dev21

audit_middleware_notifications

use_oslo_messaging

Type
boolean

Default
True

Indicate whether to use oslo_messaging as the notifier. If set to False, the local logger will be used
as the notifier. If set to True, the oslo_messaging package must also be present. Otherwise, the
local will be used instead.

driver

Type
string

Default
<None>

The Driver to handle sending notifications. Possible values are messaging, messagingv2, routing,
log, test, noop. If not specified, then value from oslo_messaging_notifications conf section is used.

topics

Type
list

Default
<None>

List of AMQP topics used for OpenStack notifications. If not specified, then value from
oslo_messaging_notifications conf section is used.

transport_url

Type
string

Default
<None>

A URL representing messaging driver to use for notification. If not specified, we fall back to the
same configuration used for RPC.

cinder

action_retries

Type
integer

Default
3

Number of retries in the case of a failed action (currently only used when detaching volumes).

484 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

action_retry_interval

Type
integer

Default
5

Retry interval in seconds in the case of a failed action (only specific actions are retried).

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 27: Deprecated Variations

Group Name
cinder auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

4.5. Configuration Reference for Ironic 485

Ironic Documentation, Release 26.1.2.dev21

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

486 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

4.5. Configuration Reference for Ironic 487

Ironic Documentation, Release 26.1.2.dev21

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 28: Deprecated Variations

Group Name
cinder tenant-id
cinder tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

488 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Table 29: Deprecated Variations

Group Name
cinder tenant-name
cinder tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

retries

Type
integer

Default
3

DEPRECATED: Client retries in the case of a failed request.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Replaced by status_code_retries and status_code_retry_delay.

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

4.5. Configuration Reference for Ironic 489

Ironic Documentation, Release 26.1.2.dev21

Default
volumev3

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

490 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

4.5. Configuration Reference for Ironic 491

Ironic Documentation, Release 26.1.2.dev21

Username

Table 30: Deprecated Variations

Group Name
cinder user-name
cinder user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

conductor

workers_pool_size

Type
integer

Default
300

Minimum Value
3

The size of the workers greenthread pool. Note that 2 threads will be reserved by the conductor
itself for handling heart beats and periodic tasks. On top of that, sync_power_state_workers will
take up to 7 green threads with the default value of 8.

reserved_workers_pool_percentage

Type
integer

Default
5

Minimum Value
0

492 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Maximum Value
50

The percentage of the whole workers pool that will be kept for API requests and other important
tasks. This part of the pool will not be used for periodic tasks or agent heartbeats. Set to 0 to
disable.

heartbeat_interval

Type
integer

Default
10

Seconds between conductor heart beats.

heartbeat_timeout

Type
integer

Default
60

Maximum Value
315576000

Mutable
This option can be changed without restarting.

Maximum time (in seconds) since the last check-in of a conductor. A conductor is considered
inactive when this time has been exceeded.

sync_power_state_interval

Type
integer

Default
60

Interval between syncing the node power state to the database, in seconds. Set to 0 to disable
syncing.

check_provision_state_interval

Type
integer

Default
60

Minimum Value
0

Interval between checks of provision timeouts, in seconds. Set to 0 to disable checks.

check_rescue_state_interval

4.5. Configuration Reference for Ironic 493

Ironic Documentation, Release 26.1.2.dev21

Type
integer

Default
60

Minimum Value
1

Interval (seconds) between checks of rescue timeouts.

check_allocations_interval

Type
integer

Default
60

Minimum Value
0

Interval between checks of orphaned allocations, in seconds. Set to 0 to disable checks.

cache_clean_up_interval

Type
integer

Default
3600

Minimum Value
0

Interval between cleaning up image caches, in seconds. Set to 0 to disable periodic clean-up.

deploy_callback_timeout

Type
integer

Default
1800

Minimum Value
0

Timeout (seconds) to wait for a callback from a deploy ramdisk. Set to 0 to disable timeout.

force_power_state_during_sync

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

494 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

During sync_power_state, should the hardware power state be set to the state recorded in the
database (True) or should the database be updated based on the hardware state (False).

power_state_sync_max_retries

Type
integer

Default
3

During sync_power_state failures, limit the number of times Ironic should try syncing the hardware
node power state with the node power state in DB

sync_power_state_workers

Type
integer

Default
8

Minimum Value
1

The maximum number of worker threads that can be started simultaneously to sync nodes power
states from the periodic task.

periodic_max_workers

Type
integer

Default
8

Maximum number of worker threads that can be started simultaneously by a periodic task. Should
be less than RPC thread pool size.

node_locked_retry_attempts

Type
integer

Default
3

Number of attempts to grab a node lock.

node_locked_retry_interval

Type
integer

Default
1

Seconds to sleep between node lock attempts.

4.5. Configuration Reference for Ironic 495

Ironic Documentation, Release 26.1.2.dev21

sync_local_state_interval

Type
integer

Default
180

When conductors join or leave the cluster, existing conductors may need to update any persistent
local state as nodes are moved around the cluster. This option controls how often, in seconds, each
conductor will check for nodes that it should take over. Set it to 0 (or a negative value) to disable
the check entirely.

configdrive_swift_container

Type
string

Default
ironic_configdrive_container

Name of the Swift container to store config drive data. Used when configdrive_use_object_store
is True.

configdrive_swift_temp_url_duration

Type
integer

Default
<None>

Minimum Value
60

The timeout (in seconds) after which a configdrive temporary URL becomes invalid. De-
faults to deploy_callback_timeout if it is set, otherwise to 1800 seconds. Used when config-
drive_use_object_store is True.

inspect_wait_timeout

Type
integer

Default
1800

Minimum Value
0

Timeout (seconds) for waiting for node inspection. 0 - unlimited.

automated_clean

Type
boolean

Default
True

496 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

Enables or disables automated cleaning. Automated cleaning is a configurable set of steps, such as
erasing disk drives, that are performed on the node to ensure it is in a baseline state and ready to be
deployed to. This is done after instance deletion as well as during the transition from a manageable
to available state. When enabled, the particular steps performed to clean a node depend on which
driver that node is managed by; see the individual drivers documentation for details. NOTE: The
introduction of the cleaning operation causes instance deletion to take significantly longer. In an
environment where all tenants are trusted (eg, because there is only one tenant), this option could
be safely disabled.

allow_provisioning_in_maintenance

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Whether to allow nodes to enter or undergo deploy or cleaning when in maintenance mode. If this
option is set to False, and a node enters maintenance during deploy or cleaning, the process will be
aborted after the next heartbeat. Automated cleaning or making a node available will also fail. If
True (the default), the process will begin and will pause after the node starts heartbeating. Moving
it from maintenance will make the process continue.

clean_callback_timeout

Type
integer

Default
1800

Minimum Value
0

Timeout (seconds) to wait for a callback from the ramdisk doing the cleaning. If the timeout is
reached the node will be put in the clean failed provision state. Set to 0 to disable timeout.

rescue_callback_timeout

Type
integer

Default
1800

Minimum Value
0

Timeout (seconds) to wait for a callback from the rescue ramdisk. If the timeout is reached the
node will be put in the rescue failed provision state. Set to 0 to disable timeout.

soft_power_off_timeout

4.5. Configuration Reference for Ironic 497

Ironic Documentation, Release 26.1.2.dev21

Type
integer

Default
600

Minimum Value
1

Mutable
This option can be changed without restarting.

Timeout (in seconds) of soft reboot and soft power off operation. This value always has to be
positive.

power_state_change_timeout

Type
integer

Default
60

Minimum Value
2

Mutable
This option can be changed without restarting.

Number of seconds to wait for power operations to complete, i.e., so that a baremetal node is in
the desired power state. If timed out, the power operation is considered a failure.

power_failure_recovery_interval

Type
integer

Default
300

Minimum Value
0

Interval (in seconds) between checking the power state for nodes previously put into maintenance
mode due to power synchronization failure. A node is automatically moved out of maintenance
mode once its power state is retrieved successfully. Set to 0 to disable this check.

conductor_group

Type
string

Default
''

Name of the conductor group to join. Can be up to 255 characters and is case insensitive. This
conductor will only manage nodes with a matching conductor_group field set on the node.

allow_deleting_available_nodes

498 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Allow deleting nodes which are in state available. Defaults to True.

enable_mdns

Type
boolean

Default
False

Whether to enable publishing the baremetal API endpoint via multicast DNS.

deploy_kernel

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Glance ID, http:// or file:// URL of the kernel of the default deploy image.

deploy_ramdisk

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Glance ID, http:// or file:// URL of the initramfs of the default deploy image.

deploy_kernel_by_arch

Type
dict

Default
{}

Mutable
This option can be changed without restarting.

A dictionary of key-value pairs of each architecture with the Glance ID, http:// or file:// URL of
the kernel of the default deploy image.

4.5. Configuration Reference for Ironic 499

http://
file://
http://
file://
http://
file://

Ironic Documentation, Release 26.1.2.dev21

deploy_ramdisk_by_arch

Type
dict

Default
{}

Mutable
This option can be changed without restarting.

A dictionary of key-value pairs of each architecture with the Glance ID, http:// or file:// URL of
the initramfs of the default deploy image.

rescue_kernel

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Glance ID, http:// or file:// URL of the kernel of the default rescue image.

rescue_ramdisk

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Glance ID, http:// or file:// URL of the initramfs of the default rescue image.

rescue_kernel_by_arch

Type
dict

Default
{}

Mutable
This option can be changed without restarting.

A dictionary of key-value pairs of each architecture with the Glance ID, http:// or file:// URL of
the kernel of the default rescue image.

rescue_ramdisk_by_arch

Type
dict

Default
{}

500 Chapter 4. Administrator Guide

http://
file://
http://
file://
http://
file://
http://
file://

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

A dictionary of key-value pairs of each architecture with the Glance ID, http:// or file:// URL of
the initramfs of the default rescue image.

rescue_password_hash_algorithm

Type
string

Default
sha256

Valid Values
sha256, sha512

Mutable
This option can be changed without restarting.

Password hash algorithm to be used for the rescue password.

require_rescue_password_hashed

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Option to cause the conductor to not fallback to an un-hashed version of the rescue password,
permitting rescue with older ironic-python-agent ramdisks.

bootloader

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Glance ID, http:// or file:// URL of the EFI system partition image containing EFI boot loader.
This image will be used by ironic when building UEFI-bootable ISO out of kernel and ramdisk.
Required for UEFI boot from partition images.

clean_step_priority_override

Type
unknown type

Default
{}

Priority to run automated clean steps for both in-band and out of band clean steps, provided in
interface.step_name:priority format, e.g. deploy.erase_devices_metadata:123. The option can be

4.5. Configuration Reference for Ironic 501

http://
file://
http://
file://

Ironic Documentation, Release 26.1.2.dev21

specified multiple times to define priorities for multiple steps. If set to 0, this specific step will not
run during cleaning. If unset for an inband clean step, will use the priority set in the ramdisk.

node_history

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Boolean value, default True, if node event history is to be recorded. Errors and other noteworthy
events in relation to a node are journaled to a database table which incurs some additional load. A
periodic task does periodically remove entries from the database. Please note, if this is disabled, the
conductor will continue to purge entries as long as [conductor]node_history_cleanup_batch_count
is not 0.

node_history_max_entries

Type
integer

Default
300

Minimum Value
0

Mutable
This option can be changed without restarting.

Maximum number of history entries which will be stored in the database per node. De-
fault is 300. This setting excludes the minimum number of days retained using the [conduc-
tor]node_history_minimum_days setting.

node_history_cleanup_interval

Type
integer

Default
86400

Minimum Value
0

Interval in seconds at which node history entries can be cleaned up in the database. Setting to 0
disables the periodic task. Defaults to once a day, or 86400 seconds.

node_history_cleanup_batch_count

Type
integer

Default
1000

502 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Minimum Value
0

The target number of node history records to purge from the database when performing clean-up.
Deletes are performed by node, and a node with excess records for a node will still be deleted.
Defaults to 1000. Operators who find node history building up may wish to lower this threshold
and decrease the time between cleanup operations using the node_history_cleanup_interval
setting.

node_history_minimum_days

Type
integer

Default
0

Minimum Value
0

Mutable
This option can be changed without restarting.

The minimum number of days to explicitly keep on hand in the database history entries for nodes.
This is exclusive from the [conductor]node_history_max_entries setting as users of this setting are
anticipated to need to retain history by policy.

verify_step_priority_override

Type
unknown type

Default
{}

Mutable
This option can be changed without restarting.

Priority to run automated verify steps provided in interface.step_name:priority format,e.g. man-
agement.clear_job_queue:123. The option can be specified multiple times to define priorities for
multiple steps. If set to 0, this specific step will not run during verification.

automatic_lessee

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Deprecated. If Ironic should set the node.lessee field at deployment. Use [conduc-
tor]/automatic_lessee_source instead.

4.5. Configuration Reference for Ironic 503

Ironic Documentation, Release 26.1.2.dev21

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

automatic_lessee_source

Type
string

Default
instance

Valid Values
instance, request, none

Mutable
This option can be changed without restarting.

Source for Project ID the Ironic should record at deployment time in node.lessee field. If set to
none, Ironic will not set a lessee field. If set to instance (default), uses Project ID indicated in
instance metadata set by Nova or another external deployment service. If set to keystone, Ironic
uses Project ID indicated by Keystone context.

Possible values

instance
Populates node.lessee field using metadata from node.instance_info[project_id] at deploy-
ment time. Useful for Nova-fronted deployments.

request
Populates node.lessee field using metadata from request context. Only useful for direct de-
ployment requests to Ironic; not those proxied via an external service like Nova.

none
Ironic will not populate the node.lessee field.

max_concurrent_deploy

Type
integer

Default
250

Minimum Value
1

Mutable
This option can be changed without restarting.

The maximum number of concurrent nodes in deployment which are permitted in this Ironic sys-
tem. If this limit is reached, new requests will be rejected until the number of deployments in
progress is lower than this maximum. As this is a security mechanism requests are not queued,
and this setting is a global setting applying to all requests this conductor receives, regardless of
access rights. The concurrent deployment limit cannot be disabled.

504 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

max_concurrent_clean

Type
integer

Default
50

Minimum Value
1

Mutable
This option can be changed without restarting.

The maximum number of concurrent nodes in cleaning which are permitted in this Ironic system.
If this limit is reached, new requests will be rejected until the number of nodes in cleaning is lower
than this maximum. As this is a security mechanism requests are not queued, and this setting is
a global setting applying to all requests this conductor receives, regardless of access rights. The
concurrent clean limit cannot be disabled.

poweroff_in_cleanfail

Type
boolean

Default
False

If True power off nodes in the clean failed state. Default False. Option may be unsafe when
using Cleaning to perform hardware-transformative actions such as firmware upgrade.

poweroff_in_servicefail

Type
boolean

Default
False

If True power off nodes in the service failed state. Default False. Option may be unsafe when
using service to perform hardware-transformative actions such as firmware upgrade.

permit_child_node_step_async_result

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

This option allows child node steps to not error if the resulting step execution returned a wait state.
Under normal conditions, child nodes are not expected to request a wait state. This option exists
for operators to use if needed to perform specific tasks where this is known acceptable. Use at
yourown risk!

4.5. Configuration Reference for Ironic 505

Ironic Documentation, Release 26.1.2.dev21

max_conductor_wait_step_seconds

Type
integer

Default
30

Minimum Value
0

Maximum Value
1800

Mutable
This option can be changed without restarting.

The maximum number of seconds which a step can be requested to explicitly sleep or wait. This
value should be changed sparingly as it holds a conductor thread and if used across many nodes
at once can exhaust a conductors resources. Thiscapability has a hard coded maximum wait of
1800 seconds, or 30 minutes. If you need to wait longer than the maximum value, we recommend
exploring hold steps.

disallowed_deployment_boot_modes

Type
list

Default
[]

Mutable
This option can be changed without restarting.

Specifies a list of boot modes that are not allowed during deployment. Eg: [bios]

disable_deep_image_inspection

Type
boolean

Default
False

Security Option to permit an operator to disable file content inspections. Under normal conditions,
the conductor will inspect requested image contents which are transferred through the conductor.
Disabling this option is not advisable and opens the risk of unsafe images being processed which
may allow an attacker to leverage unsafe features in various disk image formats to perform a variety
of unsafe and potentially compromising actions. This option is not mutable, and requires a service
restart to change.

conductor_always_validates_images

Type
boolean

Default
False

506 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Security Option to enable the conductor to always inspect the image content of any requested
deploy, even if the deployment would have normally bypassed the conductors cache. When this is
set to False, the Ironic-Python-Agent is responsible for any necessary image checks. Setting this
to True will result in a higher utilization of resources (disk space, network traffic) as the conductor
will evaluate all images. This option is not mutable, and requires a service restart to change. This
option requires [conductor]disable_deep_image_inspection to be set to False.

permitted_image_formats

Type
list

Default
['raw', 'qcow2', 'iso']

Mutable
This option can be changed without restarting.

The supported list of image formats which are permitted for deployment with Ironic. If an image
format outside of this list is detected, the image validation logic will fail the deployment process.

disable_file_checksum

Type
boolean

Default
False

Deprecated Security option: In the default case, image files have their checksums verified before
undergoing additional conductor side actions such as image conversion. Enabling this option opens
the risk of files being replaced at the source without the users knowledge.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

disable_support_for_checksum_files

Type
boolean

Default
False

Security option: By default Ironic will attempt to retrieve a remote checksum file via HTTP(S)
URL in order to validate an image download. This is functionality aligning with ironic-python-
agent support for standalone users. Disabling this functionality by setting this option to True will
create a more secure environment, however it may break users in an unexpected fashion.

4.5. Configuration Reference for Ironic 507

Ironic Documentation, Release 26.1.2.dev21

console

terminal

Type
string

Default
shellinaboxd

Path to serial console terminal program. Used only by Shell In A Box console.

terminal_cert_dir

Type
string

Default
<None>

Directory containing the terminal SSL cert (PEM) for serial console access. Used only by Shell In
A Box console.

terminal_pid_dir

Type
string

Default
<None>

Directory for holding terminal pid files. If not specified, the temporary directory will be used.

terminal_timeout

Type
integer

Default
600

Minimum Value
0

Timeout (in seconds) for the terminal session to be closed on inactivity. Set to 0 to disable timeout.
Used only by Socat console.

subprocess_checking_interval

Type
integer

Default
1

Time interval (in seconds) for checking the status of console subprocess.

subprocess_timeout

Type
integer

508 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
10

Time (in seconds) to wait for the console subprocess to start.

kill_timeout

Type
integer

Default
1

Time (in seconds) to wait for the console subprocess to exit before sending SIGKILL signal.

socat_address

Type
ip address

Default
$my_ip

IP address of Socat service running on the host of ironic conductor. Used only by Socat console.

port_range

Type
string

Default
10000:20000

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

A range of ports available to be used for the console proxy service running on the host of ironic
conductor, in the form of <start>:<stop>. This option is used by both Shellinabox and Socat console

cors

allowed_origin

Type
list

Default
<None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials

Type
boolean

Default
True

4.5. Configuration Reference for Ironic 509

https://horizon.example.com
https://horizon.example.com

Ironic Documentation, Release 26.1.2.dev21

Indicate that the actual request can include user credentials

expose_headers

Type
list

Default
[]

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.

max_age

Type
integer

Default
3600

Maximum cache age of CORS preflight requests.

allow_methods

Type
list

Default
['OPTIONS', 'GET', 'HEAD', 'POST', 'PUT', 'DELETE', 'TRACE',
'PATCH']

Indicate which methods can be used during the actual request.

allow_headers

Type
list

Default
[]

Indicate which header field names may be used during the actual request.

database

sqlite_synchronous

Type
boolean

Default
True

If True, SQLite uses synchronous mode.

backend

Type
string

510 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
sqlalchemy

The back end to use for the database.

connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the database.

slave_connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the slave database.

mysql_sql_mode

Type
string

Default
TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_wsrep_sync_wait

Type
integer

Default
<None>

For Galera only, configure wsrep_sync_wait causality checks on new connections. Default is None,
meaning dont configure any setting.

connection_recycle_time

Type
integer

Default
3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

4.5. Configuration Reference for Ironic 511

Ironic Documentation, Release 26.1.2.dev21

max_pool_size

Type
integer

Default
5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type
integer

Default
10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

retry_interval

Type
integer

Default
10

Interval between retries of opening a SQL connection.

max_overflow

Type
integer

Default
50

If set, use this value for max_overflow with SQLAlchemy.

connection_debug

Type
integer

Default
0

Minimum Value
0

Maximum Value
100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type
boolean

512 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
False

Add Python stack traces to SQL as comment strings.

pool_timeout

Type
integer

Default
<None>

If set, use this value for pool_timeout with SQLAlchemy.

use_db_reconnect

Type
boolean

Default
False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type
integer

Default
1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type
boolean

Default
True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type
integer

Default
10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type
integer

Default
20

4.5. Configuration Reference for Ironic 513

Ironic Documentation, Release 26.1.2.dev21

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type
string

Default
''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

mysql_engine

Type
string

Default
InnoDB

MySQL engine to use.

sqlite_retries

Type
boolean

Default
True

If SQLite database operation retry logic is enabled or not. Enabled by default.

sqlite_max_wait_for_retry

Type
integer

Default
10

Maximum number of seconds to retry SQLite database locks, after which the original exception
will be returned to the caller. This does not presently apply to internal node lock release actions
and DB actions centered around the completion of tasks.

deploy

http_url

Type
URI

Default
<None>

ironic-conductor nodes HTTP server URL. Example: http://192.1.2.3:8080

514 Chapter 4. Administrator Guide

http://192.1.2.3:8080

Ironic Documentation, Release 26.1.2.dev21

http_root

Type
string

Default
/httpboot

ironic-conductor nodes HTTP root path.

image_server_auth_strategy

Type
string

Default
noauth

Valid Values
noauth, http_basic

Mutable
This option can be changed without restarting.

Used to select authentication strategy against the image hosting HTTP(S) server. When set to
http_basic it enables HTTP(S) Basic Authentication. Exception is thrown in case of missing cre-
dentials. When this option has a valid value such as http_basic, the same single set of credentials
will be used against all user-image sources! Currently only the http_basic option has any function-
ality.

Possible values

noauth
No authentication

http_basic
HTTP Basic authentication

image_server_user

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Can be used by any authentication strategy that requires username credential. Currently utilized
by the http_basic authentication strategy.

image_server_password

Type
string

4.5. Configuration Reference for Ironic 515

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Mutable
This option can be changed without restarting.

Can be used by any authentication strategy that requires password credential. Currently utilized
by the http_basic authentication strategy.

external_http_url

Type
URI

Default
<None>

URL of the ironic-conductor nodes HTTP server for boot methods such as virtual media, where
images could be served outside of the provisioning network. Does not apply when Swift is used.
Defaults to http_url.

external_callback_url

Type
URI

Default
<None>

Agent callback URL of the bare metal API for boot methods such as virtual media, where im-
ages could be served outside of the provisioning network. Defaults to the configuration from [ser-
vice_catalog].

enable_ata_secure_erase

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Whether to support the use of ATA Secure Erase during the cleaning process. Defaults to True.

enable_nvme_secure_erase

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Whether to support the use of NVMe Secure Erase during the cleaning process. Currently nvme-
cli format command is supported with user-data and crypto modes, depending on device capabili-
ties.Defaults to True.

516 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

erase_devices_priority

Type
integer

Default
<None>

Mutable
This option can be changed without restarting.

Priority to run in-band erase devices via the Ironic Python Agent ramdisk. If unset, will use the
priority set in the ramdisk (defaults to 10 for the GenericHardwareManager). If set to 0, will not
run during cleaning.

erase_devices_metadata_priority

Type
integer

Default
<None>

Mutable
This option can be changed without restarting.

Priority to run in-band clean step that erases metadata from devices, via the Ironic Python Agent
ramdisk. If unset, will use the priority set in the ramdisk (defaults to 99 for the GenericHardware-
Manager). If set to 0, will not run during cleaning.

delete_configuration_priority

Type
integer

Default
<None>

Mutable
This option can be changed without restarting.

Priority to run in-band clean step that erases RAID configuration from devices, via the Ironic
Python Agent ramdisk. If unset, will use the priority set in the ramdisk (defaults to 0 for the
GenericHardwareManager). If set to 0, will not run during cleaning.

create_configuration_priority

Type
integer

Default
<None>

Mutable
This option can be changed without restarting.

Priority to run in-band clean step that creates RAID configuration from devices, via the Ironic
Python Agent ramdisk. If unset, will use the priority set in the ramdisk (defaults to 0 for the
GenericHardwareManager). If set to 0, will not run during cleaning.

4.5. Configuration Reference for Ironic 517

Ironic Documentation, Release 26.1.2.dev21

shred_random_overwrite_iterations

Type
integer

Default
1

Minimum Value
0

Mutable
This option can be changed without restarting.

During shred, overwrite all block devices N times with random data. This is only used if a device
could not be ATA Secure Erased. Defaults to 1.

shred_final_overwrite_with_zeros

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Whether to write zeros to a nodes block devices after writing random data. This will write zeros
to the device even when deploy.shred_random_overwrite_iterations is 0. This option is only used
if a device could not be ATA Secure Erased. Defaults to True.

continue_if_disk_secure_erase_fails

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Defines what to do if a secure erase operation (NVMe or ATA) fails during cleaning in the Ironic
Python Agent. If False, the cleaning operation will fail and the node will be put in clean failed
state. If True, shred will be invoked and cleaning will continue.

disk_erasure_concurrency

Type
integer

Default
4

Minimum Value
1

Mutable
This option can be changed without restarting.

518 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Defines the target pool size used by Ironic Python Agent ramdisk to erase disk devices. The number
of threads created to erase disks will not exceed this value or the number of disks to be erased.

power_off_after_deploy_failure

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Whether to power off a node after deploy failure. Defaults to True.

default_boot_mode

Type
string

Default
uefi

Valid Values
uefi, bios

Mutable
This option can be changed without restarting.

Default boot mode to use when no boot mode is requested in nodes driver_info, capabilities or in
the instance_info configuration. Currently the default boot mode is uefi, but it was bios previously
in Ironic. It is recommended to set an explicit value for this option, and if the setting or default
differs from nodes, to ensure that nodes are configured specifically for their desired boot mode.

Possible values

uefi
UEFI boot mode

bios
Legacy BIOS boot mode

configdrive_use_object_store

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Whether to upload the config drive to object store. Set this option to True to store config drive in
a swift endpoint.

4.5. Configuration Reference for Ironic 519

Ironic Documentation, Release 26.1.2.dev21

Table 31: Deprecated Variations

Group Name
conductor configdrive_use_swift

http_image_subdir

Type
string

Default
agent_images

The name of subdirectory under ironic-conductor nodes HTTP root path which is used to place
instance images for the direct deploy interface, when local HTTP service is incorporated to provide
instance image instead of swift tempurls.

fast_track

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Whether to allow deployment agents to perform lookup, heartbeat operations during initial states
of a machine lifecycle and by-pass the normal setup procedures for a ramdisk. This feature also
enables power operations which are part of deployment processes to be bypassed if the ramdisk
has performed a heartbeat operation using the fast_track_timeout setting.

fast_track_timeout

Type
integer

Default
300

Minimum Value
0

Maximum Value
300

Mutable
This option can be changed without restarting.

Seconds for which the last heartbeat event is to be considered valid for the purpose of a fast track
sequence. This setting should generally be less than the number of seconds for Power-On Self Test
and typical ramdisk start-up. This value should not exceed the [api]ramdisk_heartbeat_timeout
setting.

erase_skip_read_only

520 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

If the ironic-python-agent should skip read-only devices when running the erase_devices clean step
where block devices are zeroed out. This requires ironic-python-agent 6.0.0 or greater. By default
a read-only device will cause non-metadata based cleaning operations to fail due to the possible
operational security risk of data being retained between deployments of the bare metal node.

ramdisk_image_download_source

Type
string

Default
local

Valid Values
http, local, swift

Mutable
This option can be changed without restarting.

Specifies whether a boot iso image should be served from its own original location using the image
source url directly, or if ironic should cache the image on the conductor and serve it from ironics
own http server.

Possible values

http
In case the ramdisk is already a bootable iso, using this option it will be directly provided by
an external HTTP service using its full url.

local
This is the default behavior. The image is downloaded, prepared and cached locally, to be
served from the conductor.

swift
Same as http, but if the image is a Glance UUID, it is exposed via a Swift temporary URL.

iso_master_path

Type
string

Default
/var/lib/ironic/master_iso_images

On the ironic-conductor node, directory where master ISO images are stored on disk. Setting to
the empty string disables image caching.

4.5. Configuration Reference for Ironic 521

Ironic Documentation, Release 26.1.2.dev21

iso_cache_size

Type
integer

Default
20480

Maximum size (in MiB) of cache for master ISO images, including those in use.

iso_cache_ttl

Type
integer

Default
10080

Maximum TTL (in minutes) for old master ISO images in cache.

dhcp

dhcp_provider

Type
string

Default
neutron

DHCP provider to use. neutron uses Neutron, dnsmasq uses the Dnsmasq provider, and none uses
a no-op provider.

disk_partitioner

check_device_interval

Type
integer

Default
1

After Ironic has completed creating the partition table, it continues to check for activity on the
attached iSCSI device status at this interval prior to copying the image to the node, in seconds

check_device_max_retries

Type
integer

Default
20

The maximum number of times to check that the device is not accessed by another process. If the
device is still busy after that, the disk partitioning will be treated as having failed.

522 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

disk_utils

image_convert_memory_limit

Type
integer

Default
2048

Memory limit for qemu-img convert in MiB. Implemented via the address space resource limit.

image_convert_attempts

Type
integer

Default
3

Number of attempts to convert an image.

efi_system_partition_size

Type
integer

Default
550

Size of EFI system partition in MiB when configuring UEFI systems for local boot. A common
minimum is ~200 megabytes, however OS driven firmware updates and unikernel usage generally
requires more space on the efi partition.

bios_boot_partition_size

Type
integer

Default
1

Size of BIOS Boot partition in MiB when configuring GPT partitioned systems for local boot in
BIOS.

dd_block_size

Type
string

Default
1M

Block size to use when writing to the nodes disk.

partition_detection_attempts

Type
integer

4.5. Configuration Reference for Ironic 523

Ironic Documentation, Release 26.1.2.dev21

Default
3

Minimum Value
1

Maximum attempts to detect a newly created partition.

partprobe_attempts

Type
integer

Default
10

Maximum number of attempts to try to read the partition.

image_convert_memory_limit

Type
integer

Default
2048

Memory limit for qemu-img convert in MiB. Implemented via the address space resource limit.

image_convert_attempts

Type
integer

Default
3

Number of attempts to convert an image.

drac

query_raid_config_job_status_interval

Type
integer

Default
120

Minimum Value
1

Interval (in seconds) between periodic RAID job status checks to determine whether the asyn-
chronous RAID configuration was successfully finished or not.

boot_device_job_status_timeout

Type
integer

524 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
30

Minimum Value
1

Maximum amount of time (in seconds) to wait for the boot device configuration job to transition
to the correct state to allow a reboot or power on to complete.

config_job_max_retries

Type
integer

Default
240

Minimum Value
1

Maximum number of retries for the configuration job to complete successfully.

query_import_config_job_status_interval

Type
integer

Default
60

Minimum Value
0

Number of seconds to wait between checking for completed import configuration task

bios_factory_reset_timeout

Type
integer

Default
600

Minimum Value
1

Maximum time (in seconds) to wait for factory reset of BIOS settings to complete.

raid_job_timeout

Type
integer

Default
300

Minimum Value
1

Maximum time (in seconds) to wait for RAID job to complete

4.5. Configuration Reference for Ironic 525

Ironic Documentation, Release 26.1.2.dev21

glance

allowed_direct_url_schemes

Type
list

Default
[]

A list of URL schemes that can be downloaded directly via the direct_url. Currently supported
schemes: [file].

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 32: Deprecated Variations

Group Name
glance auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

526 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

4.5. Configuration Reference for Ironic 527

Ironic Documentation, Release 26.1.2.dev21

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

528 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

num_retries

Type
integer

Default
0

Mutable
This option can be changed without restarting.

Number of retries when downloading an image from glance.

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

4.5. Configuration Reference for Ironic 529

Ironic Documentation, Release 26.1.2.dev21

Table 33: Deprecated Variations

Group Name
glance tenant-id
glance tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 34: Deprecated Variations

Group Name
glance tenant-name
glance tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

530 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
image

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

swift_account

Type
string

Default
<None>

The account that Glance uses to communicate with Swift. The format is AUTH_uuid. uuid is
the UUID for the account configured in the glance-api.conf. For example: AUTH_a422b2-91f3-
2f46-74b7-d7c9e8958f5d30. If not set, the default value is calculated based on the ID of the
project used to access Swift (as set in the [swift] section). Swift temporary URL format: end-
point_url/api_version/account/container/object_id

swift_account_prefix

Type
string

Default
AUTH

The prefix added to the project uuid to determine the swift account.

4.5. Configuration Reference for Ironic 531

Ironic Documentation, Release 26.1.2.dev21

swift_api_version

Type
string

Default
v1

The Swift API version to create a temporary URL for. Defaults to v1. Swift temporary URL
format: endpoint_url/api_version/account/container/object_id

swift_container

Type
string

Default
glance

The Swift container Glance is configured to store its images in. Defaults to
glance, which is the default in glance-api.conf. Swift temporary URL format: end-
point_url/api_version/account/container/object_id

swift_endpoint_url

Type
URI

Default
<None>

The endpoint (scheme, hostname, optional port) for the Swift URL of the form end-
point_url/api_version/account/container/object_id. Do not include trailing /. For example, use
https://swift.example.com. If using RADOS Gateway, endpoint may also contain /swift path; if it
does not, it will be appended. Used for temporary URLs, will be fetched from the service catalog,
if not provided.

swift_store_multiple_containers_seed

Type
integer

Default
0

This should match a config by the same name in the Glance configuration file. When set to 0, a
single-tenant store will only use one container to store all images. When set to an integer value
between 1 and 32, a single-tenant store will use multiple containers to store images, and this value
will determine how many containers are created.

swift_temp_url_cache_enabled

Type
boolean

Default
False

Whether to cache generated Swift temporary URLs. Setting it to true is only useful when an image
caching proxy is used. Defaults to False.

532 Chapter 4. Administrator Guide

https://swift.example.com

Ironic Documentation, Release 26.1.2.dev21

swift_temp_url_duration

Type
integer

Default
1200

The length of time in seconds that the temporary URL will be valid for. Defaults to 20 min-
utes. If some deploys get a 401 response code when trying to download from the tempo-
rary URL, try raising this duration. This value must be greater than or equal to the value for
swift_temp_url_expected_download_start_delay

swift_temp_url_expected_download_start_delay

Type
integer

Default
0

Minimum Value
0

This is the delay (in seconds) from the time of the deploy request (when the Swift temporary URL is
generated) to when the IPA ramdisk starts up and URL is used for the image download. This value
is used to check if the Swift temporary URL duration is large enough to let the image download
begin. Also if temporary URL caching is enabled this will determine if a cached entry will still be
valid when the download starts. swift_temp_url_duration value must be greater than or equal to
this options value. Defaults to 0.

swift_temp_url_key

Type
string

Default
<None>

The secret token given to Swift to allow temporary URL downloads. Required for temporary
URLs. For the Swift backend, the key on the service project (as set in the [swift] section) is used
by default.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

4.5. Configuration Reference for Ironic 533

Ironic Documentation, Release 26.1.2.dev21

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

534 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

username

Type
unknown type

Default
<None>

Username

Table 35: Deprecated Variations

Group Name
glance user-name
glance user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

healthcheck

enabled

Type
boolean

Default
False

Enable the health check endpoint at /healthcheck. Note that this is unauthenticated. More in-
formation is available at https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_
plugins.html.

path

Type
string

4.5. Configuration Reference for Ironic 535

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html
https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html

Ironic Documentation, Release 26.1.2.dev21

Default
/healthcheck

The path to respond to healtcheck requests on.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

detailed

Type
boolean

Default
False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends

Type
list

Default
[]

Additional backends that can perform health checks and report that information back as part of a
request.

allowed_source_ranges

Type
list

Default
[]

A list of network addresses to limit source ip allowed to access healthcheck information. Any
request from ip outside of these network addresses are ignored.

ignore_proxied_requests

Type
boolean

Default
False

Ignore requests with proxy headers.

disable_by_file_path

Type
string

536 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths

Type
list

Default
[]

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

enable_by_file_paths

Type
list

Default
[]

Check the presence of files. Used by EnableByFilesHealthcheck plugin.

ilo

client_timeout

Type
integer

Default
60

Timeout (in seconds) for iLO operations

client_port

Type
port number

Default
443

Minimum Value
0

Maximum Value
65535

Port to be used for iLO operations

swift_ilo_container

Type
string

4.5. Configuration Reference for Ironic 537

Ironic Documentation, Release 26.1.2.dev21

Default
ironic_ilo_container

The Swift iLO container to store data.

swift_object_expiry_timeout

Type
integer

Default
900

Amount of time in seconds for Swift objects to auto-expire.

use_web_server_for_images

Type
boolean

Default
False

Set this to True to use http web server to host floppy images and generated boot ISO. This requires
http_root and http_url to be configured in the [deploy] section of the config file. If this is set to
False, then Ironic will use Swift to host the floppy images and generated boot_iso.

clean_priority_reset_ilo

Type
integer

Default
0

Priority for reset_ilo clean step.

clean_priority_reset_bios_to_default

Type
integer

Default
10

Priority for reset_bios_to_default clean step.

clean_priority_reset_secure_boot_keys_to_default

Type
integer

Default
20

Priority for reset_secure_boot_keys clean step. This step will reset the secure boot keys to manu-
facturing defaults.

clean_priority_clear_secure_boot_keys

Type
integer

538 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
0

Priority for clear_secure_boot_keys clean step. This step is not enabled by default. It can be
enabled to clear all secure boot keys enrolled with iLO.

clean_priority_reset_ilo_credential

Type
integer

Default
30

Priority for reset_ilo_credential clean step. This step requires ilo_change_password parameter to
be updated in nodess driver_info with the new password.

power_wait

Type
integer

Default
2

Amount of time in seconds to wait in between power operations

oob_erase_devices_job_status_interval

Type
integer

Default
300

Minimum Value
10

Interval (in seconds) between periodic erase-devices status checks to determine whether the asyn-
chronous out-of-band erase-devices was successfully finished or not. On an average, a 300GB
HDD with default pattern overwrite would take approximately 9 hours and 300GB SSD with de-
fault pattern block would take approx. 30 seconds to complete sanitize disk erase.

ca_file

Type
string

Default
<None>

CA certificate file to validate iLO.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Its being replaced by new configuration parameter verify_ca.

4.5. Configuration Reference for Ironic 539

Ironic Documentation, Release 26.1.2.dev21

verify_ca

Type
string

Default
True

CA certificate to validate iLO. This can be either a Boolean value, a path to a CA_BUNDLE file or
directory with certificates of trusted CAs. If set to True the driver will verify the host certificates;
if False the driver will ignore verifying the SSL certificate. If its a path the driver will use the
specified certificate or one of the certificates in the directory. Defaults to True.

default_boot_mode

Type
string

Default
auto

Valid Values
auto, bios, uefi

Default boot mode to be used in provisioning when boot_mode capability is not provided in the
properties/capabilities of the node. The default is auto for backward compatibility. When auto is
specified, default boot mode will be selected based on boot mode settings on the system.

Possible values

auto
based on boot mode settings on the system

bios
BIOS boot mode

uefi
UEFI boot mode

file_permission

Type
integer

Default
420

File permission for swift-less image hosting with the octal permission representation of file access
permissions. This setting defaults to 644, or as the octal number 0o644 in Python. This setting
must be set to the octal number representation, meaning starting with 0o.

kernel_append_params

Type
string

Default
nofb vga=normal

540 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

Additional kernel parameters to pass down to the instance kernel. These parameters can be con-
sumed by the kernel or by the applications by reading /proc/cmdline. Mind severe cmdline size
limit! Can be overridden by instance_info/kernel_append_params property.

cert_path

Type
string

Default
/var/lib/ironic/ilo/

On the ironic-conductor node, directory where ilo driver stores the CSR and the cert.

inspector

add_ports

Type
string

Default
pxe

Valid Values
all, active, pxe, disabled

Which MAC addresses to add as ports during inspection.

Possible values

all
all MAC addresses

active
MAC addresses of NICs with IP addresses

pxe
only the MAC address of the PXE NIC

disabled
do not create any ports

auth_url

Type
unknown type

Default
<None>

Authentication URL

4.5. Configuration Reference for Ironic 541

Ironic Documentation, Release 26.1.2.dev21

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 36: Deprecated Variations

Group Name
inspector auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

callback_endpoint_override

Type
string

Default
<None>

endpoint to use as a callback for posting back introspection data when boot is managed by ironic.
Standard keystoneauth options are used by default.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

542 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

cpu_capabilities

Type
dict

Default
{'vmx': 'cpu_vt', 'svm': 'cpu_vt', 'aes': 'cpu_aes', 'pse':
'cpu_hugepages', 'pdpe1gb': 'cpu_hugepages_1g', 'smx':
'cpu_txt'}

Mapping between a CPU flag and a node capability to set if this CPU flag is present. This config-
uration option is used by the cpu-capabilities inspection hook.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

default_hooks

Type
string

Default
ramdisk-error,validate-interfaces,ports,architecture

4.5. Configuration Reference for Ironic 543

Ironic Documentation, Release 26.1.2.dev21

A comma-separated lists of inspection hooks that are run by default. In most cases, the operators
will not modify this. The default (somewhat conservative) hooks will raise an exception in case
the ramdisk reports an error, validate interfaces in the inventory, create ports and set the nodes cpu
architecture property.

disk_partitioning_spacing

Type
boolean

Default
True

Whether to leave 1 GiB of disk size untouched for partitioning. Only has effect when used with the
IPA as a ramdisk, for older ramdisk local_gb is calculated on the ramdisk side. This configuration
option is used by the root-device inspection hook.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

extra_hardware_strict

Type
boolean

Default
False

If True, refuse to parse extra data (in plugin_data) if at least one record is too short. Additionally,
remove the incoming data even if parsing failed. This configuration option is used by the extra-
hardware inspection hook.

544 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

extra_kernel_params

Type
string

Default
''

extra kernel parameters to pass to the inspection ramdisk when boot is managed by ironic (not
ironic-inspector). Pairs key=value separated by spaces.

hooks

Type
string

Default
$default_hooks

Comma-separated list of enabled hooks for processing pipeline. The default for this
is $default_hooks. Hooks can be added before or after the defaults like this: pre-
hook,$default_hooks,posthook.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keep_ports

Type
string

Default
all

Valid Values
all, present, added

Which ports (already present on a node) to keep after inspection.

Possible values

all
keep all ports, even ones with MAC addresses that are not present in the inventory

present
keep only ports with MAC addresses present in the inventory

added
keep only ports determined by the add_ports option

4.5. Configuration Reference for Ironic 545

Ironic Documentation, Release 26.1.2.dev21

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

known_accelerators

Type
string

Default
$pybasedir/drivers/modules/inspector/hooks/known_accelerators.
yaml

Path to the file which contains the known accelerator devices, to be used by the accelerators in-
spection hook.

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

pci_device_alias

Type
multi-valued

546 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
''

An alias for a PCI device identified by vendor_id and product_id fields. Format: {vendor_id: 1234,
product_id: 5678, name: pci_dev1}. Use double quotes for the keys and values.

physical_network_cidr_map

Type
list

Default
10.10.10.0/24:physnet_a,2001:db8::/64:physnet_b

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Mapping of IP subnet CIDR to physical network. When the phyical-network inspection hook is
enabled, the physical_network property of corresponding baremetal ports is populated based on
this mapping.

power_off

Type
boolean

Default
True

whether to power off a node after inspection finishes. Ignored for nodes that have fast track mode
enabled.

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

4.5. Configuration Reference for Ironic 547

Ironic Documentation, Release 26.1.2.dev21

Project ID to scope to

Table 37: Deprecated Variations

Group Name
inspector tenant-id
inspector tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 38: Deprecated Variations

Group Name
inspector tenant-name
inspector tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

require_managed_boot

Type
boolean

Default
<None>

require that the in-band inspection boot is fully managed by the nodes boot interface. Set this to
False if your installation has a separate (i)PXE boot environment for node discovery or unmanaged
inspection. You may need to set it to False to inspect nodes that are not supported by boot interfaces
(e.g. because they dont have ports). The default value depends on which inspect interface is used:
inspector uses False, agent - True.

retriable_status_codes

Type
list

Default
<None>

548 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

List of retriable HTTP status codes that should be retried. If not set default to [503]

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
baremetal-introspection

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

status_check_period

Type
integer

Default
60

period (in seconds) to check status of nodes on inspection

4.5. Configuration Reference for Ironic 549

Ironic Documentation, Release 26.1.2.dev21

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

update_pxe_enabled

Type
boolean

Default
True

Whether to update the ports pxe_enabled field according to the inspection data.

550 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 39: Deprecated Variations

Group Name
inspector user-name
inspector user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

4.5. Configuration Reference for Ironic 551

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

inventory

data_backend

Type
string

Default
database

Valid Values
none, database, swift

The storage backend for storing inspection data.

Possible values

none
do not store inspection data

database
store in the service database

swift
store in the Object Storage (swift)

swift_data_container

Type
string

Default
introspection_data_container

The Swift container prefix to store the inspection data (separately inventory and plugin data).

ipmi

command_retry_timeout

Type
integer

Default
60

Mutable
This option can be changed without restarting.

552 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Maximum time in seconds to retry retryable IPMI operations. (An operation is retryable, for ex-
ample, if the requested operation fails because the BMC is busy.) Setting this too high can cause
the sync power state periodic task to hang when there are slow or unresponsive BMCs.

min_command_interval

Type
integer

Default
5

Mutable
This option can be changed without restarting.

Minimum time, in seconds, between IPMI operations sent to a server. There is a risk with some
hardware that setting this too low may cause the BMC to crash. Recommended setting is 5 seconds.

use_ipmitool_retries

Type
boolean

Default
False

When set to True and the parameters are supported by ipmitool, the number of retries and the retry
interval are passed to ipmitool as parameters, and ipmitool will do the retries. When set to False,
ironic will retry the ipmitool commands. Recommended setting is False

kill_on_timeout

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Kill ipmitool process invoked by ironic to read node power state if ipmitool process does not exit
after command_retry_timeout timeout expires. Recommended setting is True. Setting to False
may present an operational issue and will result in unexpected and undesirable behavior.

disable_boot_timeout

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Default timeout behavior whether ironic sends a raw IPMI command to disable the 60 second
timeout for booting. Setting this option to False will NOT send that command, the default value
is True. It may be overridden by per-node ipmi_disable_boot_timeout option in nodes driver_info
field.

4.5. Configuration Reference for Ironic 553

Ironic Documentation, Release 26.1.2.dev21

additional_retryable_ipmi_errors

Type
multi-valued

Default
''

Mutable
This option can be changed without restarting.

Additional errors ipmitool may encounter, specific to the environment it is run in.

debug

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Enables all ipmi commands to be executed with an additional debugging output. This is a separate
option as ipmitool can log a substantial amount of misleading text when in this mode.

store_cred_in_env

Type
boolean

Default
False

Boolean flag to determine IPMI password persistence method. Defaults to False (file-based per-
sistence).

cipher_suite_versions

Type
list

Default
[]

List of possible cipher suites versions that can be supported by the hardware in case the field
cipher_suite is not set for the node.

irmc

remote_image_share_root

Type
string

Default
/remote_image_share_root

Ironic conductor nodes NFS or CIFS root path

554 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

remote_image_server

Type
string

Default
<None>

IP of remote image server

remote_image_share_type

Type
string

Default
CIFS

Valid Values
CIFS, NFS

Share type of virtual media

Possible values

CIFS
CIFS (Common Internet File System) protocol

NFS
NFS (Network File System) protocol

remote_image_share_name

Type
string

Default
share

share name of remote_image_server

remote_image_user_name

Type
string

Default
<None>

User name of remote_image_server

remote_image_user_password

Type
string

Default
<None>

Password of remote_image_user_name

4.5. Configuration Reference for Ironic 555

Ironic Documentation, Release 26.1.2.dev21

remote_image_user_domain

Type
string

Default
''

Domain name of remote_image_user_name

port

Type
port number

Default
443

Minimum Value
0

Maximum Value
65535

Valid Values
443, 80

Port to be used for iRMC operations

Possible values

443
port 443

80
port 80

auth_method

Type
string

Default
basic

Valid Values
basic, digest

Authentication method to be used for iRMC operations

556 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Possible values

basic
Basic authentication

digest
Digest authentication

client_timeout

Type
integer

Default
60

Timeout (in seconds) for iRMC operations

sensor_method

Type
string

Default
ipmitool

Valid Values
ipmitool, scci

Sensor data retrieval method.

Possible values

ipmitool
IPMItool

scci
Fujitsu SCCI (ServerView Common Command Interface)

snmp_version

Type
string

Default
v2c

Valid Values
v1, v2c, v3

SNMP protocol version

4.5. Configuration Reference for Ironic 557

Ironic Documentation, Release 26.1.2.dev21

Possible values

v1
SNMPv1

v2c
SNMPv2c

v3
SNMPv3

snmp_port

Type
port number

Default
161

Minimum Value
0

Maximum Value
65535

SNMP port

snmp_community

Type
string

Default
public

SNMP community. Required for versions v1 and v2c

snmp_security

Type
string

Default
<None>

SNMP security name. Required for version v3.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Use irmc_snmp_user

snmp_polling_interval

Type
integer

558 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
10

SNMP polling interval in seconds

snmp_auth_proto

Type
string

Default
sha

Valid Values
sha, sha256, sha384, sha512

SNMPv3 message authentication protocol ID. Required for version v3. The valid options are sha,
sha256, sha384 and sha512, while sha is the only supported protocol in iRMC S4 and S5, and from
iRMC S6, sha256, sha384 and sha512 are supported, but sha is not supported any more.

Possible values

sha
Secure Hash Algorithm 1, supported in iRMC S4 and S5.

sha256
Secure Hash Algorithm 2 with 256 bits digest, only supported in iRMC S6.

sha384
Secure Hash Algorithm 2 with 384 bits digest, only supported in iRMC S6.

sha512
Secure Hash Algorithm 2 with 512 bits digest, only supported in iRMC S6.

snmp_priv_proto

Type
string

Default
aes

Valid Values
aes

SNMPv3 message privacy (encryption) protocol ID. Required for version v3. aes is supported.

4.5. Configuration Reference for Ironic 559

Ironic Documentation, Release 26.1.2.dev21

Possible values

aes
Advanced Encryption Standard

clean_priority_restore_irmc_bios_config

Type
integer

Default
0

Priority for restore_irmc_bios_config clean step.

gpu_ids

Type
list

Default
[]

List of vendor IDs and device IDs for GPU device to inspect. List items are in format ven-
dorID/deviceID and separated by commas. GPU inspection will use this value to count the number
of GPU device in a node. If this option is not defined, then leave out pci_gpu_devices in capabilities
property. Sample gpu_ids value: 0x1000/0x0079,0x2100/0x0080

fpga_ids

Type
list

Default
[]

List of vendor IDs and device IDs for CPU FPGA to inspect. List items are in format ven-
dorID/deviceID and separated by commas. CPU inspection will use this value to find existence of
CPU FPGA in a node. If this option is not defined, then leave out CUSTOM_CPU_FPGA in node
traits. Sample fpga_ids value: 0x1000/0x0079,0x2100/0x0080

query_raid_config_fgi_status_interval

Type
integer

Default
300

Minimum Value
1

Interval (in seconds) between periodic RAID status checks to determine whether the asynchronous
RAID configuration was successfully finished or not. Foreground Initialization (FGI) will start 5
minutes after creating virtual drives.

kernel_append_params

560 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Type
string

Default
nofb vga=normal

Mutable
This option can be changed without restarting.

Additional kernel parameters to pass down to the instance kernel. These parameters can be con-
sumed by the kernel or by the applications by reading /proc/cmdline. Mind severe cmdline size
limit! Can be overridden by instance_info/kernel_append_params property.

ironic_lib

fatal_exception_format_errors

Type
boolean

Default
False

Used if there is a formatting error when generating an exception message (a programming error).
If True, raise an exception; if False, use the unformatted message.

Table 40: Deprecated Variations

Group Name
DEFAULT fatal_exception_format_errors

root_helper

Type
string

Default
sudo ironic-rootwrap /etc/ironic/rootwrap.conf

Command that is prefixed to commands that are run as root. If not specified, no commands are run
as root.

json_rpc

auth_strategy

Type
string

Default
<None>

Valid Values
noauth, keystone, http_basic

Authentication strategy used by JSON RPC. Defaults to the global auth_strategy setting.

4.5. Configuration Reference for Ironic 561

Ironic Documentation, Release 26.1.2.dev21

Possible values

noauth
no authentication

keystone
use the Identity service for authentication

http_basic
HTTP basic authentication

http_basic_auth_user_file

Type
string

Default
/etc/ironic/htpasswd-json-rpc

Path to Apache format user authentication file used when auth_strategy=http_basic

host_ip

Type
host address

Default
::

The IP address or hostname on which JSON RPC will listen.

port

Type
port number

Default
8089

Minimum Value
0

Maximum Value
65535

The port to use for JSON RPC

use_ssl

Type
boolean

Default
False

Whether to use TLS for JSON RPC

http_basic_username

Type
string

562 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Name of the user to use for HTTP Basic authentication client requests.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Use username instead

http_basic_password

Type
string

Default
<None>

Password to use for HTTP Basic authentication client requests.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Use password instead

allowed_roles

Type
list

Default
['admin']

List of roles allowed to use JSON RPC

unix_socket

Type
string

Default
<None>

Unix socket to listen on. Disables host_ip and port.

unix_socket_mode

Type
unknown type

Default
<None>

File mode (an octal number) of the unix socket to listen on. Ignored if unix_socket is not set.

4.5. Configuration Reference for Ironic 563

Ironic Documentation, Release 26.1.2.dev21

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 41: Deprecated Variations

Group Name
json_rpc auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

default_domain_id

Type
unknown type

564 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

password

Type
unknown type

4.5. Configuration Reference for Ironic 565

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 42: Deprecated Variations

Group Name
json_rpc tenant-id
json_rpc tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 43: Deprecated Variations

Group Name
json_rpc tenant-name
json_rpc tenant_name

566 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

4.5. Configuration Reference for Ironic 567

Ironic Documentation, Release 26.1.2.dev21

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 44: Deprecated Variations

Group Name
json_rpc user-name
json_rpc user_name

keystone_authtoken

www_authenticate_uri

Type
string

Default
<None>

568 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 45: Deprecated Variations

Group Name
keystone_authtoken auth_uri

auth_uri

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning

This option is deprecated for removal since Queens. Its value may be silently ignored in the
future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

auth_version

Type
string

Default
<None>

API version of the Identity API endpoint.

interface

Type
string

Default
internal

4.5. Configuration Reference for Ironic 569

Ironic Documentation, Release 26.1.2.dev21

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type
boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

Default
<None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile

Type
string

Default
<None>

Required if identity server requires client certificate

keyfile

Type
string

Default
<None>

570 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

region_name

Type
string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type
list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 46: Deprecated Variations

Group Name
keystone_authtoken memcache_servers

token_cache_time

Type
integer

Default
300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

4.5. Configuration Reference for Ironic 571

Ironic Documentation, Release 26.1.2.dev21

memcache_security_strategy

Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type
string

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type
integer

Default
3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type
integer

572 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type
integer

Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type
boolean

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.

include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type
string

Default
permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles

Type
list

Default
['service']

4.5. Configuration Reference for Ironic 573

Ironic Documentation, Release 26.1.2.dev21

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type
boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type

Type
string

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 47: Deprecated Variations

Group Name
keystone_authtoken auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

574 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

mdns

registration_attempts

Type
integer

Default
5

Minimum Value
1

Number of attempts to register a service. Currently has to be larger than 1 because of race condi-
tions in the zeroconf library.

lookup_attempts

Type
integer

Default
3

Minimum Value
1

Number of attempts to lookup a service.

params

Type
unknown type

Default
{}

Additional parameters to pass for the registered service.

interfaces

Type
list

Default
<None>

List of IP addresses of interfaces to use for mDNS. Defaults to all interfaces on the system.

metrics

agent_backend

Type
string

Default
noop

Backend for the agent ramdisk to use for metrics. Default possible backends are noop and statsd.

4.5. Configuration Reference for Ironic 575

Ironic Documentation, Release 26.1.2.dev21

agent_prepend_host

Type
boolean

Default
False

Prepend the hostname to all metric names sent by the agent ramdisk. The format of metric names
is [global_prefix.][uuid.][host_name.]prefix.metric_name.

agent_prepend_uuid

Type
boolean

Default
False

Prepend the nodes Ironic uuid to all metric names sent by the agent ramdisk. The format of metric
names is [global_prefix.][uuid.][host_name.]prefix.metric_name.

agent_prepend_host_reverse

Type
boolean

Default
True

Split the prepended host value by . and reverse it for metrics sent by the agent ramdisk (to better
match the reverse hierarchical form of domain names).

agent_global_prefix

Type
string

Default
<None>

Prefix all metric names sent by the agent ramdisk with this value. The format of metric names is
[global_prefix.][uuid.][host_name.]prefix.metric_name.

backend

Type
string

Default
noop

Valid Values
noop, statsd, collector

Backend to use for the metrics system.

576 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Possible values

noop
Do nothing in relation to metrics.

statsd
Transmits metrics data to a statsd backend.

collector
Collects metrics data and saves it in memory for use by the running application.

prepend_host

Type
boolean

Default
False

Prepend the hostname to all metric names. The format of metric names is
[global_prefix.][host_name.]prefix.metric_name.

prepend_host_reverse

Type
boolean

Default
True

Split the prepended host value by . and reverse it (to better match the reverse hierarchical form of
domain names).

global_prefix

Type
string

Default
<None>

Prefix all metric names with this value. By default, there is no global prefix. The format of metric
names is [global_prefix.][host_name.]prefix.metric_name.

metrics_statsd

agent_statsd_host

Type
string

Default
localhost

Host for the agent ramdisk to use with the statsd backend. This must be accessible from networks
the agent is booted on.

4.5. Configuration Reference for Ironic 577

Ironic Documentation, Release 26.1.2.dev21

agent_statsd_port

Type
port number

Default
8125

Minimum Value
0

Maximum Value
65535

Port for the agent ramdisk to use with the statsd backend.

statsd_host

Type
string

Default
localhost

Host for use with the statsd backend.

statsd_port

Type
port number

Default
8125

Minimum Value
0

Maximum Value
65535

Port to use with the statsd backend.

molds

storage

Type
string

Default
swift

Configuration mold storage location. Supports swift and http. By default swift.

user

Type
string

578 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

User for http Basic auth. By default set empty.

password

Type
string

Default
<None>

Password for http Basic auth. By default set empty.

retry_attempts

Type
integer

Default
3

Retry attempts for saving or getting configuration molds.

retry_interval

Type
integer

Default
3

Retry interval for saving or getting configuration molds.

neutron

add_all_ports

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Option to enable transmission of all ports to neutron when creating ports for provisioning, cleaning,
or rescue. This is done without IP addresses assigned to the port, and may be useful in some bonded
network configurations.

auth_url

Type
unknown type

Default
<None>

4.5. Configuration Reference for Ironic 579

Ironic Documentation, Release 26.1.2.dev21

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 48: Deprecated Variations

Group Name
neutron auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

cleaning_network

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Neutron network UUID or name for the ramdisk to be booted into for cleaning nodes. Required for
neutron network interface. It is also required if cleaning nodes when using flat network interface or
neutron DHCP provider. If a name is provided, it must be unique among all networks or cleaning
will fail.

Table 49: Deprecated Variations

Group Name
neutron cleaning_network_uuid

580 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

cleaning_network_security_groups

Type
list

Default
[]

Mutable
This option can be changed without restarting.

List of Neutron Security Group UUIDs to be applied during cleaning of the nodes. Optional for
the neutron network interface and not used for the flat or noop network interfaces. If not specified,
default security group is used.

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

4.5. Configuration Reference for Ironic 581

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

dhcpv6_stateful_address_count

Type
integer

Default
4

Mutable
This option can be changed without restarting.

Number of IPv6 addresses to allocate for ports created for provisioning, cleaning, rescue or in-
spection on DHCPv6-stateful networks. Different stages of the chain-loading process will request
addresses with different CLID/IAID. Due to non-identical identifiers multiple addresses must be
reserved for the host to ensure each step of the boot process can successfully lease addresses.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

582 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Verify HTTPS connections.

inspection_network

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Neutron network UUID or name for the ramdisk to be booted into for in-band inspection of nodes.
If a name is provided, it must be unique among all networks or inspection will fail.

inspection_network_security_groups

Type
list

Default
[]

Mutable
This option can be changed without restarting.

List of Neutron Security Group UUIDs to be applied during the node inspection process. Op-
tional for the neutron network interface and not used for the flat or noop network interfaces. If not
specified, the default security group is used.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

4.5. Configuration Reference for Ironic 583

Ironic Documentation, Release 26.1.2.dev21

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

port_setup_delay

Type
integer

Default
0

Minimum Value
0

Mutable
This option can be changed without restarting.

Delay value to wait for Neutron agents to setup sufficient DHCP configuration for port.

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

584 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Table 50: Deprecated Variations

Group Name
neutron tenant-id
neutron tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 51: Deprecated Variations

Group Name
neutron tenant-name
neutron tenant_name

provisioning_network

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Neutron network UUID or name for the ramdisk to be booted into for provisioning nodes. Required
for neutron network interface. If a name is provided, it must be unique among all networks or
deploy will fail.

Table 52: Deprecated Variations

Group Name
neutron provisioning_network_uuid

provisioning_network_security_groups

Type
list

Default
[]

Mutable
This option can be changed without restarting.

4.5. Configuration Reference for Ironic 585

Ironic Documentation, Release 26.1.2.dev21

List of Neutron Security Group UUIDs to be applied during provisioning of the nodes. Optional for
the neutron network interface and not used for the flat or noop network interfaces. If not specified,
default security group is used.

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

request_timeout

Type
integer

Default
45

Mutable
This option can be changed without restarting.

Timeout for request processing when interacting with Neutron. This value should be increased if
neutron port action timeouts are observed as neutron performs pre-commit validation prior return-
ing to the API client which can take longer than normal client/server interactions.

rescuing_network

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

Neutron network UUID or name for booting the ramdisk for rescue mode. This is not the network
that the rescue ramdisk will use post-boot the tenant network is used for that. Required for neutron
network interface, if rescue mode will be used. It is not used for the flat or noop network interfaces.
If a name is provided, it must be unique among all networks or rescue will fail.

rescuing_network_security_groups

Type
list

Default
[]

Mutable
This option can be changed without restarting.

List of Neutron Security Group UUIDs to be applied during the node rescue process. Optional for
the neutron network interface and not used for the flat or noop network interfaces. If not specified,
the default security group is used.

586 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

retries

Type
integer

Default
3

Mutable
This option can be changed without restarting.

DEPRECATED: Client retries in the case of a failed request.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Replaced by status_code_retries and status_code_retry_delay.

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
network

The default service_type for endpoint URL discovery.

servicing_network

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

4.5. Configuration Reference for Ironic 587

Ironic Documentation, Release 26.1.2.dev21

Neutron network UUID or name for booting the ramdisk for service mode. Required for neutron
network interface, if service mode will be used. It is not used for the flat or noop network interfaces.
If a name is provided, it must be unique among all networks or service will fail.

servicing_network_security_groups

Type
list

Default
[]

Mutable
This option can be changed without restarting.

List of Neutron Security Group UUIDs to be applied during the node service process. Optional for
the neutron network interface and not used for the flat or noop network interfaces. If not specified,
the default security group is used.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

588 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

4.5. Configuration Reference for Ironic 589

Ironic Documentation, Release 26.1.2.dev21

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 53: Deprecated Variations

Group Name
neutron user-name
neutron user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

nova

auth_url

Type
unknown type

Default
<None>

Authentication URL

590 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 54: Deprecated Variations

Group Name
nova auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

4.5. Configuration Reference for Ironic 591

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

592 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

4.5. Configuration Reference for Ironic 593

Ironic Documentation, Release 26.1.2.dev21

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 55: Deprecated Variations

Group Name
nova tenant-id
nova tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 56: Deprecated Variations

Group Name
nova tenant-name
nova tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

594 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

send_power_notifications

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

When set to True, it will enable the support for power state change callbacks to nova. This option
should be set to False in deployments that do not have the openstack compute service.

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
compute

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

4.5. Configuration Reference for Ironic 595

Ironic Documentation, Release 26.1.2.dev21

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

596 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 57: Deprecated Variations

Group Name
nova user-name
nova user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

4.5. Configuration Reference for Ironic 597

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

oslo_concurrency

disable_process_locking

Type
boolean

Default
False

Enables or disables inter-process locks.

lock_path

Type
string

Default
<None>

Directory to use for lock files. For security, the specified directory should only be writable
by the user running the processes that need locking. Defaults to environment variable
OSLO_LOCK_PATH. If external locks are used, a lock path must be set.

oslo_messaging_amqp

container_name

Type
string

Default
<None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 58: Deprecated Variations

Group Name
amqp1 container_name

idle_timeout

Type
integer

Default
0

598 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Timeout for inactive connections (in seconds)

Table 59: Deprecated Variations

Group Name
amqp1 idle_timeout

trace

Type
boolean

Default
False

Debug: dump AMQP frames to stdout

Table 60: Deprecated Variations

Group Name
amqp1 trace

ssl

Type
boolean

Default
False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl_ca_file

Type
string

Default
''

CA certificate PEM file used to verify the servers certificate

Table 61: Deprecated Variations

Group Name
amqp1 ssl_ca_file

ssl_cert_file

Type
string

Default
''

4.5. Configuration Reference for Ironic 599

Ironic Documentation, Release 26.1.2.dev21

Self-identifying certificate PEM file for client authentication

Table 62: Deprecated Variations

Group Name
amqp1 ssl_cert_file

ssl_key_file

Type
string

Default
''

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 63: Deprecated Variations

Group Name
amqp1 ssl_key_file

ssl_key_password

Type
string

Default
<None>

Password for decrypting ssl_key_file (if encrypted)

Table 64: Deprecated Variations

Group Name
amqp1 ssl_key_password

ssl_verify_vhost

Type
boolean

Default
False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

sasl_mechanisms

Type
string

600 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
''

Space separated list of acceptable SASL mechanisms

Table 65: Deprecated Variations

Group Name
amqp1 sasl_mechanisms

sasl_config_dir

Type
string

Default
''

Path to directory that contains the SASL configuration

Table 66: Deprecated Variations

Group Name
amqp1 sasl_config_dir

sasl_config_name

Type
string

Default
''

Name of configuration file (without .conf suffix)

Table 67: Deprecated Variations

Group Name
amqp1 sasl_config_name

sasl_default_realm

Type
string

Default
''

SASL realm to use if no realm present in username

connection_retry_interval

Type
integer

4.5. Configuration Reference for Ironic 601

Ironic Documentation, Release 26.1.2.dev21

Default
1

Minimum Value
1

Seconds to pause before attempting to re-connect.

connection_retry_backoff

Type
integer

Default
2

Minimum Value
0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max

Type
integer

Default
30

Minimum Value
1

Maximum limit for connection_retry_interval + connection_retry_backoff

link_retry_delay

Type
integer

Default
10

Minimum Value
1

Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.

default_reply_retry

Type
integer

Default
0

Minimum Value
-1

The maximum number of attempts to re-send a reply message which failed due to a recoverable
error.

602 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

default_reply_timeout

Type
integer

Default
30

Minimum Value
5

The deadline for an rpc reply message delivery.

default_send_timeout

Type
integer

Default
30

Minimum Value
5

The deadline for an rpc cast or call message delivery. Only used when caller does not provide a
timeout expiry.

default_notify_timeout

Type
integer

Default
30

Minimum Value
5

The deadline for a sent notification message delivery. Only used when caller does not provide a
timeout expiry.

default_sender_link_timeout

Type
integer

Default
600

Minimum Value
1

The duration to schedule a purge of idle sender links. Detach link after expiry.

addressing_mode

Type
string

Default
dynamic

4.5. Configuration Reference for Ironic 603

Ironic Documentation, Release 26.1.2.dev21

Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the message
bus does not support routing otherwise use routable addressing

pseudo_vhost

Type
boolean

Default
True

Enable virtual host support for those message buses that do not natively support virtual hosting
(such as qpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports virtual
hosting using the hostname field in the AMQP 1.0 Open performative as the name of the virtual
host.

server_request_prefix

Type
string

Default
exclusive

address prefix used when sending to a specific server

Table 68: Deprecated Variations

Group Name
amqp1 server_request_prefix

broadcast_prefix

Type
string

Default
broadcast

address prefix used when broadcasting to all servers

Table 69: Deprecated Variations

Group Name
amqp1 broadcast_prefix

group_request_prefix

Type
string

Default
unicast

604 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

address prefix when sending to any server in group

Table 70: Deprecated Variations

Group Name
amqp1 group_request_prefix

rpc_address_prefix

Type
string

Default
openstack.org/om/rpc

Address prefix for all generated RPC addresses

notify_address_prefix

Type
string

Default
openstack.org/om/notify

Address prefix for all generated Notification addresses

multicast_address

Type
string

Default
multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address

Type
string

Default
unicast

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

anycast_address

Type
string

Default
anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

4.5. Configuration Reference for Ironic 605

Ironic Documentation, Release 26.1.2.dev21

default_notification_exchange

Type
string

Default
<None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else notify

default_rpc_exchange

Type
string

Default
<None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply_link_credit

Type
integer

Default
200

Minimum Value
1

Window size for incoming RPC Reply messages.

rpc_server_credit

Type
integer

Default
100

Minimum Value
1

Window size for incoming RPC Request messages

notify_server_credit

Type
integer

Default
100

Minimum Value
1

Window size for incoming Notification messages

606 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

pre_settled

Type
multi-valued

Default
rpc-cast

Default
rpc-reply

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_fetch_bytes

Type
integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type
floating point

Default
1.0

Default timeout(s) for Kafka consumers

pool_size

Type
integer

Default
10

Pool Size for Kafka Consumers

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

4.5. Configuration Reference for Ironic 607

Ironic Documentation, Release 26.1.2.dev21

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type
floating point

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

608 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Type
integer

Default
16384

Size of batch for the producer async send

compression_codec

Type
string

Default
none

Valid Values
none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records

Type
integer

Default
500

The maximum number of records returned in a poll call

security_protocol

Type
string

Default
PLAINTEXT

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type
string

Default
PLAIN

4.5. Configuration Reference for Ironic 609

Ironic Documentation, Release 26.1.2.dev21

Mechanism when security protocol is SASL

ssl_cafile

Type
string

Default
''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default
''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type
string

Default
''

Client key PEM file used for authentication.

ssl_client_key_password

Type
string

Default
''

Client key password file used for authentication.

oslo_messaging_notifications

driver

Type
multi-valued

Default
''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 71: Deprecated Variations

Group Name
DEFAULT notification_driver

610 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

transport_url

Type
string

Default
<None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 72: Deprecated Variations

Group Name
DEFAULT notification_transport_url

topics

Type
list

Default
['notifications']

AMQP topic used for OpenStack notifications.

Table 73: Deprecated Variations

Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type
integer

Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amqp_durable_queues

Type
boolean

Default
False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

4.5. Configuration Reference for Ironic 611

Ironic Documentation, Release 26.1.2.dev21

amqp_auto_delete

Type
boolean

Default
False

Auto-delete queues in AMQP.

Table 74: Deprecated Variations

Group Name
DEFAULT amqp_auto_delete

ssl

Type
boolean

Default
False

Connect over SSL.

Table 75: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_use_ssl

ssl_version

Type
string

Default
''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 76: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type
string

Default
''

612 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

SSL key file (valid only if SSL enabled).

Table 77: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type
string

Default
''

SSL cert file (valid only if SSL enabled).

Table 78: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type
string

Default
''

SSL certification authority file (valid only if SSL enabled).

Table 79: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

ssl_enforce_fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

4.5. Configuration Reference for Ironic 613

Ironic Documentation, Release 26.1.2.dev21

Default
False

(DEPRECATED) It is recommend not to use this option anymore. Run the health check heartbeat
thread through a native python thread by default. If this option is equal to False then the health
check heartbeat will inherit the execution model from the parent process. For example if the parent
process has monkey patched the stdlib by using eventlet/greenlet then the heartbeat will be run
through a green thread. This option should be set to True only for the wsgi services.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The option is related to Eventlet which will be removed. In addition this
has never worked as expected with services using eventlet for core service
framework.

kombu_reconnect_delay

Type
floating point

Default
1.0

Minimum Value
0.0

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

Table 80: Deprecated Variations

Group Name
DEFAULT kombu_reconnect_delay

kombu_compression

Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type
integer

614 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 81: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type
string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 82: Deprecated Variations

Group Name
DEFAULT rabbit_login_method

rabbit_retry_interval

Type
integer

Default
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type
integer

4.5. Configuration Reference for Ironic 615

Ironic Documentation, Release 26.1.2.dev21

Default
2

How long to backoff for between retries when connecting to RabbitMQ.

Table 83: Deprecated Variations

Group Name
DEFAULT rabbit_retry_backoff

rabbit_interval_max

Type
integer

Default
30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type
boolean

Default
False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with
auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ^(?!amq.).*
{ha-mode: all}

Table 84: Deprecated Variations

Group Name
DEFAULT rabbit_ha_queues

rabbit_quorum_queue

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

616 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

rabbit_transient_quorum_queue

Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

Type
integer

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has
been configured) Used only when rabbit_quorum_queue is enabled, Default 0 which means dont
set a limit.

rabbit_quorum_max_memory_length

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

Table 85: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_length

rabbit_quorum_max_memory_bytes

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the
quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

4.5. Configuration Reference for Ironic 617

Ironic Documentation, Release 26.1.2.dev21

Table 86: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_bytes

rabbit_transient_queues_ttl

Type
integer

Default
1800

Minimum Value
0

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmq policy to delete the queues or you deployment will create an infinite number of queue
over time.

rabbit_qos_prefetch_count

Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type
integer

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type
integer

Default
3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type
boolean

618 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager

Type
boolean

Default
False

Should we use consistant queue names or random ones

hostname

Type
string

Default
node1.example.com

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname used by queue manager. Defaults to the value returned by socket.gethostname().

processname

Type
string

Default
sphinx-build

Process name used by queue manager

4.5. Configuration Reference for Ironic 619

Ironic Documentation, Release 26.1.2.dev21

rabbit_stream_fanout

Type
boolean

Default
False

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and
replicated data structure (queue type) in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

oslo_middleware

enable_proxy_headers_parsing

Type
boolean

Default
False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

oslo_policy

enforce_scope

Type
boolean

Default
True

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This configuration was added temporarily to facilitate a smooth transition to
the new RBAC. OpenStack will always enforce scope checks. This configu-
ration option is deprecated and will be removed in the 2025.2 cycle.

enforce_new_defaults

Type
boolean

620 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
True

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults
and scope_type together. If False, the deprecated policy check string is logically ORd with the
new policy check string, allowing for a graceful upgrade experience between releases with new
policies, which is the default behavior.

policy_file

Type
string

Default
policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 87: Deprecated Variations

Group Name
DEFAULT policy_file

policy_default_rule

Type
string

Default
default

Default rule. Enforced when a requested rule is not found.

Table 88: Deprecated Variations

Group Name
DEFAULT policy_default_rule

policy_dirs

Type
multi-valued

Default
policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

4.5. Configuration Reference for Ironic 621

Ironic Documentation, Release 26.1.2.dev21

Table 89: Deprecated Variations

Group Name
DEFAULT policy_dirs

remote_content_type

Type
string

Default
application/x-www-form-urlencoded

Valid Values
application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type
boolean

Default
False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

Type
string

Default
<None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type
string

Default
<None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type
string

Default
<None>

Absolute path client key file REST based policy check

622 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

oslo_versionedobjects

fatal_exception_format_errors

Type
boolean

Default
False

Make exception message format errors fatal

profiler

enabled

Type
boolean

Default
False

Enable the profiling for all services on this node.

Default value is False (fully disable the profiling feature).

Possible values:

• True: Enables the feature

• False: Disables the feature. The profiling cannot be started via this project operations. If the
profiling is triggered by another project, this project part will be empty.

Table 90: Deprecated Variations

Group Name
profiler profiler_enabled

trace_sqlalchemy

Type
boolean

Default
False

Enable SQL requests profiling in services.

Default value is False (SQL requests wont be traced).

Possible values:

• True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that.

• False: Disables SQL requests profiling. The spent time is only shown on a higher level of
operations. Single SQL queries cannot be analyzed this way.

4.5. Configuration Reference for Ironic 623

Ironic Documentation, Release 26.1.2.dev21

trace_requests

Type
boolean

Default
False

Enable python requests package profiling.

Supported drivers: jaeger+otlp

Default value is False.

Possible values:

• True: Enables requests profiling.

• False: Disables requests profiling.

hmac_keys

Type
string

Default
SECRET_KEY

Secret key(s) to use for encrypting context data for performance profiling.

This string value should have the following format: <key1>[,<key2>,<keyn>], where each key is
some random string. A user who triggers the profiling via the REST API has to set one of these
keys in the headers of the REST API call to include profiling results of this node for this particular
project.

Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to generate
correct profiling information across all services at least one key needs to be consistent between
OpenStack projects. This ensures it can be used from client side to generate the trace, containing
information from all possible resources.

connection_string

Type
string

Default
messaging://

Connection string for a notifier backend.

Default value is messaging:// which sets the notifier to oslo_messaging.

Examples of possible values:

• messaging:// - use oslo_messaging driver for sending spans.

• redis://127.0.0.1:6379 - use redis driver for sending spans.

• mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.

• elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.

• jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.

624 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

es_doc_type

Type
string

Default
notification

Document type for notification indexing in elasticsearch.

es_scroll_time

Type
string

Default
2m

This parameter is a time value parameter (for example: es_scroll_time=2m), indicating for how
long the nodes that participate in the search will maintain relevant resources in order to continue
and support it.

es_scroll_size

Type
integer

Default
10000

Elasticsearch splits large requests in batches. This parameter defines maximum size of each batch
(for example: es_scroll_size=10000).

socket_timeout

Type
floating point

Default
0.1

Redissentinel provides a timeout option on the connections. This parameter defines that timeout
(for example: socket_timeout=0.1).

sentinel_service_name

Type
string

Default
mymaster

Redissentinel uses a service name to identify a master redis service. This parameter defines the
name (for example: sentinal_service_name=mymaster).

filter_error_trace

Type
boolean

4.5. Configuration Reference for Ironic 625

Ironic Documentation, Release 26.1.2.dev21

Default
False

Enable filter traces that contain error/exception to a separated place.

Default value is set to False.

Possible values:

• True: Enable filter traces that contain error/exception.

• False: Disable the filter.

profiler_jaeger

service_name_prefix

Type
string

Default
<None>

Set service name prefix to Jaeger service name.

process_tags

Type
dict

Default
{}

Set process tracer tags.

profiler_otlp

service_name_prefix

Type
string

Default
<None>

Set service name prefix to OTLP exporters.

pxe

kernel_append_params

Type
string

Default
nofb vga=normal

626 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Mutable
This option can be changed without restarting.

Additional append parameters for baremetal PXE boot.

Table 91: Deprecated Variations

Group Name
pxe pxe_append_params

default_ephemeral_format

Type
string

Default
ext4

Mutable
This option can be changed without restarting.

Default file system format for ephemeral partition, if one is created.

images_path

Type
string

Default
/var/lib/ironic/images/

On the ironic-conductor node, directory where images are stored on disk.

instance_master_path

Type
string

Default
/var/lib/ironic/master_images

On the ironic-conductor node, directory where master instance images are stored on disk. Setting
to the empty string disables image caching.

image_cache_size

Type
integer

Default
20480

Maximum size (in MiB) of cache for master images, including those in use.

image_cache_ttl

Type
integer

4.5. Configuration Reference for Ironic 627

Ironic Documentation, Release 26.1.2.dev21

Default
10080

Maximum TTL (in minutes) for old master images in cache.

pxe_config_template

Type
string

Default
$pybasedir/drivers/modules/pxe_config.template

Mutable
This option can be changed without restarting.

On ironic-conductor node, template file for PXE loader configuration.

ipxe_config_template

Type
string

Default
$pybasedir/drivers/modules/ipxe_config.template

Mutable
This option can be changed without restarting.

On ironic-conductor node, template file for iPXE operations.

uefi_pxe_config_template

Type
string

Default
$pybasedir/drivers/modules/pxe_grub_config.template

Mutable
This option can be changed without restarting.

On ironic-conductor node, template file for PXE configuration for UEFI boot loader. Generally
this is used for GRUB specific templates.

pxe_config_template_by_arch

Type
dict

Default
{}

Mutable
This option can be changed without restarting.

On ironic-conductor node, template file for PXE configuration per node architecture. For example:
aarch64:/opt/share/grubaa64_pxe_config.template

628 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

tftp_server

Type
string

Default
$my_ip

IP address of ironic-conductor nodes TFTP server.

tftp_root

Type
string

Default
/tftpboot

ironic-conductor nodes TFTP root path. The ironic-conductor must have read/write access to this
path.

tftp_master_path

Type
string

Default
/tftpboot/master_images

On ironic-conductor node, directory where master TFTP images are stored on disk. Setting to the
empty string disables image caching.

dir_permission

Type
integer

Default
<None>

The permission that will be applied to the TFTP folders upon creation. This should be set to the
permission such that the tftpserver has access to read the contents of the configured TFTP folder.
This setting is only required when the operating systems umask is restrictive such that ironic-
conductor is creating files that cannot be read by the TFTP server. Setting to <None> will result in
the operating systems umask to be utilized for the creation of new tftp folders. The system default
umask is masked out on the specified value. It is required that an octal representation is specified.
For example: 0o755

file_permission

Type
integer

Default
420

The permission which is used on files created as part of configuration and setup of file assets for
PXE based operations. Defaults to a value of 0o644. This value must be specified as an octal
representation. For example: 0o644

4.5. Configuration Reference for Ironic 629

Ironic Documentation, Release 26.1.2.dev21

pxe_bootfile_name

Type
string

Default
pxelinux.0

Bootfile DHCP parameter.

pxe_config_subdir

Type
string

Default
pxelinux.cfg

Directory in which to create symbolic links which represent the MAC or IP address of the ports
on a node and allow boot loaders to load the PXE file for the node. This directory name is relative
to the PXE or iPXE folders.

uefi_pxe_bootfile_name

Type
string

Default
bootx64.efi

Bootfile DHCP parameter for UEFI boot mode.

ipxe_bootfile_name

Type
string

Default
undionly.kpxe

Bootfile DHCP parameter.

uefi_ipxe_bootfile_name

Type
string

Default
snponly.efi

Bootfile DHCP parameter for UEFI boot mode. If you experience problems with booting using it,
try ipxe.efi.

pxe_bootfile_name_by_arch

Type
dict

Default
{}

Bootfile DHCP parameter per node architecture. For example: aarch64:grubaa64.efi

630 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

ipxe_bootfile_name_by_arch

Type
dict

Default
{}

Bootfile DHCP parameter per node architecture. For example: aarch64:ipxe_aa64.efi

ipxe_boot_script

Type
string

Default
$pybasedir/drivers/modules/boot.ipxe

On ironic-conductor node, the path to the main iPXE script file.

ipxe_fallback_script

Type
string

Default
<None>

File name (e.g. inspector.ipxe) of an iPXE script to fall back to when booting to a MAC-specific
script fails. When not set, booting will fail in this case.

ipxe_timeout

Type
integer

Default
0

Timeout value (in seconds) for downloading an image via iPXE. Defaults to 0 (no timeout)

boot_retry_timeout

Type
integer

Default
<None>

Minimum Value
60

Timeout (in seconds) after which PXE boot should be retried. Must be less than [conduc-
tor]deploy_callback_timeout. Disabled by default.

boot_retry_check_interval

Type
integer

Default
90

4.5. Configuration Reference for Ironic 631

Ironic Documentation, Release 26.1.2.dev21

Minimum Value
1

Interval (in seconds) between periodic checks on PXE boot retry. Has no effect if
boot_retry_timeout is not set.

ip_version

Type
string

Default
4

Valid Values
4, 6

Mutable
This option can be changed without restarting.

The IP version that will be used for PXE booting. Defaults to 4. This option has been a no-op for
in-treedrivers since the Ussuri development cycle.

Possible values

4
IPv4

6
IPv6

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

ipxe_use_swift

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Download deploy and rescue images directly from swift using temporary URLs. If set to false
(default), images are downloaded to the ironic-conductor node and served over its local HTTP
server. Applicable only when ipxe compatible boot interface is used.

enable_netboot_fallback

Type
boolean

632 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
False

Mutable
This option can be changed without restarting.

If True, generate a PXE environment even for nodes that use local boot. This is useful when the
driver cannot switch nodes to local boot, e.g. with SNMP or with Redfish on machines that cannot
do persistent boot. Mostly useful for standalone ironic since Neutron will prevent incorrect PXE
boot.

loader_file_paths

Type
unknown type

Default
{}

Dictionary describing the bootloaders to load into conductor PXE/iPXE boot folders values from
the host operating system. Formatted as key of destination file name, and value of a full path
to a file to be copied. File assets will have [pxe]file_permission applied, if set. If used, the file
names should match established bootloader configuration settings for bootloaders. Use example:
ipxe.efi:/usr/share/ipxe/ipxe-snponly-x86_64.efi,undionly.kpxe:/usr/share/ipxe/undionly.kpxe

initial_grub_template

Type
string

Default
$pybasedir/drivers/modules/initial_grub_cfg.template

On ironic-conductor node, the path to the initial grubconfiguration template for grub network boot.

redfish

connection_attempts

Type
integer

Default
5

Minimum Value
1

Maximum number of attempts to try to connect to Redfish

connection_retry_interval

Type
integer

Default
4

4.5. Configuration Reference for Ironic 633

Ironic Documentation, Release 26.1.2.dev21

Minimum Value
1

Number of seconds to wait between attempts to connect to Redfish

connection_cache_size

Type
integer

Default
1000

Minimum Value
0

Maximum Redfish client connection cache size. Redfish driver would strive to reuse authenticated
BMC connections (obtained through Redfish Session Service). This option caps the maximum
number of connections to maintain. The value of 0 disables client connection caching completely.

auth_type

Type
string

Default
auto

Valid Values
basic, session, auto

Redfish HTTP client authentication method.

Possible values

basic
Use HTTP basic authentication

session
Use HTTP session authentication

auto
Try HTTP session authentication first, fall back to basic HTTP authentication

use_swift

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

Upload generated ISO images for virtual media boot to Swift, then pass temporary URL to BMC
for booting the node. If set to false, images are placed on the ironic-conductor node and served
over its local HTTP server.

634 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

swift_container

Type
string

Default
ironic_redfish_container

Mutable
This option can be changed without restarting.

The Swift container to store Redfish driver data. Applies only when use_swift is enabled.

swift_object_expiry_timeout

Type
integer

Default
900

Mutable
This option can be changed without restarting.

Amount of time in seconds for Swift objects to auto-expire. Applies only when use_swift is en-
abled.

kernel_append_params

Type
string

Default
nofb vga=normal

Mutable
This option can be changed without restarting.

Additional kernel parameters to pass down to the instance kernel. These parameters can be con-
sumed by the kernel or by the applications by reading /proc/cmdline. Mind severe cmdline size
limit! Can be overridden by instance_info/kernel_append_params property.

file_permission

Type
integer

Default
420

File permission for swift-less image hosting with the octal permission representation of file access
permissions. This setting defaults to 644, or as the octal number 0o644 in Python. This setting
must be set to the octal number representation, meaning starting with 0o.

firmware_update_status_interval

Type
integer

Default
60

4.5. Configuration Reference for Ironic 635

Ironic Documentation, Release 26.1.2.dev21

Minimum Value
0

Number of seconds to wait between checking for completed firmware update tasks

firmware_update_fail_interval

Type
integer

Default
60

Minimum Value
0

Number of seconds to wait between checking for failed firmware update tasks

firmware_source

Type
string

Default
http

Valid Values
http, local, swift

Mutable
This option can be changed without restarting.

Specifies how firmware image should be served. Whether from its original location using the
firmware source URL directly, or should serve it from ironics Swift or HTTP server.

Possible values

http
If firmware source URL is also HTTP, then serve from original location, otherwise copy to
ironics HTTP server. Default.

local
Download from original location and server from ironics HTTP server.

swift
If firmware source URL is also Swift, serve from original location, otherwise copy to ironics
Swift server.

raid_config_status_interval

Type
integer

Default
60

Minimum Value
0

636 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Number of seconds to wait between checking for completed raid config tasks

raid_config_fail_interval

Type
integer

Default
60

Minimum Value
0

Number of seconds to wait between checking for failed raid config tasks

boot_mode_config_timeout

Type
integer

Default
900

Minimum Value
0

Number of seconds to wait for boot mode or secure boot status change to take effect after a reboot.
Set to 0 to disable waiting.

sensor_data

send_sensor_data

Type
boolean

Default
False

Enable sending sensor data message via the notification bus.

Table 92: Deprecated Variations

Group Name
conductor send_sensor_data

interval

Type
integer

Default
600

Minimum Value
1

4.5. Configuration Reference for Ironic 637

Ironic Documentation, Release 26.1.2.dev21

Seconds between conductor sending sensor data message via the notification bus. This was origi-
nally for consumption via ceilometer, but the data may also be consumed via a plugin like ironic-
prometheus-exporter or any other message bus data collector.

Table 93: Deprecated Variations

Group Name
conductor send_sensor_data_interval

workers

Type
integer

Default
4

Minimum Value
1

The maximum number of workers that can be started simultaneously for send data from sensors
periodic task.

Table 94: Deprecated Variations

Group Name
conductor send_sensor_data_workers

wait_timeout

Type
integer

Default
300

The time in seconds to wait for send sensors data periodic task to be finished before allowing
periodic call to happen again. Should be less than send_sensor_data_interval value.

Table 95: Deprecated Variations

Group Name
conductor send_sensor_data_wait_timeout

data_types

Type
list

Default
['ALL']

638 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

List of comma separated meter types which need to be sent to Ceilometer. The default value, ALL,
is a special value meaning send all the sensor data. This setting only applies to baremetal sensor
data being processed through the conductor.

Table 96: Deprecated Variations

Group Name
conductor send_sensor_data_types

enable_for_undeployed_nodes

Type
boolean

Default
False

The default for sensor data collection is to only collect data for machines that are deployed, however
operators may desire to know if there are failures in hardware that is not presently in use. When set
to true, the conductor will collect sensor information from all nodes when sensor data collection
is enabled via the send_sensor_data setting.

Table 97: Deprecated Variations

Group Name
conductor send_sensor_data_for_undeployed_nodes

enable_for_conductor

Type
boolean

Default
True

If to include sensor metric data for the Conductor process itself in the message payload for sensor
data which allows operators to gather instance counts of actions and states to better manage the
deployment.

enable_for_nodes

Type
boolean

Default
True

If to transmit any sensor data for any nodes under this conductors management. This option super-
sedes the send_sensor_data_for_undeployed_nodes setting.

4.5. Configuration Reference for Ironic 639

Ironic Documentation, Release 26.1.2.dev21

service_catalog

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 98: Deprecated Variations

Group Name
service_catalog auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

640 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

4.5. Configuration Reference for Ironic 641

Ironic Documentation, Release 26.1.2.dev21

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

642 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 99: Deprecated Variations

Group Name
service_catalog tenant-id
service_catalog tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 100: Deprecated Variations

Group Name
service_catalog tenant-name
service_catalog tenant_name

4.5. Configuration Reference for Ironic 643

Ironic Documentation, Release 26.1.2.dev21

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
baremetal

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

644 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

4.5. Configuration Reference for Ironic 645

Ironic Documentation, Release 26.1.2.dev21

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 101: Deprecated Variations

Group Name
service_catalog user-name
service_catalog user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

646 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

snmp

power_timeout

Type
integer

Default
10

Seconds to wait for power action to be completed

reboot_delay

Type
integer

Default
0

Minimum Value
0

Time (in seconds) to sleep between when rebooting (powering off and on again)

power_action_delay

Type
integer

Default
0

Minimum Value
0

Time (in seconds) to sleep before power on and after powering off. Which may be needed with
some PDUs as they may not honor toggling a specific power port in rapid succession without a
delay. This option may be useful if the attached physical machine has a substantial power supply
to hold it over in the event of a brownout.

udp_transport_timeout

Type
floating point

Default
1.0

Minimum Value
0.0

4.5. Configuration Reference for Ironic 647

Ironic Documentation, Release 26.1.2.dev21

Response timeout in seconds used for UDP transport. Timeout should be a multiple of 0.5 seconds
and is applicable to each retry.

udp_transport_retries

Type
integer

Default
5

Minimum Value
0

Maximum number of UDP request retries, 0 means no retries.

ssl

ca_file

Type
string

Default
<None>

CA certificate file to use to verify connecting clients.

Table 102: Deprecated Variations

Group Name
DEFAULT ssl_ca_file

cert_file

Type
string

Default
<None>

Certificate file to use when starting the server securely.

Table 103: Deprecated Variations

Group Name
DEFAULT ssl_cert_file

key_file

Type
string

Default
<None>

648 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Private key file to use when starting the server securely.

Table 104: Deprecated Variations

Group Name
DEFAULT ssl_key_file

version

Type
string

Default
<None>

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ciphers

Type
string

Default
<None>

Sets the list of available ciphers. value should be a string in the OpenSSL cipher list format.

swift

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 105: Deprecated Variations

Group Name
swift auth_plugin

4.5. Configuration Reference for Ironic 649

Ironic Documentation, Release 26.1.2.dev21

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

650 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

4.5. Configuration Reference for Ironic 651

Ironic Documentation, Release 26.1.2.dev21

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

652 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Project ID to scope to

Table 106: Deprecated Variations

Group Name
swift tenant-id
swift tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 107: Deprecated Variations

Group Name
swift tenant-name
swift tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

4.5. Configuration Reference for Ironic 653

Ironic Documentation, Release 26.1.2.dev21

Type
string

Default
object-store

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

654 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

4.5. Configuration Reference for Ironic 655

Ironic Documentation, Release 26.1.2.dev21

username

Type
unknown type

Default
<None>

Username

Table 108: Deprecated Variations

Group Name
swift user-name
swift user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

4.5.2 Policies

Warning

JSON formatted policy files were deprecated in the Wallaby development cycle due to the Victoria
deprecation by the olso.policy library. Use the oslopolicy-convert-json-to-yaml tool to convert the
existing JSON to YAML formatted policy file in backward compatible way.

The following is an overview of all available policies in Ironic. For a sample configuration file, refer to
Ironic Policy.

656 Chapter 4. Administrator Guide

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Ironic Documentation, Release 26.1.2.dev21

ironic.api

admin_api

Default
role:admin or role:administrator

Legacy rule for cloud admin access

public_api

Default
is_public_api:True

Internal flag for public API routes

show_password

Default
!

Show or mask secrets within node driver information in API responses. This setting should be
used with the utmost care as its use can present a security risk.

show_instance_secrets

Default
!

Show or mask secrets within instance information in API responses. This setting should be used
with the utmost care as its use can present a security risk.

service_role

Default
role:service and project_name:%(config.service_project_name)s

Rule to match service role usage with a service project, delineated as a separate rule to enable
customization.

is_member

Default
(project_domain_id:default or project_domain_id:None) and
(project_name:demo or project_name:baremetal)

May be used to restrict access to specific projects

is_observer

Default
rule:is_member and (role:observer or role:baremetal_observer)

Read-only API access

is_admin

Default
rule:admin_api or (rule:is_member and role:baremetal_admin)

Full read/write API access

is_node_owner

4.5. Configuration Reference for Ironic 657

Ironic Documentation, Release 26.1.2.dev21

Default
project_id:%(node.owner)s

Owner of node

is_node_lessee

Default
project_id:%(node.lessee)s

Lessee of node

is_allocation_owner

Default
project_id:%(allocation.owner)s

Owner of allocation

baremetal:node:create

Default
(role:admin and system_scope:all) or (role:service and
system_scope:all)

Operations

• POST /nodes

Scope Types

• system

• project

Create Node records

baremetal:node:create:self_owned_node

Default
(role:admin) or (role:service)

Operations

• POST /nodes

Scope Types

• system

• project

Create node records which will be tracked as owned by the associated user project.

baremetal:node:list

Default
(role:reader) or (role:service)

Operations

• GET /nodes

• GET /nodes/detail

Scope Types

658 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• system

• project

Retrieve multiple Node records, filtered by an explicit owner or the client project_id

baremetal:node:list_all

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /nodes

• GET /nodes/detail

Scope Types

• system

• project

Retrieve multiple Node records

baremetal:node:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}

Scope Types

• system

• project

Retrieve a single Node record

baremetal:node:get:filter_threshold

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /nodes/{node_ident}

Scope Types

• system

• project

Filter to allow operators to govern the threshold where information should be filtered. Non-
authorized users will be subjected to additional API policy checks for API content response bodies.

4.5. Configuration Reference for Ironic 659

Ironic Documentation, Release 26.1.2.dev21

baremetal:node:get:last_error

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:service
and system_scope:all) or (role:reader and project_id:%(node.
owner)s) or (role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}

Scope Types

• system

• project

Governs if the node last_error field is masked from API clients with insufficient privileges.

baremetal:node:get:reservation

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:service
and system_scope:all) or (role:reader and project_id:%(node.
owner)s) or (role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}

Scope Types

• system

• project

Governs if the node reservation field is masked from API clients with insufficient privileges.

baremetal:node:get:driver_internal_info

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:service
and system_scope:all) or (role:reader and project_id:%(node.
owner)s) or (role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}

Scope Types

• system

• project

Governs if the node driver_internal_info field is masked from API clients with insufficient privi-
leges.

baremetal:node:get:driver_info

660 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:service
and system_scope:all) or (role:reader and project_id:%(node.
owner)s) or (role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}

Scope Types

• system

• project

Governs if the driver_info field is masked from API clients with insufficient privileges.

baremetal:node:update:driver_info

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node driver_info field can be updated via the API clients.

baremetal:node:update:properties

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node properties field can be updated via the API clients.

baremetal:node:update:chassis_uuid

Default
role:admin and system_scope:all

Operations

4.5. Configuration Reference for Ironic 661

Ironic Documentation, Release 26.1.2.dev21

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node chassis_uuid field can be updated via the API clients.

baremetal:node:update:instance_uuid

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node instance_uuid field can be updated via the API clients.

baremetal:node:update:lessee

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node lessee field can be updated via the API clients.

baremetal:node:update:owner

Default
(role:member and system_scope:all) or rule:service_role

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

662 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Governs if node owner field can be updated via the API clients.

baremetal:node:update:driver_interfaces

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node driver and driver interfaces field can be updated via the API clients.

baremetal:node:update:network_data

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node driver_info field can be updated via the API clients.

baremetal:node:update:conductor_group

Default
(role:member and system_scope:all) or rule:service_role

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node conductor_group field can be updated via the API clients.

baremetal:node:update:name

Default
((role:member and system_scope:all) or rule:service_role)

4.5. Configuration Reference for Ironic 663

Ironic Documentation, Release 26.1.2.dev21

or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node name field can be updated via the API clients.

baremetal:node:update:retired

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node retired and retired reason can be updated by API clients.

baremetal:node:update

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Generalized update of node records

baremetal:node:update_extra

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

664 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Update Node extra field

baremetal:node:update_instance_info

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Update Node instance_info field

baremetal:node:update_owner_provisioned

Default
role:admin and system_scope:all

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

Update Node owner even when Node is provisioned

baremetal:node:delete

Default
role:admin and system_scope:all

Operations

• DELETE /nodes/{node_ident}

Scope Types

• system

• project

Delete Node records

4.5. Configuration Reference for Ironic 665

Ironic Documentation, Release 26.1.2.dev21

baremetal:node:delete:self_owned_node

Default
role:admin and project_id:%(node.owner)s

Operations

• DELETE /nodes/{node_ident}

Scope Types

• system

• project

Delete node records which are associated with the requesting project.

baremetal:node:validate

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/validate

Scope Types

• system

• project

Request active validation of Nodes

baremetal:node:set_maintenance

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/maintenance

Scope Types

• system

• project

Set maintenance flag, taking a Node out of service

baremetal:node:clear_maintenance

666 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• DELETE /nodes/{node_ident}/maintenance

Scope Types

• system

• project

Clear maintenance flag, placing the Node into service again

baremetal:node:get_boot_device

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/management/boot_device

• GET /nodes/{node_ident}/management/boot_device/supported

Scope Types

• system

• project

Retrieve Node boot device metadata

baremetal:node:set_boot_device

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/management/boot_device

Scope Types

• system

• project

Change Node boot device

4.5. Configuration Reference for Ironic 667

Ironic Documentation, Release 26.1.2.dev21

baremetal:node:get_indicator_state

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/management/indicators/{component}/
{indicator}

• GET /nodes/{node_ident}/management/indicators

Scope Types

• system

• project

Retrieve Node indicators and their states

baremetal:node:set_indicator_state

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/management/indicators/{component}/
{indicator}

Scope Types

• system

• project

Change Node indicator state

baremetal:node:inject_nmi

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/management/inject_nmi

Scope Types

• system

• project

668 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Inject NMI for a node

baremetal:node:get_states

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/states

Scope Types

• system

• project

View Node power and provision state

baremetal:node:set_power_state

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

Operations

• PUT /nodes/{node_ident}/states/power

Scope Types

• system

• project

Change Node power status

baremetal:node:set_boot_mode

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

Operations

• PUT /nodes/{node_ident}/states/boot_mode

Scope Types

• system

• project

Change Node boot mode

baremetal:node:set_secure_boot

4.5. Configuration Reference for Ironic 669

Ironic Documentation, Release 26.1.2.dev21

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

Operations

• PUT /nodes/{node_ident}/states/secure_boot

Scope Types

• system

• project

Change Node secure boot state

baremetal:node:set_provision_state

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/states/provision

Scope Types

• system

• project

Change Node provision status

baremetal:node:set_provision_state:clean_steps

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/states/provision

Scope Types

• system

• project

Allow execution of arbitrary steps on a node

baremetal:node:set_provision_state:service_steps

670 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/states/provision

Scope Types

• system

• project

Allow execution of arbitrary steps on a node

baremetal:node:set_raid_state

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/states/raid

Scope Types

• system

• project

Change Node RAID status

baremetal:node:get_console

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/states/console

Scope Types

• system

• project

Get Node console connection information

baremetal:node:set_console_state

4.5. Configuration Reference for Ironic 671

Ironic Documentation, Release 26.1.2.dev21

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/states/console

Scope Types

• system

• project

Change Node console status

baremetal:node:vif:list

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/vifs

Scope Types

• system

• project

List VIFs attached to node

baremetal:node:vif:attach

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• POST /nodes/{node_ident}/vifs

Scope Types

• system

• project

Attach a VIF to a node

baremetal:node:vif:detach

672 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• DELETE /nodes/{node_ident}/vifs/{node_vif_ident}

Scope Types

• system

• project

Detach a VIF from a node

baremetal:node:traits:list

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/traits

Scope Types

• system

• project

List node traits

baremetal:node:traits:set

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PUT /nodes/{node_ident}/traits

• PUT /nodes/{node_ident}/traits/{trait}

Scope Types

• system

• project

Add a trait to, or replace all traits of, a node

4.5. Configuration Reference for Ironic 673

Ironic Documentation, Release 26.1.2.dev21

baremetal:node:traits:delete

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• DELETE /nodes/{node_ident}/traits

• DELETE /nodes/{node_ident}/traits/{trait}

Scope Types

• system

• project

Remove one or all traits from a node

baremetal:node:bios:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/bios

• GET /nodes/{node_ident}/bios/{setting}

Scope Types

• system

• project

Retrieve Node BIOS information

baremetal:node:disable_cleaning

Default
role:admin and system_scope:all

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

Disable Node disk cleaning

baremetal:node:history:get

Default
((role:reader and system_scope:all) or (role:service and

674 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

system_scope:all) or rule:service_role) or (role:service
and system_scope:all) or (role:reader and project_id:%(node.
owner)s) or (role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/history

• GET /nodes/{node_ident}/history/{event_ident}

Scope Types

• system

• project

Filter to allow operators to retrieve history records for a node.

baremetal:node:inventory:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:service
and system_scope:all) or (role:reader and project_id:%(node.
owner)s) or (role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/inventory

Scope Types

• system

• project

Retrieve introspection data for a node.

baremetal:node:update:shard

Default
role:admin and system_scope:all

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node shard field can be updated via the API clients.

baremetal:shards:get

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /shards

4.5. Configuration Reference for Ironic 675

Ironic Documentation, Release 26.1.2.dev21

Scope Types

• system

• project

Governs if shards can be read via the API clients.

baremetal:node:update:parent_node

Default
(role:member and system_scope:all) or rule:service_role

Operations

• PATCH /nodes/{node_ident}

Scope Types

• system

• project

Governs if node parent_node field can be updated via the API clients.

baremetal:node:firmware:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/firmware

Scope Types

• system

• project

Retrieve Node Firmware components information

baremetal:node:vmedia:attach

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

Operations

• POST /nodes/{node_ident}/vmedia

Scope Types

• system

• project

Attach a virtual media device to a node

676 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal:node:vmedia:detach

Default
((role:member and system_scope:all) or rule:service_role)
or (role:member and (project_id:%(node.owner)s or
project_id:%(node.lessee)s)) or (role:service and
system_scope:all)

Operations

• DELETE /nodes/{node_ident}/vmedia

Scope Types

• system

• project

Detach a virtual media device from a node

baremetal:node:vmedia:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /nodes/{node_ident}/vmedia

Scope Types

• system

• project

Get virtual media device details from a node

baremetal:port:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /ports/{port_id}

• GET /nodes/{node_ident}/ports

• GET /nodes/{node_ident}/ports/detail

• GET /portgroups/{portgroup_ident}/ports

• GET /portgroups/{portgroup_ident}/ports/detail

Scope Types

• system

4.5. Configuration Reference for Ironic 677

Ironic Documentation, Release 26.1.2.dev21

• project

Retrieve Port records

baremetal:port:list

Default
(role:reader) or (role:service)

Operations

• GET /ports

• GET /ports/detail

Scope Types

• system

• project

Retrieve multiple Port records, filtered by owner

baremetal:port:list_all

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /ports

• GET /ports/detail

Scope Types

• system

• project

Retrieve multiple Port records

baremetal:port:create

Default
(role:admin and system_scope:all) or (role:service and
system_scope:all) or (role:admin and project_id:%(node.
owner)s) or (role:manager and project_id:%(node.owner)s) or
(role:service and project_id:%(node.owner)s)

Operations

• POST /ports

Scope Types

• system

• project

Create Port records

baremetal:port:delete

678 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
(role:admin and system_scope:all) or (role:service and
system_scope:all) or (role:admin and project_id:%(node.
owner)s) or (role:manager and project_id:%(node.owner)s) or
(role:service and project_id:%(node.owner)s)

Operations

• DELETE /ports/{port_id}

Scope Types

• system

• project

Delete Port records

baremetal:port:update

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /ports/{port_id}

Scope Types

• system

• project

Update Port records

baremetal:portgroup:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /portgroups

• GET /portgroups/detail

• GET /portgroups/{portgroup_ident}

• GET /nodes/{node_ident}/portgroups

• GET /nodes/{node_ident}/portgroups/detail

Scope Types

• system

• project

4.5. Configuration Reference for Ironic 679

Ironic Documentation, Release 26.1.2.dev21

Retrieve Portgroup records

baremetal:portgroup:create

Default
(role:admin and system_scope:all) or (role:service and
system_scope:all) or (role:admin and project_id:%(node.
owner)s) or (role:manager and project_id:%(node.owner)s) or
(role:service and project_id:%(node.owner)s)

Operations

• POST /portgroups

Scope Types

• system

• project

Create Portgroup records

baremetal:portgroup:delete

Default
(role:admin and system_scope:all) or (role:service and
system_scope:all) or (role:admin and project_id:%(node.
owner)s) or (role:manager and project_id:%(node.owner)s) or
(role:service and project_id:%(node.owner)s)

Operations

• DELETE /portgroups/{portgroup_ident}

Scope Types

• system

• project

Delete Portgroup records

baremetal:portgroup:update

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager and
project_id:%(node.owner)s) or (role:service and
project_id:%(node.owner)s)

Operations

• PATCH /portgroups/{portgroup_ident}

Scope Types

• system

• project

Update Portgroup records

baremetal:portgroup:list

680 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Default
(role:reader) or (role:service)

Operations

• GET /portgroups

• GET /portgroups/detail

Scope Types

• system

• project

Retrieve multiple Port records, filtered by owner

baremetal:portgroup:list_all

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /portgroups

• GET /portgroups/detail

Scope Types

• system

• project

Retrieve multiple Port records

baremetal:chassis:get

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /chassis

• GET /chassis/detail

• GET /chassis/{chassis_id}

Scope Types

• system

Retrieve Chassis records

baremetal:chassis:create

Default
role:admin and system_scope:all

Operations

• POST /chassis

4.5. Configuration Reference for Ironic 681

Ironic Documentation, Release 26.1.2.dev21

Scope Types

• system

Create Chassis records

baremetal:chassis:delete

Default
role:admin and system_scope:all

Operations

• DELETE /chassis/{chassis_id}

Scope Types

• system

Delete Chassis records

baremetal:chassis:update

Default
(role:member and system_scope:all) or rule:service_role

Operations

• PATCH /chassis/{chassis_id}

Scope Types

• system

Update Chassis records

baremetal:driver:get

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /drivers

• GET /drivers/{driver_name}

Scope Types

• system

View list of available drivers

baremetal:driver:get_properties

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /drivers/{driver_name}/properties

Scope Types

682 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• system

View driver-specific properties

baremetal:driver:get_raid_logical_disk_properties

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /drivers/{driver_name}/raid/logical_disk_properties

Scope Types

• system

View driver-specific RAID metadata

baremetal:node:vendor_passthru

Default
role:admin and system_scope:all

Operations

• GET nodes/{node_ident}/vendor_passthru/methods

• GET nodes/{node_ident}/vendor_passthru?
method={method_name}

• PUT nodes/{node_ident}/vendor_passthru?
method={method_name}

• POST nodes/{node_ident}/vendor_passthru?
method={method_name}

• PATCH nodes/{node_ident}/vendor_passthru?
method={method_name}

• DELETE nodes/{node_ident}/vendor_passthru?
method={method_name}

Scope Types

• system

• project

Access vendor-specific Node functions

baremetal:driver:vendor_passthru

Default
role:admin and system_scope:all

Operations

• GET drivers/{driver_name}/vendor_passthru/methods

• GET drivers/{driver_name}/vendor_passthru?
method={method_name}

4.5. Configuration Reference for Ironic 683

Ironic Documentation, Release 26.1.2.dev21

• PUT drivers/{driver_name}/vendor_passthru?
method={method_name}

• POST drivers/{driver_name}/vendor_passthru?
method={method_name}

• PATCH drivers/{driver_name}/vendor_passthru?
method={method_name}

• DELETE drivers/{driver_name}/vendor_passthru?
method={method_name}

Scope Types

• system

Access vendor-specific Driver functions

baremetal:node:ipa_heartbeat

Default
<empty string>

Operations

• POST /heartbeat/{node_ident}

Receive heartbeats from IPA ramdisk

baremetal:driver:ipa_lookup

Default
<empty string>

Operations

• GET /lookup

Access IPA ramdisk functions

baremetal:driver:ipa_continue_inspection

Default
<empty string>

Operations

• POST /continue_inspection

Receive inspection data from the ramdisk

baremetal:volume:list_all

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /volume/connectors

• GET /volume/targets

• GET /nodes/{node_ident}/volume/connectors

684 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• GET /nodes/{node_ident}/volume/targets

Scope Types

• system

• project

Retrieve a list of all Volume connector and target records

baremetal:volume:list

Default
(role:reader) or (role:service)

Operations

• GET /volume/connectors

• GET /volume/targets

• GET /nodes/{node_ident}/volume/connectors

• GET /nodes/{node_ident}/volume/targets

Scope Types

• system

• project

Retrieve a list of Volume connector and target records

baremetal:volume:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
(project_id:%(node.owner)s or project_id:%(node.lessee)s)) or
(role:service and project_id:%(node.owner)s)

Operations

• GET /volume

• GET /volume/connectors

• GET /volume/connectors/{volume_connector_id}

• GET /volume/targets

• GET /volume/targets/{volume_target_id}

• GET /nodes/{node_ident}/volume

• GET /nodes/{node_ident}/volume/connectors

• GET /nodes/{node_ident}/volume/targets

Scope Types

• system

• project

Retrieve Volume connector and target records

4.5. Configuration Reference for Ironic 685

Ironic Documentation, Release 26.1.2.dev21

baremetal:volume:create

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• POST /volume/connectors

• POST /volume/targets

Scope Types

• system

• project

Create Volume connector and target records

baremetal:volume:delete

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:admin
and project_id:%(node.owner)s) or (role:manager
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

• DELETE /volume/connectors/{volume_connector_id}

• DELETE /volume/targets/{volume_target_id}

Scope Types

• system

• project

Delete Volume connector and target records

baremetal:volume:update

Default
((role:member and system_scope:all) or rule:service_role)
or (role:service and system_scope:all) or (role:member
and project_id:%(node.owner)s) or (role:admin and
project_id:%(node.lessee)s) or (role:manager and
project_id:%(node.lessee)s) or (role:service and
project_id:%(node.owner)s)

Operations

686 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• PATCH /volume/connectors/{volume_connector_id}

• PATCH /volume/targets/{volume_target_id}

Scope Types

• system

• project

Update Volume connector and target records

baremetal:volume:view_target_properties

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:admin)

Operations

• GET /volume/connectors/{volume_connector_id}

• GET /volume/targets/{volume_target_id}

Scope Types

• system

• project

Ability to view volume target properties

baremetal:conductor:get

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /conductors

• GET /conductors/{hostname}

Scope Types

• system

• project

Retrieve Conductor records

baremetal:allocation:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
project_id:%(allocation.owner)s)

Operations

• GET /allocations/{allocation_id}

• GET /nodes/{node_ident}/allocation

Scope Types

4.5. Configuration Reference for Ironic 687

Ironic Documentation, Release 26.1.2.dev21

• system

• project

Retrieve Allocation records

baremetal:allocation:list

Default
(role:reader) or (role:service)

Operations

• GET /allocations

Scope Types

• system

• project

Retrieve multiple Allocation records, filtered by owner

baremetal:allocation:list_all

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /allocations

Scope Types

• system

• project

Retrieve multiple Allocation records

baremetal:allocation:create

Default
((role:member and system_scope:all) or rule:service_role) or
(role:member)

Operations

• POST /allocations

Scope Types

• system

• project

Create Allocation records

baremetal:allocation:create_restricted

Default
(role:member and system_scope:all) or rule:service_role

Operations

688 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

• POST /allocations

Scope Types

• system

• project

Create Allocation records with a specific owner.

baremetal:allocation:delete

Default
((role:member and system_scope:all) or rule:service_role) or
(role:member and project_id:%(allocation.owner)s)

Operations

• DELETE /allocations/{allocation_id}

• DELETE /nodes/{node_ident}/allocation

Scope Types

• system

• project

Delete Allocation records

baremetal:allocation:update

Default
((role:member and system_scope:all) or rule:service_role) or
(role:member and project_id:%(allocation.owner)s)

Operations

• PATCH /allocations/{allocation_id}

Scope Types

• system

• project

Change name and extra fields of an allocation

baremetal:allocation:create_pre_rbac

Default
(rule:is_member and role:baremetal_admin) or
(is_admin_project:True and role:admin)

Operations

• PATCH /allocations/{allocation_id}

Scope Types

• project

Logical restrictor to prevent legacy allocation rule missuse - Requires blank allocations to originate
from the legacy baremetal_admin.

baremetal:events:post

4.5. Configuration Reference for Ironic 689

Ironic Documentation, Release 26.1.2.dev21

Default
role:admin and system_scope:all

Operations

• POST /events

Scope Types

• system

Post events

baremetal:deploy_template:get

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /deploy_templates

• GET /deploy_templates/{deploy_template_ident}

Scope Types

• system

• project

Retrieve Deploy Template records

baremetal:deploy_template:create

Default
role:admin and system_scope:all

Operations

• POST /deploy_templates

Scope Types

• system

• project

Create Deploy Template records

baremetal:deploy_template:delete

Default
role:admin and system_scope:all

Operations

• DELETE /deploy_templates/{deploy_template_ident}

Scope Types

• system

• project

Delete Deploy Template records

690 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

baremetal:deploy_template:update

Default
role:admin and system_scope:all

Operations

• PATCH /deploy_templates/{deploy_template_ident}

Scope Types

• system

• project

Update Deploy Template records

baremetal:runbook:get

Default
((role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role) or (role:reader and
project_id:%(runbook.owner)s) or role:service

Operations

• GET /runbooks/{runbook_ident}

Scope Types

• system

• project

Retrieve a single runbook record

baremetal:runbook:list

Default
(role:reader) or (role:service)

Operations

• GET /runbooks

Scope Types

• system

• project

Retrieve multiple runbook records, filtered by an explicit owner or the client project_id

baremetal:runbook:list_all

Default
(role:reader and system_scope:all) or (role:service and
system_scope:all) or rule:service_role

Operations

• GET /runbooks

Scope Types

• system

4.5. Configuration Reference for Ironic 691

Ironic Documentation, Release 26.1.2.dev21

• project

Retrieve all runbook records

baremetal:runbook:create

Default
((role:member and system_scope:all) or rule:service_role) or
role:manager or role:service

Operations

• POST /runbooks

Scope Types

• system

• project

Create Runbook records

baremetal:runbook:delete

Default
((role:member and system_scope:all) or rule:service_role)
or (role:manager and project_id:%(runbook.owner)s) or
role:service

Operations

• DELETE /runbooks/{runbook_ident}

Scope Types

• system

• project

Delete a runbook record

baremetal:runbook:update

Default
((role:member and system_scope:all) or rule:service_role)
or (role:manager and project_id:%(runbook.owner)s) or
role:service

Operations

• PATCH /runbooks/{runbook_ident}

Scope Types

• system

• project

Update a runbook record

baremetal:runbook:update:public

Default
(role:member and system_scope:all) or rule:service_role

692 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Operations

• PATCH /runbooks/{runbook_ident}/public

Scope Types

• system

• project

Set and unset a runbook as public

baremetal:runbook:update:owner

Default
(role:member and system_scope:all) or rule:service_role

Operations

• PATCH /runbooks/{runbook_ident}/owner

Scope Types

• system

• project

Set and unset the owner of a runbook

baremetal:runbook:use

Default
((role:member and system_scope:all) or rule:service_role)
or (role:manager and project_id:%(runbook.owner)s) or
role:service

Operations

• PUT /nodes/{node_ident}/states/provision

Scope Types

• system

• project

Allowed to use a runbook for node operations

4.6 Architecture and Implementation Details

4.6.1 Agent Token

Purpose

The concept of agent tokens is to provide a mechanism by which the relationship between an operating
deployment of the Bare Metal Service and an instance of the ironic-python-agent is verified. In a
sense, this token can be viewed as a session identifier or authentication token.

4.6. Architecture and Implementation Details 693

Ironic Documentation, Release 26.1.2.dev21

Warning

This functionality does not remove the risk of a man-in-the-middle attack that could occur from con-
nection intercept or when TLS is not used for all communication.

This becomes useful in the case of deploying an edge node where intermediate networks are not trust-
worthy.

How it works

These tokens are provided in one of two ways to the running agent.

1. A pre-generated token that is embedded into virtual media ISOs.

2. A one-time generated token that is provided upon the first lookup of the node.

In both cases, the tokens are randomly generated using the Python secrets library. As of mid-2020, the
default length is 43 characters.

Once the token has been provided, the token cannot be retrieved or accessed. It remains available to the
conductors, and is stored in the memory of the ironic-python-agent.

Note

In the case of the token being embedded with virtual media, it is read from a configuration file within
the image. Ideally, this should be paired with Swift temporary URLs.

With the token is available in memory in the agent, the token is embedded with heartbeat operations
to the ironic API endpoint. This enables the API to authenticate the heartbeat request, and refuse heart-
beat requests from the ironic-python-agent. As of the Victoria release, the use of Agent Token is
required for all agents and the previously available setting to force this functionality to be mandatory,
[DEFAULT]require_agent_token has been removed and no longer has any effect.

Warning

If the Bare Metal Service is updated, and the version of ironic-python-agent should be updated
to enable this feature.

In addition to heartbeats being verified, commands from the ironic-conductor service to the
ironic-python-agent also include the token, allowing the agent to authenticate the caller.

694 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

With Virtual Media

API Conductor Baremetal Swift IPA

Generates a random
token

Generates configur
ation for IPA ramd
isk

IPA image, with configuration is uploaded

Attach IPA virtual media in Sw
ift as virtual CD

Conductor turns power on

Baremetal reads virtual media

Boots IPA virtual
media image

IPA is started

IPA loads configuration and agent token into memory

Lookup node

API responds with node UUID and token value of '******'

Heartbeat with agent token

With PXE/iPXE/etc.

API Conductor Baremetal iPXE IPA

Conductor turns power on

Baremetal reads kernel/ramdisk
and starts boot

Boots IPA iPXE ima
ge

IPA is started

IPA loads configuration

Lookup node

API requests conductor to gene
rates a random token

API responds with node UUID and token value

Heartbeat with agent token

Agent Configuration

An additional setting that may be leveraged with the ironic-python-agent is a
agent_token_required setting. Under normal circumstances, this setting can be asserted via
the configuration supplied from the Bare Metal service deployment upon the lookup action, but can be
asserted via the embedded configuration for the agent in the ramdisk. This setting is also available via
kernel command line as ipa-agent-token-required.

4.6. Architecture and Implementation Details 695

Ironic Documentation, Release 26.1.2.dev21

4.6.2 Steps

What are steps?

Steps are exactly that, steps to achieve a goal, and in most cases, they are what an operator requested.

However, originally they were the internal list of actions to achieve to perform automated cleaning. The
conductor would determine a list of steps or actions to take by generating a list of steps from data the
conductor via drivers, the ironic-python-agent, and any loaded hardware managers determined to
be needed.

As time passed and Ironics capabilities were extended, this was extended to manual cleaning, and later
into deploy steps, and deploy templates allowing an operator to request for firmware to be updated by a
driver, or RAID to be configured by the agent prior to the machine being released to the end user for use.

Reserved Functional Steps

In the execution of the cleaning, and deployment steps frameworks, some step names are reserved for
specific functions which can be invoked by a user to perform specific actions.

Step
Name

Description

hold Pauses the execution of the steps by moving the node from the current deploy wait or clean
wait state to the appropriate hold state, such as deploy hold or clean hold. The process can
be resumed by sending a unhold verb to the provision state API endpoint which will result in
the process resuming upon the next heartbeat operation. During this time, heartbeat operations
will continue be recorded by Ironic, but will not be acted upon, preventing the node from timing
out.
This step cannot be used against a child node in the context of being requested when executing
against a parent node.
The use case for this verb is if you have external automation or processes which need to be
executed in the entire process to achieve the overall goal.

power_onPowers on the node, which may be useful if a nodes power must be toggled multiple times to
enable embedded behavior such as to boot from network. This step can be executed against
child nodes.

power_offTurn the node power off via the conductor. This step can be used against child nodes. When
used outside of the context of a child node, any agent token metadata is also removed as so the
machine can reboot back to the agent, if applicable.

re-
boot

Reboot the node utilizing the conductor. This generally signals for power to be turned off and
back on, however driver specific code may request an CPU interrupt based reset. This step can
be executed on child nodes.

wait Causes a brief pause in the overall step execution which pauses until the next heartbeat opera-
tion, unless a seconds argument is provided. If a seconds argument is provided, then the step
execution will pause for the requested amount of time.

In the these cases, the interface upon which the method is expected is ignored, and the step is acted upon
based upon just the steps name.

696 Chapter 4. Administrator Guide

Ironic Documentation, Release 26.1.2.dev21

Example

In this example, we utilize the cleaning step erase_devices and then trigger hold of the node. In this
specific case the node will enter a clean hold state.

{
"target":"clean",
"clean_steps": [{
"interface": "deploy",
"step": "erase_devices"

},
{
"interface": "deploy",
"step": "hold"

}]
}

Once you have completed whatever action which needed to be performed while the node was in a held
state, you will need to issue an unhold provision state command, via the API or command line to inform
the node to proceed.

• Release Notes

4.7 Administrators Guide

If you are a system administrator running Ironic, this section contains information that may help you
understand how to operate and upgrade the services.

4.7.1 Deploy Steps

The deploy steps section has moved to Using deploy steps and templates.

4.7. Administrators Guide 697

https://docs.openstack.org/releasenotes/ironic/

Ironic Documentation, Release 26.1.2.dev21

698 Chapter 4. Administrator Guide

CHAPTER

FIVE

CONTRIBUTOR GUIDE

5.1 Developers Guide

5.1.1 Getting Started

If you are new to ironic, this section contains information that should help you get started as a developer
working on the project or contributing to the project.

This guide assumes you have read the OpenDev getting started documentation. It will also be helpful to
be familiar with OpenStack contributors documentation, which contains basic information about how to
use many of the community tools and OpenStack practices.

Basic information about setting up development environments with devstack or bifrost, or getting unit
tests running can be found here:

Developer Quick-Start

This is a quick walkthrough to get you started developing code for Ironic. This assumes you are already
familiar with submitting code reviews to an OpenStack project. If you are not, please begin by following
the steps in the OpenDev infra manual to get yourself familiar with the general git workflow we use.

This guide is primarily technical in nature; for information on how the Ironic team organizes work, please
see Ironics contribution guide.

This document covers Git hooks, Unit Testing Environment, and Integrated Testing Environments. New
contributors are recommended to setup git hooks, then continue with unit tests.

Git hooks

Ironic uses multiple software packages to ensure code is styled as expected. A convenient way to ensure
your code complies with these rules is via the use of pre-commit.

To configure your environment for automatic checking of code spelling and linting before commit, install
pre-commit:

pip install user pre-commit cd /path/to/ironic/checkout pre-commit install allow-missing-
config

Now, before any commit, any changed lines will be run through our pre-commit checks. Contributors
are still encouraged to run pep8 and codespell tox environments before pushing code as an extra check.

More information about running tests in tox available in Unit Testing Environment.

699

https://docs.opendev.org/opendev/infra-manual/latest/gettingstarted.html
https://docs.openstack.org/contributors/code-and-documentation/
https://docs.opendev.org/opendev/infra-manual/latest/gettingstarted.html
https://docs.openstack.org/ironic/latest/contributor/contributing.html
https://pre-commit.com/

Ironic Documentation, Release 26.1.2.dev21

Integrated Testing Environments

The ultimate in development environments for Ironic is a working system, with mock bare metal hardware
and a fully functional API service. There are three ways to get environment, listed below.

Note

These environments may use automation that assume you are running on a VM. Please do not use
these environments on a system that you are not willing to have wiped and reinstalled when complete.

Table 1: Testing Environments

Environ-
ment

Description/Uses How-To

Devstack Useful for testing Ironic with other OpenStack services. Also the en-
vironment required for running or building Ironics tempest tests. Rec-
ommended for new contributors.

Deploying
Ironic with
DevStack

Bifrost Used for testing Ironic standalone with minimal setup or using real
hardware, or testing bifrost changes directly.

Bifrost De-
velopment
Environ-
ment

Local Ironic services running locally, without any other OpenStack services.
This can be useful for rapid prototyping, debugging, or testing database
migrations.

Exercis-
ing Ironic
Services
Locally

Unit Testing Environment

For most people, unit testing is the quickest and easiest way to check the validity of a change. Unlike a
fully integrated testing environment, unit tests can generally be safely run on a developers workstation.

Ironic uses tox to orchestrate unit tests and documentation building. Contributors are strongly encouraged
to validate code passes unit tests under a supported version of python before pushing up a change. See
the Project Testing Interface for the exact versions of python supported currently.

System Prerequisites

The following packages cover the prerequisites for a local development environment on most current
distributions.

• Ubuntu/Debian:

sudo apt-get install build-essential python3-dev libssl-dev python3-pip␣
↪→libmysqlclient-dev libxml2-dev libxslt-dev libpq-dev git git-review␣
↪→libffi-dev gettext ipmitool psmisc graphviz libjpeg-dev qemu-utils

• RHEL/CentOS/Fedora:

700 Chapter 5. Contributor Guide

https://tox.readthedocs.io/en/latest/
https://governance.openstack.org/tc/reference/pti/python.html

Ironic Documentation, Release 26.1.2.dev21

sudo dnf install python3-devel openssl-devel python3-pip mysql-devel␣
↪→libxml2-devel libxslt-devel postgresql-devel git git-review libffi-
↪→devel gettext ipmitool psmisc graphviz gcc libjpeg-turbo-devel qemu-img

• openSUSE/SLE:

sudo zypper install git git-review libffi-devel libmysqlclient-devel␣
↪→libopenssl-devel libxml2-devel libxslt-devel postgresql-devel python3-
↪→devel python-nose python3-pip gettext-runtime psmisc qemu-img

To run the tests locally, it is a requirement that your terminal emulator supports unicode with the en_US.
UTF8 locale. If you use locale-gen to manage your locales, make sure you have enabled en_US.UTF8 in
/etc/locale.gen and rerun locale-gen.

Python Prerequisites

We suggest to use at least tox 3.9, if your distribution has an older version, you can install it using
pip system-wise or better per user using the user option that by default will install the binary under
$HOME/.local/bin, so you need to be sure to have that path in $PATH; for example:

pip install tox --user

will install tox as ~/.local/bin/tox

You may need to explicitly upgrade virtualenv if youve installed the one from your OS distribution and
it is too old (tox will complain). You can upgrade it individually, if you need to:

pip install --upgrade virtualenv --user

Running Unit Tests Locally

If you havent already, Ironic source code should be pulled directly from git:

from a user-writable directory, usually $HOME or $HOME/dev
git clone https://opendev.org/openstack/ironic
cd ironic

Most of the time, you will want to run codespell, unit tests, and pep8 checks. This can be done with the
following command:

tox -e codespell,pep8,py3

Ironic has multiple test environments that can be run by tox. An incomplete list of environments and
what they do is below. Please reference the tox.ini file in the project youre working on for a complete,
up-to-date list.

5.1. Developers Guide 701

Ironic Documentation, Release 26.1.2.dev21

Table 2: Tox Environments

Environment Description
pep8 Run style checks on code, documentation, and release notes.
codespell Check code against a list of known-misspelled words.
py<version> Run unit tests with the specified python version. For example, py310 will run the

unit tests with python 3.10.
unit-with-driver-
libs

Run unit tests with the default python3 on the system, but also includes driver-
specific libraries and the tests they enable.

mysql-migrations Run MySQL database migration unit tests. Setup database first using tools/
test-setup.sh in Ironic repo.

docs Build and validate documentation.
releasenotes Build and validate release notes using reno.
api-ref Build and validate API reference documentation.
genconfig Generates example configuration file.
genpolicy Generates example policy configuration file.
venv Creates a venv, with dependencies installed, for running commands in e.g. tox

-evenv -- reno new my-release-note

You may also pass options to the test programs using positional arguments. To run a specific unit test,
this passes the desired test (regex string) to stestr:

run a specific test for Python 3.10
tox -epy310 -- test_conductor

Debugging unit tests

In order to break into the debugger from a unit test we need to insert a breaking point to the code:

import pdb; pdb.set_trace()

Then run tox with the debug environment as one of the following:

tox -e debug
tox -e debug test_file_name
tox -e debug test_file_name.TestClass
tox -e debug test_file_name.TestClass.test_name

For more information see the oslotest documentation.

Other tests

Ironic also has a number of tests built with Tempest. For more information about writing or running
those tests, see Add Ironic Tempest Plugin.

702 Chapter 5. Contributor Guide

https://pypi.org/project/stestr
https://docs.openstack.org/oslotest/2024.2/user/features.html#debugging-with-oslo-debug-helper

Ironic Documentation, Release 26.1.2.dev21

OSProfiler Tracing in Ironic

OSProfiler is an OpenStack cross-project profiling library. It is being used among OpenStack projects to
look at performance issues and detect bottlenecks. For details on how OSProfiler works and how to use
it in ironic, please refer to OSProfiler Support Documentation.

Building developer documentation

If you would like to build the documentation locally, eg. to test your documentation changes before
uploading them for review, run these commands to build the documentation set:

• On the machine with the ironic checkout:

change into the ironic source code directory
cd ~/ironic

build the docs
tox -edocs

To view the built documentation locally, open up the top level index.html in your browser. For an example
user named bob with the Ironic checkout in their homedir, the URL to put in the browser would be:

file:///home/bob/ironic/doc/build/html/index.html

If youre building docs on a remote VM, you can use pythons SimpleHTTPServer to setup a quick web-
server to check your docs build:

Change directory to the newly built HTML files
cd ~/ironic/doc/build/html/

Create a server using python on port 8000
python -m SimpleHTTPServer 8000

Now use your browser to open the top-level index.html located at:
http://remote_ip:8000

Deploying Ironic with DevStack

DevStack may be configured to deploy Ironic, setup Nova to use the Ironic driver and provide hardware
resources (network, baremetal compute nodes) using a combination of OpenVSwitch and libvirt. It is
highly recommended to deploy on an expendable virtual machine and not on your personal work station.

See also

https://docs.openstack.org/devstack/latest/

5.1. Developers Guide 703

https://docs.openstack.org/devstack/latest/

Ironic Documentation, Release 26.1.2.dev21

Note

The devstack demo tenant has read-only access to Ironics API. This is sufficient for all the examples
below. Should you want to create or modify bare metal resources directly (ie. through Ironic rather
than through Nova) you will need to use the devstack admin tenant.

Basic process

Create a stack user with proper permissions using script from devstack:

git clone https://opendev.org/openstack/devstack.git devstack
sudo ./devstack/tools/create-stack-user.sh

Switch to the stack user and clone DevStack:

sudo su - stack
git clone https://opendev.org/openstack/devstack.git devstack

From the Configurations section below, create a local.conf file.

Once you have the configuration in place and ready to go, you can deploy devstack with:

./stack.sh

Note

Devstack configurations change frequently. If you are having trouble getting one of the below configs
to work, please file a bug against Ironic or ask on #openstack-ironic in OFTC.

Configurations

Ironic

Create devstack/local.conf with minimal settings required to enable Ironic. This does not configure Nova
to operate with Ironic.

An example local.conf that enables the direct deploy interface and uses the ipmi hardware type by
default:

cd devstack
cat >local.conf <<END
[[local|localrc]]
Enable only minimal services
disable_all_services
enable_service g-api
enable_service key
enable_service memory_tracker
enable_service mysql

(continues on next page)

704 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

enable_service q-agt
enable_service q-dhcp
enable_service q-l3
enable_service q-meta
enable_service q-metering
enable_service q-svc
enable_service rabbit

Credentials
ADMIN_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password

Set glance's default limit to be baremetal image friendly
GLANCE_LIMIT_IMAGE_SIZE_TOTAL=5000

Enable Ironic plugin
enable_plugin ironic https://opendev.org/openstack/ironic

Create 3 virtual machines to pose as Ironic's baremetal nodes.
IRONIC_VM_COUNT=3
IRONIC_BAREMETAL_BASIC_OPS=True
DEFAULT_INSTANCE_TYPE=baremetal

IRONIC_RPC_TRANSPORT=json-rpc
IRONIC_RAMDISK_TYPE=tinyipa

Enable additional hardware types, if needed.
#IRONIC_ENABLED_HARDWARE_TYPES=ipmi,fake-hardware
Don't forget that many hardware types require enabling of additional
interfaces, most often power and management:
#IRONIC_ENABLED_MANAGEMENT_INTERFACES=ipmitool,fake
#IRONIC_ENABLED_POWER_INTERFACES=ipmitool,fake
#IRONIC_DEFAULT_DEPLOY_INTERFACE=direct

Change this to alter the default driver for nodes created by devstack.
This driver should be in the enabled list above.
IRONIC_DEPLOY_DRIVER="ipmi"

The parameters below represent the minimum possible values to create
functional nodes.
IRONIC_VM_SPECS_RAM=1024
IRONIC_VM_SPECS_DISK=3

Size of the ephemeral partition in GB. Use 0 for no ephemeral partition.
IRONIC_VM_EPHEMERAL_DISK=0

(continues on next page)

5.1. Developers Guide 705

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

To build your own IPA ramdisk from source, set this to True
IRONIC_BUILD_DEPLOY_RAMDISK=False

INSTALL_TEMPEST=False
VIRT_DRIVER=ironic

By default, DevStack creates a 10.0.0.0/24 network for instances.
If this overlaps with the hosts network, you may adjust with the
following.
IP_VERSION=4
FIXED_RANGE=10.1.0.0/20
IPV4_ADDRS_SAFE_TO_USE=10.1.0.0/20
NETWORK_GATEWAY=10.1.0.1

Q_AGENT=openvswitch
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch
Q_ML2_TENANT_NETWORK_TYPE=vxlan

Log all output to files
LOGFILE=/opt/stack/devstack.log
LOGDIR=/opt/stack/logs
IRONIC_VM_LOG_DIR=/opt/stack/ironic-bm-logs

END

Ironic with Nova

With this config, Nova will be configured to use Ironics virt driver. Ironic will have the direct deploy
interface enabled and use the ipmi hardware type with this config:

cd devstack
cat >local.conf <<END
[[local|localrc]]
Credentials
ADMIN_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password
SWIFT_HASH=password
SWIFT_TEMPURL_KEY=password

Set glance's default limit to be baremetal image friendly
GLANCE_LIMIT_IMAGE_SIZE_TOTAL=5000

Enable Ironic plugin
enable_plugin ironic https://opendev.org/openstack/ironic

(continues on next page)

706 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

Disable nova novnc service, ironic does not support it anyway.
disable_service n-novnc

Enable Swift for the direct deploy interface.
enable_service s-proxy s-object s-container s-account

Disable Horizon
disable_service horizon

Disable Cinder
disable_service cinder c-sch c-api c-vol

Configure networking by disabling OVN and enabling Neutron w/OVS.
disable_service ovn-controller ovn-northd q-ovn-metadata-agent
disable_service ovn-northd
enable_service q-agt q-dhcp q-l3 q-svc q-meta
Q_AGENT=openvswitch
Q_ML2_PLUGIN_MECHANISM_DRIVERS="openvswitch"
Q_ML2_TENANT_NETWORK_TYPE="vxlan"
Q_USE_SECGROUP="False"

By default, devstack assumes you have IPv4 and IPv6 access. If you are on
a host with IPv6 disabled, set the value below.
IP_VERSION=4

Swift temp URL's are required for the direct deploy interface
SWIFT_ENABLE_TEMPURLS=True

Support via emulated BMC exists for the following hardware types, and
VMs to back them will be created by default unless IRONIC_IS_HARDWARE is
True.
- ipmi (VirtualBMC)
- redfish (sushy-tools)
#
If you wish to change the default driver for nodes created by devstack,
you can do so by setting IRONIC_DEPLOY_DRIVER to the name of the driver
you wish used by default, and ensuring that driver (along with others) is
enabled.
IRONIC_DEPLOY_DRIVER=ipmi

Example: Uncommenting these will configure redfish by default
#IRONIC_ENABLED_HARDWARE_TYPES=redfish,ipmi,fake-hardware
#IRONIC_DEPLOY_DRIVER=redfish
Don't forget that many hardware types require enabling of additional
interfaces, most often power and management:
#IRONIC_ENABLED_MANAGEMENT_INTERFACES=redfish,ipmitool,fake
#IRONIC_ENABLED_POWER_INTERFACES=redfish,ipmitool,fake

IRONIC_VM_COUNT=3

(continues on next page)

5.1. Developers Guide 707

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

IRONIC_BAREMETAL_BASIC_OPS=True
DEFAULT_INSTANCE_TYPE=baremetal

You can also change the default deploy interface used.
#IRONIC_DEFAULT_DEPLOY_INTERFACE=direct

The parameters below represent the minimum possible values to create
functional nodes.
IRONIC_VM_SPECS_RAM=2048
IRONIC_VM_SPECS_DISK=10

Size of the ephemeral partition in GB. Use 0 for no ephemeral partition.
IRONIC_VM_EPHEMERAL_DISK=0

To build your own IPA ramdisk from source, set this to True
IRONIC_BUILD_DEPLOY_RAMDISK=False

VIRT_DRIVER=ironic

By default, DevStack creates a 10.0.0.0/24 network for instances.
If this overlaps with the hosts network, you may adjust with the
following.
NETWORK_GATEWAY=10.1.0.1
FIXED_RANGE=10.1.0.0/24
FIXED_NETWORK_SIZE=256

Log all output to files
LOGFILE=$HOME/devstack.log
LOGDIR=$HOME/logs
IRONIC_VM_LOG_DIR=$HOME/ironic-bm-logs

END

Note

For adding Add Ironic Tempest Plugin support to this configuration, see the Add Ironic Tempest Plugin
section of this document.

Stable Branch Configuration

If you want to run Ironic in a branch other than master, you need to specify the correct version Ironic
you want at the end of the enable_plugin line, e.g. enable_plugin ironic https://opendev.org/
openstack/ironic stable/2024.1.

In almost all situations, youll also want any other associated OpenStack services to run in that version,
too. Just add this config:

TARGET_BRANCH=stable/2024.1

708 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Other Devstack Configurations

There are additional devstack configurations in other parts of contributor documentation:

Ironic Boot-from-Volume with DevStack

This guide shows how to setup DevStack for enabling boot-from-volume feature, which has been sup-
ported from the Pike release.

This scenario shows how to setup DevStack to enable nodes to boot from volumes managed by cinder
with VMs as baremetal servers.

DevStack Configuration

The following is local.conf that will setup DevStack with 3 VMs that are registered in ironic. A
volume connector with IQN is created for each node. These connectors can be used to connect volumes
created by cinder. The detailed description for DevStack is at Deploying Ironic with DevStack.

[[local|localrc]]

enable_plugin ironic https://opendev.org/openstack/ironic

IRONIC_STORAGE_INTERFACE=cinder

Credentials
ADMIN_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password
SWIFT_HASH=password
SWIFT_TEMPURL_KEY=password

Set glance's default limit to be baremetal image friendly
GLANCE_LIMIT_IMAGE_SIZE_TOTAL=5000

Enable Neutron which is required by Ironic and disable nova-network.
disable_service n-net
disable_service n-novnc
enable_service q-svc
enable_service q-agt
enable_service q-dhcp
enable_service q-l3
enable_service q-meta
enable_service neutron

Enable Swift for the direct deploy interface.
enable_service s-proxy
enable_service s-object

(continues on next page)

5.1. Developers Guide 709

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

enable_service s-container
enable_service s-account

Disable Horizon
disable_service horizon

Disable Heat
disable_service heat h-api h-api-cfn h-api-cw h-eng

Swift temp URL's are required for the direct deploy interface.
SWIFT_ENABLE_TEMPURLS=True

Create 3 virtual machines to pose as Ironic's baremetal nodes.
IRONIC_VM_COUNT=3
IRONIC_BAREMETAL_BASIC_OPS=True
DEFAULT_INSTANCE_TYPE=baremetal

Enable additional hardware types, if needed.
#IRONIC_ENABLED_HARDWARE_TYPES=ipmi,fake-hardware
Don't forget that many hardware types require enabling of additional
interfaces, most often power and management:
#IRONIC_ENABLED_MANAGEMENT_INTERFACES=ipmitool,fake
#IRONIC_ENABLED_POWER_INTERFACES=ipmitool,fake
#IRONIC_DEFAULT_DEPLOY_INTERFACE=direct

Change this to alter the default driver for nodes created by devstack.
This driver should be in the enabled list above.
IRONIC_DEPLOY_DRIVER=ipmi

The parameters below represent the minimum possible values to create
functional nodes.
IRONIC_VM_SPECS_RAM=1280
IRONIC_VM_SPECS_DISK=10

Size of the ephemeral partition in GB. Use 0 for no ephemeral partition.
IRONIC_VM_EPHEMERAL_DISK=0

To build your own IPA ramdisk from source, set this to True
IRONIC_BUILD_DEPLOY_RAMDISK=False

VIRT_DRIVER=ironic

By default, DevStack creates a 10.0.0.0/24 network for instances.
If this overlaps with the hosts network, you may adjust with the
following.
NETWORK_GATEWAY=10.1.0.1
FIXED_RANGE=10.1.0.0/24
FIXED_NETWORK_SIZE=256

(continues on next page)

710 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

Log all output to files
LOGFILE=$HOME/devstack.log
LOGDIR=$HOME/logs
IRONIC_VM_LOG_DIR=$HOME/ironic-bm-logs

After the environment is built, you can create a volume with cinder and request an instance with the
volume to nova:

set up the user for authentication purposes
note that all users can be seen in /etc/openstack/clouds.yaml
export OS_CLOUD=devstack-admin-demo

query the image id of the default cirros image
image=$(openstack image show $DEFAULT_IMAGE_NAME -f value -c id)

create keypair
ssh-keygen
openstack keypair create --public-key ~/.ssh/id_rsa.pub default

create volume
volume=$(openstack volume create --image $image --size 1 my-volume -f value -
↪→c id)

spawn instance
openstack server create --flavor baremetal --volume $volume --key-name␣
↪→default testing

You can also run an integration test that an instance is booted from a remote volume with tempest in the
environment:

cd /opt/stack/tempest
tox -e venv-tempest -- pip install (path to the ironic-tempest-plugin␣
↪→directory)
tox -e all -- ironic_tempest_plugin.tests.scenario.test_baremetal_boot_from_
↪→volume

Please note that the storage interface will only indicate errors based upon the state of the node and the
configuration present. As such a node does not exclusively have to boot via a remote volume, and as such
validate actions upon nodes may be slightly misleading. If an appropriate volume target is defined, no
error should be returned for the boot interface.

5.1. Developers Guide 711

Ironic Documentation, Release 26.1.2.dev21

Ironic multitenant networking and DevStack

This guide will walk you through using OpenStack Ironic/Neutron with the ML2
networking-generic-switch plugin.

Using VMs as baremetal servers

This scenario shows how to setup Devstack to use Ironic/Neutron integration with VMs as baremetal
servers and ML2 networking-generic-switch that interacts with OVS.

DevStack Configuration

The following is local.conf that will setup Devstack with 3 VMs that are registered in ironic.
networking-generic-switch driver will be installed and configured in Neutron.

[[local|localrc]]

Configure ironic from ironic devstack plugin.
enable_plugin ironic https://opendev.org/openstack/ironic

Install networking-generic-switch Neutron ML2 driver that interacts with OVS
enable_plugin networking-generic-switch https://opendev.org/openstack/
↪→networking-generic-switch

Add link local info when registering Ironic node
IRONIC_USE_LINK_LOCAL=True

IRONIC_ENABLED_NETWORK_INTERFACES=flat,neutron
IRONIC_NETWORK_INTERFACE=neutron

#Networking configuration
OVS_PHYSICAL_BRIDGE=brbm
PHYSICAL_NETWORK=mynetwork
IRONIC_PROVISION_NETWORK_NAME=ironic-provision
IRONIC_PROVISION_SUBNET_PREFIX=10.0.5.0/24
IRONIC_PROVISION_SUBNET_GATEWAY=10.0.5.1

Q_PLUGIN=ml2
ENABLE_TENANT_VLANS=True
Q_ML2_TENANT_NETWORK_TYPE=vlan
TENANT_VLAN_RANGE=100:150

Credentials
ADMIN_PASSWORD=password
RABBIT_PASSWORD=password
DATABASE_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password
SWIFT_HASH=password

(continues on next page)

712 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

SWIFT_TEMPURL_KEY=password

Enable Ironic API and Ironic Conductor
enable_service ironic
enable_service ir-api
enable_service ir-cond

Disable nova novnc service, ironic does not support it anyway.
disable_service n-novnc

Enable Swift for the direct deploy interface.
enable_service s-proxy
enable_service s-object
enable_service s-container
enable_service s-account

Disable Horizon
disable_service horizon

Disable Cinder
disable_service cinder c-sch c-api c-vol

Disable Tempest
disable_service tempest

Set glance's default limit to be baremetal image friendly
GLANCE_LIMIT_IMAGE_SIZE_TOTAL=5000

Swift temp URL's are required for the direct deploy interface.
SWIFT_ENABLE_TEMPURLS=True

Create 3 virtual machines to pose as Ironic's baremetal nodes.
IRONIC_VM_COUNT=3
IRONIC_BAREMETAL_BASIC_OPS=True

Enable additional hardware types, if needed.
#IRONIC_ENABLED_HARDWARE_TYPES=ipmi,fake-hardware
Don't forget that many hardware types require enabling of additional
interfaces, most often power and management:
#IRONIC_ENABLED_MANAGEMENT_INTERFACES=ipmitool,fake
#IRONIC_ENABLED_POWER_INTERFACES=ipmitool,fake
#IRONIC_DEFAULT_DEPLOY_INTERFACE=direct

Change this to alter the default driver for nodes created by devstack.
This driver should be in the enabled list above.
IRONIC_DEPLOY_DRIVER=ipmi

The parameters below represent the minimum possible values to create
functional nodes.

(continues on next page)

5.1. Developers Guide 713

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

IRONIC_VM_SPECS_RAM=1024
IRONIC_VM_SPECS_DISK=10

Size of the ephemeral partition in GB. Use 0 for no ephemeral partition.
IRONIC_VM_EPHEMERAL_DISK=0

To build your own IPA ramdisk from source, set this to True
IRONIC_BUILD_DEPLOY_RAMDISK=False

VIRT_DRIVER=ironic

By default, DevStack creates a 10.0.0.0/24 network for instances.
If this overlaps with the hosts network, you may adjust with the
following.
NETWORK_GATEWAY=10.1.0.1
FIXED_RANGE=10.1.0.0/24
FIXED_NETWORK_SIZE=256

Log all output to files
LOGFILE=$HOME/devstack.log
LOGDIR=$HOME/logs
IRONIC_VM_LOG_DIR=$HOME/ironic-bm-logs

Deploying Ironic on ARM64 with DevStack

The instructions here are specifically on how to configure for Deploying Ironic with DevStack on an
ARM64 architecture.

Configurations

Create devstack/local.conf with the following content:

cat >local.conf <<END
[[local|localrc]]
Enable and disable services
disable_all_services
enable_service <service name>

Credentials
ADMIN_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password

Set glance's default limit to be baremetal image friendly
GLANCE_LIMIT_IMAGE_SIZE_TOTAL=5000

(continues on next page)

714 Chapter 5. Contributor Guide

https://docs.openstack.org/ironic/latest/contributor/devstack-guide.html

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

Enable Ironic plugin
enable_plugin ironic https://opendev.org/openstack/ironic

Create a virtual machine to pose as Ironic's baremetal node.
IRONIC_VM_COUNT=1

The parameters below represent the minimum possible values to create
functional aarch64-based nodes.
IRONIC_VM_SPECS_RAM=4096
IRONIC_VM_SPECS_DISK=3

IRONIC_VM_SPECS_CPU=1
IRONIC_VM_VOLUME_COUNT=2

Enable hardware types and interfaces.
IRONIC_ENABLED_HARDWARE_TYPES=redfish
IRONIC_ENABLED_MANAGEMENT_INTERFACES=redfish
IRONIC_DEFAULT_RESCUE_INTERFACE=agent
IRONIC_ENABLED_BOOT_INTERFACES="ipxe,redfish-virtual-media,http-ipxe,pxe,http"
IRONIC_ENABLED_DEPLOY_INTERFACES="direct,ramdisk"
IRONIC_ENABLED_RESCUE_INTERFACES="agent,no-rescue"

Specify deploy driver. This driver should be in the enabled list above.
IRONIC_DEPLOY_DRIVER=redfish

FORCE_CONFIG_DRIVE=False

aarch64 + IRONIC_BUILD_DEPLOY_RAMDISK will be a bad mix
IRONIC_BUILD_DEPLOY_RAMDISK=False

IRONIC_AGENT_IMAGE_DOWNLOAD_SOURCE=http
IRONIC_AUTOMATED_CLEAN_ENABLED=False
IRONIC_BOOT_MODE=uefi
IRONIC_CALLBACK_TIMEOUT=800
IRONIC_GRUB2_SHIM_FILE=https://mirror.stream.centos.org/9-stream/BaseOS/
↪→aarch64/os/EFI/BOOT/BOOTAA64.EFI
IRONIC_GRUB2_FILE=https://mirror.stream.centos.org/9-stream/BaseOS/aarch64/os/
↪→EFI/BOOT/grubaa64.efi
IRONIC_HW_ARCH=aarch64
IRONIC_DIB_RAMDISK_OS=debian-arm64

INSTALL_TEMPEST=False
VIRT_DRIVER=ironic

By default, DevStack creates a 10.0.0.0/24 network for instances.
If this overlaps with the hosts network, you may adjust with the
following.
#

(continues on next page)

5.1. Developers Guide 715

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

IP_VERSION=4
FIXED_RANGE=10.1.0.0/20
IPV4_ADDRS_SAFE_TO_USE=10.1.0.0/20
NETWORK_GATEWAY=10.1.0.1

Q_AGENT=openvswitch
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch
Q_ML2_TENANT_NETWORK_TYPE=vxlan

Log all output to files
LOGFILE=/opt/stack/devstack.log
LOGDIR=/opt/stack/logs
IRONIC_VM_LOG_DIR=/opt/stack/ironic-bm-logs

END

This configuration sets up DevStack to work with ARM architecture hardware, using aarch64 images and
appropriate hardware types, interfaces, and settings.

Refer to the Ironic on Devstack setup guide for more information on deploying Ironic with DevStack.

Deploying to Ironic node using Nova

This section assumes you already have a working, deployed Ironic with Nova configured as laid out above.

First, set the user to the admin demo (Note that all the user options can be seen in /etc/openstack/
clouds.yaml):

export OS_CLOUD=devstack-admin-demo

We need to gather two more pieces of information before performing the deploy, we need to determine
what image to use, and what network to use.

Determine the network:

net_id=$(openstack network list | awk '/private/ {print $2}')

We also need to choose an image to deploy. Devstack has both cirros partition and whole disk images by
default. For this example, well use the whole disk image:

image=$(openstack image list | grep -- '-disk' | awk '{ print $2 }')

Source credentials and create a key:

create keypair
ssh-keygen
openstack keypair create --public-key ~/.ssh/id_rsa.pub default

Now youre ready to build:

openstack server create --flavor baremetal --nic net-id=$net_id --image
↪→$image --key-name default testing

716 Chapter 5. Contributor Guide

https://docs.openstack.org/ironic/latest/contributor/devstack-guide.html

Ironic Documentation, Release 26.1.2.dev21

You should now see a Nova instance building:

openstack server list --long
+----------+---------+--------+------------+-------------+----------+---------
↪→---+----------+-------------------+------+------------+
| ID | Name | Status | Task State | Power State | Networks | Image␣
↪→Name | Image ID | Availability Zone | Host | Properties |
+----------+---------+--------+------------+-------------+----------+---------
↪→---+----------+-------------------+------+------------+
| a2c7f812 | testing | BUILD | spawning | NOSTATE | | cirros-
↪→0.3 | 44d4092a | nova | | |
| -e386-4a | | | | | | .5-x86_
↪→64- | -51ac-47 | | | |
| 22-b393- | | | | | | disk ␣
↪→ | 51-9c50- | | | |
| fe1802ab | | | | | | ␣
↪→ | fd6e2050 | | | |
| d56e | | | | | | ␣
↪→ | faa1 | | | |
+----------+---------+--------+------------+-------------+----------+---------
↪→---+----------+-------------------+------+------------+

Nova will be interfacing with Ironic conductor to spawn the node. On the Ironic side, you should see
an Ironic node associated with this Nova instance. It should be powered on and in a wait call-back
provisioning state:

Note that a different user is required to see the Ironic nodes
OS_CLOUD=devstack-system-admin openstack baremetal node list
+--------------------------------------+--------+-----------------------------
↪→---------+-------------+--------------------+-------------+
| UUID | Name | Instance UUID ␣
↪→ | Power State | Provisioning State | Maintenance |
+--------------------------------------+--------+-----------------------------
↪→---------+-------------+--------------------+-------------+
| 9e592cbe-e492-4e4f-bf8f-4c9e0ad1868f | node-0 | None ␣
↪→ | power off | None | False |
| ec0c6384-cc3a-4edf-b7db-abde1998be96 | node-1 | None ␣
↪→ | power off | None | False |
| 4099e31c-576c-48f8-b460-75e1b14e497f | node-2 | a2c7f812-e386-4a22-b393-
↪→fe1802abd56e | power on | wait call-back | False |
+--------------------------------------+--------+-----------------------------
↪→---------+-------------+--------------------+-------------+

At this point, Ironic conductor has called to libvirt (via virtualbmc) to power on a virtual machine, which
will PXE + TFTP boot from the conductor node and progress through the Ironic provisioning workflow.
One libvirt domain should be active now:

sudo virsh list --all
Id Name State
--
2 node-2 running

(continues on next page)

5.1. Developers Guide 717

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

- node-0 shut off
- node-1 shut off

This provisioning process may take some time depending on the performance of the host system, but
Ironic should eventually show the node as having an active provisioning state:

OS_CLOUD=devstack-system-admin openstack baremetal node list
+--------------------------------------+--------+-----------------------------
↪→---------+-------------+--------------------+-------------+
| UUID | Name | Instance UUID ␣
↪→ | Power State | Provisioning State | Maintenance |
+--------------------------------------+--------+-----------------------------
↪→---------+-------------+--------------------+-------------+
| 9e592cbe-e492-4e4f-bf8f-4c9e0ad1868f | node-0 | None ␣
↪→ | power off | None | False |
| ec0c6384-cc3a-4edf-b7db-abde1998be96 | node-1 | None ␣
↪→ | power off | None | False |
| 4099e31c-576c-48f8-b460-75e1b14e497f | node-2 | a2c7f812-e386-4a22-b393-
↪→fe1802abd56e | power on | active | False |
+--------------------------------------+--------+-----------------------------
↪→---------+-------------+--------------------+-------------+

This should also be reflected in the Nova instance state, which at this point should be ACTIVE, Running
and an associated private IP:

openstack server list --long
+----------+---------+--------+------------+-------------+---------------+----
↪→--------+----------+-------------------+------+------------+
| ID | Name | Status | Task State | Power State | Networks |␣
↪→Image Name | Image ID | Availability Zone | Host | Properties |
+----------+---------+--------+------------+-------------+---------------+----
↪→--------+----------+-------------------+------+------------+
| a2c7f812 | testing | ACTIVE | none | Running | private=10.1. |␣
↪→cirros-0.3 | 44d4092a | nova | | |
| -e386-4a | | | | | 0.4, fd7d:1f3 | .5-
↪→x86_64- | -51ac-47 | | | |
| 22-b393- | | | | | c:4bf1:0:f816 |␣
↪→disk | 51-9c50- | | | |
| fe1802ab | | | | | :3eff:f39d:6d | ␣
↪→ | fd6e2050 | | | |
| d56e | | | | | 94 | ␣
↪→ | faa1 | | | |
+----------+---------+--------+------------+-------------+---------------+----
↪→--------+----------+-------------------+------+------------+

The server should now be accessible via SSH:

ssh cirros@10.1.0.4
$

718 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Testing Ironic with Tempest

Add Ironic Tempest Plugin

Using the stack user, clone the ironic-tempest-plugin repository in the same directory you cloned DevS-
tack:

git clone https://opendev.org/openstack/ironic-tempest-plugin.git

Then, add the following configuration to a working Ironic with Nova devstack configuration:

TEMPEST_PLUGINS=/opt/stack/ironic-tempest-plugin

Running tests

Note

Some tests may be skipped depending on the configuration of your environment, they may be reliant
on a driver or a capability that you did not configure.

After deploying devstack including Ironic with the ironic-tempest-plugin enabled, one might want to run
integration tests against the running cloud. The Tempest project is the project that offers an integration
test suite for OpenStack.

First, navigate to Tempest directory:

cd /opt/stack/tempest

To run all tests from the Ironic plugin, execute the following command:

tox -e all -- ironic

To limit the amount of tests that you would like to run, you can use a regex. For instance, to limit the run
to a single test file, the following command can be used:

tox -e all -- ironic_tempest_plugin.tests.scenario.test_baremetal_basic_ops

Debugging tests

It is sometimes useful to step through the test code, line by line, especially when the error output is vague.
This can be done by running the tests in debug mode and using a debugger such as pdb.

For example, after editing the test_baremetal_basic_ops file and setting up the pdb traces you can invoke
the run_tempest.sh script in the Tempest directory with the following parameters:

./run_tempest.sh -N -d ironic_tempest_plugin.tests.scenario.test_baremetal_
↪→basic_ops

5.1. Developers Guide 719

https://opendev.org/openstack/ironic-tempest-plugin/src/branch/master/
https://docs.python.org/2/library/pdb.html

Ironic Documentation, Release 26.1.2.dev21

• The -N parameter tells the script to run the tests in the local environment (without a virtualenv) so
it can find the Ironic tempest plugin.

• The -d parameter enables the debug mode, allowing it to be used with pdb.

For more information about the supported parameters see:

./run_tempest.sh --help

Note

Always be careful when running debuggers in time sensitive code, they may cause timeout errors that
werent there before.

FAQ/Tips for development using devstack

VM logs are missing

When running QEMU as non-root user (e.g. qemu on Fedora or libvirt-qemu on Ubuntu), make sure
IRONIC_VM_LOG_DIR points to a directory where QEMU will be able to write. You can verify this with,
for example:

on Fedora
sudo -u qemu touch $HOME/ironic-bm-logs/test.log
on Ubuntu
sudo -u libvirt-qemu touch $HOME/ironic-bm-logs/test.log

Downloading an unmerged patch when stacking

To check out an in-progress patch for testing, you can add a Git ref to the enable_plugin line. For
instance:

enable_plugin ironic https://opendev.org/openstack/ironic refs/changes/46/
↪→295946/15

For a patch in review, you can find the ref to use by clicking the Download button in Gerrit. You can also
specify a different git repo, or a branch or tag:

enable_plugin ironic https://github.com/openstack/ironic stable/kilo

For more details, see the devstack plugin interface documentation.

720 Chapter 5. Contributor Guide

https://docs.openstack.org/devstack/latest/plugins.html#plugin-interface

Ironic Documentation, Release 26.1.2.dev21

Bifrost Development Environment

Bifrost is a project that deploys and operates Ironic using ansible. It is generally used standalone, without
many other services running alongside. This makes it a good choice for a quick development environment
for Ironic features that may not interact with other OpenStack services, even if you arent developing
against bifrost directly

Bifrost maintains its own documentation on building a test environment with bifrost.

The testenv provided is ideal for quickly testing API changes in Ironic or features for client libraries. It
is not the best choice for changes that interact with one or more OpenStack services or which require
tempest testing.

Exercising Ironic Services Locally

It can sometimes be helpful to run Ironic services locally, without needing a full devstack environment
or a server in a remote datacenter.

If you would like to exercise the Ironic services in isolation within your local environment, you can do
this without starting any other OpenStack services. For example, this is useful for rapidly prototyping
and debugging interactions between client and API, exploring the Ironic API for the first time, and basic
testing.

This guide assumes you have already installed all required Ironic prerequisites, as documented in the
prerequisites section of Unit Testing Environment.

Using tox

Ironic provides a tox environment suitable for running a single-process Ironic against sqlite. This utilizes
the config in tools/ironic.conf.localdev to setup a simple, all-in-one Ironic service useful for
testing.

By default, this configuration uses sqlite with a backing file ironic/ironic.sqlite. Deleting this file
and restarting ironic will reset you to a blank state.

Setup

1. If you havent already downloaded the source code, do that first:

cd ~
git clone https://opendev.org/openstack/ironic
cd ironic

2. Run the ironic all-in-one process:

tox -elocal-ironic-dev

3. In another window, utilize the client inside the tox venv:

5.1. Developers Guide 721

https://docs.openstack.org/bifrost/latest/contributor/testenv.html

Ironic Documentation, Release 26.1.2.dev21

. .tox/local-ironic-dev/bin/activate
export OS_AUTH_TYPE=none
export OS_ENDPOINT=http://127.0.0.1:6385
baremetal driver list

4. Press CTRL+C in the window running tox -elocal-ironic-dev when you are done.

Manually

You may wish to do this manually in order to give you more granular control over library versions and
configurations, to enable usage of a database server backend, or to spin up a non-all-in-one Ironic.

Step 1: Create a Python virtualenv

1. If you havent already downloaded the source code, do that first:

cd ~
git clone https://opendev.org/openstack/ironic
cd ironic

2. Create the Python virtualenv:

tox -elocal-ironic-dev --notest --develop -r

3. Activate the virtual environment:

. .tox/local-ironic-dev/bin/activate

Note

This installs python-openstackclient and python-ironicclient from pypi. You can
instead install them from source by cloning the git repository, activating the venv, and running
pip install -e . while in the root of the git repo.

4. Export some ENV vars so the client will connect to the local services that youll start in the next
section:

export OS_AUTH_TYPE=none
export OS_ENDPOINT=http://localhost:6385/

722 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Step 2: Install System Dependencies Locally

This step will install MySQL on your local system. This may not be desirable in some situations (eg,
youre developing from a laptop and do not want to run a MySQL server on it all the time).

1. Install mysql-server:

Ubuntu/Debian:

sudo apt-get install mysql-server

RHEL/CentOS/Fedora:

sudo dnf install mariadb mariadb-server
sudo systemctl start mariadb.service

openSUSE/SLE::
sudo zypper install mariadb sudo systemctl start mysql.service

If using MySQL, you need to create the initial database:

mysql -u root -pMYSQL_ROOT_PWD -e "create schema ironic"

2. Use the localdev config as a template, and modify it:

copy sample config and modify it as necessary
cp tools/ironic.conf.localdev etc/ironic/ironic.conf.local

Add mysql database connection information to config
echo -e "\n[database]" >> etc/ironic/ironic.conf.local
echo -e "connection = mysql+pymysql://root:MYSQL_ROOT_PWD@localhost/ironic
↪→" >> etc/ironic/ironic.conf.local

disable single-process mode and enable json-rpc
sed -i "s/rpc_transport = none/rpc_transport = json-rpc/" etc/ironic/
↪→ironic.conf.local

Step 3: Start the Services

From within the python virtualenv, run the following command to prepare the database before you start
the ironic services:

initialize the database for ironic
ironic-dbsync --config-file etc/ironic/ironic.conf.local create_schema

Next, open two new terminals for this section, and run each of the examples here in a separate terminal.
In this way, the services will not be run as daemons; you can observe their output and stop them with
Ctrl-C at any time.

1. Start the API service in debug mode and watch its output:

5.1. Developers Guide 723

Ironic Documentation, Release 26.1.2.dev21

cd ~/ironic
. .tox/local-ironic-dev/bin/activate
ironic-api -d --config-file etc/ironic/ironic.conf.local

2. Start the Conductor service in debug mode and watch its output:

cd ~/ironic
. .tox/local-ironic-dev/bin/activate
ironic-conductor -d --config-file etc/ironic/ironic.conf.local

Step 4: Interact with the running services

You should now be able to interact with ironic via the python client, which is present in the python
virtualenv, and observe both services debug outputs in the other two windows. This is a good way to test
new features or play with the functionality without necessarily starting DevStack.

To get started, export the following variables to point the client at the local instance of ironic:

export OS_AUTH_TYPE=none
export OS_ENDPOINT=http://127.0.0.1:6385

Then list the available commands and resources:

get a list of available commands
baremetal help

get the list of drivers currently supported by the available conductor(s)
baremetal driver list

get a list of nodes (should be empty at this point)
baremetal node list

Here is an example walkthrough of creating a node:

enroll the node with the fake hardware type and IPMI-based power and
management interfaces. Note that driver info may be added at node
creation time with "--driver-info"
NODE=$(baremetal node create --driver fake-hardware -f value -c uuid)

node info may also be added or updated later on
baremetal node set $NODE --driver-info fake_driver_info=fake
baremetal node set $NODE --extra extradata=isfun

view the information for the node
baremetal node show $NODE

request that the node's driver validate the supplied information
baremetal node validate $NODE

you have now enrolled a node sufficiently to be able to control
(continues on next page)

724 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

its power state from ironic!
baremetal node power on $NODE

If you make some code changes and want to test their effects, simply stop the services with Ctrl-C and
restart them.

Step 5: Fixing your test environment

If you are testing changes that add or remove python entrypoints, or making significant changes to ironics
python modules, or simply keep the virtualenv around for a long time, your development environment
may reach an inconsistent state. It may help to delete cached .pyc files, update dependencies, reinstall
ironic, or even recreate the virtualenv. The following commands may help with that, but are not an
exhaustive troubleshooting guide:

clear cached pyc files
cd ~/ironic/ironic
find ./ -name '*.pyc' | xargs rm

reinstall ironic modules
cd ~/ironic
. .tox/local-ironic-dev/bin/activate
pip uninstall ironic
pip install -e .

install and upgrade ironic and all python dependencies
cd ~/ironic
. .tox/local-ironic-dev/bin/activate
pip install -U -e .

Ironics State Machine

The content has been migrated, please see Bare Metal State Machine.

5.1.2 Bugs

Information about how ironic projects handle bugs can be found below.

Bug Reporting and Triaging Guide

Launchpad

All Ironic projects use Launchpad for tracking bugs.

5.1. Developers Guide 725

https://bugs.launchpad.net/ironic/+bugs

Ironic Documentation, Release 26.1.2.dev21

Note

Ironic projects formerly used Storyboard for tracking bugs. Since April 2023, we have switched to
Launchpad for bugtracking.

Reporting Guide

We are constantly receiving a lot of requests, so its important to file a meaningful one for it to be acted
upon. A good request:

• specifies why a change is needed. In case of a bug - what you expected to happen.

• explains how to reproduce the described condition.

Note

Please try to provide a reproducer based on unit tests, devstack or bifrost. While we try our
best to support users using other installers and distributions, it may be non-trivial without deep
knowledge of them. If youre using a commercial distribution or a product, please try contacting
support first.

• should be understandable without additional context. For example, if you see an exception, we will
need the full traceback. Other commonly required things are:

– the contents of the node in question (use baremetal node show <uuid>)

– debug logging related to the event, ideally with logs from the ramdisk

– versions of ironic, ironic-python-agent, and any other coupled components.

• should not be too verbose either. Unfortunately, we cannot process a few days worth of system logs
to find the problems, we expect your collaboration.

• is not a question or a support request. Please see So You Want to Contribute for the ways to contact
us.

• provides a way to contact the reporter. Please follow the comments and expect follow-up emails,
but ideally also be on IRC for questions.

An enhancement request additionally:

• benefits the overall project, not just one consumer. If you have a case that is specific to your
requirements, think about ways to make Ironic extensible to be able to cover it.

• does not unnecessary increase the project scope. Consider if your idea can be implemented without
changing Ironic or its projects, maybe it actually should?

• should specify if you are willing to perform the work to enhance Ironic yourself, of if youre sub-
mitting a request to for the project team to executed your requested enhancement.

726 Chapter 5. Contributor Guide

https://storyboard.openstack.org
https://bugs.launchpad.net/ironic/+bugs
https://docs.openstack.org/bifrost

Ironic Documentation, Release 26.1.2.dev21

Triaging Guide

The bug triaging process involves checking new stories to make sure they are actionable by the team. This
guide is mostly targeting the project team, but we would appreciate if reporters could partly self-triage
their own requests.

• Determine if the request is valid and complete. Use the checklist in the Reporting Guide for that.

• Is the request a bug report or an enhancement request (an RFE)? The difference is often subtle, the
key question to answer is if the described behavior is expected.

Add an rfe tag to all enhancement requests and propose it for the RFE Review section of the
weekly meeting.

• Does the RFE obviously require a spec? Usually this is decided when an RFE is reviewed during
the meeting, but some requests are undoubtedly complex, involve changing a lot of critical parts
and thus demand a spec.

Add a needs-spec tag to enhancement requests that obviously need a spec. Otherwise leave it
until the meeting.

• Apply additional tags:

– All hardware type specific stories should receive a corresponding tag (e.g. ipmi, idrac, etc).

– API-related stories should have an api tag.

– CI issues should have a gate tag.

The next actions must only be done by a core team member (or an experienced full-time contributor
appoined by the PTL):

• Can the RFE be automatically approved? It happens if the RFE requests an implementation of a
driver feature that is already implemented for other drivers and does not pose additional complexity.

If the RFE can be automatically approved, apply the rfe-approved tag. If unsure, never apply
the tag! Talk to the PTL instead.

• Does the RFE have a corresponding spec approved? If yes, apply the rfe-approved tag.

• In the end, apply the ironic-triaged tag to make the story as triaged.

Expiring Bugs

While we hope to fix all issues that our consumers hit, it is unfortunately not realistic. Stories may be
closed by marking all their tasks INVALID in the following cases:

• No solution has been proposed in 1 calendar year.

• Additional information has been requested from the reporter, and no update has been provided in
1 calendar month.

• The request no longer aligns with the direction of the project.

Note

As usual, common sense should be applied when closing stories.

5.1. Developers Guide 727

https://wiki.openstack.org/wiki/Meetings/Ironic
https://specs.openstack.org/openstack/ironic-specs/

Ironic Documentation, Release 26.1.2.dev21

Bug Deputy Guide

Ironic has a rotating bug deputy role with assigned responsibilities around ensuring recurring project
maintenance occurs, with a specific focus on bug triage.

It is the intent that the time commitment of an upstream bug deputy be no more than two to four hours a
week on average.

Schedule

Typically, a bug deputy will serve for a one week period, with the Ironic meeting marking the beginning
and end of the term.

A bug deputy schedule will be built at the beginning of the OpenStack release cycle and populated by
project volunteers. Contributors can select weeks to volunteer for stints as bug deputy.

If there are insufficient volunteers, to cover a majority of weeks, the bug deputy program will be cancelled.

Responsibilities

Bug Triage

Triage bugs opened in any Ironic project.

All Ironic project bugtrackers, filtered and sorted for triage:

• ironic

• ironic-inspector

• ironic-python-agent

• ironic-lib

• bifrost

• ironic-prometheus-exporter

• ironic-python-agent-builder

• ironic-ui

• metalsmith

• molteniron

• networking-baremetal

• networking-generic-switch

• python-ironic-inspector-client

• python-ironicclient

• sushy

• sushy-tools

• tenks

728 Chapter 5. Contributor Guide

https://bugs.launchpad.net/ironic/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/ironic-inspector/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/ironic-python-agent/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/ironic-lib/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/bifrost/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/ironic-prometheus-exporter/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/ironic-python-agent-builder/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/ironic-ui/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/metalsmith/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/molteniron/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/networking-baremetal/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/networking-generic-switch/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/python-ironic-inspector-client/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/python-ironicclient/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/sushy/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/sushy-tools/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://bugs.launchpad.net/tenks/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id

Ironic Documentation, Release 26.1.2.dev21

• virtualbmc

Bug Bash

A bug bash is an informal, synchronous meeting to triage bugs. A bug deputy runs one per week at a
time and in a format convenient for them.

The selected time and venue for this should be announced on the mailing list and at the Ironic meeting
when the bug deputy position is handed over.

Note

Bug bashes may be discontinued when the backlog of old, untriaged bugs have been worked through.

Review Periodic Stable CI Jobs

The bug deputy is responsible for reviewing the periodic stable CI jobs once during their week and
notifying the community if one fails for a new, non-random reason. The bug deputy should also be
prepared to help debug the issue, but is ultimately only responsible for documenting it.

• Periodic Zuul build failures for Ironic/IPA/Ironic-Prom-Exp/Bifrost

• Periodic Zuul build failures for Ironic UI/NBM/NGS

• Periodic Zuul build failures for inspector-client/sushy/sushy-tools/vbmc/vpdu/

As of this writing, no other projects under Ironic governance run periodic jobs.

Weekly Report

Once a week, at the end of the bug deputys term, they should deliver a report to the Ironic meeting and
the mailing list. This report should include any concerning bugs or CI breakages, as well as any other
issues that the bug deputy feels the community needs to know about.

For contributors who do not wish to attend the weekly meeting, a small written report in the meeting
agenda is sufficient.

5.1.3 Community and Policies

Bare Metal Community

This document provides information on how to reach out to the community for questions, bug reports or
new code contributions.

5.1. Developers Guide 729

https://bugs.launchpad.net/virtualbmc/+bugs?field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&orderby=-id
https://zuul.opendev.org/t/openstack/builds?project=openstack%2Fironic&project=openstack%2Fironic-python-agent&project=openstack%2Fironic-lib&project=openstack%2Fironic-prometheus-exporter&project=openstack%2Fbifrost&pipeline=periodic&pipeline=periodic-stable&result=FAILURE&result=RETRY_LIMIT&result=POST_FAILURE&result=ERROR&skip=0
https://zuul.opendev.org/t/openstack/builds?project=openstack%2Fnetworking-generic-switch&project=openstack%2Fironic-ui&project=openstack%2Fnetworking-baremetal&pipeline=periodic&pipeline=periodic-stable&result=FAILURE&result=RETRY_LIMIT&result=POST_FAILURE&result=ERROR&skip=0
https://zuul.opendev.org/t/openstack/builds?project=openstack%2Fpython-ironic-inspector-client&project=openstack%2Fsushy&project=openstack%2Fsushy-tools&project=openstack%2Fvirtualbmc&project=openstack%2Fvirtualpdu&pipeline=periodic&pipeline=periodic-stable&result=FAILURE&result=RETRY_LIMIT&result=POST_FAILURE&result=ERROR&skip=0

Ironic Documentation, Release 26.1.2.dev21

Useful Links

Bug/Task tracker
https://bugs.launchpad.net/ironic/+bugs

Code Hosting
https://opendev.org/openstack/ironic

Code Review
https://review.opendev.org/#/q/status:open+project:openstack/ironic,n,z

Weekly Meeting Agenda
https://wiki.openstack.org/wiki/Meetings/Ironic#Agenda_for_next_meeting

Ironic Contributors Whiteboard
https://etherpad.opendev.org/p/IronicWhiteBoard

Asking Questions

There are two many venues where all discussions happen: IRC and mailing lists.

Internet Relay Chat IRC

Daily contributor discussions take place on IRC in the #openstack-ironic channel on the OFTC IRC
network. Please feel free to connect to ircs://irc.oftc.net:6697 and join our channel!

Note that while we have community members from everywhere in the world, were the most active from
roughly 6am to 12am. If you dont get an answer to your question, try the Mailing list.

Additional information on getting connected can be found in the OpenStack community contribution
guide.

Mailing list

We use the openstack-discuss mailing list for asynchronous communications and longer discussions.
Navigate to http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss to subscribe or view
the archives.

When sending a message please prefix the Subject line with [ironic] so that we dont miss it.

Reporting Bugs

See Bug Reporting and Triaging Guide for more details on how we track bugs.

730 Chapter 5. Contributor Guide

https://bugs.launchpad.net/ironic/+bugs
https://opendev.org/openstack/ironic
https://review.opendev.org/#/q/status:open+project:openstack/ironic,n,z
https://wiki.openstack.org/wiki/Meetings/Ironic#Agenda_for_next_meeting
https://etherpad.opendev.org/p/IronicWhiteBoard
https://docs.openstack.org/contributors/common/irc.html
https://docs.openstack.org/contributors/common/irc.html
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Ironic Documentation, Release 26.1.2.dev21

LaunchPad

Most of the tools used for OpenStack require a Launchpad ID for authentication. Ironic tracks bugs via
Launchpad.

Storyboard

The Ironic project moved from StoryBoard for work and task tracking in April, 2023. Ironic bugs in
storyboard may remain valid, but there should not be additional issues filed there.

Contributing Code

See also

• So You Want to Contribute - basic information on new code contributions

• Developers Guide

So You Want to Contribute

This document provides some necessary points for developers to consider when writing and reviewing
Ironic code. The checklist will help developers get things right. Please make sure to check the community
page first.

Contributing Code

If youre completely new to OpenStack and want to contribute to the ironic project, please start by famil-
iarizing yourself with the Infra Teams Developer Guide. This will help you get your accounts set up in
Launchpad and Gerrit, familiarize you with the workflow for the OpenStack continuous integration and
testing systems, and help you with your first commit.

Everything Ironic

Ironic is a community of projects centered around the primary project repository ironic, which help
facilitate the deployment and management of bare metal resources.

This means there are a number of different repositories that fall into the responsibility of the project team
and the community. Some of the repositories may not seem strictly hardware related, but they may be
tools or things to just make an aspect easier.

5.1. Developers Guide 731

https://launchpad.net
https://storyboard.openstack.org/
https://docs.openstack.org/infra/manual/developers.html

Ironic Documentation, Release 26.1.2.dev21

Related Projects

There are several projects that are tightly integrated with ironic and which are developed by the same
community.

See also

• Bifrost Documentation

• Ironic Inspector Documentation

• Ironic Lib Documentation

• Ironic Python Agent (IPA) Documentation

• Ironic Client Documentation

• Ironic Inspector Client Documentation

Adding New Features

Ironic tracks new features using RFEs (Requests for Feature Enhancements) instead of blueprints. These
are stories with rfe tag, and they should be submitted before a spec or code is proposed.

When a member of the ironic-core team decides that the proposal is worth implementing, a spec (if
needed) and code should be submitted, referencing the RFE task or bug number. Contributors are wel-
come to submit a spec and/or code before the RFE is approved, however those patches will not land until
the RFE is approved.

Feature Submission Process

1. Submit a bug report on Launchpad. If you cant describe your feature in a sentence or two, it may
mean that you are either trying to capture more than one RFE at once, or that you are having a hard
time defining what you are trying to solve at all. This may also be a sign that your feature may
require a specification document.

2. Describe the proposed change in the Description field. The description should provide enough
details for a knowledgeable developer to understand what is the existing problem in the current
platform that needs to be addressed, or what is the enhancement that would make the platform
more capable, both from a functional and a non-functional standpoint.

3. Submit the bug, add an rfe tag to it and assign yourself or whoever is going to work on this feature.

4. As soon as a member of the team acknowledges the bug, we will move it to the Review state. As
time goes on, Discussion about the RFE, and whether to approve it will occur. If the RFE has not
been triaged and youd like it to receive immediate attention, add it to the Open Discussion section
of our weekly meeting agenda <https://wiki.openstack.org/wiki/Meetings/Ironic>, and, timezone
permitting, attend the meeting to advocate for your RFE.

5. Contributors will evaluate the RFE and may advise the submitter to file a spec in the ironic-specs
repository to elaborate on the feature request. Typically this is when an RFE requires extra scrutiny,
more design discussion, etc. For the spec submission process, please see the Ironic Specs Process.
A specific task should be created to track the creation of a specification.

732 Chapter 5. Contributor Guide

https://docs.openstack.org/bifrost/2024.2/
https://docs.openstack.org/ironic-inspector/2024.2/
https://docs.openstack.org/ironic-lib/2024.2/
https://docs.openstack.org/ironic-python-agent/2024.2/
https://docs.openstack.org/python-ironicclient/2024.2/
https://docs.openstack.org/python-ironic-inspector-client/2024.2/
https://review.opendev.org/#/admin/groups/165,members
https://bugs.launchpad.net/ironic/+bugs

Ironic Documentation, Release 26.1.2.dev21

6. If a spec is not required, once the discussion has happened and there is positive consensus among
the ironic-core team on the RFE, the RFE is approved, and its tag will move from rfe to rfe-
approved. This means that the feature is approved and the related code may be merged.

7. If a spec is required, the spec must be submitted (with a new task as part of the story referenced as
Task in the commit message), reviewed, and merged before the RFE will be approved (and the tag
changed to rfe-approved).

8. If the RFE is rejected, the ironic-core team will move the story to Invalid status.

Change Tracking

Please ensure work related to a bug or RFE is tagged with the bug. This generally is
a Closes-bug, Partial-bug or Related-bug tag as described in the Git Commit messages guide
<https://wiki.openstack.org/wiki/GitCommitMessages#Including_external_references>‘.

Note

RFEs may only be approved by members of the ironic-core team.

Note

While not strictly required for minor changes and fixes, it is highly preferred by the Ironic community
that any change which needs to be backported, have a recorded bug.

Managing Change Sets

If you would like some help, or if you (or some members of your team) are unable to continue working on
the feature, updating and maintaining the changes, please let the rest of the ironic community know. You
could leave a comment in one or more of the changes/patches, bring it up in IRC, the weekly meeting,
or on the OpenStack development email list. Communicating this will make other contributors aware of
the situation and allow for others to step forward and volunteer to continue with the work.

In the event that a contributor leaves the community, do not expect the contributors changes to be con-
tinued unless someone volunteers to do so.

Getting Your Patch Merged

Within the Ironic project, we generally require two core reviewers to sign-off (+2) change sets. We also
will generally recognize non-core (+1) reviewers, and sometimes even reverse our decision to merge code
based upon their reviews.

We recognize that some repositories have less visibility, as such it is okay to ask for a review in our IRC
channel. Please be prepared to stay in IRC for a little while in case we have questions.

Sometimes we may also approve patches with a single core reviewer. This is generally discouraged,
but sometimes necessary. When we do so, we try to explain why we do so. As a patch submitter, it
equally helps us to understand why the change is important. Generally, more detail and context helps us
understand the change faster.

5.1. Developers Guide 733

Ironic Documentation, Release 26.1.2.dev21

Timeline Expectations

As with any large project, it does take time for features and changes to be merged in any of the project
repositories. This is largely due to limited review bandwidth coupled with varying reviewer priorities
and focuses.

When establishing an understanding of complexity, the following things should be kept in mind.

• Generally, small and minor changes can gain consensus and merge fairly quickly. These sorts of
changes would be: bug fixes, minor documentation updates, follow-up changes.

• Medium changes generally consist of driver feature parity changes, where one driver is working to
match functionality of another driver.

– These changes generally only require an RFE for the purposes of tracking and correlating the
change.

– Documentation updates are expected to be submitted with or immediately following the initial
change set.

• Larger or controversial changes generally take much longer to merge. This is often due to the
necessity of reviewers to gain additional context and for change sets to be iterated upon to reach a
state where there is consensus. These sorts of changes include: database, object, internal interface
additions, RPC, rest API changes.

– These changes will very often require specifications to reach consensus, unless there are pre-
existing patterns or code already present.

– These changes may require many reviews and iterations, and can also expect to be impacted
by merge conflicts as other code or features are merged.

– These changes must typically be split into a series of changes. Reviewers typically shy away
from larger single change sets due to increased difficulty in reviewing.

– Do not expect any API or user-visible data model changes to merge after the API client freeze.
Some substrate changes may merge if not user visible.

• You should expect complex features, such as cross-project features or integration, to take longer
than a single development cycle to land.

– Building consensus is vital.

– Often these changes are controversial or have multiple considerations that need to be worked
through in the specification process, which may cause the design to change. As such, it may
take months to reach consensus over design.

– These features are best broken into larger chunks and tackled in an incremental fashion.

734 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Live Upgrade Related Concerns

See Rolling Upgrades.

Driver Internal Info

The driver_internal_info node field was introduced in the Kilo release. It allows driver developers
to store internal information that can not be modified by end users. Here is the list of existing common
and agent driver attributes:

• Common attributes:

– is_whole_disk_image: A Boolean value to indicate whether the user image contains
ramdisk/kernel.

– clean_steps: An ordered list of clean steps that will be performed on the node.

– deploy_steps: An ordered list of deploy steps that will be performed on the node. Support
for deploy steps was added in the 11.1.0 release.

– instance: A list of dictionaries containing the disk layout values.

– root_uuid_or_disk_id: A String value of the bare metal nodes root partition uuid or disk
id.

– persistent_boot_device: A String value of device from ironic.common.
boot_devices.

– is_next_boot_persistent: A Boolean value to indicate whether the next boot device is
persistent_boot_device.

• Agent driver attributes:

– agent_url: A String value of IPA API URL so that Ironic can talk to IPA ramdisk.

– hardware_manager_version: A String value of the version of the hardware manager in
IPA ramdisk.

– target_raid_config: A Dictionary containing the target RAID configuration. This is a
copy of the same name attribute in Node object. But this one is never actually saved into DB
and is only read by IPA ramdisk.

Note

These are only some fields in use. Other vendor drivers might expose more driver_internal_info
properties, please check their development documentation and/or module docstring for details. It is
important for developers to make sure these properties follow the precedent of prefixing their variable
names with a specific interface name (e.g., ilo_bar, drac_xyz), so as to minimize or avoid any conflicts
between interfaces.

5.1. Developers Guide 735

Ironic Documentation, Release 26.1.2.dev21

Ironic Specs Process

Specifications must follow the template which can be found at specs/template.rst, which is quite self-
documenting. Specifications are proposed by adding them to the specs/approved directory, adding a
soft link to it from the specs/not-implemented directory, and posting it for review to Gerrit. For more
information, please see the README.

The same Gerrit process as with source code, using the repository ironic-specs, is used to add new
specifications.

All approved specifications are available at: https://specs.openstack.org/openstack/ironic-specs. If a
specification has been approved but not completed within one or more releases since the approval, it
may be re-reviewed to make sure it still makes sense as written.

Ironic specifications are part of the RFE (Requests for Feature Enhancements) process. You are welcome
to submit patches associated with an RFE, but they will have a -2 (do not merge) until the specification
has been approved. This is to ensure that the patches dont get accidentally merged beforehand. You will
still be able to get reviewer feedback and push new patch sets, even with a -2. The list of core reviewers
for the specifications is small but mighty. (This is not necessarily the same list of core reviewers for code
patches.)

Changes to existing specs

For approved but not-completed specs:

• cosmetic cleanup, fixing errors, and changing the definition of a feature can be done to the spec.

For approved and completed specs:

• changing a previously approved and completed spec should only be done for cosmetic cleanup or
fixing errors.

• changing the definition of the feature should be done in a new spec.

Please see the Ironic specs process wiki page for further reference.

Project Team Leader Duties

The Project Team Leader or PTL is elected each development cycle by the contributors to the ironic
community.

Think of this person as your primary contact if you need to try and rally the project, or have a major issue
that requires attention.

They serve a role that is mainly oriented towards trying to drive the technical discussion forward and
managing the idiosyncrasies of the project. With this responsibility, they are considered a public face of
the project and are generally obliged to try and provide project updates and outreach communication.

All common PTL duties are enumerated here in the PTL guide.

Tasks like release management or preparation for a release are generally delegated with-in the team. Even
outreach can be delegated, and specifically there is no rule stating that any member of the community
cant propose a release, clean-up release notes or documentation, or even get on the occasional stage.

736 Chapter 5. Contributor Guide

https://opendev.org/openstack/ironic-specs/src/branch/master/specs/template.rst
https://git.openstack.org/cgit/openstack/ironic-specs/tree/README.rst
https://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/ironic-specs/
https://specs.openstack.org/openstack/ironic-specs
https://review.opendev.org/#/admin/groups/352,members
https://wiki.openstack.org/wiki/Ironic/Specs_Process
https://docs.openstack.org/project-team-guide/ptl.html

Ironic Documentation, Release 26.1.2.dev21

Developer FAQ (frequently asked questions)

Here are some answers to frequently-asked questions from IRC and elsewhere.

• How do I

– create a migration script template?

– know if a release note is needed for my change?

– create a new release note?

– update a release note?

– get a decision on something?

– add support for GMRs to new executables and extending the GMR?

How do I

create a migration script template?

Using the ironic-dbsync revision command, e.g:

$ cd ironic
$ tox -evenv -- ironic-dbsync revision -m \"create foo table\"

It will create an empty alembic migration. For more information see the alembic documentation.

know if a release note is needed for my change?

Reno documentation contains a description of what can be added to each section of a release note. If,
after reading this, youre still unsure about whether to add a release note for your change or not, keep in
mind that it is intended to contain information for deployers, so changes to unit tests or documentation
are unlikely to require one.

create a new release note?

By running reno command via tox, e.g:

$ tox -e venv -- reno new version-foo
venv create: /home/foo/ironic/.tox/venv
venv installdeps: -r/home/foo/ironic/test-requirements.txt
venv develop-inst: /home/foo/ironic
venv runtests: PYTHONHASHSEED='0'
venv runtests: commands[0] | reno new version-foo
Created new notes file in releasenotes/notes/version-foo-ecb3875dc1cbf6d9.

↪→yaml
venv: commands succeeded

(continues on next page)

5.1. Developers Guide 737

http://alembic.zzzcomputing.com/en/latest/tutorial.html#create-a-migration-script
https://docs.openstack.org/reno/latest/user/usage.html

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

congratulations :)

$ git status
On branch test
Untracked files:
(use "git add <file>..." to include in what will be committed)

releasenotes/notes/version-foo-ecb3875dc1cbf6d9.yaml

Then edit the result file. Note that:

• we prefer to use present tense in release notes. For example, a release note should say Adds support
for feature foo, not Added support for feature foo. (We use adds instead of add because grammat-
ically, it is ironic adds support, not ironic add support.)

• any variant of English spelling (American, British, Canadian, Australian) is acceptable. The re-
lease note itself should be consistent and not have different spelling variants of the same word.

For more information see the reno documentation.

update a release note?

If this is a release note that pertains to something that was fixed on master or an intermediary release
(during a development cycle, that hasnt been branched yet), you can go ahead and update it by submitting
a patch.

If it is the release note of an ironic release that has branched, it can be updated but we will only allow it in
extenuating circumstances. (It can be updated by only updating the file in that branch. DO NOT update
the file in master and cherry-pick it. If you do, see how the mess was cleaned up.)

get a decision on something?

You have an issue and would like a decision to be made. First, make sure that the issue hasnt already
been addressed, by looking at documentation, stories, specifications, or asking. Information and links
can be found on the Ironic wiki page.

There are several ways to solicit comments and opinions:

• bringing it up at the weekly Ironic meeting

• bringing it up on IRC

• bringing it up on the mailing list (add [Ironic] to the Subject of the email)

If there are enough core folks at the weekly meeting, after discussing an issue, voting could happen and
a decision could be made. The problem with IRC or the weekly meeting is that feedback will only come
from the people that are actually present.

To inform (and solicit feedback from) more people about an issue, the preferred process is:

1. bring it up on the mailing list

2. after some period of time has elapsed (and depending on the thread activity), someone should
propose a solution via gerrit. (E.g. the person that started the thread if no one else steps up.) The

738 Chapter 5. Contributor Guide

https://docs.openstack.org/reno/latest/user/usage.html
https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes
https://storyboard.openstack.org/#!/story/1670401
https://wiki.openstack.org/wiki/Ironic
https://wiki.openstack.org/wiki/Meetings/Ironic
https://wiki.openstack.org/wiki/Ironic#IRC
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Ironic Documentation, Release 26.1.2.dev21

proposal should be made in the git repository that is associated with the issue. (For instance, this
decision process was proposed as a documentation patch to the ironic repository.)

3. In the email thread, dont forget to provide a link to the proposed patch!

4. The discussion then moves to the proposed patch. If this is a big decision, we could declare that
some percentage of the cores should vote on it before landing it.

(This process was suggested in an email thread about process for making decisions.)

add support for GMRs to new executables and extending the GMR?

For more information, see the oslo.reports documentation page.

Contributor Vision

Background

During the Rocky Project Teams Gathering (February/March 2018), The contributors in the room at that
time took a few minutes to write out each contributors vision of where they see ironic in five years time.

After everyone had a chance to spend a few minutes writing, we went around the room and gave every
contributor the chance to read their vision and allow other contributors to ask questions to better under-
stand what each individual contributor wrote. While we were doing that, we also took time to capture
the common themes.

This entire exercise did result in some laughs and a common set of words, and truly helped to ensure that
the entire team proceeded to use the same words to describe various aspects as the sessions progressed
during the week. We also agreed that we should write a shared vision, to have something to reference
and remind us of where we want to go as a community.

Rocky Vision: For 2022-2023

Common Themes

Below is an entirely unscientific summary of common themes that arose during the discussion among
fourteen contributors.

• Contributors picked a time between 2020, and 2023.

• 4 Contributors foresee ironic being the leading Open Source baremetal deployment technology

• 2 Contributors foresee ironic reaching feature parity with Nova.

• 2 Contributors foresee users moving all workloads to the cloud

• 1 Contributor foresees Kubernetes and Container integration being the major focus of Bare Metal
as a Service further down the road.

• 2 Contributors foresee greater composible hardware being more common.

• 1 Contributor foresees ironic growing into or supporting CMDBs.

• 2 Contributors foresee that features are more micro-service oriented.

5.1. Developers Guide 739

http://lists.openstack.org/pipermail/openstack-dev/2016-May/095460.html
https://docs.openstack.org/oslo.reports/2024.2/user/usage.html

Ironic Documentation, Release 26.1.2.dev21

• 2 Contributors foresee that ironic supported all of the possible baremetal management needs

• 1 Contributor foresees standalone use being more common.

• 2 Contributors foresee the ironics developer community growing

• 2 Contributors foresee that auto-discovery will be more common.

• 2 Contributors foresee ironic being used for devices beyond servers, such as lightbulbs, IOT, etc.

Vision Statement

The year is 2022. Were meeting to plan the Z release of Ironic. We stopped to reflect upon the last few
years of Ironics growth, how we had come such a long way to become the defacto open source baremetal
deployment technology. How we had grown our use cases, and support for consumers such as containers,
and users who wished to managed specialized fleets of composed machines.

New contributors and their different use cases have brought us closer to parity with virtual machines.
Everyday were gaining word of more operators adopting the ironic communitys CMDB integration to
leverage hardware discovery. Weve heard of operators deploying racks upon racks of new hardware by
just connecting the power and network cables, and from there the operators have discovered time to write
the worlds greatest operator novel with the time saved in commissioning new racks of hardware.

Time has brought us closer and taught us to be more collaborative across the community, and we look
forward to our next release together.

Comparison to the 2018 OpenStack Technical Vision

In late-2018, the OpenStack Technical composed a technical vision of what OpenStack clouds should
look like. While every component differs, and cloudy interactions change dramatically the closer to
physical hardware one gets, there are a few areas where Ironic could use some improvement.

This list is largely for the purposes of help wanted. It is also important to note that Ironic as a project has
a vision document for itself.

The Pillars of Cloud - Self Service

• Ironics mechanisms and tooling are low level infrastructure mechanisms and as such there has
never been a huge emphasis or need on making Ironic be capable of offering direct multi-tenant
interaction. Most users interact with the bare metal managed by Ironic via Nova, which abstracts
away many of these issues. Eventually, we should offer direct multi-tenancy which is not oriented
towards admin-only.

740 Chapter 5. Contributor Guide

https://governance.openstack.org/tc/reference/technical-vision.html
vision.html

Ironic Documentation, Release 26.1.2.dev21

Design Goals - Built-in Reliability and Durability

• Ironic presently considers in-flight operations as failed upon the restart of a controller that was
previously performing a task, because we do not know the current status of the task upon re-start.
In some cases, this makes sense, but potentially requires administrative intervention in the worst
of cases. In a perfect universe, Ironic conductors would validate their perception, in case tasks
actually finished.

Design Goals - Graphical User Interface

• While a graphical interface was developed for Horizon in the form of ironic-ui, currently ironic-ui
receives only minimal housekeeping. As Ironic has evolved, ironic-ui is stuck on version 1.34 and
knows nothing of our evolution since. Ironic ultimately needs a contributor with sufficient time to
pick up ironic-ui or to completely replace it as a functional and customizable user interface.

5.1.4 Architecture and Implementation Details

The following pages describe the architecture of the Bare Metal service and may be helpful to anyone
working on or with the service, but are written primarily for developers.

System Architecture

High Level description

An Ironic deployment will be composed of the following components:

• An admin-only RESTful API service, by which privileged users, such as cloud operators and other
services within the cloud control plane, may interact with the managed bare metal servers.

• A Conductor service, which does the bulk of the work. Functionality is exposed via the API
service. The Conductor and API services communicate via RPC.

• A Database and DB API for storing the state of the Conductor and Drivers.

• A Deployment Ramdisk or Deployment Agent, which provide control over the hardware which is
not available remotely to the Conductor. A ramdisk should be built which contains one of these
agents, eg. with diskimage-builder. This ramdisk can be booted on-demand.

Note

The agent is never run inside a tenant instance.

5.1. Developers Guide 741

https://git.openstack.org/cgit/openstack/ironic-ui
webapi.html
api/ironic.conductor.manager.html
webapi.html
webapi.html
api/ironic.db.api.html
https://docs.openstack.org/diskimage-builder/latest/

Ironic Documentation, Release 26.1.2.dev21

Drivers

The internal driver API provides a consistent interface between the Conductor service and the driver
implementations. A driver is defined by a hardware type deriving from the AbstractHardwareType class,
defining supported hardware interfaces. See Enabling drivers and hardware types for a more detailed
explanation. See Pluggable Drivers for an explanation on how to write new hardware types and interfaces.

Driver-Specific Periodic Tasks

Drivers may run their own periodic tasks, i.e. actions run repeatedly after a certain amount of time. Such
a task is created by using the periodic decorator on an interface method. For example

from futurist import periodics

class FakePower(base.PowerInterface):
@periodics.periodic(spacing=42)
def task(self, manager, context):

pass # do something

Here the spacing argument is a period in seconds for a given periodic task. For example spacing=5
means every 5 seconds.

Starting with the Yoga cycle, there is also a new decorator ironic.conductor.periodics.
node_periodic() to create periodic tasks that handle nodes. See deploy steps documentation for an
example.

Driver-Specific Steps

Drivers may have specific steps that may need to be executed or offered to a user to execute in order to
perform specific configuration tasks.

These steps should ideally be located on the management interface to enable consistent user experience
of the hardware type. What should be avoided is duplication of existing interfaces such as the deploy
interface to enable vendor specific cleaning or deployment steps.

Message Routing

Each Conductor registers itself in the database upon start-up, and periodically updates the timestamp
of its record. Contained within this registration is a list of the drivers which this Conductor instance
supports. This allows all services to maintain a consistent view of which Conductors and which drivers
are available at all times.

Based on their respective driver, all nodes are mapped across the set of available Conductors using a
consistent hashing algorithm. Node-specific tasks are dispatched from the API tier to the appropriate
conductor using conductor-specific RPC channels. As Conductor instances join or leave the cluster,
nodes may be remapped to different Conductors, thus triggering various driver actions such as take-over
or clean-up.

742 Chapter 5. Contributor Guide

api/ironic.drivers.hardware_type.html#ironic.drivers.hardware_type.AbstractHardwareType
https://docs.openstack.org/futurist/latest/reference/index.html#futurist.periodics.periodic
https://docs.openstack.org/tooz/latest/user/tutorial/hashring.html

Ironic Documentation, Release 26.1.2.dev21

Developing New Notifications

Ironic notifications are events intended for consumption by external services. Notifications are sent to
these services over a message bus by oslo.messagings Notifier class. For more information about config-
uring notifications and available notifications, see Notifications.

Ironic also has a set of base classes that assist in clearly defining the notification itself, the payload, and
the other fields not auto-generated by oslo (level, event_type and publisher_id). Below describes how to
use these base classes to add a new notification to ironic.

Adding a new notification to ironic

To add a new notification to ironic, a new versioned notification class should be created by subclassing
the NotificationBase class to define the notification itself and the NotificationPayloadBase class to define
which fields the new notification will contain inside its payload. You may also define a schema to allow
the payload to be automatically populated by the fields of an ironic object. Heres an example:

The ironic object whose fields you want to use in your schema
@base.IronicObjectRegistry.register
class ExampleObject(base.IronicObject):

Version 1.0: Initial version
VERSION = '1.0'
fields = {

'id': fields.IntegerField(),
'uuid': fields.UUIDField(),
'a_useful_field': fields.StringField(),
'not_useful_field': fields.StringField()

}

A class for your new notification
@base.IronicObjectRegistry.register
class ExampleNotification(notification.NotificationBase):

Version 1.0: Initial version
VERSION = '1.0'
fields = {

'payload': fields.ObjectField('ExampleNotifPayload')
}

A class for your notification's payload
@base.IronicObjectRegistry.register
class ExampleNotifPayload(notification.NotificationPayloadBase):

Schemas are optional. They just allow you to reuse other objects'
fields by passing in that object and calling populate_schema with
a kwarg set to the other object.
SCHEMA = {

'a_useful_field': ('example_obj', 'a_useful_field')
}

Version 1.0: Initial version
VERSION = '1.0'

(continues on next page)

5.1. Developers Guide 743

https://docs.openstack.org/oslo.messaging/2024.2/reference/notifier.html

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

fields = {
'a_useful_field': fields.StringField(),
'an_extra_field': fields.StringField(nullable=True)

}

Note that both the payload and notification classes are oslo versioned objects. Modifications to these
require a version bump so that consumers of notifications know when the notifications have changed.

SCHEMA defines how to populate the payload fields. Its an optional attribute that subclasses may use
to easily populate notifications with data from other objects.

It is a dictionary where every key value pair has the following format:

<payload_field_name>: (<data_source_name>,
<field_of_the_data_source>)

The <payload_field_name> is the name where the data will be stored in the payload object; this field
has to be defined as a field of the payload. The <data_source_name> shall refer to name of the parameter
passed as kwarg to the payloads populate_schema() call and this object will be used as the source of
the data. The <field_of_the_data_source> shall be a valid field of the passed argument.

The SCHEMA needs to be applied with the populate_schema() call before the notification can be
emitted.

The value of the payload.<payload_field_name> field will be set by the <data_source_name>.
<field_of_the_data_source> field. The <data_source_name> will not be part of the payload ob-
ject internal or external representation.

Payload fields that are not set by the SCHEMA can be filled in the same way as in any versioned object.

Then, to create a payload, you would do something like the following. Note that if you choose
to define a schema in the SCHEMA class variable, you must populate the schema by calling
populate_schema(example_obj=my_example_obj) before emitting the notification is allowed:

my_example_obj = ExampleObject(id=1,
a_useful_field='important',
not_useful_field='blah')

an_extra_field is optional since it's not a part of the SCHEMA and is a
nullable field in the class fields
my_notify_payload = ExampleNotifyPayload(an_extra_field='hello')
populate the schema with the ExampleObject fields
my_notify_payload.populate_schema(example_obj=my_example_obj)

You then create the notification with the oslo required fields (event_type, publisher_id, and level, all
sender fields needed by oslo that are defined in the ironic notification base classes) and emit it:

notify = ExampleNotification(
event_type=notification.EventType(object='example_obj',

action='do_something', status=fields.NotificationStatus.START),
publisher=notification.NotificationPublisher(

service='ironic-conductor',
(continues on next page)

744 Chapter 5. Contributor Guide

https://docs.openstack.org/oslo.versionedobjects/2024.2/

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

host='hostname01'),
level=fields.NotificationLevel.DEBUG,
payload=my_notify_payload)

notify.emit(context)

When specifying the event_type, object will specify the object being acted on, action will be a string
describing what action is being performed on that object, and status will be one of start, end, error,
or success. start and end are used to indicate when actions that are not immediate begin and succeed.
success is used to indicate when actions that are immediate succeed. error is used to indicate when any
type of action fails, regardless of whether its immediate or not. As a result of specifying these parameters,
event_type will be formatted as baremetal.<object>.<action>.<status> on the message bus.

This example will send the following notification over the message bus:

{
"priority": "debug",
"payload":{

"ironic_object.namespace":"ironic",
"ironic_object.name":"ExampleNotifyPayload",
"ironic_object.version":"1.0",
"ironic_object.data":{

"a_useful_field":"important",
"an_extra_field":"hello"

}
},
"event_type":"baremetal.example_obj.do_something.start",
"publisher_id":"ironic-conductor.hostname01"

}

About OSProfiler

OSProfiler is an OpenStack cross-project profiling library. Its API provides different ways to add a new
trace point. Trace points contain two messages (start and stop). Messages like below are sent to a col-
lector:

{
"name": <point_name>-(start|stop),
"base_id": <uuid>,
"parent_id": <uuid>,
"trace_id": <uuid>,
"info": <dict>

}

The fields are defined as follows:

base_id - <uuid> that is same for all trace points that belong to one trace. This is used to simplify the
process of retrieving all trace points (related to one trace) from the collector.

parent_id - <uuid> of parent trace point.

trace_id - <uuid> of current trace point.

5.1. Developers Guide 745

Ironic Documentation, Release 26.1.2.dev21

info - the dictionary that contains user information passed when calling profiler start() & stop() methods.

The profiler uses ceilometer as a centralized collector. Two other alternatives for ceilometer are pure
MongoDB driver and Elasticsearch.

A notifier is setup to send notifications to ceilometer using oslo.messaging and ceilometer API is used to
retrieve all messages related to one trace.

OSProfiler has entry point that allows the user to retrieve information about traces and present it in
HTML/JSON using CLI.

For more details see OSProfiler Cross-project profiling library.

How to Use OSProfiler with Ironic in Devstack

To use or test OSProfiler in ironic, the user needs to setup Devstack with OSProfiler and ceilometer. In
addition to the setup described at Deploying Ironic with DevStack, the user needs to do the following:

Add the following to localrc to enable OSProfiler and ceilometer:

enable_plugin panko https://opendev.org/openstack/panko
enable_plugin ceilometer https://opendev.org/openstack/ceilometer
enable_plugin osprofiler https://opendev.org/openstack/osprofiler

Enable the following services
CEILOMETER_NOTIFICATION_TOPICS=notifications,profiler
ENABLED_SERVICES+=,ceilometer-acompute,ceilometer-acentral
ENABLED_SERVICES+=,ceilometer-anotification,ceilometer-collector
ENABLED_SERVICES+=,ceilometer-alarm-evaluator,ceilometer-alarm-notifier
ENABLED_SERVICES+=,ceilometer-api

Run stack.sh.

Once Devstack environment is setup, edit ironic.conf to set the following profiler options and restart
ironic services:

[profiler]
enabled = True
hmac_keys = SECRET_KEY # default value used across several OpenStack projects
trace_sqlalchemy = True

In order to trace ironic using OSProfiler, use openstackclient to run baremetal commands with
--os-profile SECRET_KEY.

For example, the following will cause a <trace-id> to be printed after node list:

$ openstack --os-profile SECRET_KEY baremetal node list

Output of the above command will include the following:

Trace ID: <trace-id>
Display trace with command:
osprofiler trace show --html <trace-id>

The trace results can be seen using this command:

746 Chapter 5. Contributor Guide

https://docs.openstack.org/osprofiler/2024.2/index.html

Ironic Documentation, Release 26.1.2.dev21

$ osprofiler trace show --html <trace-id>

The trace results can be saved in a file with --out file-name option:

$ osprofiler trace show --html <trace-id> --out trace.html

The trace results show the time spent in ironic-api, ironic-conductor, and db calls. More detailed db
tracing is enabled if trace_sqlalchemy is set to true.

References

• OSProfiler Cross-project profiling library

• Deploying Ironic with DevStack

Rolling Upgrades

The ironic (ironic-api and ironic-conductor) services support rolling upgrades, starting with a rolling
upgrade from the Ocata to the Pike release. This describes the design of rolling upgrades, followed by
notes for developing new features or modifying an IronicObject.

Design

Rolling upgrades between releases

Ironic follows the release-cycle-with-intermediary release model. The releases are semantic-versioned,
in the form <major>.<minor>.<patch>. We refer to a named release of ironic as the release associated
with a development cycle like Pike.

In addition, ironic follows the standard deprecation policy, which says that the deprecation period must
be at least three months and a cycle boundary. This means that there will never be anything that is both
deprecated and removed between two named releases.

Rolling upgrades will be supported between:

• named release N to N+1 (starting with N == Ocata)

• any named release to its latest revision, containing backported bug fixes. Because those bug fixes
can contain improvements to the upgrade process, the operator should patch the system before
upgrading between named releases.

• most recent named release N (and semver releases newer than N) to master. As with the above
bullet point, there may be a bug or a feature introduced on a master branch, that we want to remove
before publishing a named release. Deprecation policy allows to do this in a 3 month time frame. If
the feature was included and removed in intermediate releases, there should be a release note added,
with instructions on how to do a rolling upgrade to master from an affected release or release span.
This would typically instruct the operator to upgrade to a particular intermediate release, before
upgrading to master.

5.1. Developers Guide 747

https://docs.openstack.org/osprofiler/2024.2/index.html
https://releases.openstack.org/reference/release_models.html
http://semver.org/
https://governance.openstack.org/tc/reference/tags/assert_follows-standard-deprecation.html

Ironic Documentation, Release 26.1.2.dev21

Rolling upgrade process

Ironic supports rolling upgrades as described in the upgrade guide.

The upgrade process will cause the ironic services to be running the FromVer and ToVer releases in this
order:

0. Upgrade ironic code and run database schema migrations via the ironic-dbsync upgrade com-
mand.

1. Upgrade code and restart ironic-conductor services, one at a time.

2. Upgrade code and restart ironic-api services, one at a time.

3. Unpin API, RPC and object versions so that the services can now use the latest versions in ToVer.
This is done via updating the configuration option described below in API, RPC and object ver-
sion pinning and then restarting the services. ironic-conductor services should be restarted first,
followed by the ironic-api services. This is to ensure that when new functionality is exposed on
the unpinned API service (via API micro version), it is available on the backend.

step ironic-api ironic-conductor
0 all FromVer all FromVer
1.1 all FromVer some FromVer, some ToVer-pinned
1.2 all FromVer all ToVer-pinned
2.1 some FromVer, some ToVer-pinned all ToVer-pinned
2.2 all ToVer-pinned all ToVer-pinned
3.1 all ToVer-pinned some ToVer-pinned, some ToVer
3.2 all ToVer-pinned all ToVer
3.3 some ToVer-pinned, some ToVer all ToVer
3.4 all ToVer all ToVer

Policy for changes to the DB model

The policy for changes to the DB model is as follows:

• Adding new items to the DB model is supported.

• The dropping of columns or tables and corresponding objects fields is subject to ironics dep-
recation policy. But its alembic script has to wait one more deprecation period, otherwise an
unknown column exception will be thrown when FromVer services access the DB. This is be-
cause ironic-dbsync upgrade upgrades the DB schema but FromVer services still contain the
dropped field in their SQLAlchemy DB model.

• An alembic.op.alter_column() to rename or resize a column is not allowed. Instead, split it
into multiple operations, with one operation per release cycle (to maintain compatibility with an
old SQLAlchemy model). For example, to rename a column, add the new column in release N,
then remove the old column in release N+1.

• Some implementations of SQLs ALTER TABLE, such as adding foreign keys in PostgreSQL, may
impose table locks and cause downtime. If the change cannot be avoided and the impact is signif-
icant (e.g. the table can be frequently accessed and/or store a large dataset), these cases must be
mentioned in the release notes.

748 Chapter 5. Contributor Guide

https://governance.openstack.org/tc/reference/tags/assert_follows-standard-deprecation.html
https://governance.openstack.org/tc/reference/tags/assert_follows-standard-deprecation.html

Ironic Documentation, Release 26.1.2.dev21

API, RPC and object version pinning

For the ironic services to be running old and new releases at the same time during a rolling upgrade, the
services need to be able to handle different API, RPC and object versions.

This versioning is handled via the configuration option: [DEFAULT]/pin_release_version. It is used
to pin the API, RPC and IronicObject (e.g., Node, Conductor, Chassis, Port, and Portgroup) versions for
all the ironic services.

The default value of empty indicates that ironic-api and ironic-conductor will use the latest versions of
API, RPC and IronicObjects. Its possible values are releases, named (e.g. ocata) or sem-versioned (e.g.
7.0).

Internally, in common/release_mappings.py, ironic maintains a mapping that indicates the API, RPC and
IronicObject versions associated with each release. This mapping is maintained manually.

During a rolling upgrade, the services using the new release will set the configuration option value to
be the name (or version) of the old release. This will indicate to the services running the new release,
which API, RPC and object versions that they should be compatible with, in order to communicate with
the services using the old release.

Handling API versions

When the (newer) service is pinned, the maximum API version it supports will be the pinned version
which the older service supports (as described above at API, RPC and object version pinning). The
ironic-api service returns HTTP status code 406 for any requests with API versions that are higher than
this maximum version.

Handling RPC versions

ConductorAPI.__init__() sets the version_cap variable to the desired (latest or pinned) RPC API ver-
sion and passes it to the RPCClient as an initialization parameter. This variable is then used to determine
the maximum requested message version that the RPCClient can send.

Each RPC call can customize the request according to this version_cap. The Ironic RPC versions
section below has more details about this.

Handling IronicObject versions

Internally, ironic services deal with IronicObjects in their latest versions. Only at these boundaries, when
the IronicObject enters or leaves the service, do we deal with object versioning:

• getting objects from the database: convert to latest version

• saving objects to the database: if pinned, save in pinned version; else save in latest version

• serializing objects (to send over RPC): if pinned, send pinned version; else send latest version

• deserializing objects (receiving objects from RPC): convert to latest version

The ironic-api service also has to handle API requests/responses based on whether or how a feature is
supported by the API version and object versions. For example, when the ironic-api service is pinned, it

5.1. Developers Guide 749

https://opendev.org/openstack/ironic/src/branch/master/ironic/common/release_mappings.py
https://opendev.org/openstack/ironic/src/commit/338fdb94fc3b031e8d91bc7131cb4cadf05d7b92/ironic/conductor/rpcapi.py#L111

Ironic Documentation, Release 26.1.2.dev21

can only allow actions that are available to the objects pinned version, and cannot allow actions that are
only available for the latest version of that object.

To support this:

• All the database tables (SQLAlchemy models) of the IronicObjects have a column named
version. The value is the version of the object that is saved in the database.

• The method IronicObject.get_target_version() returns the target version. If pinned, the
pinned version is returned. Otherwise, the latest version is returned.

• The method IronicObject.convert_to_version() converts the object into the target version.
The target version may be a newer or older version than the existing version of the object. The bulk
of the work is done in the helper method IronicObject._convert_to_version(). Subclasses
that have new versions redefine this to perform the actual conversions.

In the following,

• The old release is FromVer; it uses version 1.14 of a Node object.

• The new release is ToVer. It uses version 1.15 of a Node object this has a deprecated extra field
and a new meta field that replaces extra.

• db_obj[meta] and db_obj[extra] are the database representations of those node fields.

Getting objects from the database (API/conductor < DB)

Both ironic-api and ironic-conductor services read values from the database. These values are converted
to IronicObjects via the method IronicObject._from_db_object(). This method always returns the
IronicObject in its latest version, even if it was in an older version in the database. This is done regardless
of the service being pinned or not.

Note that if an object is converted to a later version, that IronicObject will retain any changes (in its
_changed_fields field) resulting from that conversion. This is needed in case the object gets saved
later, in the latest version.

For example, if the node in the database is in version 1.14 and has db_obj[extra] set:

• a FromVer service will get a Node with node.extra = db_obj[extra] (and no knowledge of node.meta
since it doesnt exist)

• a ToVer service (pinned or unpinned), will get a Node with:

– node.meta = db_obj[extra]

– node.extra = None

– node._changed_fields = [meta, extra]

750 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Saving objects to the database (API/conductor > DB)

The version used for saving IronicObjects to the database is determined as follows:

• For an unpinned service, the object is saved in its latest version. Since objects are always in their
latest version, no conversions are needed.

• For a pinned service, the object is saved in its pinned version. Since objects are always in their
latest version, the object needs to be converted to the pinned version before being saved.

The method IronicObject.do_version_changes_for_db() handles this logic, returning a dic-
tionary of changed fields and their new values (similar to the existing oslo.versionedobjects.
VersionedObject.obj_get_changes()). Since we do not keep track internally, of the database ver-
sion of an object, the objects version field will always be part of these changes.

The Rolling upgrade process (at step 3.1) ensures that by the time an object can be saved in its latest
version, all services are running the newer release (although some may still be pinned) and can handle
the latest object versions.

An interesting situation can occur when the services are as described in step 3.1. It is possible for an
IronicObject to be saved in a newer version and subsequently get saved in an older version. For example,
a ToVer unpinned conductor might save a node in version 1.5. A subsequent request may cause a ToVer
pinned conductor to replace and save the same node in version 1.4!

Sending objects via RPC (API/conductor -> RPC)

When a service makes an RPC request, any IronicObjects that are sent as part of that request are serialized
into entities or primitives via IronicObjectSerializer.serialize_entity(). The version used
for objects being serialized is as follows:

• For an unpinned service, the object is serialized to its latest version. Since objects are always in
their latest version, no conversions are needed.

• For a pinned service, the object is serialized to its pinned version. Since objects are always in their
latest version, the object is converted to the pinned version before being serialized. The converted
object includes changes that resulted from the conversion; this is needed so that the service at
the other end of the RPC request has the necessary information if that object will be saved to the
database.

Receiving objects via RPC (API/conductor <- RPC)

When a service receives an RPC request, any entities that are part of the request need to be deserialized
(via oslo.versionedobjects.VersionedObjectSerializer.deserialize_entity()). For en-
tities that represent IronicObjects, we want the deserialization process (via IronicObjectSerializer.
_process_object()) to result in IronicObjects that are in their latest version, regardless of the version
they were sent in and regardless of whether the receiving service is pinned or not. Again, any objects
that are converted will retain the changes that resulted from the conversion, useful if that object is later
saved to the database.

For example, a FromVer ironic-api could issue an update_node() RPC request with a node in version
1.4, where node.extra was changed (so node._changed_fields = [extra]). This node will be serialized in
version 1.4. The receiving ToVer pinned ironic-conductor deserializes it and converts it to version 1.5.

5.1. Developers Guide 751

Ironic Documentation, Release 26.1.2.dev21

The resulting node will have node.meta set (to the changed value from node.extra in v1.4), node.extra =
None, and node._changed_fields = [meta, extra].

When developing a new feature or modifying an IronicObject

When adding a new feature or changing an IronicObject, they need to be coded so that things work during
a rolling upgrade.

The following describe areas where the code may need to be changed, as well as some points to keep in
mind when developing code.

ironic-api

During a rolling upgrade, the new, pinned ironic-api is talking to a new conductor that might also be
pinned. There may also be old ironic-api services. So the new, pinned ironic-api service needs to act like
it was the older service:

• New features should not be made available, unless they are somehow totally supported in the old
and new releases. Pinning the API version is in place to handle this.

– If, for whatever reason, the API version pinning doesnt prevent a request from being handled
that cannot or should not be handled, it should be coded so that the response has HTTP status
code 406 (Not Acceptable). This is the same response to requests that have an incorrect (old)
version specified.

Ironic RPC versions

When the signature (arguments) of an RPC method is changed or new methods are added, the following
needs to be considered:

• The RPC version must be incremented and be the same value for both the client (ironic/
conductor/rpcapi.py, used by ironic-api) and the server (ironic/conductor/manager.py,
used by ironic-conductor). It should also be updated in ironic/common/release_mappings.
py.

• Until there is a major version bump, new arguments of an RPC method can only be added as
optional. Existing arguments cannot be removed or changed in incompatible ways with the method
in older RPC versions.

• ironic-api (client-side) sets a version cap (by passing the version cap to the constructor of
oslo_messaging.RPCClient). This pinning is in place during a rolling upgrade when the
[DEFAULT]/pin_release_version configuration option is set.

• New RPC methods are not available when the service is pinned to the older release version. In this
case, the corresponding REST API function should return a server error or implement alternative
behaviours.

• Methods which change arguments should run client.can_send_version() to see if the version
of the request is compatible with the version cap of the RPC Client. Otherwise the request needs
to be created to work with a previous version that is supported.

752 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• ironic-conductor (server-side) should tolerate older versions of requests in order to keep working
during the rolling upgrade process. The behaviour of ironic-conductor will depend on the input
parameters passed from the client-side.

• Old methods can be removed only after they are no longer used by a previous named release.

Object versions

When subclasses of ironic.objects.base.IronicObject are modified, the following needs to be
considered:

• Any change of fields or change in signature of remotable methods needs a bump of the object
version. The object versions are also maintained in ironic/common/release_mappings.py.

• New objects must be added to ironic/common/release_mappings.py. Also for the first
releases they should be excluded from the version check by adding their class names to the
NEW_MODELS list in ironic/cmd/dbsync.py.

• The arguments of remotable methods (methods which are remoted to the conductor via RPC) can
only be added as optional. They cannot be removed or changed in an incompatible way (to the
previous release).

• Field types cannot be changed. Instead, create a new field and deprecate the old one.

• There is a unit test that generates the hash of an object using its fields and the signatures
of its remotable methods. Objects that have a version bump need to be updated in the ex-
pected_object_fingerprints dictionary; otherwise this test will fail. A failed test can also indicate
to the developer that their change(s) to an object require a version bump.

• When new version objects communicate with old version objects and when reading or writing to the
database, ironic.objects.base.IronicObject._convert_to_version() will be called to
convert objects to the target version. Objects should implement their own ._convert_to_version()
to remove or alter fields which were added or changed after the target version:

def _convert_to_version(self, target_version,
remove_unavailable_fields=True):

"""Convert to the target version.

Subclasses should redefine this method, to do the conversion of the
object to the target version.

Convert the object to the target version. The target version may be
the same, older, or newer than the version of the object. This is
used for DB interactions as well as for serialization/deserialization.

The remove_unavailable_fields flag is used to distinguish these two
cases:

1) For serialization/deserialization, we need to remove the␣
↪→unavailable

fields, because the service receiving the object may not know about
these fields. remove_unavailable_fields is set to True in this␣

↪→case.
(continues on next page)

5.1. Developers Guide 753

https://opendev.org/openstack/ironic/src/commit/e9318c75748c87a318b4ff35d9385b4d09e79da6/ironic/tests/unit/objects/test_objects.py#L721
https://opendev.org/openstack/ironic/src/commit/e9318c75748c87a318b4ff35d9385b4d09e79da6/ironic/tests/unit/objects/test_objects.py#L682
https://opendev.org/openstack/ironic/src/commit/e9318c75748c87a318b4ff35d9385b4d09e79da6/ironic/tests/unit/objects/test_objects.py#L682

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

2) For DB interactions, we need to set the unavailable fields to their
appropriate values so that these fields are saved in the DB. (If
they are not set, the VersionedObject magic will not know to
save/update them to the DB.) remove_unavailable_fields is set to
False in this case.

:param target_version: the desired version of the object
:param remove_unavailable_fields: True to remove fields that are

unavailable in the target version; set this to True when
(de)serializing. False to set the unavailable fields to␣

↪→appropriate
values; set this to False for DB interactions.

This method must handle:

– converting from an older version to a newer version

– converting from a newer version to an older version

– making sure, when converting, that you take into consideration other object fields that may
have been affected by a field (value) only available in a newer version. For example, if field
new is only available in Node version 1.5 and Node.affected = Node.new+3, when converting
to 1.4 (an older version), you may need to change the value of Node.affected too.

Online data migrations

The ironic-dbsync online_data_migrations command will perform online data migrations.

Keep in mind the Policy for changes to the DB model. Future incompatible changes in SQLAlchemy
models, like removing or renaming columns and tables can break rolling upgrades (when ironic services
are run with different release versions simultaneously). It is forbidden to remove these database resources
when they may still be used by the previous named release.

When creating new Alembic migrations which modify existing models, make sure that any new columns
default to NULL. Test the migration out on a non-empty database to make sure that any new constraints
dont cause the database to be locked out for normal operations.

You can find an overview on what DDL operations may cause downtime in https://dev.mysql.com/doc/
refman/5.7/en/innodb-create-index-overview.html. (You should also check older, widely deployed Inn-
oDB versions for issues.) In the case of PostgreSQL, adding a foreign key may lock a whole table for
writes.

Make sure to add a release note if there are any downtime-related concerns.

Backfilling default values, and migrating data between columns or between tables must be implemented
inside an online migration script. A script is a database API method (added to ironic/db/api.py and
ironic/db/sqlalchemy/api.py) which takes two arguments:

• context: an admin context

• max_count: this is used to limit the query. It is the maximum number of objects to migrate; >= 0.
If zero, all the objects will be migrated.

It returns a two-tuple:

754 Chapter 5. Contributor Guide

https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html

Ironic Documentation, Release 26.1.2.dev21

• the total number of objects that need to be migrated, at the start of the method, and

• the number of migrated objects.

In this method, the version column can be used to select and update old objects.

The method name should be added to the list of ONLINE_MIGRATIONS in ironic/cmd/dbsync.py.

The method should be removed in the next named release after this one.

After online data migrations are completed and the SQLAlchemy models no longer contain old fields, old
columns can be removed from the database. This takes at least 3 releases, since we have to wait until the
previous named release no longer contains references to the old schema. Before removing any resources
from the database by modifying the schema, make sure that your implementation checks that all objects
in the affected tables have been migrated. This check can be implemented using the version column.

ironic-dbsync upgrade command

The ironic-dbsync upgrade command first checks that the versions of the objects are compatible
with the (new) release of ironic, before it will make any DB schema changes. If one or more objects are
not compatible, the upgrade will not be performed.

This check is done by comparing the objects version field in the database with the expected (or sup-
ported) versions of these objects. The supported versions are the versions specified in ironic.common.
release_mappings.RELEASE_MAPPING. The newly created tables cannot pass this check and thus have
to be excluded by adding their object class names (e.g. Node) to ironic.cmd.dbsync.NEW_MODELS.

Role Based Access Control - Testing

The Role Based Access control testing is a minor departure from the Ironic standard pattern of entirely
python based unit testing. In part this was done for purposes of speed and to keep the declaration of the
test context.

This also lended itself to be very useful due to the nature of A/B testing which is required to properly
migrate the Ironic project from a project scoped universe where an admin project is utilized as the
authenticating factor coupled with two custom roles, baremetal_admin, and baremetal_observer.

As a contributor looking back after getting a over a thousand additional tests in place using this method,
it definitely helped the speed at which these were created, and then ported to support additional.

How these tests work

These tests execute API calls through the API layer, using the appropriate verb and header, which set-
tings to prevent the keystonemiddleware from intercepting and replacing the headers were passing.
Ultimately this is a feature, and it helps quite a bit.

The second aspect of how this works is were mocking the conductor RPC get_topic_for and
get_random_topic_for methods. These calls raise Temporary Unavailable, since trying to execute
the entire interaction into the conductor is moderately pointless because all policy enforement is located
with-in the API layer.

At the same time wiring everything up to go from API to conductor code and back would have been a
heavier lift. As such, the tests largely look for one of the following error codes.

5.1. Developers Guide 755

Ironic Documentation, Release 26.1.2.dev21

• 200 - Got the item from the API - This is an database driven interaction.

• 201 - Created - This is database driven interaction. These are rare.

• 204 - Accepted - This is a database driven interaction. These are rare.

• 403 - Forbidden - This tells us the policy worked as expected where
access was denied.

• 404 - NotFound - This is typically when objects were not found. Before
Ironic becomes scope aware, these are generally only in the drivers API endpoints behavior.
In System scope aware Project scoped configuration, i.e. later RBAC tests, this will become
the dominant response for project scoped users as responding with a 403 if they could be an
owner or lessee would provide insight into the existence of a node.

• 503 - Service Unavailable - In the context of our tests, we expect this
when a request has been successfully authenticated and would have been sent along to the
conductor.

How to make changes or review these tests?

The tests cycle through the various endpoints, and repeating patterns are clearly visible. Typically this
means a given endpoint is cycled through with the same basic test using slightly different parameters
such as different authentication parameters. When it comes to system scope aware tests supporting node
owners and lessee, these tests will cycle a little more with slightly different attributes as the operation
is not general against a shared common node, but different nodes.

Some tests will test body contents, or attributes. some will validate the number of records returned. This
is important later with owner and lessee having slightly different views of the universe.

Some general rules apply

• Admins can do things, at least as far as their scope or rights apply. Remember: owner and lessee
admins are closer to System scoped Admin Members.

• Members can do some things, but not everything

• Readers can always read, but as we get into sensitive data later on such as fields containing in-
frastructure internal addresses, these values will become hidden and additional tests will examine
this.

• Third party, or external/other Admins will find nothing but sadness in empty lists, 403, 404, or
even 500 errors.

What is/will be tested?

The idea is to in essence test as much as possible, however as these tests Role Based Access Control
related capabilities will come in a series of phases, styles vary a little.

The first phase is "legacy". In essence these are partially programmatically generated and then human
reviewed and values populated with expected values.

The second phase is remarkably similar to legacy. It is the safety net where we execute the legacy
tests with the updated oslo.policy configuration to help enforce scopes. These tests will intentionally
begin to fail in phase three.

756 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

The third phase is the implementation of System scope awareness for the API. In this process, as various
portions of the API are made system scope aware. The legacy tests are marked as deprecated which
signals to the second phase test sequences that they are expected to fail. New system scoped tests are
also implemented which are matched up by name to the legacy tests. The major difference being some
header values, and a user with a member role in the system scope now has some rights.

The forth phase, is implementation of owner and lessee aware project scoping. The testing approach
is similar, however it is much more of a shotgun approach. We test what we know should work, and
what know should not work, but we do not have redundant testing for each role as admin users are also
members, and since the policy rules are designed around thresholds of access, it just made no sense to
run the same test for admin and members, where member was the threshold. These thresholds will vary
with the proposed default policy. The forth scope also tests a third party external admin as a negative test
to ensure that we are also denying access to resources appropriately.

5.1.5 Governance and Processes

These pages contain information for PTLs, cross-project liaisons, and core reviewers.

Releasing Ironic Projects

Since the responsibility for releases will move between people, we document that process here.

A full list of projects that Ironic manages is available in the governance site.

Who is responsible for releases?

The current PTL is ultimately responsible for making sure code gets released. They may choose to
delegate this responsibility to a liaison, which is documented in the cross-project liaison wiki.

Anyone may submit a release request per the process below, but the PTL or liaison must +1 the request
for it to be processed.

Release process

Releases are managed by the OpenStack release team. The release process is documented in the Project
Team Guide.

What do we have to release?

The Ironic project has a number of deliverables under its governance. The ultimate source of truth for
this is projects.yaml in the governance repository. These deliverables have varying release models, and
these are defined in the deliverables YAML files in the releases repository.

In general, Ironic deliverables follow the cycle-with-intermediary release model.

5.1. Developers Guide 757

https://governance.openstack.org/reference/projects/ironic.html
https://wiki.openstack.org/wiki/CrossProjectLiaisons#Release_management
https://docs.openstack.org/project-team-guide/release-management.html#how-to-release
https://docs.openstack.org/project-team-guide/release-management.html#how-to-release
https://opendev.org/openstack/governance/src/branch/master/reference/projects.yaml
https://opendev.org/openstack/releases/src/branch/master/deliverables
https://releases.openstack.org/reference/release_models.html#cycle-with-intermediary

Ironic Documentation, Release 26.1.2.dev21

Non-client libraries

The following deliverables are non-client libraries:

• ironic-lib

• metalsmith

• sushy

Client libraries

The following deliverables are client libraries:

• python-ironicclient

• python-ironic-inspector-client

Normal release

The following deliverables are Neutron plugins:

• networking-baremetal

• networking-generic-switch

The following deliverables are Horizon plugins:

• ironic-ui

The following deliverables are Tempest plugins:

• ironic-tempest-plugin

The following deliverables are tools:

• ironic-python-agent-builder

The following deliverables are services, or treated as such:

• bifrost

• ironic

• ironic-inspector

• ironic-prometheus-exporter

• ironic-python-agent

758 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Manual release

The ironic-staging-drivers follows a different procedure, see Releasing ironic-staging-drivers.

Independent

The following deliverables are released independently:

• sushy-tools

• tenks

• virtualbmc

Not released

The following deliverables do not need to be released:

• ironic-inspector-specs

• ironic-specs

Bugfix branches

The following projects have bugfix/X.Y branches in addition to standard openstack stable/NAME
branches:

• ironic

• ironic-python-agent

These projects receive releases every six months as part of the coordinated OpenStack release that hap-
pens semi-annually. These releases can be found in a stable/NAME branch.

They are also evaluated for additional bugfix releases between scheduled stable releases at the two and
four month milestone between stable releases (roughly every 2 months). These releases can be found in
a bugfix/X.Y branch. A bugfix release is only created if there are significant beneficial changes and a
known downstream operator or distributor will consume the release.

A bugfix branch is supported for 6 months after its creation date.

To leave some version space for releases from these branches, releases of these projects from the master
branch always increase either the major or the minor version.

Currently releases and retirements from bugfix branches cannot be automated and must be done by the
release team manually.

There are usually 3 bugfix branches present at all time, the latest 2 are actively maintained, while the third
one is considered unmaintained. After creating a new bugfix branch, the oldest bugfix branch should be
tagged as EoL and deleted.

Only members of the ironic-core or ironic-release groups can delete branches, please refer to this proce-
dure to remove the oldest bugfix branch after the creation of a new one:

• checkout locally the bugfix branch to move to EoL, if it does not exist locally its possible to checkout
it from remote and switch to it using git checkout -t, for example for bugfix/24.0 use:

5.1. Developers Guide 759

https://ironic-staging-drivers.readthedocs.io/en/latest/releasing.html
https://releases.openstack.org/reference/release_models.html#independent

Ironic Documentation, Release 26.1.2.dev21

git checkout -t origin/bugfix/24.0

• fast forward to latest change using:

git pull --ff-only

• add a signed tag to the latest commit of the bugfix branch named bugfix-X.Y-eol and add EOL
bugfix/X.Y as description, for example for bugfix/24.0 add the tag bugfix-24.0-eol; use the git
tag command for that, for example for bugfix/24.0 the syntax would be:

git tag -s bugfix-24.0-eol -m "EOL bugfix/24.0"

• push the new tag to gerrit using git push gerrit TAG_NAME, for example for bugfix/24.0 use:

git push gerrit bugfix-24.0-eol

• delete the bugfix branch on gerrit using git push gerrit --delete BUGFIX_BRANCH_NAME,
again for bugfix/24.0 would be:

git push gerrit --delete bugfix/24.0

After the creation of a bugfix branch it may be necessary to update the upper-constraints link for the
tests in the tox.ini file, plus override the branch for the requirements project to be sure to use the correct
upper-constraints; for example see the following change:

https://review.opendev.org/c/openstack/Ironic-python-agent/+/841290

Things to do before releasing

• Review the unreleased release notes, if the project uses them. Make sure they follow our standards,
are coherent, and have proper grammar. Combine release notes if necessary (for example, a release
note for a feature and another release note to add to that feature may be combined).

• For Ironic releases only, not Ironic-inspector releases: if any new API microversions have been
added since the last release, update the REST API version history (doc/source/contributor/
webapi-version-history.rst) to indicate that they were part of the new release.

• To support rolling upgrades, add this new release version (and release name if it is a named release)
into ironic/common/release_mappings.py:

– in RELEASE_MAPPING make a copy of the master entry, and rename the first master entry
to the new semver release version.

– If this is a named release, add a RELEASE_MAPPING entry for the named release. Its value
should be the same as that of the latest semver one (that you just added above).

It is important to do this before a stable/<release> branch is made (or if the grenade switch
is made to use the latest release from stable as the old release). Otherwise, once it is made,
CI (the grenade job that tests new-release -> master) will fail.

• Check for any open patches that are close to be merged or release critical.

This usually includes important bug fixes and/or features that wed like to release, including the
related documentation.

760 Chapter 5. Contributor Guide

https://review.opendev.org/c/openstack/Ironic-python-agent/+/841290
http://lists.openstack.org/pipermail/openstack-dev/2017-February/111849.html
http://lists.openstack.org/pipermail/openstack-dev/2017-February/111849.html

Ironic Documentation, Release 26.1.2.dev21

How to propose a release

The steps that lead to a release proposal are mainly manual, while proposing the release itself is almost
a 100% automated process, accomplished by following the next steps:

• Clone the openstack/releases repository. This is where deliverables are tracked and all the automa-
tion resides.

– Under the deliverables directory you can see yaml files for each deliverable (i.e. subpro-
ject) grouped by release cycles.

– The _independent directory contains yaml files for deliverables that are not bound to (of-
ficial) cycles (e.g. Ironic-python-agent-builder).

• To check the changes were about to release we can use the tox environment
list-unreleased-changes, with this syntax:

tox -e venv -- list-unreleased-changes <series> <deliverable>

The series argument is a release series (i.e. master or train, not stable/ussuri or stable/train).

For example, assuming were in the main directory of the releases repository, to check the changes
in the ussuri series for Ironic-python-agent type:

tox -e venv -- list-unreleased-changes ussuri openstack/ironic-python-
↪→agent

• To update the deliverable file for the new release, we use a scripted process in the form of a tox
environment called new-release.

To get familiar with it and see all the options, type:

tox -e venv -- new-release -h

Now, based on the list of changes we found in the precedent step, and the release notes, we need
to decide on whether the next version will be major, minor (feature) or patch (bugfix).

Note that in this case series is a code name (train, ussuri), not a branch. That is also valid for
the current development branch (master) that takes the code name of the future stable release, for
example if the future stable release code name is wallaby, we need to use wallaby as series.

The --stable-branch argument is used only for branching in the end of a cycle, independent
projects are not branched this way though.

The --intermediate-branch option is used to create an intermediate bugfix branch following
the new release model for Ironic projects.

To propose the release, use the script to update the deliverable file, then commit the change, and
propose it for review.

For example, to propose a minor release for Ironic in the master branch (current development
branch), considering that the code name of the future stable release is wallaby, use:

tox -e venv -- new-release -v wallaby ironic feature

Remember to use a meaningful topic, usually using the name of the deliverable, the new version
and the branch, if applicable.

5.1. Developers Guide 761

https://opendev.org/openstack/releases
https://specs.openstack.org/openstack/ironic-specs/specs/approved/new-release-model.html

Ironic Documentation, Release 26.1.2.dev21

A good commit message title should also include the same, for example Release Ironic 1.2.3 for
ussuri

• As an optional step, we can use tox -e list-changes to double-check the changes before sub-
mitting them for review.

Also tox -e validate (it might take a while to run based on the number of changes) does some
some sanity-checks, but since everything is scripted, there shouldnt be any issue.

All the scripts are designed and maintained by the release team; in case of questions or doubts or
if any errors should arise, you can reach to them in the IRC channel #openstack-release; all
release liaisons should be present there.

• After the change is up for review, the PTL or a release liaison will have to approve it before it can
get approved by the release team. Then, it will be processed automatically by zuul.

Things to do after releasing

When a release is done that results in a stable branch

When a release is done that results in a stable branch for the project, several changes need to be made.

The release automation will push a number of changes that need to be approved. This includes:

• In the new stable branch:

– a change to point .gitreview at the branch

– a change to update the upper constraints file used by tox

• In the master branch:

– updating the release notes RST to include the new branch.

The generated RST does not include the version range in the title, so we typically submit a
follow-up patch to do that. An example of this patch is here.

– update the templates in .zuul.yaml or zuul.d/project.yaml.

The update is necessary to use the job for the next release openstack-python3-
<next_release>-jobs. An example of this patch is here.

We need to submit patches for changes in the stable branch to:

• update the Ironic devstack plugin to point at the branched tarball for IPA. An example of this patch
is here.

• set appropriate defaults for TEMPEST_BAREMETAL_MIN_MICROVERSION and
TEMPEST_BAREMETAL_MAX_MICROVERSION in devstack/lib/ironic to make sure that
unsupported API tempest tests are skipped on stable branches. E.g. patch 495319.

We need to submit patches for changes on master to:

• to support rolling upgrades, since the release was a named release, we need to make these changes.
Note that we need to wait until after the switch in grenade is made to test the latest release (N) with
master (e.g. for stable/queens). Doing these changes sooner after the Ironic release and before the
switch when grenade is testing the prior release (N-1) with master, will cause the tests to fail. (You
may want to ask/remind infra/qa team, as to when they will do this switch.)

762 Chapter 5. Contributor Guide

https://review.opendev.org/685070
https://review.opendev.org/#/c/689705/
https://review.opendev.org/685069/
https://review.opendev.org/495319
https://review.opendev.org/#/c/543615

Ironic Documentation, Release 26.1.2.dev21

– In ironic/common/release_mappings.py, delete any entries from RELEASE_MAPPING
associated with the oldest named release. Since we support upgrades between adjacent named
releases, the master branch will only support upgrades from the most recent named release
to master.

– remove any DB migration scripts from ironic.cmd.dbsync.ONLINE_MIGRATIONS and
remove the corresponding code from Ironic. (These migration scripts are used to migrate
from an old release to this latest release; they shouldnt be needed after that.)

When a release is done that results in a bugfix branch

In this case the release management only creates a change to point .gitreview at the branch, tox.ini
is not modified.

After the release:

• update the Tempest microversions as explained above.

• the CI needs additional configuration, so that Zuul knows which branch to take jobs definitions
from. See the following examples:

– ironic 18.1

– ironic-python-agent 8.1

Ironic Tempest plugin

As ironic-tempest-plugin is branchless, we need to submit a patch adding stable jobs to its master branch.
Example for Queens.

Bifrost

Bifrost needs to be updated to install dependencies using the stable branch. Example for Victoria. The
upper constraints file referenced in scripts/install-deps.sh needs to be updated to the new release.

For all releases

For all releases, whether or not it results in a stable branch:

• update the specs repo to mark any specs completed in the release as implemented.

• remove any -2s on patches that were blocked until after the release.

5.1. Developers Guide 763

https://review.opendev.org/c/openstack/ironic/+/801876
https://review.opendev.org/c/openstack/ironic-python-agent/+/801898
https://review.opendev.org/#/c/543555/
https://review.opendev.org/#/c/756289/

Ironic Documentation, Release 26.1.2.dev21

Ironic Governance Structure

The ironic project manages a number of repositories that contribute to our mission. The full list of
repositories that ironic manages is available in the governance site.

What belongs in ironic governance?

For a repository to be part of the Ironic project:

• It must comply with the TCs rules for a new project.

• It must not be intended for use with only a single vendors hardware. A library that implements a
standard to manage hardware from multiple vendors (such as IPMI or redfish) is okay.

• It must align with Ironics mission statement.

Lack of contributor diversity is a chicken-egg problem, and as such a repository where only a single
company is contributing is okay, with the hope that other companies will contribute after joining the
ironic project.

Repositories that are no longer maintained should be pruned from governance regularly.

Proposing a new project to ironic governance

Bring the proposal to the ironic weekly meeting to discuss with the team.

5.1.6 Writing Drivers

Ironics community includes many hardware vendors who contribute drivers that enable more advanced
functionality when Ironic is used in conjunction with that hardware. To do this, the Ironic developer
community is committed to standardizing on a Python Driver API that meets the common needs of
all hardware vendors, and evolving this API without breaking backwards compatibility. However, it is
sometimes necessary for driver authors to implement functionality - and expose it through the REST API
- that can not be done through any existing API.

To facilitate that, we also provide the means for API calls to be passed through ironic and directly to
the driver. Some guidelines on how to implement this are provided below. Driver authors are strongly
encouraged to talk with the developer community about any implementation using this functionality.

Pluggable Drivers

Ironic supports a pluggable driver model. This allows contributors to easily add new drivers, and op-
erators to use third-party drivers or write their own. A driver is built at runtime from a hardware type
and hardware interfaces. See Enabling drivers and hardware types for a detailed explanation of these
concepts.

Hardware types and interfaces are loaded by the ironic-conductor service during initialization
from the setuptools entrypoints ironic.hardware.types and ironic.hardware.interfaces.
<INTERFACE> where <INTERFACE> is an interface type (for example, deploy). Only hardware types
listed in the configuration option enabled_hardware_types and interfaces listed in configuration op-
tions enabled_<INTERFACE>_interfaces are loaded. A complete list of hardware types available on
the system may be found by enumerating this entrypoint by running the following python script:

764 Chapter 5. Contributor Guide

https://governance.openstack.org/reference/projects/ironic.html
https://governance.openstack.org/reference/new-projects-requirements.html
https://governance.openstack.org/reference/projects/ironic.html#mission
https://wiki.openstack.org/wiki/Meetings/Ironic
api/ironic.drivers.base.html

Ironic Documentation, Release 26.1.2.dev21

#!/usr/bin/env python

import pkg_resources as pkg
print [p.name for p in pkg.iter_entry_points("ironic.hardware.types") if not␣
↪→p.name.startswith("fake")]

A list of drivers enabled in a running Ironic service may be found by issuing the following command
against that API end point:

baremetal driver list

Writing a hardware type

A hardware type is a Python class, inheriting ironic.drivers.hardware_type.
AbstractHardwareType and listed in the setuptools entry point ironic.hardware.types. Most of
the real world hardware types inherit ironic.drivers.generic.GenericHardware instead. This
helper class provides useful implementations for interfaces that are usually the same for all hardware
types, such as deploy.

The minimum required interfaces are:

• boot that specifies how to boot ramdisks and instances on the hardware. A generic pxe implemen-
tation is provided by the GenericHardware base class.

• deploy that orchestrates the deployment. A few common implementations are provided by the
GenericHardware base class.

As of the Rocky release, a deploy interface should decorate its deploy method to indicate that it is
a deploy step. Conventionally, the deploy method uses a priority of 100.

@ironic.drivers.base.deploy_step(priority=100)
def deploy(self, task):

Note

Most of the hardware types should not override this interface.

• power implements power actions for the hardware. These common implementations may be used,
if supported by the hardware:

– ironic.drivers.modules.ipmitool.IPMIPower

– ironic.drivers.modules.redfish.power.RedfishPower

Otherwise, you need to write your own implementation by subclassing ironic.drivers.base.
PowerInterface and providing missing methods.

Note

Power actions in Ironic are blocking - methods of a power interface should not return until the
power action is finished or errors out.

5.1. Developers Guide 765

Ironic Documentation, Release 26.1.2.dev21

• management implements additional out-of-band management actions, such as setting a boot de-
vice. A few common implementations exist and may be used, if supported by the hardware:

– ironic.drivers.modules.ipmitool.IPMIManagement

– ironic.drivers.modules.redfish.management.RedfishManagement

Some hardware types, such as snmp do not support out-of-band management. They use the fake
implementation in ironic.drivers.modules.fake.FakeManagement instead.

Otherwise, you need to write your own implementation by subclassing ironic.drivers.base.
ManagementInterface and providing missing methods.

Combine the interfaces in a hardware type by populating the lists of supported interfaces. These lists are
prioritized, with the most preferred implementation first. For example:

class MyHardware(generic.GenericHardware):

@property
def supported_management_interfaces(self):

"""List of supported management interfaces."""
return [MyManagement, ipmitool.IPMIManagement]

@property
def supported_power_interfaces(self):

"""List of supported power interfaces."""
return [MyPower, ipmitool.IPMIPower]

Note

In this example, all interfaces, except for management and power are taken from the
GenericHardware base class.

Finally, give the new hardware type and new interfaces human-friendly names and create entry points for
them in the setup.cfg file:

ironic.hardware.types =
my-hardware = ironic.drivers.my_hardware:MyHardware

ironic.hardware.interfaces.power =
my-power = ironic.drivers.modules.my_hardware:MyPower

ironic.hardware.interfaces.management =
my-management = ironic.drivers.modules.my_hardware:MyManagement

766 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Deploy and clean steps

Significant parts of the bare metal functionality is implemented via deploy steps or clean steps. See
Developing deploy and clean steps for information on how to write them.

Supported Drivers

For a list of supported drivers (those that are continuously tested on every upstream commit) please
consult the drivers page.

Vendor Methods

This document is a quick tutorial on writing vendor specific methods to a driver.

The first thing to note is that the Ironic API supports two vendor endpoints: A driver vendor passthru and
a node vendor passthru.

• The VendorInterface allows hardware types to expose a custom top-level functionality which
is not specific to a Node. For example, lets say the driver ipmi exposed a method called authenti-
cation_types that would return what are the authentication types supported. It could be accessed
via the Ironic API like:

GET http://<address>:<port>/v1/drivers/ipmi/vendor_passthru/
↪→authentication_types

Warning

The Bare Metal API currently only allows to use driver passthru for the default vendor interface
implementation for a given hardware type. This limitation will be lifted in the future.

• The node vendor passthru allows drivers to expose custom functionality on per-node basis. For
example the same driver ipmi exposing a method called send_raw that would send raw bytes to the
BMC, the method also receives a parameter called raw_bytes which the value would be the bytes
to be sent. It could be accessed via the Ironic API like:

POST {'raw_bytes': '0x01 0x02'} http://<address>:<port>/v1/nodes/<node␣
↪→UUID>/vendor_passthru/send_raw

Writing Vendor Methods

Writing a custom vendor method in Ironic should be simple. The first thing to do is write a class inheriting
from the VendorInterface class:

class ExampleVendor(VendorInterface)

def get_properties(self):
return {}

(continues on next page)

5.1. Developers Guide 767

../api/ironic.drivers.base.html#ironic.drivers.base.VendorInterface

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

def validate(self, task, **kwargs):
pass

The get_properties is a method that all driver interfaces have, it should return a dictionary of <prop-
erty>:<description> telling in the description whether that property is required or optional so the node can
be manageable by that driver. For example, a required property for a ipmi driver would be ipmi_address
which is the IP address or hostname of the node. We are returning an empty dictionary in our example
to make it simpler.

The validate method is responsible for validating the parameters passed to the vendor methods. Ironic
will not introspect into what is passed to the drivers, its up to the developers writing the vendor method
to validate that data.

Lets extend the ExampleVendor class to support two methods, the authentication_types which will be
exposed on the driver vendor passthru endpoint; And the send_raw method that will be exposed on the
node vendor passthru endpoint:

class ExampleVendor(VendorInterface)

def get_properties(self):
return {}

def validate(self, task, method, **kwargs):
if method == 'send_raw':

if 'raw_bytes' not in kwargs:
raise MissingParameterValue()

@base.driver_passthru(['GET'], async_call=False)
def authentication_types(self, context, **kwargs):

return {"types": ["NONE", "MD5", "MD2"]}

@base.passthru(['POST'])
def send_raw(self, task, **kwargs):

raw_bytes = kwargs.get('raw_bytes')
...

Thats it!

Writing a node or driver vendor passthru method is pretty much the same, the only difference is how you
decorate the methods and the first parameter of the method (ignoring self). A method decorated with
the @passthru decorator should expect a Task object as first parameter and a method decorated with the
@driver_passthru decorator should expect a Context object as first parameter.

Both decorators accept these parameters:

• http_methods: A list of what the HTTP methods supported by that vendor function. To know
what HTTP method that function was invoked with, a http_method parameter will be present in
the kwargs. Supported HTTP methods are POST, PUT, GET and PATCH.

• method: By default the method name is the name of the python function, if you want to use a
different name this parameter is where this name can be set. For example:

768 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

@passthru(['PUT'], method="alternative_name")
def name(self, task, **kwargs):

...

• description: A string containing a nice description about what that method is supposed to do.
Defaults to (empty string).

• async_call: A boolean value to determine whether this method should run asynchronously or syn-
chronously. Defaults to True (Asynchronously).

Note

This parameter was previously called async.

The node vendor passthru decorator (@passthru) also accepts the following parameter:

• require_exclusive_lock: A boolean value determining whether this method should require an ex-
clusive lock on a node between validate() and the beginning of method execution. For synchronous
methods, the lock on the node would also be kept for the duration of method execution. Defaults
to True.

Warning

Please avoid having a synchronous method for slow/long-running operations or if the method does
talk to a BMC; BMCs are flaky and very easy to break.

Warning

Each asynchronous request consumes a worker thread in the ironic-conductor process. This can
lead to starvation of the thread pool, resulting in a denial of service.

Give the new vendor interface implementation a human-friendly name and create an entry point for it in
the setup.cfg:

ironic.hardware.interfaces.vendor =
example = ironic.drivers.modules.example:ExampleVendor

Finally, add it to the list of supported vendor interfaces for relevant hardware types, for example:

class ExampleHardware(generic.GenericHardware):
...

@property
def supported_vendor_interfaces(self):

return [example.ExampleVendor]

5.1. Developers Guide 769

Ironic Documentation, Release 26.1.2.dev21

Backwards Compatibility

There is no requirement that changes to a vendor method be backwards compatible. However, for your
users sakes, we highly recommend that you do so.

If you are changing the exceptions being raised, you might want to ensure that the same HTTP code is
being returned to the user.

For non-backwards compatibility, please make sure you add a release note that indicates this.

Developing BIOS Interface

To support a driver specific BIOS interface it is necessary to create a class inheriting from the
BIOSInterface class:

from ironic.drivers import base

class ExampleBIOS(base.BIOSInterface):

def get_properties(self):
return {}

def validate(self, task):
pass

See Pluggable Drivers for a detailed explanation of hardware type and interface.

The get_properties and validate are methods that all driver interfaces have. The hardware interface
that supports BIOS settings should also implement the following three methods:

• Implement a method named cache_bios_settings. This method stores BIOS settings to the
bios_settings table during cleaning operations and updates the bios_settings table when
apply_configuration or factory_reset are successfully called.

from ironic.drivers import base

driver_client = importutils.try_import('driver.client')

class ExampleBIOS(base.BIOSInterface):
def __init__(self):

if driver_client is None:
raise exception.DriverLoadError(

driver=self.__class__.__name__,
reason=_("Unable to import driver library"))

def cache_bios_settings(self, task):
node_id = task.node.id
node_info = driver_common.parse_driver_info(task.node)
settings = driver_client.get_bios_settings(node_info)
create_list, update_list, delete_list, nochange_list = (

objects.BIOSSettingList.sync_node_setting(settings))

(continues on next page)

770 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

if len(create_list) > 0:
objects.BIOSSettingList.create(

task.context, node_id, create_list)
if len(update_list) > 0:

objects.BIOSSettingList.save(
task.context, node_id, update_list)

if len(delete_list) > 0:
delete_names = []
for setting in delete_list:

delete_names.append(setting.name)
objects.BIOSSettingList.delete(

task.context, node_id, delete_names)

Note

driver.client is vendor specific library to control and manage the bare metal hardware, for
example: python-dracclient, sushy.

• Implement a method named factory_reset. This method needs to use the clean_step decora-
tor. It resets BIOS settings to factory default on the given node. It calls cache_bios_settings
automatically to update existing bios_settings table once successfully executed.

class ExampleBIOS(base.BIOSInterface):

@base.clean_step(priority=0)
def factory_reset(self, task):

node_info = driver_common.parse_driver_info(task.node)
driver_client.reset_bios_settings(node_info)

• Implement a method named apply_configuration. This method needs to use the clean_step
decorator. It takes the given BIOS settings and applies them on the node. It also calls
cache_bios_settings automatically to update existing bios_settings table after successfully
applying given settings on the node.

class ExampleBIOS(base.BIOSInterface):

@base.clean_step(priority=0, argsinfo={
'settings': {

'description': (
'A list of BIOS settings to be applied'

),
'required': True

}
})
def apply_configuration(self, task, settings):

node_info = driver_common.parse_driver_info(task.node)
driver_client.apply_bios_settings(node_info, settings)

The settings parameter is a list of BIOS settings to be configured. for example:

5.1. Developers Guide 771

Ironic Documentation, Release 26.1.2.dev21

[
{
"setting name":
{

"name": "String",
"value": "String"

}
},
{
"setting name":
{

"name": "String",
"value": "String"

}
},
...

]

Third Party Continuous Integration

Note

This document is a work-in-progress. Unfilled sections will be worked in follow-up patchsets. This
version is to get a basic outline and index done so that we can then build on it. (krtaylor)

This document provides tips and guidelines for third-party driver developers setting up their continuous
integration test systems.

CI Architecture Overview

Requirements Cookbook

Sizing

Infrastructure

This section describes what changes youll need to make to a your CI system to add an ironic job.

772 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

jenkins changes

nodepool changes

neutron changes

pre-test hook

cleanup hook

Ironic

Hardware Pool Management

Problem

If you are using actual hardware as target machines for your CI testing then the problem of two jobs
trying to use the name target arises. If you have one target machine and a maximum number of one jobs
running on your ironic pipeline at a time, then you wont run into this problem. However, one target may
not handle the load of ironics daily patch submissions.

Solutions

Zuul v3

Molten Iron

molteniron is a tool that allows you to reserve hardware from a pool at the last minute to use in your job.
Once finished testing, you can unreserve the hardware making it available for the next test job.

Tips and Tricks

Optimize Run Time

Image Server

Other References

Developing deploy and clean steps

Deploy steps basics

To support customized deployment step, implement a new method in an interface class and use the
decorator deploy_step defined in ironic/drivers/base.py. For example, we will implement a
do_nothing deploy step in the AgentDeploy class.

5.1. Developers Guide 773

https://github.com/openstack/molteniron/

Ironic Documentation, Release 26.1.2.dev21

from ironic.drivers.modules import agent

class AgentDeploy(agent.AgentDeploy):

@base.deploy_step(priority=200, argsinfo={
'test_arg': {

'description': (
"This is a test argument."

),
'required': True

}
})
def do_nothing(self, task, **kwargs):

return None

If you want to completely replace the deployment procedure, but still have the agent up and running,
inherit CustomAgentDeploy:

from ironic.drivers.modules import agent

class AgentDeploy(agent.CustomAgentDeploy):

def validate(self, task):
super().validate(task)
... custom validation

@base.deploy_step(priority=80)
def my_write_image(self, task, **kwargs):

pass # ... custom image writing

@base.deploy_step(priority=70)
def my_configure_bootloader(self, task, **kwargs):

pass # ... custom bootloader configuration

After deployment of the baremetal node, check the updated deploy steps:

baremetal node show $node_ident -f json -c driver_internal_info

The above command outputs the driver_internal_info as following:

{
"driver_internal_info": {
...
"deploy_steps": [

{
"priority": 200,
"interface": "deploy",
"step": "do_nothing",
"argsinfo":
{
"test_arg":

(continues on next page)

774 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

{
"required": True,
"description": "This is a test argument."

}
}

},
{
"priority": 100,
"interface": "deploy",
"step": "deploy",
"argsinfo": null

}
],
"deploy_step_index": 1

}
}

In-band deploy steps (deploy steps that are run inside the ramdisk) have to be implemented in a custom
IPA hardware manager. All in-band deploy steps must have priorities between 41 and 99, see Agent steps
for details.

Clean steps basics

Clean steps are written similarly to deploy steps, but are executed during cleaning. Steps with priority >
0 are executed during automated cleaning, all steps can be executed explicitly during manual cleaning.
Unlike deploy steps, clean steps are commonly found in these interfaces:

bios
Steps that apply BIOS settings, see Implementing BIOS settings.

deploy
Steps that undo the effect of deployment (e.g. erase disks).

management
Additional steps that use the nodes BMC, such as out-of-band firmware update or BMC reset.

raid
Steps that build or tear down RAID, see Implementing RAID.

Note

When designing a new step for your driver, try to make it consistent with existing steps on other
drivers.

Just as deploy steps, in-band clean steps have to be implemented in a custom IPA hardware manager.

5.1. Developers Guide 775

https://docs.openstack.org/ironic-python-agent/2024.2/contributor/hardware_managers.html#custom-hardwaremanagers-and-deploying
https://docs.openstack.org/ironic-python-agent/2024.2/contributor/hardware_managers.html#custom-hardwaremanagers-and-cleaning

Ironic Documentation, Release 26.1.2.dev21

Asynchronous steps

If the step returns None, ironic assumes its execution is finished and proceeds to the next step. Many
steps are executed asynchronously; in this case you need to inform ironic that the step is not finished.
There are several possibilities:

Combined in-band and out-of-band step

If your step starts as out-of-band and then proceeds as in-band (i.e. inside the agent), you only need to
return CLEANWAIT/DEPLOYWAIT from the step.

from ironic.drivers import base
from ironic.drivers.modules import agent
from ironic.drivers.modules import agent_base
from ironic.drivers.modules import agent_client
from ironic.drivers.modules import deploy_utils

class MyDeploy(agent.CustomAgentDeploy):
...

@base.deploy_step(priority=80)
def my_deploy(self, task):

...
return deploy_utils.get_async_step_return_state(task.node)

Usually you can use a more high-level pattern:

@base.deploy_step(priority=60)
def my_deploy2(self, task):

new_step = {'interface': 'deploy',
'step': 'my_deploy2',
'args': {...}}

client = agent_client.get_client(task)
return agent_base.execute_step(task, new_step, 'deploy',

client=client)

Warning

This approach only works for steps implemented on a deploy interface that inherits agent deploy.

Warning

Steps generally should have a return value of None unless the a state is returned as part of an asyn-
crhonous workflow.

Please be mindful of this constraint when creating steps, as the step runner will error if a value aside
from None is returned upon step completion.

776 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Execution on reboot

Some steps are executed out-of-band, but require a reboot to complete. Use the following pattern:

from ironic.drivers import base
from ironic.drivers.modules import deploy_utils

class MyManagement(base.ManagementInterface):
...

@base.clean_step(priority=0)
def my_action(self, task):

...

Tell ironic that...
deploy_utils.set_async_step_flags(

node,
... we're waiting for IPA to come back after reboot
reboot=True,
... the current step is done
skip_current_step=True)

return deploy_utils.reboot_to_finish_step(task)

Polling for completion

Finally, you may want to poll the BMC until the operation is complete. Often enough, this also involves
a reboot. In this case you can use the ironic.conductor.periodics.node_periodic() decorator
to create a periodic task that operates on relevant nodes:

from ironic.common import states
from ironic.common import utils
from ironic.conductor import periodics
from ironic.drivers import base
from ironic.drivers.modules import deploy_utils

_STATUS_CHECK_INTERVAL = ... # better use a configuration option

class MyManagement(base.ManagementInterface):
...

@base.clean_step(priority=0)
def my_action(self, task):

...

reboot_required = ... # your step may or may not need rebooting

Make this node as running my_action. Often enough you will store
some useful data rather than a boolean flag.

(continues on next page)

5.1. Developers Guide 777

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

utils.set_node_nested_field(task.node, 'driver_internal_info',
'in_my_action', True)

Tell ironic that...
deploy_utils.set_async_step_flags(

node,
... we're waiting for IPA to come back after reboot
reboot=reboot_required,
... the current step shouldn't be entered again
skip_current_step=True,
... we'll be polling until the step is done
polling=True)

if reboot_required:
return deploy_utils.reboot_to_finish_step(task)

@periodics.node_periodic(
purpose='checking my action status',
spacing=_STATUS_CHECK_INTERVAL,
filters={

Skip nodes that already have a lock
'reserved': False,
Only consider nodes that are waiting for cleaning or failed
on timeout.
'provision_state_in': [states.CLEANWAIT, states.CLEANFAIL],

},
Load driver_internal_info from the database on listing
predicate_extra_fields=['driver_internal_info'],
Only consider nodes with in_my_action
predicate=lambda n: n.driver_internal_info.get('in_my_action'),

)
def check_my_action(self, task, manager, context):

if not needs_actions(): # insert your checks here
return

task.upgrade_lock()

... # do any required updates

Drop the flag so that this node is no longer considered
utils.pop_node_nested_field(task.node, 'driver_internal_info',

'in_my_action')

Note that creating a task involves an additional database query, so you want to avoid creating them for
too many nodes in your periodic tasks. Instead:

• Try to use precise filters to filter out nodes on the database level. Using reserved and
provision_state/provision_state_in are recommended in most cases. See ironic.db.
api.Connection.get_nodeinfo_list() for a list of possible filters.

• Use predicate to filter on complex fields such as driver_internal_info. Predicates are

778 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

checked before tasks are created.

Implementing RAID

RAID is implemented via deploy and clean steps in the raid interfaces. By convention they have the
following signatures:

from ironic.drivers import base

class MyRAID(base.RAIDInterface):

@base.clean_step(priority=0, abortable=False, argsinfo={
'create_root_volume': {

'description': (
'This specifies whether to create the root volume. '
'Defaults to `True`.'

),
'required': False

},
'create_nonroot_volumes': {

'description': (
'This specifies whether to create the non-root volumes. '
'Defaults to `True`.'

),
'required': False

},
'delete_existing': {

'description': (
'Setting this to `True` indicates to delete existing RAID '
'configuration prior to creating the new configuration. '
'Default value is `False`.'

),
'required': False,

}
})
def create_configuration(self, task, create_root_volume=True,

create_nonroot_volumes=True,
delete_existing=False):

pass

@base.clean_step(priority=0)
@base.deploy_step(priority=0)
def delete_configuration(self, task):

pass

@base.deploy_step(priority=0,
argsinfo=base.RAID_APPLY_CONFIGURATION_ARGSINFO)

def apply_configuration(self, task, raid_config,
create_root_volume=True,
create_nonroot_volumes=False,

(continues on next page)

5.1. Developers Guide 779

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

delete_existing=False):
pass

Notes:

• create_configuration only works as a clean step, during deployment apply_configuration
is used instead.

• apply_configuration accepts the target RAID configuration explicitly, while
create_configuration uses the nodes target_raid_config field.

• Priorities default to 0 since RAID should not be built by default.

Implementing BIOS settings

BIOS is implemented via deploy and clean steps in the raid interfaces. By convention they have the
following signatures:

from ironic.drivers import base

_APPLY_CONFIGURATION_ARGSINFO = {
'settings': {

'description': (
'A list of BIOS settings to be applied'

),
'required': True

}
}

class MyBIOS(base.BIOSInterface):

@base.clean_step(priority=0)
@base.deploy_step(priority=0)
@base.cache_bios_settings
def factory_reset(self, task):

pass

@base.clean_step(priority=0, argsinfo=_APPLY_CONFIGURATION_ARGSINFO)
@base.deploy_step(priority=0, argsinfo=_APPLY_CONFIGURATION_ARGSINFO)
@base.cache_bios_settings
def apply_configuration(self, task, settings):

pass

Notes:

• Both factory_reset and apply_configuration can be used as deploy and clean steps.

• The cache_bios_settings decorator is used to ensure that the settings cached in the ironic
database is updated.

• Priorities default to 0 since BIOS settings should not be modified by default.

780 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

5.1.7 Full Ironic Server Python API Reference

ironic

ironic package

Subpackages

ironic.api package

Subpackages

ironic.api.controllers package

Subpackages

ironic.api.controllers.v1 package

Submodules

ironic.api.controllers.v1.allocation module

class ironic.api.controllers.v1.allocation.AllocationsController(*args, **kwargs)
Bases: RestController

REST controller for allocations.

delete(allocation_ident)
Delete an allocation.

Parameters

• allocation_ident The UUID or name of the allocation.

get_all(node=None, resource_class=None, state=None, marker=None, limit=None,
sort_key=’id’, sort_dir=’asc’, fields=None, owner=None)

Retrieve a list of allocations.

5.1. Developers Guide 781

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node Filter the list of allocations by the node UUID or name.

• resource_class The requested resource class for the allocation. Can only be miss-
ing when backfilling an allocation (will be set to the nodes “resource_class“ in such
case).

• state Filter the list of allocations by the allocation state, one of “active“, “allocating“
or “error“.

• marker The ID of the last-seen item. Use the “limit“ parameter to make an initial
limited request and use the ID of the last-seen item from the response as the “marker“
parameter value in a subsequent limited request.

• limit Requests a page size of items. Returns a number of items up to a limit value.
Use the “limit“ parameter to make an initial limited request and use the ID of the last-
seen item from the response as the “marker“ parameter value in a subsequent limited
request. This value cannot be larger than the “max_limit“ option in the “[api]“ section
of the configuration. If it is higher than “max_limit“, only “max-limit“ resources will
be returned.

• sort_key Sorts the response by this attribute value. Default is “id“. You can specify
multiple pairs of sort key and sort direction query parameters. If you omit the sort
direction in a pair, the API uses the natural sorting direction of the server attribute
that is provided as the “sort_key“.

• sort_dir Sorts the response by the requested sort direction. A valid value is “asc“
(ascending) or “desc“ (descending). Default is “asc“. You can specify multiple pairs
of sort key and sort direction query parameters. If you omit the sort direction in a
pair, the API uses the natural sorting direction of the server attribute that is provided
as the “sort_key“.

• fields One or more fields to be returned in the response.
For example, the following request returns only the “uuid“ and “name“ fields for each
node:
::
GET /v1/nodes?fields=uuid,name

• owner Filter the list of returned allocations, and only return those with the specified
owner.

get_one(allocation_ident, fields=None)
Retrieve information about the given allocation.

782 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• allocation_ident The UUID or name of the allocation.

• fields One or more fields to be returned in the response.
For example, the following request returns only the “uuid“ and “name“ fields for each
node:
::
GET /v1/nodes?fields=uuid,name

invalid_sort_key_list = ['extra', 'candidate_nodes', 'traits']

patch(allocation_ident, patch)
Update an existing allocation.

Parameters

• allocation_ident The UUID or name of the allocation.

• patch A JSON patch document to apply to the allocation.

post(allocation)
Create a new allocation.

Parameters

• allocation The unique name of the Allocation.

class ironic.api.controllers.v1.allocation.NodeAllocationController(*args,
**kwargs)

Bases: RestController

REST controller for allocations.

delete()

Delete an allocation.

get_all(fields=None)
Get all allocations.

5.1. Developers Guide 783

Ironic Documentation, Release 26.1.2.dev21

Parameters

• fields One or more fields to be returned in the response.
For example, the following request returns only the “uuid“ and “name“ fields for each
node:
::
GET /v1/nodes?fields=uuid,name

invalid_sort_key_list = ['extra', 'candidate_nodes', 'traits']

ironic.api.controllers.v1.allocation.allocation_sanitize(allocation, fields)

ironic.api.controllers.v1.allocation.convert_with_links(rpc_allocation, fields=None,
sanitize=True)

ironic.api.controllers.v1.allocation.hide_fields_in_newer_versions(allocation)

ironic.api.controllers.v1.allocation.list_convert_with_links(rpc_allocations, limit,
url, fields=None,
**kwargs)

ironic.api.controllers.v1.bios module

class ironic.api.controllers.v1.bios.NodeBiosController(*args, **kwargs)
Bases: RestController

REST controller for bios.

get_all(detail=None, fields=None)
List node bios settings.

get_one(setting_name)
Retrieve information about the given bios setting.

Parameters
setting_name Logical name of the setting to retrieve.

ironic.api.controllers.v1.bios.collection_from_list(node_ident, bios_settings,
detail=None, fields=None)

ironic.api.controllers.v1.bios.convert_with_links(rpc_bios, node_uuid, detail=None,
fields=None)

Build a dict containing a bios setting value.

784 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.chassis module

class ironic.api.controllers.v1.chassis.ChassisController(*args, **kwargs)
Bases: RestController

REST controller for Chassis.

delete(chassis_uuid)
Delete a chassis.

Parameters
chassis_uuid UUID of a chassis.

detail(marker=None, limit=None, sort_key=’id’, sort_dir=’asc’)
Retrieve a list of chassis with detail.

Parameters

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

get_all(marker=None, limit=None, sort_key=’id’, sort_dir=’asc’, fields=None, detail=None)
Retrieve a list of chassis.

Parameters

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

get_one(chassis_uuid, fields=None)
Retrieve information about the given chassis.

Parameters

• chassis_uuid UUID of a chassis.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

invalid_sort_key_list = ['extra']

nodes = <ironic.api.controllers.v1.node.NodesController object>

Expose nodes as a sub-element of chassis

5.1. Developers Guide 785

Ironic Documentation, Release 26.1.2.dev21

patch(chassis_uuid, patch)
Update an existing chassis.

Parameters

• chassis_uuid UUID of a chassis.

• patch a json PATCH document to apply to this chassis.

post(chassis)
Create a new chassis.

Parameters
chassis a chassis within the request body.

ironic.api.controllers.v1.chassis.convert_with_links(rpc_chassis, fields=None,
sanitize=True)

ironic.api.controllers.v1.chassis.list_convert_with_links(rpc_chassis_list, limit, url,
fields=None, **kwargs)

ironic.api.controllers.v1.collection module

ironic.api.controllers.v1.collection.get_next(collection, limit, url, key_field=’uuid’,
**kwargs)

Return a link to the next subset of the collection.

ironic.api.controllers.v1.collection.has_next(collection, limit)
Return whether collection has more items.

ironic.api.controllers.v1.collection.list_convert_with_links(items, item_name,
limit, url, fields=None,
sanitize_func=None,
key_field=’uuid’,
sanitizer_args=None,
**kwargs)

Build a collection dict including the next link for paging support.

Parameters

• items List of unsanitized items to include in the collection

• item_name Name of dict key for items value

• limit Paging limit

• url Base URL for building next link

• fields Optional fields to use for sanitize function

• sanitize_func Optional sanitize function run on each item, item changes
will be done in-place

• key_field Key name for building next URL

• sanitizer_args Dictionary with additional arguments to be passed to the
sanitizer.

786 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• kwargs other arguments passed to get_next

Returns
A dict containing item_name and next values

ironic.api.controllers.v1.conductor module

class ironic.api.controllers.v1.conductor.ConductorsController(*args, **kwargs)
Bases: RestController

REST controller for conductors.

get_all(marker=None, limit=None, sort_key=’id’, sort_dir=’asc’, fields=None, detail=None)
Retrieve a list of conductors.

Parameters

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• detail Optional, boolean to indicate whether retrieve a list of conductors
with detail.

get_one(hostname, fields=None)
Retrieve information about the given conductor.

Parameters

• hostname hostname of a conductor.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

invalid_sort_key_list = ['alive', 'drivers']

ironic.api.controllers.v1.conductor.convert_with_links(rpc_conductor, fields=None,
sanitize=True)

ironic.api.controllers.v1.conductor.list_convert_with_links(rpc_conductors, limit,
url=None, fields=None,
**kwargs)

5.1. Developers Guide 787

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.deploy_template module

class ironic.api.controllers.v1.deploy_template.DeployTemplatesController(*args,
**kwargs)

Bases: RestController

REST controller for deploy templates.

delete(template_ident)
Delete a deploy template.

Parameters
template_ident UUID or logical name of a deploy template.

get_all(marker=None, limit=None, sort_key=’id’, sort_dir=’asc’, fields=None, detail=None)
Retrieve a list of deploy templates.

Parameters

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• detail Optional, boolean to indicate whether retrieve a list of deploy tem-
plates with detail.

get_one(template_ident, fields=None)
Retrieve information about the given deploy template.

Parameters

• template_ident UUID or logical name of a deploy template.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

invalid_sort_key_list = ['extra', 'steps']

patch(template_ident, patch=None)
Update an existing deploy template.

Parameters

• template_ident UUID or logical name of a deploy template.

• patch a json PATCH document to apply to this deploy template.

post(template)
Create a new deploy template.

Parameters
template a deploy template within the request body.

788 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.deploy_template.convert_with_links(rpc_template,
fields=None,
sanitize=True)

Add links to the deploy template.

ironic.api.controllers.v1.deploy_template.list_convert_with_links(rpc_templates,
limit,
fields=None,
**kwargs)

ironic.api.controllers.v1.deploy_template.step_sanitize(step)

ironic.api.controllers.v1.deploy_template.template_sanitize(template, fields)
Removes sensitive and unrequested data.

Will only keep the fields specified in the fields parameter.

Parameters
fields (list of str) list of fields to preserve, or None to preserve them all

ironic.api.controllers.v1.driver module

class ironic.api.controllers.v1.driver.DriverPassthruController(*args, **kwargs)
Bases: RestController

REST controller for driver passthru.

This controller allow vendors to expose cross-node functionality in the Ironic API. Ironic will
merely relay the message from here to the specified driver, no introspection will be made in the
message body.

methods(driver_name)
Retrieve information about vendor methods of the given driver.

Parameters
driver_name name of the driver.

Returns
dictionary with <vendor method name>:<method metadata> entries.

Raises
DriverNotFound if the driver name is invalid or the driver cannot be loaded.

class ironic.api.controllers.v1.driver.DriverRaidController(*args, **kwargs)
Bases: RestController

logical_disk_properties(driver_name)
Returns the logical disk properties for the driver.

Parameters

• driver_name Name of the driver.

5.1. Developers Guide 789

Ironic Documentation, Release 26.1.2.dev21

Returns
Success: A dictionary containing the properties that can be mentioned Failure:

• UnsupportedDriverExtension (HTTP 400 Bad Request) Driver %(driver)s
does not support %(extension)s (disabled or not implemented). If the driver doesnt
support RAID configuration.

• NotAcceptable (HTTP 406 Not Acceptable) Request not acceptable. If re-
quested version of the API is less than 1.12.

• DriverNotFound (HTTP 404 Not Found) Could not find the following driver(s)
or hardware type(s): %(driver_name)s. If driver is not loaded on any of the conduc-
tors.

class ironic.api.controllers.v1.driver.DriversController(*args, **kwargs)
Bases: RestController

REST controller for Drivers.

get_all(type=None, detail=None, fields=None)
Retrieve a list of drivers.

get_one(driver_name, fields=None)
Retrieve a single driver.

properties(driver_name)
Retrieve property information of the given driver.

Parameters
driver_name name of the driver.

Returns
dictionary with <property name>:<property description> entries.

Raises
DriverNotFound (HTTP 404) if the driver name is invalid or the driver can-
not be loaded.

raid = <ironic.api.controllers.v1.driver.DriverRaidController object>

Expose RAID as a sub-element of drivers

vendor_passthru =
<ironic.api.controllers.v1.driver.DriverPassthruController object>

ironic.api.controllers.v1.driver.convert_with_links(name, hosts, detail=False,
interface_info=None, fields=None,
sanitize=True)

Convert driver/hardware type info to a dict.

Parameters

• name name of a hardware type.

• hosts list of conductor hostnames driver is active on.

790 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• detail boolean, whether to include detailed info, such as the type field and
default/enabled interfaces fields.

• interface_info optional list of dicts of hardware interface info.

• fields list of fields to preserve, or None to preserve default

• sanitize boolean, sanitize driver

Returns
dict representing the driver object.

ironic.api.controllers.v1.driver.driver_sanitize(driver, fields=None)

ironic.api.controllers.v1.driver.hide_fields_in_newer_versions(driver)
This method hides fields that were added in newer API versions.

Certain fields were introduced at certain API versions. These fields are only made available when
the requests API version matches or exceeds the versions when these fields were introduced.

ironic.api.controllers.v1.driver.list_convert_with_links(hardware_types,
detail=False, fields=None)

Convert drivers and hardware types to an API-serializable object.

Parameters

• hardware_types dict mapping hardware type names to conductor host-
names.

• detail boolean, whether to include detailed info, such as the type field and
default/enabled interfaces fields.

• fields list of fields to preserve, or None to preserve default

Returns
an API-serializable driver collection object.

ironic.api.controllers.v1.event module

class ironic.api.controllers.v1.event.EventsController(*args, **kwargs)
Bases: RestController

REST controller for Events.

post(evts)

ironic.api.controllers.v1.event.events_valid(name, value)
Validator for events

5.1. Developers Guide 791

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.firmware module

class ironic.api.controllers.v1.firmware.NodeFirmwareController(*args, **kwargs)
Bases: RestController

REST controller for Firmware.

get_all(detail=None, fields=None)
List node firmware components.

ironic.api.controllers.v1.firmware.collection_from_list(node_ident,
firmware_components,
detail=None, fields=None)

ironic.api.controllers.v1.firmware.convert_with_links(rpc_firmware, node_uuid,
detail=None, fields=None)

Build a dict containing a firmware component.

ironic.api.controllers.v1.node module

class ironic.api.controllers.v1.node.BootDeviceController(*args, **kwargs)
Bases: RestController

get(node_ident)
Get the current boot device for a node.

Parameters
node_ident the UUID or logical name of a node.

Returns

a json object containing:

boot_device
the boot device, one of ironic.common.boot_devices or None if it
is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

put(node_ident, boot_device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• node_ident the UUID or logical name of a node.

• boot_device the boot device, one of ironic.common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

792 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

supported(node_ident)
Get a list of the supported boot devices.

Parameters
node_ident the UUID or logical name of a node.

Returns
A json object with the list of supported boot devices.

class ironic.api.controllers.v1.node.GetNodeAndTopicMixin

Bases: object

class ironic.api.controllers.v1.node.IndicatorAtComponent(**kwargs)
Bases: object

class ironic.api.controllers.v1.node.IndicatorController(*args, **kwargs)
Bases: RestController

get_all(node_ident, **kwargs)
Get node hardware components and their indicators.

Parameters
node_ident the UUID or logical name of a node.

Returns
A json object of hardware components (ironic.common.components) as
keys with indicator IDs (from get_supported_indicators) as values.

get_one(node_ident, indicator)
Get node hardware component indicator and its state.

Parameters

• node_ident the UUID or logical name of a node.

• indicator Indicator ID (as reported by get_supported_indicators).

Returns
a dict with the state key and one of mod:ironic.common.indicator_states as a
value.

put(node_ident, indicator, state)
Set node hardware component indicator to the desired state.

Parameters

• node_ident the UUID or logical name of a node.

• indicator Indicator ID (as reported by get_supported_indicators).

• state Indicator state, one of mod:ironic.common.indicator_states.

class ironic.api.controllers.v1.node.InjectNmiController(*args, **kwargs)
Bases: RestController

put(node_ident)
Inject NMI for a node.

Inject NMI (Non Maskable Interrupt) for a node immediately.

5.1. Developers Guide 793

Ironic Documentation, Release 26.1.2.dev21

Parameters
node_ident the UUID or logical name of a node.

Raises
NotFound if requested version of the API doesnt support inject nmi.

Raises
HTTPForbidden if the policy is not authorized.

Raises
NodeNotFound if the node is not found.

Raises
NodeLocked if the node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management
or management.inject_nmi.

Raises
InvalidParameterValue when the wrong driver info is specified or an invalid
boot device is specified.

Raises
MissingParameterValue if missing supplied info.

class ironic.api.controllers.v1.node.NodeChildrenController(*args, **kwargs)
Bases: RestController

get_all()

class ironic.api.controllers.v1.node.NodeConsoleController(*args, **kwargs)
Bases: RestController

get(node_ident)
Get connection information about the console.

Parameters
node_ident UUID or logical name of a node.

put(node_ident, enabled)
Start and stop the node console.

Parameters

• node_ident UUID or logical name of a node.

• enabled Boolean value; whether to enable or disable the console.

class ironic.api.controllers.v1.node.NodeHistoryController(*args, **kwargs)
Bases: RestController

detail_fields = ['uuid', 'created_at', 'severity', 'event_type', 'event',
'conductor', 'user']

get_all(detail=False, marker=None, limit=None)
List node history.

794 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

get_one(event)
Get a node history entry

standard_fields = ['uuid', 'created_at', 'severity', 'event']

class ironic.api.controllers.v1.node.NodeInventoryController(*args, **kwargs)
Bases: RestController

get()

Node inventory of the node.

Parameters
node_ident the UUID of a node.

class ironic.api.controllers.v1.node.NodeMaintenanceController(*args, **kwargs)
Bases: RestController

delete(node_ident)
Remove the node from maintenance mode.

Parameters
node_ident the UUID or logical name of a node.

put(node_ident, reason=None)
Put the node in maintenance mode.

Parameters

• node_ident the UUID or logical_name of a node.

• reason Optional, the reason why its in maintenance.

class ironic.api.controllers.v1.node.NodeManagementController(*args, **kwargs)
Bases: RestController

boot_device = <ironic.api.controllers.v1.node.BootDeviceController object>

Expose boot_device as a sub-element of management

indicators = <ironic.api.controllers.v1.node.IndicatorController object>

Expose indicators as a sub-element of management

inject_nmi = <ironic.api.controllers.v1.node.InjectNmiController object>

Expose inject_nmi as a sub-element of management

class ironic.api.controllers.v1.node.NodeStatesController(*args, **kwargs)
Bases: RestController

boot_mode(node_ident, target)
Asynchronous set the boot mode of the node.

Parameters

• node_ident the UUID or logical name of a node.

• target The desired boot_mode for the node (uefi/bios).

Raises
InvalidParameterValue (HTTP 400) if the requested target state is not valid.

5.1. Developers Guide 795

Ironic Documentation, Release 26.1.2.dev21

Raises
NotFound (HTTP 404) if requested version of the API is less than 1.76.

Raises
Conflict (HTTP 409) if a node is in adopting state or another transient state.

console = <ironic.api.controllers.v1.node.NodeConsoleController object>

Expose console as a sub-element of states

get(node_ident)
List the states of the node.

Parameters
node_ident the UUID or logical_name of a node.

power(node_ident, target, timeout=None)
Set the power state of the node.

Parameters

• node_ident the UUID or logical name of a node.

• target The desired power state of the node.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

Raises
ClientSideError (HTTP 409) if a power operation is already in progress.

Raises
InvalidStateRequested (HTTP 400) if the requested target state is not valid or
if the node is in CLEANING state.

Raises
NotAcceptable (HTTP 406) for soft reboot, soft power off or timeout parameter,
if requested version of the API is less than 1.27.

Raises
Invalid (HTTP 400) if timeout value is less than 1.

provision(node_ident, target, configdrive=None, clean_steps=None, deploy_steps=None,
rescue_password=None, disable_ramdisk=None, service_steps=None,
runbook=None)

Asynchronous trigger the provisioning of the node.

This will set the target provision state of the node, and a background task will begin which
actually applies the state change. This call will return a 202 (Accepted) indicating the request
was accepted and is in progress; the client should continue to GET the status of this node to
observe the status of the requested action.

Parameters

• node_ident UUID or logical name of a node.

• target The desired provision state of the node or verb.

• configdrive Optional. A gzipped and base64 encoded configdrive or a
dict to build a configdrive from. Only valid when setting provision state to
active or rebuild.

796 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• clean_steps An ordered list of cleaning steps that will be performed on the
node. A cleaning step is a dictionary with required keys interface and step,
and optional key args. If specified, the value for args is a keyword variable
argument dictionary that is passed to the cleaning step method.:

{ 'interface': <driver_interface>,
'step': <name_of_clean_step>,
'args': {<arg1>: <value1>, ..., <argn>: <valuen>} }

For example (this isnt a real example, this cleaning step doesnt exist):

{ 'interface': 'deploy',
'step': 'upgrade_firmware',
'args': {'force': True} }

This is required (and only valid) when target is clean.

• deploy_steps A list of deploy steps that will be performed on the node.
A deploy step is a dictionary with required keys interface, step, priority and
args. If specified, the value for args is a keyword variable argument dictio-
nary that is passed to the deploy step method.:

{ 'interface': <driver_interface>,
'step': <name_of_deploy_step>,
'args': {<arg1>: <value1>, ..., <argn>: <valuen>}
'priority': <integer>}

For example (this isnt a real example, this deploy step doesnt exist):

{ 'interface': 'deploy',
'step': 'upgrade_firmware',
'args': {'force': True},
'priority': 90 }

This is used only when target is active or rebuild and is optional.

• rescue_password A string representing the password to be set inside the
rescue environment. This is required (and only valid), when target is rescue.

• disable_ramdisk Whether to skip booting ramdisk for cleaning.

• service_steps A list of service steps that will be performed on the node.
A service step is a dictionary with required keys interface, step, priority and
args. If specified, the value for args is a keyword variable argument dictio-
nary that is passed to the service step method.:

{ 'interface': <driver_interface>,
'step': <name_of_service_step>,
'args': {<arg1>: <value1>, ..., <argn>: <valuen>}
'priority': <integer>}

For example (this isnt a real example, this service step doesnt exist):

5.1. Developers Guide 797

Ironic Documentation, Release 26.1.2.dev21

{ 'interface': 'deploy',
'step': 'upgrade_firmware',
'args': {'force': True},
'priority': 90 }

• runbook UUID or logical name of a runbook.

Raises
NodeLocked (HTTP 409) if the node is currently locked.

Raises
ClientSideError (HTTP 409) if the node is already being provisioned.

Raises
InvalidParameterValue (HTTP 400), if validation of clean_steps, deploy_steps,
service_steps or power driver interface fails.

Raises
InvalidStateRequested (HTTP 400) if the requested transition is not possible
from the current state.

Raises
NodeInMaintenance (HTTP 400), if operation cannot be performed because
the node is in maintenance mode.

Raises
NoFreeConductorWorker (HTTP 503) if no workers are available.

Raises
NotAcceptable (HTTP 406) if the API version specified does not allow the re-
quested state transition or parameters.

raid(node_ident, target_raid_config)
Set the target raid config of the node.

Parameters

• node_ident the UUID or logical name of a node.

• target_raid_config Desired target RAID configuration of the node. It
may be an empty dictionary as well.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support RAID config-
uration.

Raises
InvalidParameterValue, if validation of target raid config fails.

Raises
NotAcceptable, if requested version of the API is less than 1.12.

secure_boot(node_ident, target)
Asynchronous set the secure_boot state of the node.

Parameters

• node_ident the UUID or logical name of a node.

798 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• target Should secure_boot be enabled on node (True/False).

Raises
InvalidParameterValue (HTTP 400) if the requested target state is not valid.

Raises
NotFound (HTTP 404) if requested version of the API is less than 1.76.

Raises
Conflict (HTTP 409) if a node is in adopting state.

class ironic.api.controllers.v1.node.NodeTraitsController(*args, **kwargs)
Bases: RestController

delete(trait=None)
Remove one or all traits from a node.

Parameters
trait String value; trait to remove from a node, or None. If None, all traits
are removed.

get_all()

List node traits.

put(trait=None, body=None)
Add a trait to a node.

Parameters

• trait String value; trait to add to a node, or None. Mutually exclusive with
traits. If not None, adds this trait to the node.

• traits List of Strings; traits to set for a node, or None. Mutually exclusive
with trait. If not None, replaces the nodes traits with this list.

class ironic.api.controllers.v1.node.NodeVIFController(*args, **kwargs)
Bases: RestController, GetNodeAndTopicMixin

delete(vif_id)
Detach a VIF from this node

Parameters
vif_id The ID of a VIF to detach

get_all()

Get a list of attached VIFs

post(vif)
Attach a VIF to this node

Parameters
vif a dictionary of information about a VIF. It must have an id key, whose
value is a unique identifier for that VIF.

class ironic.api.controllers.v1.node.NodeVendorPassthruController(*args,
**kwargs)

Bases: RestController

REST controller for VendorPassthru.

5.1. Developers Guide 799

Ironic Documentation, Release 26.1.2.dev21

This controller allow vendors to expose a custom functionality in the Ironic API. Ironic will merely
relay the message from here to the appropriate driver, no introspection will be made in the message
body.

methods(node_ident)
Retrieve information about vendor methods of the given node.

Parameters
node_ident UUID or logical name of a node.

Returns
dictionary with <vendor method name>:<method metadata> entries.

Raises
NodeNotFound if the node is not found.

class ironic.api.controllers.v1.node.NodeVmediaController(*args, **kwargs)
Bases: RestController, GetNodeAndTopicMixin

delete(device_types=None)
Detach a virtual media from this node

Parameters
device_types A collection of device types.

get()

Get virtual media details for this node

post(vmedia)
Attach a virtual media to this node

Parameters
vmedia a dictionary of information about the attachment.

class ironic.api.controllers.v1.node.NodesController(*args, **kwargs)
Bases: RestController

REST controller for Nodes.

delete(node_ident, *args)
Delete a node.

Parameters
node_ident UUID or logical name of a node.

detail(chassis_uuid=None, instance_uuid=None, associated=None, maintenance=None,
retired=None, provision_state=None, marker=None, limit=None, sort_key=’id’,
sort_dir=’asc’, driver=None, resource_class=None, fault=None,
conductor_group=None, conductor=None, owner=None, description_contains=None,
lessee=None, project=None, shard=None, sharded=None, include_children=None,
parent_node=None)

Retrieve a list of nodes with detail.

Parameters

• chassis_uuid Optional UUID of a chassis, to get only nodes for that chas-
sis.

800 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• instance_uuid Optional UUID of an instance, to find the node associated
with that instance.

• associated Optional boolean whether to return a list of associated or unas-
sociated nodes. May be combined with other parameters.

• maintenance Optional boolean value that indicates whether to get nodes
in maintenance mode (True), or not in maintenance mode (False).

• retired Optional boolean value that indicates whether to get nodes which
are retired.

• provision_state Optional string value to get only nodes in that provision
state.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• driver Optional string value to get only nodes using that driver.

• resource_class Optional string value to get only nodes with that re-
source_class.

• fault Optional string value to get only nodes with that fault.

• conductor_group Optional string value to get only nodes with that con-
ductor_group.

• owner Optional string value that set the owner whose nodes are to be
retrurned.

• lessee Optional string value that set the lessee whose nodes are to be re-
turned.

• project Optional string value that set the project - lessee or owner - whose
nodes are to be returned.

• shard Optional - set the shards whose nodes are to be returned.

• description_contains Optional string value to get only nodes with de-
scription field contains matching value.

• sharded Optional boolean whether to return a list of nodes with or without
a shard set. May be combined with other parameters.

from_chassis = False

A flag to indicate if the requests to this controller are coming from the top-level resource
Chassis

get_all(chassis_uuid=None, instance_uuid=None, associated=None, maintenance=None,
retired=None, provision_state=None, marker=None, limit=None, sort_key=’id’,
sort_dir=’asc’, driver=None, fields=None, resource_class=None, fault=None,
conductor_group=None, detail=None, conductor=None, owner=None,
description_contains=None, lessee=None, project=None, shard=None,
sharded=None, include_children=None, parent_node=None)

5.1. Developers Guide 801

Ironic Documentation, Release 26.1.2.dev21

Retrieve a list of nodes.

Parameters

• chassis_uuid Optional UUID of a chassis, to get only nodes for that chas-
sis.

• instance_uuid Optional UUID of an instance, to find the node associated
with that instance.

• associated Optional boolean whether to return a list of associated or unas-
sociated nodes. May be combined with other parameters.

• maintenance Optional boolean value that indicates whether to get nodes
in maintenance mode (True), or not in maintenance mode (False).

• retired Optional boolean value that indicates whether to get retired nodes.

• provision_state Optional string value to get only nodes in that provision
state.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• driver Optional string value to get only nodes using that driver.

• resource_class Optional string value to get only nodes with that re-
source_class.

• conductor_group Optional string value to get only nodes with that con-
ductor_group.

• conductor Optional string value to get only nodes managed by that con-
ductor.

• owner Optional string value that set the owner whose nodes are to be
retrurned.

• lessee Optional string value that set the lessee whose nodes are to be re-
turned.

• project Optional string value that set the project - lessee or owner - whose
nodes are to be returned.

• shard Optional string value that set the shards whose nodes are to be re-
turned.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• fault Optional string value to get only nodes with that fault.

• description_contains Optional string value to get only nodes with de-
scription field contains matching value.

802 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• sharded Optional boolean whether to return a list of nodes with or without
a shard set. May be combined with other parameters.

get_one(node_ident, fields=None)
Retrieve information about the given node.

Parameters

• node_ident UUID or logical name of a node.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

invalid_sort_key_list = ['properties', 'driver_info', 'extra',
'instance_info', 'driver_internal_info', 'clean_step', 'deploy_step',
'raid_config', 'target_raid_config', 'traits', 'network_data',
'service_step']

maintenance = <ironic.api.controllers.v1.node.NodeMaintenanceController
object>

Expose maintenance as a sub-element of nodes

management = <ironic.api.controllers.v1.node.NodeManagementController
object>

Expose management as a sub-element of nodes

parent_node = None

An indicator to signal if this resource is being accessed by a sub-controller.

patch(node_ident, reset_interfaces=None, patch=None)
Update an existing node.

Parameters

• node_ident UUID or logical name of a node.

• reset_interfaces whether to reset hardware interfaces to their defaults.
Only valid when updating the driver field.

• patch a json PATCH document to apply to this node.

post(node)
Create a new node.

Parameters
node a node within the request body.

Example Node creation request:

{
"name": "test_node_dynamic",
"driver": "ipmi",
"driver_info": {

"ipmi_username": "ADMIN",
"ipmi_password": "password"

},
"power_interface": "ipmitool",

(continues on next page)

5.1. Developers Guide 803

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"resource_class": "bm-large"
}

states = <ironic.api.controllers.v1.node.NodeStatesController object>

Expose the state controller action as a sub-element of nodes

validate(node=None, node_uuid=None)
Validate the driver interfaces, using the nodes UUID or name.

Note that the node_uuid interface is deprecated in favour of the node interface

Parameters

• node UUID or name of a node.

• node_uuid UUID of a node.

vendor_passthru =
<ironic.api.controllers.v1.node.NodeVendorPassthruController object>

A resource used for vendors to expose a custom functionality in the API

ironic.api.controllers.v1.node.get_nodes_controller_reserved_names()

ironic.api.controllers.v1.node.hide_fields_in_newer_versions(obj)
This method hides fields that were added in newer API versions.

Certain node fields were introduced at certain API versions. These fields are only made available
when the requests API version matches or exceeds the versions when these fields were introduced.

ironic.api.controllers.v1.node.indicator_convert_with_links(node_uuid,
rpc_component,
rpc_name,
**rpc_fields)

Add links to the indicator.

ironic.api.controllers.v1.node.indicator_list_from_dict(node_ident, indicators)

ironic.api.controllers.v1.node.network_data_schema()

ironic.api.controllers.v1.node.node_convert_with_links(rpc_node, fields=None,
sanitize=True)

ironic.api.controllers.v1.node.node_list_convert_with_links(nodes, limit, url,
fields=None, **kwargs)

ironic.api.controllers.v1.node.node_patch_schema()

ironic.api.controllers.v1.node.node_patch_validator(name, value)

ironic.api.controllers.v1.node.node_sanitize(node, fields, cdict=None,
show_driver_secrets=None,
show_instance_secrets=None,
evaluate_additional_policies=None)

Removes sensitive and unrequested data.

Will only keep the fields specified in the fields parameter.

804 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• fields (list of str) list of fields to preserve, or None to preserve them
all

• cdict Context dictionary for policy values evaluation. If not provided, it
will be executed by the method, however for enumerating node lists, it is more
efficient to provide.

• show_driver_secrets A boolean value to allow external single evaluation
of policy instead of once per node. Default None.

• show_instance_secrets A boolean value to allow external evaluation of
policy instead of once per node. Default None.

• evaluate_additional_policies A boolean value to allow external eval-
uation of policy instead of once per node. Default None.

ironic.api.controllers.v1.node.node_schema()

ironic.api.controllers.v1.node.node_states_convert(rpc_node)

ironic.api.controllers.v1.node.node_validator(name, value)

ironic.api.controllers.v1.node.reject_fields_in_newer_versions(obj)
When creating an object, reject fields that appear in newer versions.

ironic.api.controllers.v1.node.reject_patch_in_newer_versions(patch)

ironic.api.controllers.v1.node.update_state_in_older_versions(obj)
Change provision state names for API backwards compatibility.

Parameters
obj The dict being returned to the API client that is to be updated by this method.

ironic.api.controllers.v1.node.validate_network_data(network_data)
Validates node network_data field.

This method validates network data configuration against JSON schema.

Parameters
network_data a network_data field to validate

Raises
Invalid if network data is not schema-compliant

ironic.api.controllers.v1.notification_utils module

ironic.api.controllers.v1.notification_utils.emit_end_notification(context, obj,
action,
**kwargs)

Helper for emitting API end notifications.

Parameters

• context request context.

• obj resource rpc object.

5.1. Developers Guide 805

Ironic Documentation, Release 26.1.2.dev21

• action Action string to go in the EventType.

• kwargs kwargs to use when creating the notification payload.

ironic.api.controllers.v1.notification_utils.emit_start_notification(context, obj,
action,
**kwargs)

Helper for emitting API start notifications.

Parameters

• context request context.

• obj resource rpc object.

• action Action string to go in the EventType.

• kwargs kwargs to use when creating the notification payload.

ironic.api.controllers.v1.notification_utils.handle_error_notification(context,
obj,
action,
**kwargs)

Context manager to handle any error notifications.

Parameters

• context request context.

• obj resource rpc object.

• action Action string to go in the EventType.

• kwargs kwargs to use when creating the notification payload.

ironic.api.controllers.v1.port module

class ironic.api.controllers.v1.port.PortsController(*args, **kwargs)
Bases: RestController

REST controller for Ports.

advanced_net_fields = ['pxe_enabled', 'local_link_connection']

delete(port_uuid)
Delete a port.

Parameters
port_uuid UUID of a port.

Raises
OperationNotPermitted, HTTPNotFound

detail(node=None, node_uuid=None, address=None, marker=None, limit=None,
sort_key=’id’, sort_dir=’asc’, portgroup=None, shard=None)

Retrieve a list of ports with detail.

Note that the node_uuid interface is deprecated in favour of the node interface

806 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node UUID or name of a node, to get only ports for that node.

• node_uuid UUID of a node, to get only ports for that node.

• address MAC address of a port, to get the port which has this MAC address.

• portgroup UUID or name of a portgroup, to get only ports for that port-
group.

• shard comma separated list of shards, to only get ports associated with
nodes in those shards.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

Raises
NotAcceptable, HTTPNotFound

get_all(node=None, node_uuid=None, address=None, marker=None, limit=None,
sort_key=’id’, sort_dir=’asc’, fields=None, portgroup=None, detail=None,
shard=None)

Retrieve a list of ports.

Note that the node_uuid interface is deprecated in favour of the node interface

Parameters

• node UUID or name of a node, to get only ports for that node.

• node_uuid UUID of a node, to get only ports for that node.

• address MAC address of a port, to get the port which has this MAC address.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• portgroup UUID or name of a portgroup, to get only ports for that port-
group.

• shard Optional, a list of shard ids to filter by, only ports associated with
nodes in these shards will be returned.

Raises
NotAcceptable, HTTPNotFound

5.1. Developers Guide 807

Ironic Documentation, Release 26.1.2.dev21

get_one(port_ident, fields=None)
Retrieve information about the given port.

Parameters

• port_ident UUID or name of a port.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

Raises
NotAcceptable, HTTPNotFound

invalid_sort_key_list = ['extra', 'internal_info',
'local_link_connection']

patch(port_ident, patch)
Update an existing port.

Parameters

• port_ident UUID or name of a port.

• patch a json PATCH document to apply to this port.

Raises
NotAcceptable, HTTPNotFound

post(port)
Create a new port.

Parameters
port a port within the request body.

Raises
NotAcceptable, HTTPNotFound, Conflict

ironic.api.controllers.v1.port.convert_with_links(rpc_port, fields=None,
sanitize=True)

ironic.api.controllers.v1.port.hide_fields_in_newer_versions(port)

ironic.api.controllers.v1.port.list_convert_with_links(rpc_ports, limit, url,
fields=None, **kwargs)

ironic.api.controllers.v1.port.port_sanitize(port, fields=None)
Removes sensitive and unrequested data.

Will only keep the fields specified in the fields parameter.

Parameters
fields (list of str) list of fields to preserve, or None to preserve them all

808 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.portgroup module

class ironic.api.controllers.v1.portgroup.PortgroupsController(*args, **kwargs)
Bases: RestController

REST controller for portgroups.

delete(portgroup_ident)
Delete a portgroup.

Parameters
portgroup_ident UUID or logical name of a portgroup.

detail(node=None, address=None, marker=None, limit=None, sort_key=’id’, sort_dir=’asc’)
Retrieve a list of portgroups with detail.

Parameters

• node UUID or name of a node, to get only portgroups for that node.

• address MAC address of a portgroup, to get the portgroup which has this
MAC address.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

get_all(node=None, address=None, marker=None, limit=None, sort_key=’id’,
sort_dir=’asc’, fields=None, detail=None)

Retrieve a list of portgroups.

Parameters

• node UUID or name of a node, to get only portgroups for that node.

• address MAC address of a portgroup, to get the portgroup which has this
MAC address.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

get_one(portgroup_ident, fields=None)
Retrieve information about the given portgroup.

Parameters

5.1. Developers Guide 809

Ironic Documentation, Release 26.1.2.dev21

• portgroup_ident UUID or logical name of a portgroup.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

invalid_sort_key_list = ['extra', 'internal_info', 'properties']

patch(portgroup_ident, patch)
Update an existing portgroup.

Parameters

• portgroup_ident UUID or logical name of a portgroup.

• patch a json PATCH document to apply to this portgroup.

post(portgroup)
Create a new portgroup.

Parameters
portgroup a portgroup within the request body.

ironic.api.controllers.v1.portgroup.convert_with_links(rpc_portgroup, fields=None,
sanitize=True)

Add links to the portgroup.

ironic.api.controllers.v1.portgroup.list_convert_with_links(rpc_portgroups, limit,
url, fields=None,
**kwargs)

ironic.api.controllers.v1.ramdisk module

class ironic.api.controllers.v1.ramdisk.ContinueInspectionController(*args,
**kwargs)

Bases: RestController

Controller handling inspection data from deploy ramdisk.

post(data, node_uuid=None)
Process a introspection data from the deploy ramdisk.

Parameters

• data Introspection data.

• node_uuid UUID of a node.

Raises
InvalidParameterValue if node_uuid is a valid UUID.

Raises
NoValidHost if RPC topic for node could not be retrieved.

Raises
NotFound if requested API version does not allow this endpoint or if lookup
fails.

810 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.api.controllers.v1.ramdisk.HeartbeatController(*args, **kwargs)
Bases: RestController

Controller handling heartbeats from deploy ramdisk.

post(node_ident, callback_url, agent_version=None, agent_token=None,
agent_verify_ca=None, agent_status=None, agent_status_message=None)

Process a heartbeat from the deploy ramdisk.

Parameters

• node_ident the UUID or logical name of a node.

• callback_url the URL to reach back to the ramdisk.

• agent_version The version of the agent that is heartbeating. None
indicates that the agent that is heartbeating is a version before sending
agent_version was introduced so agent v3.0.0 (the last release before sending
agent_version was introduced) will be assumed.

• agent_token randomly generated validation token.

• agent_verify_ca TLS certificate to use to connect to the agent.

• agent_status Current status of the heartbeating agent. Used by anaconda
ramdisk to send status back to Ironic. The valid states are start, end, error

• agent_status_message Optional status message describing current
agent_status

Raises
NodeNotFound if node with provided UUID or name was not found.

Raises
InvalidUuidOrName if node_ident is not valid name or UUID.

Raises
NoValidHost if RPC topic for node could not be retrieved.

Raises
NotFound if requested API version does not allow this endpoint.

class ironic.api.controllers.v1.ramdisk.LookupController(*args, **kwargs)
Bases: RestController

Controller handling node lookup for a deploy ramdisk.

get_all(addresses=None, node_uuid=None)
Look up a node by its MAC addresses and optionally UUID.

If the restrict_lookup option is set to True (the default), limit the search to nodes in certain
transient states (e.g. deploy wait).

Parameters

• addresses list of MAC addresses for a node.

• node_uuid UUID of a node.

Raises
NotFound if requested API version does not allow this endpoint.

5.1. Developers Guide 811

Ironic Documentation, Release 26.1.2.dev21

Raises
NotFound if suitable node was not found or nodes provision state is not allowed
for the lookup.

Raises
IncompleteLookup if neither node UUID nor any valid MAC address was pro-
vided.

lookup_allowed(node)

ironic.api.controllers.v1.ramdisk.config(token)

ironic.api.controllers.v1.ramdisk.convert_with_links(node)

ironic.api.controllers.v1.ramdisk.get_valid_mac_addresses(addresses,
node_uuid=None)

ironic.api.controllers.v1.runbook module

class ironic.api.controllers.v1.runbook.RunbooksController(*args, **kwargs)
Bases: RestController

REST controller for runbooks.

delete(runbook_ident)
Delete a runbook.

Parameters
runbook_ident UUID or logical name of a runbook.

get_all(marker=None, limit=None, sort_key=’id’, sort_dir=’asc’, fields=None, detail=None,
project=None)

Retrieve a list of runbooks.

Parameters

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• project Optional string value that set the project whose runbooks are to be
returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• detail Optional, boolean to indicate whether retrieve a list of runbooks
with detail.

get_one(runbook_ident, fields=None)
Retrieve information about the given runbook.

812 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• runbook_ident UUID or logical name of a runbook.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

invalid_sort_key_list = ['extra', 'steps']

patch(runbook_ident, patch=None)
Update an existing runbook.

Parameters

• runbook_ident UUID or logical name of a runbook.

• patch a json PATCH document to apply to this runbook.

post(runbook)
Create a new runbook.

Parameters
runbook a runbook within the request body.

ironic.api.controllers.v1.runbook.convert_with_links(rpc_runbook, fields=None,
sanitize=True)

Add links to the runbook.

ironic.api.controllers.v1.runbook.list_convert_with_links(rpc_runbooks, limit,
fields=None, **kwargs)

ironic.api.controllers.v1.runbook.runbook_sanitize(runbook, fields)
Removes sensitive and unrequested data.

Will only keep the fields specified in the fields parameter.

Parameters
fields (list of str) list of fields to preserve, or None to preserve them all

ironic.api.controllers.v1.runbook.step_sanitize(step)

ironic.api.controllers.v1.shard module

class ironic.api.controllers.v1.shard.ShardController(*args, **kwargs)
Bases: RestController

REST controller for shards.

get_all()

Retrieve a list of shards.

Returns
A list of shards.

get_one(__)
Explicitly do not support getting one.

5.1. Developers Guide 813

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils module

class ironic.api.controllers.v1.utils.PassthruResponse(obj, status_code=None)
Bases: object

Object to hold the response from a passthru call

obj

Store the result object from the view

status_code

Store an optional status_code

ironic.api.controllers.v1.utils.allow_agent_token()

Check if agent token is available.

ironic.api.controllers.v1.utils.allow_agent_version_in_heartbeat()

Check if agent version is allowed to be passed into heartbeat.

Version 1.36 of the API added the ability for agents to pass their version information to Ironic on
heartbeat.

ironic.api.controllers.v1.utils.allow_allocation_backfill()

Check if backfilling allocations is allowed.

Version 1.58 of the API added support for backfilling allocations.

ironic.api.controllers.v1.utils.allow_allocation_owner()

Check if allocation owner field is allowed.

Version 1.60 of the API added the owner field to the allocation object.

ironic.api.controllers.v1.utils.allow_allocation_update()

Check if updating an existing allocation is allowed or not.

Version 1.57 of the API added support for updating an allocation.

ironic.api.controllers.v1.utils.allow_allocations()

Check if accessing allocation endpoints is allowed.

Version 1.52 of the API exposed allocation endpoints and allocation_uuid field for the node.

ironic.api.controllers.v1.utils.allow_attach_detach_vmedia()

Check if we should support virtual media actions.

ironic.api.controllers.v1.utils.allow_bios_interface()

Check if we should support bios interface and endpoints.

Version 1.40 of the API added support for bios interface.

ironic.api.controllers.v1.utils.allow_build_configdrive()

Check if building configdrive is allowed.

Version 1.56 of the API added support for building configdrive.

ironic.api.controllers.v1.utils.allow_configdrive_vendor_data()

Check if configdrive can contain a vendor_data key.

Version 1.59 of the API added support for configdrive vendor_data.

814 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.allow_continue_inspection_endpoint()

Check if /v1/continue_inspection endpoint is available.

As a special exception, we allow it in the base version so that the API can be used as a drop-in
replacement for the Inspectors API.

ironic.api.controllers.v1.utils.allow_deploy_steps()

Check if deploy_steps are available.

ironic.api.controllers.v1.utils.allow_deploy_templates()

Check if accessing deploy template endpoints is allowed.

Version 1.55 of the API exposed deploy template endpoints.

ironic.api.controllers.v1.utils.allow_detail_query()

Check if passing a detail=True query string is allowed.

Version 1.43 allows a user to pass the detail query string to list the resource with all the fields.

ironic.api.controllers.v1.utils.allow_dynamic_drivers()

Check if dynamic driver API calls are allowed.

Version 1.30 of the API added support for all of the driver composition related calls in the
/v1/drivers API.

ironic.api.controllers.v1.utils.allow_dynamic_interfaces()

Check if dynamic interface fields are allowed.

Version 1.31 of the API added support for viewing and setting the fields in V31_FIELDS on the
node object.

ironic.api.controllers.v1.utils.allow_expose_conductors()

Check if accessing conductor endpoints is allowed.

Version 1.49 of the API exposed conductor endpoints and conductor field for the node.

ironic.api.controllers.v1.utils.allow_expose_events()

Check if accessing events endpoint is allowed.

Version 1.54 of the API added the events endpoint.

ironic.api.controllers.v1.utils.allow_field(field)
Check if a field is allowed in the current version.

ironic.api.controllers.v1.utils.allow_firmware_interface()

Check if we should support firmware interface and endpoints.

Version 1.86 of the API added support for firmware interface.

ironic.api.controllers.v1.utils.allow_get_vmedia()

Check if we should support get virtual media action.

ironic.api.controllers.v1.utils.allow_inject_nmi()

Check if Inject NMI is allowed for the node.

Version 1.29 of the API allows Inject NMI for the node.

5.1. Developers Guide 815

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.allow_inspect_abort()

Check if inspection abort is allowed.

Version 1.41 of the API added support for inspection abort

ironic.api.controllers.v1.utils.allow_inspect_wait_state()

Check if inspect wait is allowed for the node.

Version 1.39 of the API adds inspect wait state to substitute inspecting state during asynchronous
hardware inspection.

ironic.api.controllers.v1.utils.allow_links_node_states_and_driver_properties()

Check if links are displayable.

Version 1.14 of the API allows the display of links to node states and driver properties.

ironic.api.controllers.v1.utils.allow_local_link_connection_network_type()

Check if network_type is allowed in ports link_local_connection

ironic.api.controllers.v1.utils.allow_node_history()

Check if node history access is permitted by API version.

ironic.api.controllers.v1.utils.allow_node_inventory()

Check if node inventory is allowed.

ironic.api.controllers.v1.utils.allow_node_logical_names()

ironic.api.controllers.v1.utils.allow_node_rebuild_with_configdrive()

Check if we should support node rebuild with configdrive.

Version 1.35 of the API added support for node rebuild with configdrive.

ironic.api.controllers.v1.utils.allow_ovn_vtep_version()

Check if ovn vtep version is allowed.

Version 1.90 of the API added support for ovn vtep switches in port.local_link_connection.

ironic.api.controllers.v1.utils.allow_port_advanced_net_fields()

Check if we should return local_link_connection and pxe_enabled fields.

Version 1.19 of the API added support for these new fields in port object.

ironic.api.controllers.v1.utils.allow_port_internal_info()

Check if accessing internal_info is allowed for the port.

Version 1.18 of the API exposes internal_info readonly field for the port.

ironic.api.controllers.v1.utils.allow_port_is_smartnic()

Check if port is_smartnic field is allowed.

Version 1.53 of the API added is_smartnic field to the port object.

ironic.api.controllers.v1.utils.allow_port_name()

Check if name is allowed for ports.

Version 1.88 of the API added name field to the port object.

816 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.allow_port_physical_network()

Check if port physical network field is allowed.

Version 1.34 of the API added the physical network field to the port object. We also check whether
the target version of the Port object supports the physical_network field as this may not be the case
during a rolling upgrade.

ironic.api.controllers.v1.utils.allow_portgroup_mode_properties()

Check if mode and properties can be added to/queried from a portgroup.

Version 1.26 of the API added mode and properties fields to portgroup object.

ironic.api.controllers.v1.utils.allow_portgroups()

Check if we should support portgroup operations.

Version 1.23 of the API added support for PortGroups.

ironic.api.controllers.v1.utils.allow_portgroups_subcontrollers()

Check if portgroups can be used as subcontrollers.

Version 1.24 of the API added support for Portgroups as subcontrollers

ironic.api.controllers.v1.utils.allow_query_bios()

Check if BIOS queries should be allowed based on version

ironic.api.controllers.v1.utils.allow_raid_config()

Check if RAID configuration is allowed for the node.

Version 1.12 of the API allows RAID configuration for the node.

ironic.api.controllers.v1.utils.allow_ramdisk_endpoints()

Check if heartbeat and lookup endpoints are allowed.

Version 1.22 of the API introduced them.

ironic.api.controllers.v1.utils.allow_remove_chassis_uuid()

Check if chassis_uuid can be removed from node.

Version 1.25 of the API added support for chassis_uuid removal

ironic.api.controllers.v1.utils.allow_rescue_interface()

Check if we should support rescue and unrescue operations and interface.

Version 1.38 of the API added support for rescue and unrescue.

ironic.api.controllers.v1.utils.allow_reset_interfaces()

Check if passing a reset_interfaces query string is allowed.

ironic.api.controllers.v1.utils.allow_runbooks()

Check if accessing runbook endpoints is allowed.

Version 1.92 of the API exposed runbook endpoints.

ironic.api.controllers.v1.utils.allow_service_verb()

Check if the service verb may be passed to the API.

ironic.api.controllers.v1.utils.allow_shards_endpoint()

Check if shards endpoint is available.

5.1. Developers Guide 817

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.allow_soft_power_off()

Check if Soft Power Off is allowed for the node.

Version 1.27 of the API allows Soft Power Off, including Soft Reboot, for the node.

ironic.api.controllers.v1.utils.allow_status_in_heartbeat()

Check if heartbeat accepts agent_status and agent_status_message.

ironic.api.controllers.v1.utils.allow_storage_interface()

Check if we should support storage_interface node and driver fields.

Version 1.33 of the API added support for storage interfaces.

ironic.api.controllers.v1.utils.allow_traits()

Check if traits are allowed for the node.

Version 1.37 of the API allows traits for the node.

ironic.api.controllers.v1.utils.allow_unhold_verb()

Check if the unhold verb may be passed to the API

ironic.api.controllers.v1.utils.allow_verify_ca_in_heartbeat()

Check if heartbeat accepts agent_verify_ca.

ironic.api.controllers.v1.utils.allow_vifs_subcontroller()

Check if node/vifs can be used.

Version 1.28 of the API added support for VIFs to be attached to Nodes.

ironic.api.controllers.v1.utils.allow_volume()

Check if volume connectors and targets are allowed.

Version 1.32 of the API added support for volume connectors and targets

ironic.api.controllers.v1.utils.apply_jsonpatch(doc, patch)
Apply a JSON patch, one operation at a time.

If the patch fails to apply, this allows us to determine which operation failed, making the error
message a little less cryptic.

Parameters

• doc The JSON document to patch.

• patch The JSON patch to apply.

Returns
The result of the patch operation.

Raises
PatchError if the patch fails to apply.

Raises
exception.ClientSideError if the patch adds a new root attribute.

ironic.api.controllers.v1.utils.check_allocation_policy_and_retrieve(policy_name,
alloca-
tion_ident)

Check if the specified policy authorizes request on allocation.

818 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Param
policy_name: Name of the policy to check.

Param
allocation_ident: the UUID or logical name of a node.

Raises
HTTPForbidden if the policy forbids access.

Raises
AllocationNotFound if the node is not found.

Returns
RPC node identified by node_ident

ironic.api.controllers.v1.utils.check_allow_boot_mode(node_capabilities,
disallowed_boot_modes)

Check if boot mode is allowed

ironic.api.controllers.v1.utils.check_allow_child_node_params(include_children=None,
parent_node=None)

ironic.api.controllers.v1.utils.check_allow_clean_disable_ramdisk(target, dis-
able_ramdisk)

ironic.api.controllers.v1.utils.check_allow_configdrive(target, configdrive=None)

ironic.api.controllers.v1.utils.check_allow_deploy_steps(target, deploy_steps)
Check if deploy steps are allowed

ironic.api.controllers.v1.utils.check_allow_driver_detail(detail)
Check if getting detailed driver info is allowed.

Version 1.30 of the API allows this.

ironic.api.controllers.v1.utils.check_allow_filter_by_conductor(conductor)
Check if filtering nodes by conductor is allowed.

Version 1.49 of the API allows filtering nodes by conductor.

ironic.api.controllers.v1.utils.check_allow_filter_by_conductor_group(conductor_group)
Check if filtering nodes by conductor_group is allowed.

Version 1.46 of the API allows filtering nodes by conductor_group.

ironic.api.controllers.v1.utils.check_allow_filter_by_fault(fault)
Check if filtering nodes by fault is allowed.

Version 1.42 of the API allows filtering nodes by fault.

ironic.api.controllers.v1.utils.check_allow_filter_by_lessee(lessee)
Check if filtering nodes by lessee is allowed.

Version 1.62 of the API allows filtering nodes by lessee.

ironic.api.controllers.v1.utils.check_allow_filter_by_owner(owner)
Check if filtering nodes by owner is allowed.

Version 1.50 of the API allows filtering nodes by owner.

5.1. Developers Guide 819

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.check_allow_filter_by_shard(shard)
Check if filtering nodes by shard is allowed.

Version 1.82 of the API allows filtering nodes by shard.

ironic.api.controllers.v1.utils.check_allow_filter_driver_type(driver_type)
Check if filtering drivers by classic/dynamic is allowed.

Version 1.30 of the API allows this.

ironic.api.controllers.v1.utils.check_allow_management_verbs(verb)

ironic.api.controllers.v1.utils.check_allow_specify_driver(driver)
Check if filtering nodes by driver is allowed.

Version 1.16 of the API allows filter nodes by driver.

ironic.api.controllers.v1.utils.check_allow_specify_fields(fields)
Check if fetching a subset of the resource attributes is allowed.

Version 1.8 of the API allows fetching a subset of the resource attributes, this method checks if the
required version is being requested.

ironic.api.controllers.v1.utils.check_allow_specify_resource_class(resource_class)
Check if filtering nodes by resource_class is allowed.

Version 1.21 of the API allows filtering nodes by resource_class.

ironic.api.controllers.v1.utils.check_allowed_fields(fields)
Check if fetching a particular field is allowed.

This method checks if the required version is being requested for fields that are only allowed to be
fetched in a particular API version.

ironic.api.controllers.v1.utils.check_allowed_portgroup_fields(fields)
Check if fetching a particular field of a portgroup is allowed.

This method checks if the required version is being requested for fields that are only allowed to be
fetched in a particular API version.

ironic.api.controllers.v1.utils.check_and_retrieve_public_runbook(runbook_ident)
If policy authorization check fails, check if runbook is public.

Param
runbook_ident: the UUID or logical name of a runbook.

Raises
HTTPForbidden if runbook is not public.

Returns
RPC runbook identified by runbook_ident

ironic.api.controllers.v1.utils.check_for_invalid_fields(fields, object_fields)
Check for requested non-existent fields.

Check if the user requested non-existent fields.

Parameters
fields A list of fields requested by the user

820 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Object_fields
A list of fields supported by the object.

Raises
InvalidParameterValue if invalid fields were requested.

ironic.api.controllers.v1.utils.check_for_invalid_state_and_allow_filter(provision_state)
Check if filtering nodes by provision state is allowed.

Version 1.9 of the API allows filter nodes by provision state.

ironic.api.controllers.v1.utils.check_list_policy(object_type, owner=None)
Check if the list policy authorizes this request on an object.

Param
object_type: type of object being checked

Param
owner: owner filter for list query, if any

Raises
HTTPForbidden if the policy forbids access.

Returns
owner that should be used for list query, if needed

ironic.api.controllers.v1.utils.check_multiple_node_policies_and_retrieve(policy_names,
node_ident,
with_suffix=False)

Check if the specified policies authorize this request on a node.

Param
policy_names: List of policy names to check.

Param
node_ident: the UUID or logical name of a node.

Param
with_suffix: whether the RPC node should include the suffix

Raises
HTTPForbidden if the policy forbids access.

Raises
NodeNotFound if the node is not found.

Returns
RPC node identified by node_ident

ironic.api.controllers.v1.utils.check_multiple_runbook_policies_and_retrieve(policy_names,
run-
book_ident)

Check if the specified policies authorize this request on a runbook.

Param
policy_names: List of policy names to check.

Param
runbook_ident: the UUID or logical name of a runbook.

5.1. Developers Guide 821

Ironic Documentation, Release 26.1.2.dev21

Raises
HTTPForbidden if the policy forbids access.

Raises
RunbookNotFound if the runbook is not found.

Returns
RPC runbook identified by runbook_ident

ironic.api.controllers.v1.utils.check_node_policy_and_retrieve(policy_name,
node_ident,
with_suffix=False)

Check if the specified policy authorizes this request on a node.

Param
policy_name: Name of the policy to check.

Param
node_ident: the UUID or logical name of a node.

Param
with_suffix: whether the RPC node should include the suffix

Raises
HTTPForbidden if the policy forbids access.

Raises
NodeNotFound if the node is not found.

Returns
RPC node identified by node_ident

ironic.api.controllers.v1.utils.check_owner_policy(object_type, policy_name, owner,
lessee=None, conceal_node=False)

Check if the policy authorizes this request on an object.

Param
object_type: type of object being checked

Param
policy_name: Name of the policy to check.

Param
owner: the owner

Param
lessee: the lessee

Param
conceal_node: the UUID of the node IF we should conceal the existence of the
node with a 404 Error instead of a 403 Error.

Raises
HTTPForbidden if the policy forbids access.

ironic.api.controllers.v1.utils.check_policy(policy_name)
Check if the specified policy is authorised for this request.

Policy_name
Name of the policy to check.

822 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
HTTPForbidden if the policy forbids access.

ironic.api.controllers.v1.utils.check_policy_true(policy_name)
Check if the specified policy is authorised for this request.

Policy_name
Name of the policy to check.

Returns
True if policy is matched, otherwise false.

ironic.api.controllers.v1.utils.check_port_list_policy(portgroup=False,
parent_node=None,
parent_portgroup=None)

Check if the specified policy authorizes this request on a port.

Parameters

• portgroup Boolean value, default false, indicating if the list policy check is
for a portgroup as the policy names are different between ports and portgroups.

• parent_node The UUID of a node, if any, to apply a policy check to as well
before applying other policy check operations.

• parent_portgroup The UUID of the parent portgroup if the list of ports
was retrieved via the /v1/portgroups/<uuid>/ports.

Raises
HTTPForbidden if the policy forbids access.

Returns
owner that should be used for list query, if needed

ironic.api.controllers.v1.utils.check_port_policy_and_retrieve(policy_name,
port_ident,
portgroup=False)

Check if the specified policy authorizes this request on a port.

Param
policy_name: Name of the policy to check.

Param
port_ident: The name, uuid, or other valid ID value to find a port or portgroup by.

Raises
HTTPForbidden if the policy forbids access.

Raises
PortNotFound if the port is not found.

Raises
PortgroupNotFound if the portgroup is not found.

Returns
RPC port identified by port_ident associated node

ironic.api.controllers.v1.utils.check_runbook_policy_and_retrieve(policy_name,
runbook_ident)

5.1. Developers Guide 823

Ironic Documentation, Release 26.1.2.dev21

Check if the specified policy authorizes this request on a node.

Param
policy_name: Name of the policy to check.

Param
runbook_ident: the UUID or logical name of a runbook.

Raises
HTTPForbidden if the policy forbids access.

Raises
RunbookNotFound if the runbook is not found.

Returns
a runbook object

ironic.api.controllers.v1.utils.check_volume_list_policy(parent_node=None)
Check if the specified policy authorizes this request on a volume.

Parameters
parent_node The UUID of a node, if any, to apply a policy check to as well
before applying other policy check operations.

Raises
HTTPForbidden if the policy forbids access.

Returns
owner that should be used for list query, if needed

ironic.api.controllers.v1.utils.check_volume_policy_and_retrieve(policy_name,
vol_ident,
target=False)

Check if the specified policy authorizes this request on a volume.

Param
policy_name: Name of the policy to check.

Param
vol_ident: The name, uuid, or other valid ID value to find a volume target or con-
nector by.

Param
target: Boolean value to indicate if the check is for a volume target or connector.
Default value is False, implying connector.

Raises
HTTPForbidden if the policy forbids access.

Raises
VolumeConnectorNotFound if the node is not found.

Raises
VolumeTargetNotFound if the node is not found.

Returns
RPC port identified by port_ident associated node

824 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.convert_steps(rpc_steps)

ironic.api.controllers.v1.utils.disallowed_fields()

Generator of fields not allowed in the current request.

ironic.api.controllers.v1.utils.duplicate_steps(name, value)
Argument validator to check template for duplicate steps

ironic.api.controllers.v1.utils.get_controller_reserved_names(cls)
Get reserved names for a given controller.

Inspect the controller class and return the reserved names within it. Reserved names are names
that can not be used as an identifier for a resource because the names are either being used as a
custom action or is the name of a nested controller inside the given class.

Parameters
cls The controller class to be inspected.

ironic.api.controllers.v1.utils.get_patch_values(patch, path)
Get the patch values corresponding to the specified path.

If there are multiple values specified for the same path, for example

[{'op': 'add', 'path': '/name', 'value': 'abc'},
{'op': 'add', 'path': '/name', 'value': 'bca'}]

return all of them in a list (preserving order)

Parameters

• patch HTTP PATCH request body.

• path the path to get the patch values for.

Returns
list of values for the specified path in the patch.

ironic.api.controllers.v1.utils.get_request_return_fields(fields, detail, default_fields,
check_detail_version=<function
allow_detail_query>,
check_fields_version=None)

Calculate fields to return from an API request

The fields query and detail=True query can not be passed into a request at the same time. To
use the detail query we need to be on a version of the API greater than expected, likewise some
APIs require a certain version for the fields query. This function raises an InvalidParameterValue
exception if any of these conditions are not met.

If these checks pass then this function will return either the fields passed in or the default fields
provided.

Parameters

• fields The fields query passed into the API request.

• detail The detail query passed into the API request.

• default_fields The default fields to return if fields=None and detail=None.

5.1. Developers Guide 825

Ironic Documentation, Release 26.1.2.dev21

• check_detail_version Function to check if detail query is allowed based
on the version.

• check_fields_version Function to check if fields query is allowed based
on the version.

Raises
InvalidParameterValue if there is an invalid combination of query strings or API
version.

Returns
fields passed in value or default_fields

ironic.api.controllers.v1.utils.get_rpc_allocation(allocation_ident)
Get the RPC allocation from the allocation UUID or logical name.

Parameters
allocation_ident the UUID or logical name of an allocation.

Returns
The RPC allocation.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
AllocationNotFound if the allocation is not found.

ironic.api.controllers.v1.utils.get_rpc_allocation_with_suffix(allocation_ident)
Get the RPC allocation from the allocation UUID or logical name.

If HAS_JSON_SUFFIX flag is set in the pecan environment, try also looking for allocation_ident
with .json suffix. Otherwise identical to get_rpc_allocation.

Parameters
allocation_ident the UUID or logical name of an allocation.

Returns
The RPC allocation.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
AllocationNotFound if the allocation is not found.

ironic.api.controllers.v1.utils.get_rpc_deploy_template(template_ident)
Get the RPC deploy template from the UUID or logical name.

Parameters
template_ident the UUID or logical name of a deploy template.

Returns
The RPC deploy template.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
DeployTemplateNotFound if the deploy template is not found.

826 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.v1.utils.get_rpc_deploy_template_with_suffix(template_ident)
Get the RPC deploy template from the UUID or logical name.

If HAS_JSON_SUFFIX flag is set in the pecan environment, try also looking for template_ident
with .json suffix. Otherwise identical to get_rpc_deploy_template.

Parameters
template_ident the UUID or logical name of a deploy template.

Returns
The RPC deploy template.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
DeployTemplateNotFound if the deploy template is not found.

ironic.api.controllers.v1.utils.get_rpc_node(node_ident)
Get the RPC node from the node uuid or logical name.

Parameters
node_ident the UUID or logical name of a node.

Returns
The RPC Node.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
NodeNotFound if the node is not found.

ironic.api.controllers.v1.utils.get_rpc_node_with_suffix(node_ident)
Get the RPC node from the node uuid or logical name.

If HAS_JSON_SUFFIX flag is set in the pecan environment, try also looking for node_ident with
.json suffix. Otherwise identical to get_rpc_node.

Parameters
node_ident the UUID or logical name of a node.

Returns
The RPC Node.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
NodeNotFound if the node is not found.

ironic.api.controllers.v1.utils.get_rpc_portgroup(portgroup_ident)
Get the RPC portgroup from the portgroup UUID or logical name.

Parameters
portgroup_ident the UUID or logical name of a portgroup.

Returns
The RPC portgroup.

5.1. Developers Guide 827

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
PortgroupNotFound if the portgroup is not found.

ironic.api.controllers.v1.utils.get_rpc_portgroup_with_suffix(portgroup_ident)
Get the RPC portgroup from the portgroup UUID or logical name.

If HAS_JSON_SUFFIX flag is set in the pecan environment, try also looking for portgroup_ident
with .json suffix. Otherwise identical to get_rpc_portgroup.

Parameters
portgroup_ident the UUID or logical name of a portgroup.

Returns
The RPC portgroup.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
PortgroupNotFound if the portgroup is not found.

ironic.api.controllers.v1.utils.get_rpc_runbook(runbook_ident)
Get the RPC runbook from the UUID or logical name.

Parameters
runbook_ident the UUID or logical name of a runbook.

Returns
The RPC runbook.

Raises
InvalidUuidOrName if the name or uuid provided is not valid.

Raises
RunbookNotFound if the runbook is not found.

ironic.api.controllers.v1.utils.initial_node_provision_state()

Return node state to use by default when creating new nodes.

Previously the default state for new nodes was AVAILABLE. Starting with API 1.11 it is ENROLL.

ironic.api.controllers.v1.utils.is_path_removed(patch, path)
Returns whether the patch includes removal of the path (or subpath of).

Parameters

• patch HTTP PATCH request body.

• path the path to check.

Returns
True if path or subpath being removed, False otherwise.

ironic.api.controllers.v1.utils.is_path_updated(patch, path)
Returns whether the patch includes operation on path (or its subpath).

Parameters

828 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• patch HTTP PATCH request body.

• path the path to check.

Returns
True if path or subpath being patched, False otherwise.

ironic.api.controllers.v1.utils.is_valid_logical_name(name)
Determine if the provided name is a valid hostname.

ironic.api.controllers.v1.utils.is_valid_node_name(name)
Determine if the provided name is a valid node name.

Check to see that the provided node name is valid, and isnt a UUID.

Parameters
name the node name to check.

Returns
True if the name is valid, False otherwise.

ironic.api.controllers.v1.utils.local_link_normalize(name, value)

ironic.api.controllers.v1.utils.new_continue_inspection_endpoint()

Check if /v1/continue_inspection endpoint is explicitly requested.

ironic.api.controllers.v1.utils.object_to_dict(obj, include_created_at=True,
include_updated_at=True,
include_uuid=True, link_resource=None,
link_resource_args=None, fields=None)

Helper function to convert RPC objects to REST API dicts.

Parameters

• obj RPC object to convert to a dict

• include_created_at Whether to include standard base class attribute cre-
ated_at

• include_updated_at Whether to include standard base class attribute up-
dated_at

• include_uuid Whether to include standard base class attribute uuid

• link_resource When specified, generate a links value with a self and
bookmark using this resource name

• link_resource_args Resource arguments to be added to generated links.
When not specified, the object uuid will be used.

• fields Key names for dict values to populate directly from object attributes

Returns
A dict containing values from the object

ironic.api.controllers.v1.utils.patch_update_changed_fields(from_dict, rpc_object,
fields, schema,
id_map=None)

Update rpc object based on changed fields in a dict.

5.1. Developers Guide 829

Ironic Documentation, Release 26.1.2.dev21

Only fields which have a corresponding schema field are updated when changed. Other values can
be updated using the id_map.

Parameters

• from_dict Dict containing changed field values

• rpc_object Object to update changed fields on

• fields Field names on the rpc object

• schema jsonschema to get field names of the dict

• id_map Optional dict mapping object field names to arbitrary values when
there is no matching field in the schema

ironic.api.controllers.v1.utils.patch_validate_allowed_fields(patch,
allowed_fields)

Validate that a patch list only modifies allowed fields.

Parameters

• patch List of patch dicts to validate

• allowed_fields List of fields which are allowed to be patched

Returns
The list of fields which will be patched

Raises
exception.Invalid if any patch changes a field not in allowed_fields

ironic.api.controllers.v1.utils.patched_validate_with_schema(patched_dict, schema,
validator=None)

Validate a patched dict object against a validator or schema.

This function has the side-effect of deleting any dict value which is not in the schema. This allows
database-loaded objects to be pruned of their internal values before validation.

Parameters

• patched_dict dict representation of the object with patch updates applied

• schema Any dict key not in the schema will be deleted from the dict. If
no validator is specified then the resulting patched_dict will be validated
against the schema

• validator Optional validator to use if there is extra validation required be-
yond the schema

Raises
exception.Invalid if validation fails

ironic.api.controllers.v1.utils.populate_node_uuid(obj, to_dict)
Look up the node referenced in the object and populate a dict.

The node is fetched with the object node_id attribute and the dict node_uuid value is populated
with the node uuid

Parameters

• obj object to get the node_id attribute

830 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• to_dict dict to populate with a node_uuid value

Raises
exception.NodeNotFound if the node is not found

ironic.api.controllers.v1.utils.replace_node_id_with_uuid(to_dict)
Replace node_id dict value with node_uuid

node_uuid is found by fetching the node by id lookup.

Parameters
to_dict Dict to set node_uuid value on

Returns
The node object from the lookup

Raises
NodeNotFound with status_code set to 400 BAD_REQUEST when node is not
found.

ironic.api.controllers.v1.utils.replace_node_uuid_with_id(to_dict)
Replace node_uuid dict value with node_id

node_id is found by fetching the node by uuid lookup.

Parameters
to_dict Dict to set node_id value on

Returns
The node object from the lookup

Raises
NodeNotFound with status_code set to 400 BAD_REQUEST when node is not
found.

ironic.api.controllers.v1.utils.sanitize_dict(to_sanitize, fields)
Removes sensitive and unrequested data.

Will only keep the fields specified in the fields parameter (plus the links field).

Parameters

• to_sanitize dict to sanitize

• fields (list of str) list of fields to preserve, or None to preserve them
all

ironic.api.controllers.v1.utils.validate_limit(limit)

ironic.api.controllers.v1.utils.validate_sort_dir(sort_dir)

ironic.api.controllers.v1.utils.vendor_passthru(ident, method, topic, data=None,
driver_passthru=False)

Call a vendor passthru API extension.

Call the vendor passthru API extension and process the method response to set the right return
code for methods that are asynchronous or synchronous; Attach the return value to the response
object if its being served statically.

Parameters

5.1. Developers Guide 831

Ironic Documentation, Release 26.1.2.dev21

• ident The resource identification. For nodes vendor passthru this is the nodes
UUID, for drivers vendor passthru this is the drivers name.

• method The vendor method name.

• topic The RPC topic.

• data The data passed to the vendor method. Defaults to None.

• driver_passthru Boolean value. Whether this is a node or driver vendor
passthru. Defaults to False.

Returns
A WSME response object to be returned by the API.

ironic.api.controllers.v1.versions module

ironic.api.controllers.v1.versions.max_version_string()

Returns the maximum supported API version (as a string).

If the service is pinned, the maximum API version is the pinned version. Otherwise, it is the
maximum supported API version.

ironic.api.controllers.v1.versions.min_version_string()

Returns the minimum supported API version (as a string)

ironic.api.controllers.v1.volume module

class ironic.api.controllers.v1.volume.VolumeController(*args, **kwargs)
Bases: RestController

REST controller for volume root

get()

ironic.api.controllers.v1.volume.convert(node_ident=None)

ironic.api.controllers.v1.volume_connector module

class ironic.api.controllers.v1.volume_connector.VolumeConnectorsController(*args,
**kwargs)

Bases: RestController

REST controller for VolumeConnectors.

delete(connector_uuid)
Delete a volume connector.

Parameters
connector_uuid UUID of a volume connector.

Raises
OperationNotPermitted if accessed with specifying a parent node.

832 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeLocked if node is locked by another conductor

Raises
NodeNotFound if the node associated with the connector does not exist

Raises
VolumeConnectorNotFound if the volume connector cannot be found

Raises
InvalidStateRequested If a node associated with the volume connector is not
powered off.

get_all(node=None, marker=None, limit=None, sort_key=’id’, sort_dir=’asc’, fields=None,
detail=None, project=None)

Retrieve a list of volume connectors.

Parameters

• node UUID or name of a node, to get only volume connectors for that node.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• detail Optional, whether to retrieve with detail.

Returns
a list of volume connectors, or an empty list if no volume connector is found.

Raises
InvalidParameterValue if sort_key does not exist

Raises
InvalidParameterValue if sort key is invalid for sorting.

Raises
InvalidParameterValue if both fields and detail are specified.

get_one(connector_uuid, fields=None)
Retrieve information about the given volume connector.

Parameters

• connector_uuid UUID of a volume connector.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

Returns
API-serializable volume connector object.

5.1. Developers Guide 833

Ironic Documentation, Release 26.1.2.dev21

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
VolumeConnectorNotFound if no volume connector exists with the specified
UUID.

invalid_sort_key_list = ['extra']

patch(connector_uuid, patch)
Update an existing volume connector.

Parameters

• connector_uuid UUID of a volume connector.

• patch a json PATCH document to apply to this volume connector.

Returns
API-serializable volume connector object.

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
PatchError if a given patch can not be applied.

Raises
VolumeConnectorNotFound if no volume connector exists with the specified
UUID.

Raises
InvalidParameterValue if the volume connectors UUID is being changed

Raises
NodeLocked if node is locked by another conductor

Raises
NodeNotFound if the node associated with the connector does not exist

Raises
VolumeConnectorTypeAndIdAlreadyExists if another connector already exists
with the same values for type and connector_id fields

Raises
InvalidUUID if invalid node UUID is passed in the patch.

Raises
InvalidStateRequested If a node associated with the volume connector is not
powered off.

post(connector)
Create a new volume connector.

Parameters
connector a volume connector within the request body.

Returns
API-serializable volume connector object.

834 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
VolumeConnectorTypeAndIdAlreadyExists if a volume connector already ex-
ists with the same type and connector_id

Raises
VolumeConnectorAlreadyExists if a volume connector with the same UUID
already exists

ironic.api.controllers.v1.volume_connector.convert_with_links(rpc_connector,
fields=None,
sanitize=True)

ironic.api.controllers.v1.volume_connector.list_convert_with_links(rpc_connectors,
limit, url,
fields=None,
detail=None,
**kwargs)

ironic.api.controllers.v1.volume_target module

class ironic.api.controllers.v1.volume_target.VolumeTargetsController(*args,
**kwargs)

Bases: RestController

REST controller for VolumeTargets.

delete(target_uuid)
Delete a volume target.

Parameters
target_uuid UUID of a volume target.

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
NodeLocked if node is locked by another conductor

Raises
NodeNotFound if the node associated with the target does not exist

Raises
VolumeTargetNotFound if the volume target cannot be found

Raises
InvalidStateRequested If a node associated with the volume target is not pow-
ered off.

get_all(node=None, marker=None, limit=None, sort_key=’id’, sort_dir=’asc’, fields=None,
detail=None, project=None)

Retrieve a list of volume targets.

Parameters

5.1. Developers Guide 835

Ironic Documentation, Release 26.1.2.dev21

• node UUID or name of a node, to get only volume targets for that node.

• marker pagination marker for large data sets.

• limit maximum number of resources to return in a single result. This value
cannot be larger than the value of max_limit in the [api] section of the ironic
configuration, or only max_limit resources will be returned.

• sort_key column to sort results by. Default: id.

• sort_dir direction to sort. asc or desc. Default: asc.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

• detail Optional, whether to retrieve with detail.

• project Optional, an associated node project (owner, or lessee) to filter the
query upon.

Returns
a list of volume targets, or an empty list if no volume target is found.

Raises
InvalidParameterValue if sort_key does not exist

Raises
InvalidParameterValue if sort key is invalid for sorting.

Raises
InvalidParameterValue if both fields and detail are specified.

get_one(target_uuid, fields=None)
Retrieve information about the given volume target.

Parameters

• target_uuid UUID of a volume target.

• fields Optional, a list with a specified set of fields of the resource to be
returned.

Returns
API-serializable volume target object.

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
VolumeTargetNotFound if no volume target with this UUID exists

invalid_sort_key_list = ['extra', 'properties']

patch(target_uuid, patch)
Update an existing volume target.

Parameters

• target_uuid UUID of a volume target.

• patch a json PATCH document to apply to this volume target.

836 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
API-serializable volume target object.

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
PatchError if a given patch can not be applied.

Raises
InvalidParameterValue if the volume targets UUID is being changed

Raises
NodeLocked if the node is already locked

Raises
NodeNotFound if the node associated with the volume target does not exist

Raises
VolumeTargetNotFound if the volume target cannot be found

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same node ID and boot index values

Raises
InvalidUUID if invalid node UUID is passed in the patch.

Raises
InvalidStateRequested If a node associated with the volume target is not pow-
ered off.

post(target)
Create a new volume target.

Parameters
target a volume target within the request body.

Returns
API-serializable volume target object.

Raises
OperationNotPermitted if accessed with specifying a parent node.

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same node ID and boot index

Raises
VolumeTargetAlreadyExists if a volume target with the same UUID exists

ironic.api.controllers.v1.volume_target.convert_with_links(rpc_target, fields=None,
sanitize=True)

ironic.api.controllers.v1.volume_target.list_convert_with_links(rpc_targets, limit,
url, fields=None,
detail=None,
**kwargs)

5.1. Developers Guide 837

Ironic Documentation, Release 26.1.2.dev21

Module contents

Version 1 of the Ironic API

Specification can be found at doc/source/webapi/v1.rst

class ironic.api.controllers.v1.Controller

Bases: object

Version 1 API controller root.

add_version_attributes()

index()

Submodules

ironic.api.controllers.base module

class ironic.api.controllers.base.Version(headers, default_version, latest_version)
Bases: object

API Version object.

max_string = 'X-OpenStack-Ironic-API-Maximum-Version'

HTTP response header

min_string = 'X-OpenStack-Ironic-API-Minimum-Version'

HTTP response header

static parse_headers(headers, default_version, latest_version)
Determine the API version requested based on the headers supplied.

Parameters

• headers webob headers

• default_version version to use if not specified in headers

• latest_version version to use if latest is requested

Returns
a tuple of (major, minor) version numbers

Raises
webob.HTTPNotAcceptable

string = 'X-OpenStack-Ironic-API-Version'

HTTP Header string carrying the requested version

838 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.api.controllers.link module

ironic.api.controllers.link.build_url(resource, resource_args, bookmark=False,
base_url=None)

ironic.api.controllers.link.make_link(rel_name, url, resource, resource_args,
bookmark=False, type=None)

Build a dict representing a link

ironic.api.controllers.root module

class ironic.api.controllers.root.RootController

Bases: object

index(*args)

ironic.api.controllers.root.root()

ironic.api.controllers.version module

ironic.api.controllers.version.all_versions()

ironic.api.controllers.version.default_version()

Return a dict representing the current default version

id: The ID of the (major) version, also acts as the release number links: A list containing one link
that points to the current version of the API

status: Status of the version, one of CURRENT, SUPPORTED, DEPRECATED

min_version: The current, maximum supported (major.minor) version of API.

version: Minimum supported (major.minor) version of API.

Module contents

ironic.api.middleware package

Submodules

ironic.api.middleware.auth_public_routes module

class ironic.api.middleware.auth_public_routes.AuthPublicRoutes(app, auth, pub-
lic_api_routes=None)

Bases: object

A wrapper on authentication middleware.

Does not perform verification of authentication tokens for public routes in the API.

5.1. Developers Guide 839

Ironic Documentation, Release 26.1.2.dev21

__call__(env, start_response)
Call self as a function.

ironic.api.middleware.json_ext module

class ironic.api.middleware.json_ext.JsonExtensionMiddleware(app)
Bases: object

Simplified processing of .json extension.

Previously Ironic API used the guess_content_type_from_ext feature. It was never needed, as we
never allowed non-JSON content types anyway. Now that it is removed, this middleware strips
.json extension for backward compatibility.

__call__(env, start_response)
Call self as a function.

transform_header(version_string)
Transforms version string to HTTP header format.

ironic.api.middleware.parsable_error module

Middleware to replace the plain text message body of an error response with one formatted so the client
can parse it.

Based on pecan.middleware.errordocument

class ironic.api.middleware.parsable_error.ParsableErrorMiddleware(app)
Bases: object

Replace error body with something the client can parse.

__call__(environ, start_response)
Call self as a function.

Module contents

class ironic.api.middleware.AuthPublicRoutes(app, auth, public_api_routes=None)
Bases: object

A wrapper on authentication middleware.

Does not perform verification of authentication tokens for public routes in the API.

__call__(env, start_response)
Call self as a function.

class ironic.api.middleware.JsonExtensionMiddleware(app)
Bases: object

Simplified processing of .json extension.

840 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Previously Ironic API used the guess_content_type_from_ext feature. It was never needed, as we
never allowed non-JSON content types anyway. Now that it is removed, this middleware strips
.json extension for backward compatibility.

__call__(env, start_response)
Call self as a function.

transform_header(version_string)
Transforms version string to HTTP header format.

class ironic.api.middleware.ParsableErrorMiddleware(app)
Bases: object

Replace error body with something the client can parse.

__call__(environ, start_response)
Call self as a function.

Submodules

ironic.api.app module

class ironic.api.app.IronicCORS(application, *args, **kwargs)
Bases: CORS

Ironic-specific CORS class

Were adding the Ironic-specific version headers to the list of simple headers in order that a request
bearing those headers might be accepted by the Ironic REST API.

simple_headers = ['Accept', 'Accept-Language', 'Content-Type',
'Cache-Control', 'Content-Language', 'Expires', 'Last-Modified', 'Pragma',
'X-Auth-Token', 'X-OpenStack-Ironic-API-Maximum-Version',
'X-OpenStack-Ironic-API-Minimum-Version',
'X-OpenStack-Ironic-API-Version']

class ironic.api.app.VersionSelectorApplication

Bases: object

__call__(environ, start_response)
Call self as a function.

ironic.api.app.get_pecan_config()

ironic.api.app.setup_app(pecan_config=None, extra_hooks=None)

5.1. Developers Guide 841

Ironic Documentation, Release 26.1.2.dev21

ironic.api.config module

ironic.api.functions module

class ironic.api.functions.FunctionArgument(name, datatype, mandatory, default)
Bases: object

An argument definition of an api entry

datatype

Data type

default

Default value if argument is omitted

mandatory

True if the argument is mandatory

name

argument name

resolve_type(registry)

class ironic.api.functions.FunctionDefinition(func)
Bases: object

An api entry definition

arguments

The function arguments (list of FunctionArgument)

body_type

If the body carry the data of a single argument, its type

doc

Function documentation

extra_options

Dictionary of protocol-specific options.

static get(func)
Returns the FunctionDefinition of a method.

get_arg(name)
Returns a FunctionArgument from its name

ignore_extra_args

True if extra arguments should be ignored, NOT inserted in the kwargs of the function and
not raise UnknownArgument exceptions

name

Function name

resolve_types(registry)

842 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

return_type

Return type

set_arg_types(argspec, arg_types)

set_options(body=None, ignore_extra_args=False, status_code=200,
rest_content_types=(’json’, ’xml’), **extra_options)

status_code

Status code

ironic.api.functions.getargspec(f)

ironic.api.functions.iswsmefunction(f)

ironic.api.functions.sig

alias of signature

class ironic.api.functions.signature(*types, **options)
Bases: object

Decorator that specify the argument types of an exposed function.

Parameters

• return_type Type of the value returned by the function

• argN Type of the Nth argument

• body If the function takes a final argument that is supposed to be the request
body by itself, its type.

• status_code HTTP return status code of the function.

• ignore_extra_args Allow extra/unknown arguments (default to False)

Most of the time this decorator is not supposed to be used directly, unless you are not using WSME
on top of another framework.

If an adapter is used, it will provide either a specialised version of this decororator, either a new
decorator named @wsexpose that takes the same parameters (it will in addition expose the function,
hence its name).

__call__(func)
Call self as a function.

ironic.api.functions.wrapfunc(f)

ironic.api.hooks module

class ironic.api.hooks.ConfigHook

Bases: PecanHook

Attach the config object to the request so controllers can get to it.

5.1. Developers Guide 843

Ironic Documentation, Release 26.1.2.dev21

before(state)
Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state The Pecan state object for the current request.

class ironic.api.hooks.ContextHook(public_api_routes)
Bases: PecanHook

Configures a request context and attaches it to the request.

after(state)
Override this method to create a hook that gets called after the request has been handled by
the controller.

Parameters
state The Pecan state object for the current request.

before(state)
Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state The Pecan state object for the current request.

class ironic.api.hooks.DBHook

Bases: PecanHook

Attach the dbapi object to the request so controllers can get to it.

after(state)
Override this method to create a hook that gets called after the request has been handled by
the controller.

Parameters
state The Pecan state object for the current request.

before(state)
Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state The Pecan state object for the current request.

class ironic.api.hooks.NoExceptionTracebackHook

Bases: PecanHook

Workaround rpc.common: deserialize_remote_exception.

deserialize_remote_exception builds rpc exception traceback into error message which is then sent
to the client. Such behavior is a security concern so this hook is aimed to cut-off traceback from
the error message.

after(state)
Override this method to create a hook that gets called after the request has been handled by
the controller.

844 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
state The Pecan state object for the current request.

class ironic.api.hooks.PublicUrlHook

Bases: PecanHook

Attach the right public_url to the request.

Attach the right public_url to the request so resources can create links even when the API service
is behind a proxy or SSL terminator.

before(state)
Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state The Pecan state object for the current request.

class ironic.api.hooks.RPCHook

Bases: PecanHook

Attach the rpcapi object to the request so controllers can get to it.

before(state)
Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state The Pecan state object for the current request.

ironic.api.hooks.policy_deprecation_check()

ironic.api.method module

ironic.api.method.body(body_arg)
Decorator which places HTTP request body JSON into a method argument

Parameters
body_arg Name of argument to populate with body JSON

ironic.api.method.expose(status_code=None)

ironic.api.method.format_exception(excinfo, debug=False)
Extract information that can be sent to the client.

ironic.api.wsgi module

WSGI script for Ironic API, installed by pbr.

ironic.api.wsgi.initialize_wsgi_app(argv=[’/home/zuul/src/opendev.org/openstack/ironic/.tox/pdf-
docs/bin/sphinx-build’, ’-W’, ’-b’, ’latex’, ’doc/source’,
’doc/build/pdf’])

5.1. Developers Guide 845

Ironic Documentation, Release 26.1.2.dev21

Module contents

ironic.cmd package

Submodules

ironic.cmd.api module

The Ironic Service API.

ironic.cmd.api.main()

ironic.cmd.conductor module

The Ironic Management Service

ironic.cmd.conductor.issue_startup_warnings(conf)

ironic.cmd.conductor.main()

ironic.cmd.conductor.warn_about_max_wait_parameters(conf)

ironic.cmd.conductor.warn_about_sqlite()

ironic.cmd.conductor.warn_about_unsafe_shred_parameters(conf)

ironic.cmd.dbsync module

Run storage database migration.

class ironic.cmd.dbsync.DBCommand

Bases: object

check_obj_versions(ignore_missing_tables=False)
Check the versions of objects.

Check that the object versions are compatible with this release of ironic. It does this by com-
paring the objects .version field in the database, with the expected versions of these objects.

Returns None if compatible; a string describing the issue otherwise.

create_schema()

online_data_migrations()

revision()

stamp()

upgrade()

version()

846 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.cmd.dbsync.add_command_parsers(subparsers)

ironic.cmd.dbsync.main()

ironic.cmd.pxe_filter module

class ironic.cmd.pxe_filter.RPCService(host, manager_module, manager_class)
Bases: BaseRPCService

stop()

Stop a service.

Parameters
graceful indicates whether to wait for all threads to finish or terminate them
instantly

ironic.cmd.pxe_filter.main()

ironic.cmd.singleprocess module

ironic.cmd.singleprocess.main()

ironic.cmd.status module

class ironic.cmd.status.Checks

Bases: UpgradeCommands

Upgrade checks for the ironic-status upgrade check command

Upgrade checks should be added as separate methods in this class and added to _upgrade_checks
tuple.

ironic.cmd.status.main()

Module contents

ironic.common package

Subpackages

ironic.common.glance_service package

Submodules

ironic.common.glance_service.image_service module

5.1. Developers Guide 847

Ironic Documentation, Release 26.1.2.dev21

class ironic.common.glance_service.image_service.GlanceImageService(client=None,
con-
text=None)

Bases: object

call(method, *args, **kwargs)
Call a glance client method.

If we get a connection error, retry the request according to CONF.num_retries.

Parameters

• method The method requested to be called.

• args A list of positional arguments for the method called

• kwargs A dict of keyword arguments for the method called

Raises
GlanceConnectionFailed

download(image_href , data=None)
Calls out to Glance for data and writes data.

Parameters

• image_href The opaque image identifier.

• data (Optional) File object to write data to.

show(image_href)
Returns a dict with image data for the given opaque image id.

Parameters
image_href The opaque image identifier.

Returns
A dict containing image metadata.

Raises
ImageNotFound

Raises
ImageUnacceptable if the image status is not active

swift_temp_url(image_info)
Generate a no-auth Swift temporary URL.

This function will generate (or return the cached one if temp URL cache is enabled)
the temporary Swift URL using the image id from Glance and the config options:
swift_endpoint_url, swift_api_version, swift_account and swift_container. The temporary
URL will be valid for swift_temp_url_duration seconds. This allows Ironic to download a
Glance image without passing around an auth_token.

Parameters
image_info The return from a GET request to Glance for a certain image_id.
Should be a dictionary, with keys like name and checksum. See https://docs.
openstack.org/glance/latest/user/glanceapi.html for examples.

848 Chapter 5. Contributor Guide

https://docs.openstack.org/glance/latest/user/glanceapi.html
https://docs.openstack.org/glance/latest/user/glanceapi.html

Ironic Documentation, Release 26.1.2.dev21

Returns
A signed Swift URL from which an image can be downloaded, without authen-
tication.

Raises
InvalidParameterValue if Swift config options are not set correctly.

Raises
MissingParameterValue if a required parameter is not set.

Raises
ImageUnacceptable if the image info from Glance does not have an image ID.

class ironic.common.glance_service.image_service.TempUrlCacheElement(url,
url_expires_at)

Bases: tuple

url

Alias for field number 0

url_expires_at

Alias for field number 1

ironic.common.glance_service.image_service.check_image_service(func)
Creates a glance client if doesnt exists and calls the function.

ironic.common.glance_service.service_utils module

ironic.common.glance_service.service_utils.is_glance_image(image_href)

ironic.common.glance_service.service_utils.is_image_active(image)
Check the image status.

This check is needed in case the Glance image is stuck in queued status or pending_delete.

ironic.common.glance_service.service_utils.is_image_available(context, image)
Check image availability.

This check is needed in case Nova and Glance are deployed without authentication turned on.

ironic.common.glance_service.service_utils.parse_image_id(image_href)
Parse an image id from image href.

Parameters
image_href href of an image

Returns
image id parsed from image_href

Raises
InvalidImageRef when input image href is invalid

ironic.common.glance_service.service_utils.translate_from_glance(image)

5.1. Developers Guide 849

Ironic Documentation, Release 26.1.2.dev21

Module contents

Submodules

ironic.common.args module

ironic.common.args.and_valid(*validators)
Validates that every supplied validator passes

The value returned from each validator is passed as the value to the next one.

Parameters

• name Name of the argument

• value A value

Returns
The value transformed through every supplied validator

Raises
The error from the first failed validator

ironic.common.args.boolean(name, value)
Validate that the value is a string representing a boolean

Parameters

• name Name of the argument

• value A string value

Returns
The boolean representation of the value, or None if value is None

Raises
InvalidParameterValue if the value cannot be converted to a boolean

ironic.common.args.dict_valid(**validators)
Return a validator function which validates dict fields

Validators will replace the value with the validation result. Any dict item which has no validator
is ignored. When a key is missing in the value then the corresponding validator will not be run.

Param
validators dict where the key is a dict key to validate and the value is a validator
function to run on that value

Returns
validator function which takes name and value arguments

ironic.common.args.host_port(name, value)

ironic.common.args.integer(name, value)
Validate that the value represents an integer

Parameters

• name Name of the argument

850 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• value A value representing an integer

Returns
The value as an int, or None if value is None

Raises
InvalidParameterValue if the value does not represent an integer

ironic.common.args.mac_address(name, value)
Validate that the value represents a MAC address

Parameters

• name Name of the argument

• value A string value representing a MAC address

Returns
The value as a normalized MAC address, or None if value is None

Raises
InvalidParameterValue if the value is not a valid MAC address

ironic.common.args.name(name, value)
Validate that the value is a logical name

Parameters

• name Name of the argument

• value A logical name string value

Returns
The value, or None if value is None

Raises
InvalidParameterValue if the value is not a valid logical name

ironic.common.args.or_valid(*validators)
Validates if at least one supplied validator passes

Parameters

• name Name of the argument

• value A value

Returns
The value returned from the first successful validator

Raises
The error from the last validator when every validation fails

ironic.common.args.patch(name, value, *, schema={’items’: {’additionalProperties’: False,
’properties’: {’op’: {’enum’: [’add’, ’replace’, ’remove’], ’type’:
’string’}, ’path’: {’pattern’: ’^(/[\\w-]+)+$’, ’type’: ’string’}, ’value’:
{}}, ’required’: [’op’, ’path’], ’type’: ’object’}, ’type’: ’array’})

Validate a patch API operation

5.1. Developers Guide 851

Ironic Documentation, Release 26.1.2.dev21

ironic.common.args.schema(schema)
Return a validator function which validates the value with jsonschema

Param
schema dict representing jsonschema to validate with

Returns
validator function which takes name and value arguments

ironic.common.args.string(name, value)
Validate that the value is a string

Parameters

• name Name of the argument

• value A string value

Returns
The string value, or None if value is None

Raises
InvalidParameterValue if the value is not a string

ironic.common.args.string_list(name, value)
Validate and convert comma delimited string to a list.

Parameters

• name Name of the argument

• value A comma separated string of values

Returns
A list of unique values (lower-cased), maintaining the same order, or None if value
is None

Raises
InvalidParameterValue if the value is not a string

ironic.common.args.types(*types)
Return a validator function which checks the value is one of the types

Param
types one or more types to use for the isinstance test

Returns
validator function which takes name and value arguments

ironic.common.args.uuid(name, value)
Validate that the value is a UUID

Parameters

• name Name of the argument

• value A UUID string value

Returns
The value, or None if value is None

852 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if the value is not a valid UUID

ironic.common.args.uuid_or_name(name, value)
Validate that the value is a UUID or logical name

Parameters

• name Name of the argument

• value A UUID or logical name string value

Returns
The value, or None if value is None

Raises
InvalidParameterValue if the value is not a valid UUID or logical name

ironic.common.args.validate(*args, **kwargs)
Decorator which validates and transforms function arguments

ironic.common.async_steps module

ironic.common.async_steps.get_return_state(node)
Returns state based on operation being invoked.

Parameters
node an ironic node object.

Returns
states.CLEANWAIT if cleaning operation in progress, or states.DEPLOYWAIT if
deploy operation in progress, or states.SERVICEWAIT if servicing in progress.

ironic.common.async_steps.prepare_node_for_next_step(node, step_type=None)
Remove the flags responsible for the next step.

Cleans the polling and the skip-next step flags.

Parameters

• node A Node object

• step_type The type of steps to process: clean, service or deploy. If None,
detected from the node.

Returns
The last value of the skip-next flag.

ironic.common.async_steps.remove_node_flags(node)
Remove all flags for the node.

Parameters
node A Node object

ironic.common.async_steps.set_node_flags(node, reboot=None, skip_current_step=None,
polling=None, step_type=None)

Sets appropriate reboot flags in driver_internal_info based on operation

Parameters

5.1. Developers Guide 853

Ironic Documentation, Release 26.1.2.dev21

• node an ironic node object.

• reboot Boolean value to set for nodes driver_internal_info flag clean-
ing_reboot, servicing_reboot or deployment_reboot based on the operation
in progress. If it is None, corresponding reboot flag is not set in nodes
driver_internal_info.

• skip_current_step Boolean value to set for nodes driver_internal_info
flag skip_current_clean_step, skip_current_service_step or
skip_current_deploy_step based on the operation in progress. If it is
None, corresponding skip step flag is not set in nodes driver_internal_info.

• polling Boolean value to set for nodes driver_internal_info flag deploy-
ment_polling, servicing_polling or cleaning_polling. If it is None, the cor-
responding polling flag is not set in the nodes driver_internal_info. A polling
flag is otherwise deleted from the nodes driver_internal_info.

• step_type The type of steps to process: clean, service or deploy. If None,
detected from the node.

ironic.common.boot_devices module

Mapping of boot devices used when requesting the system to boot from an alternate device.

The options presented were based on the IPMItool chassis bootdev command. You can find the docu-
mentation at: http://linux.die.net/man/1/ipmitool

NOTE: This module does not include all the options from ipmitool because they dont make sense in the
limited context of Ironic right now.

ironic.common.boot_devices.BIOS = 'bios'

Boot into BIOS setup

ironic.common.boot_devices.CDROM = 'cdrom'

Boot from CD/DVD

ironic.common.boot_devices.DISK = 'disk'

Boot from default Hard-drive

ironic.common.boot_devices.FLOPPY = 'floppy'

Boot from a floppy drive

ironic.common.boot_devices.ISCSIBOOT = 'iscsiboot'

Boot from iSCSI volume

ironic.common.boot_devices.PXE = 'pxe'

Boot from PXE boot

ironic.common.boot_devices.SAFE = 'safe'

Boot from default Hard-drive, request Safe Mode

ironic.common.boot_devices.UEFIHTTP = 'uefihttp'

Boot from a UEFI HTTP(s) URL

ironic.common.boot_devices.VMEDIA_DEVICES = ['disk', 'cdrom', 'floppy']

Devices that make sense for virtual media attachment.

854 Chapter 5. Contributor Guide

http://linux.die.net/man/1/ipmitool

Ironic Documentation, Release 26.1.2.dev21

ironic.common.boot_devices.WANBOOT = 'wanboot'

Boot from Wide Area Network

ironic.common.boot_modes module

Mapping of boot modes used when requesting the system to boot using alternative firmware interfaces.

The options presented were based on the Redfish protocol capabilities, specifically on the Boot-
SourceOverrideMode property.

ironic.common.boot_modes.LEGACY_BIOS = 'bios'

Boot over legacy PC BIOS firmware interface

ironic.common.boot_modes.UEFI = 'uefi'

Boot over Unified Extensible Firmware Interface (UEFI) firmware interface

ironic.common.checksum_utils module

ironic.common.checksum_utils.compute_image_checksum(image_path, algorithm=’md5’)
Compute checksum by given image path and algorithm.

Parameters

• image_path The path to the file to undergo checksum calculation.

• algorithm The checksum algorithm to utilize. Defaults to md5 due to his-
torical support reasons in Ironic.

Returns
The calculated checksum value.

Raises
ValueError when the checksum algorithm is not supported by the system.

ironic.common.checksum_utils.get_checksum_and_algo(instance_info)
Get and return the image checksum and algo.

Parameters
instance_info The node instance info, or newly updated/generated in-
stance_info value.

Returns
A tuple containing two values, a checksum and algorithm, if available.

ironic.common.checksum_utils.get_checksum_from_url(checksum, image_source)
Gets a checksum value based upon a remote checksum URL file.

Parameters

• checksum The URL to the checksum URL content.

• image_soource The image source utilized to match with the contents of the
URL payload file.

5.1. Developers Guide 855

Ironic Documentation, Release 26.1.2.dev21

Raises
ImageDownloadFailed when the checksum file cannot be accessed or cannot be
parsed.

ironic.common.checksum_utils.is_checksum_url(checksum)

Identify if checksum is not a url.

Parameters
checksum The user supplied checksum value.

Returns
True if the checksum is a url, otherwise False.

Raises
ImageChecksumURLNotSupported should the conductor have this support dis-
abled.

ironic.common.checksum_utils.validate_checksum(path, checksum, checksum_algo=None)
Validate image checksum.

Parameters

• path File path in the form of a string to calculate a checksum which is com-
pared to the checksum field.

• checksum The supplied checksum value, a string, which will be compared to
the file.

• checksum_algo The checksum type of the algorithm.

Raises
ImageChecksumError if the supplied data cannot be parsed or if the supplied value
does not match the supplied checksum value.

ironic.common.cinder module

ironic.common.cinder.attach_volumes(task, volume_list, connector)
Attach volumes to a node.

Enumerate through the provided list of volumes and attach the volumes to the node defined in the
task utilizing the provided connector information.

If an attachment appears to already exist, we will skip attempting to attach the volume. If use of
the volume fails, a user may need to remove any lingering pre-existing/unused attachment records
since we have no way to validate if the connector profile data differs from what was provided to
cinder.

Parameters

• task TaskManager instance representing the operation.

• volume_list List of volume_id UUID values representing volumes.

• connector Dictionary object representing the node sufficiently to attach a
volume. This value can vary based upon the nodes configuration, capability,
and ultimately the back-end storage driver. As cinder was designed around
iSCSI, the ip and initiator keys are generally expected by cinder drivers. For
FiberChannel, the key wwpns can be used with a list of port addresses. Some

856 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

drivers support a multipath boolean key, although it is generally False. The
host key is generally used for logging by drivers. Example:

{
'wwpns': ['list','of','port','wwns'],
'ip': 'ip address',
'initiator': 'initiator iqn',
'multipath': False,
'host': 'hostname',
}

Raises
StorageError If storage subsystem exception is raised.

Returns

List of connected volumes, including volumes that were already connected to de-
sired nodes. The returned list can be relatively consistent depending on the end
storage driver that the volume is configured for, however the driver_volume_type
key should not be relied upon as it is a free-form value returned by the driver. The
accompanying data key contains the actual target details which will indicate either
target WWNs and a LUN or a target portal and IQN. It also always contains volume
ID in cinder and ironic. Except for these two IDs, each driver may return somewhat
different data although the same keys are used if the target is FC or iSCSI, so any
logic should be based upon the returned contents. For already attached volumes,
the structure contains already_attached: True key-value pair. In such case, connec-
tion info for the node is already in the database, data structure contains only basic
info of volume ID in cinder and ironic, so any logic based on that should retrieve
it from the database. Example:

[{
'driver_volume_type': 'fibre_channel'
'data': {

'encrypted': False,
'target_lun': 1,
'target_wwn': ['1234567890123', '1234567890124'],
'volume_id': '00000000-0000-0000-0000-000000000001',
'ironic_volume_id':
'11111111-0000-0000-0000-000000000001'}

},
{
'driver_volume_type': 'iscsi'
'data': {

'target_iqn': 'iqn.2010-10.org.openstack:volume-000002',
'target_portal': '127.0.0.0.1:3260',
'volume_id': '00000000-0000-0000-0000-000000000002',
'ironic_volume_id':
'11111111-0000-0000-0000-000000000002',
'target_lun': 2}

},
{
'already_attached': True

(continues on next page)

5.1. Developers Guide 857

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'data': {
'volume_id': '00000000-0000-0000-0000-000000000002',
'ironic_volume_id':
'11111111-0000-0000-0000-000000000002'}

}]

ironic.common.cinder.detach_volumes(task, volume_list, connector, allow_errors=False)
Detach a list of volumes from a provided connector detail.

Enumerates through a provided list of volumes and issues detachment requests utilizing the con-
nector information that describes the node.

Parameters

• task The TaskManager task representing the request.

• volume_list The list of volume id values to detach.

• connector Dictionary object representing the node sufficiently to attach a
volume. This value can vary based upon the nodes configuration, capability,
and ultimately the back-end storage driver. As cinder was designed around
iSCSI, the ip and initiator keys are generally expected. For FiberChannel, the
key wwpns can be used with a list of port addresses. Some drivers support a
multipath boolean key, although it is generally False. The host key is generally
used for logging by drivers. Example:

{
'wwpns': ['list','of','port','wwns']
'ip': 'ip address',
'initiator': 'initiator iqn',
'multipath': False,
'host': 'hostname'
}

• allow_errors Boolean value governing if errors that are returned are treated
as warnings instead of exceptions. Default False.

Raises
StorageError

ironic.common.cinder.get_client(context=None, auth_from_config=False)
Retrieve a cinder client connection.

Parameters

• context request context, instance of ironic.common.context.RequestContext

• auth_from_config (boolean) When True, use auth values from conf param-
eters

Returns
A cinder client.

ironic.common.cinder.is_volume_attached(node, volume)
Check if a volume is attached to the supplied node.

858 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node The object representing the node.

• volume The object representing the volume from cinder.

Returns
Boolean indicating if the volume is attached. Returns True if cinder shows the
volume as presently attached, otherwise returns False.

ironic.common.cinder.is_volume_available(volume)
Check if a volume is available for a connection.

Parameters
volume The object representing the volume.

Returns
Boolean if volume is available.

ironic.common.components module

Mapping of common hardware components of a computer system.

ironic.common.components.CHASSIS = 'chassis'

Chassis enclosing one or more hardware components

ironic.common.components.DISK = 'disk'

Storage drive

ironic.common.components.NIC = 'nic'

Network interface

ironic.common.components.POWER = 'power'

Power supply unit

ironic.common.components.SYSTEM = 'system'

Computing system

ironic.common.config module

ironic.common.config.parse_args(argv, default_config_files=None)

ironic.common.context module

class ironic.common.context.RequestContext(is_public_api=False, auth_token_info=None,
**kwargs)

Bases: RequestContext

Extends security contexts from the oslo.context library.

FROM_DICT_EXTRA_KEYS: ty.List[str] = ['auth_token_info']

5.1. Developers Guide 859

Ironic Documentation, Release 26.1.2.dev21

ensure_thread_contain_context()

Ensure threading contains context

For async/periodic tasks, the context of local thread is missing. Set it with request context
and this is useful to log the request_id in log messages.

classmethod from_environ(environ, **kwargs)
Load a context object from a request environment.

If keyword arguments are provided then they override the values in the request environment,
injecting the kwarg arguments used by ironic, as unknown values are filtered out from the
final context object in the base oslo.context library.

Parameters
environ (dict) The environment dictionary associated with a request.

to_dict()

Return a dictionary of context attributes.

to_policy_values()

A dictionary of context attributes to enforce policy with.

oslo.policy enforcement requires a dictionary of attributes representing the current logged
in user on which it applies policy enforcement. This dictionary defines a standard list of
attributes that should be available for enforcement across services.

It is expected that services will often have to override this method with either deprecated
values or additional attributes used by that service specific policy.

ironic.common.context.get_admin_context()

Create an administrator context.

ironic.common.dhcp_factory module

class ironic.common.dhcp_factory.DHCPFactory(**kwargs)
Bases: object

clean_dhcp(task)
Clean up the DHCP BOOT options for this node.

Parameters
task A TaskManager instance.

property provider

update_dhcp(task, dhcp_opts, ports=None)
Send or update the DHCP BOOT options for this node.

Parameters

• task A TaskManager instance.

• dhcp_opts this will be a list of dicts, e.g.

860 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

[{'opt_name': '67',
'opt_value': 'pxelinux.0'},

{'opt_name': '66',
'opt_value': '123.123.123.456'}]

• ports A dict with keys ports and portgroups and dicts as values. Each dict
has key/value pairs of the form <ironic UUID>:<neutron port UUID>. e.g.

{'ports': {'port.uuid': vif.id},
'portgroups': {'portgroup.uuid': vif.id}}

If the value is None, will get the list of ports/portgroups from the Ironic
port/portgroup objects.

ironic.common.driver_factory module

class ironic.common.driver_factory.BaseDriverFactory

Bases: object

Discover, load and manage the drivers available.

This is subclassed to load both main drivers and extra interfaces.

get_driver(name)

items()

Iterator over pairs (name, instance).

property names

The list of driver names available.

class ironic.common.driver_factory.HardwareTypesFactory

Bases: BaseDriverFactory

class ironic.common.driver_factory.InterfaceFactory

Bases: BaseDriverFactory

class ironic.common.driver_factory.NetworkInterfaceFactory

Bases: InterfaceFactory

class ironic.common.driver_factory.StorageInterfaceFactory

Bases: InterfaceFactory

ironic.common.driver_factory.all_interfaces()

Get all interfaces for all interface types.

Returns
Dictionary mapping interface type to dictionary mapping interface name to inter-
face object.

ironic.common.driver_factory.build_driver_for_task(task)
Builds a composable driver for a given task.

Starts with a BareDriver object, and attaches implementations of the various driver interfaces to
it. They come from separate driver factories and are configurable via the database.

5.1. Developers Guide 861

Ironic Documentation, Release 26.1.2.dev21

Parameters
task The task containing the node to build a driver for.

Returns
A driver object for the task.

Raises
DriverNotFound if node.driver could not be found in the ironic.hardware.types
namespaces.

Raises
InterfaceNotFoundInEntrypoint if some node interfaces are set to invalid or unsup-
ported values.

Raises
IncompatibleInterface the requested implementation is not compatible with it with
the hardware type.

ironic.common.driver_factory.check_and_update_node_interfaces(node,
hw_type=None)

Ensure that node interfaces (e.g. for creation or updating) are valid.

Updates (but doesnt save to the database) hardware interfaces with calculated defaults, if they are
not provided.

This function is run on node updating and creation, as well as each time a driver instance is built
for a node.

Parameters

• node node object to check and potentially update

• hw_type hardware type instance object; will be detected from node.driver if
missing

Returns
True if any changes were made to the node, otherwise False

Raises
InterfaceNotFoundInEntrypoint on validation failure

Raises
NoValidDefaultForInterface if the default value cannot be calculated and is not
provided in the configuration

Raises
DriverNotFound if the nodes hardware type is not found

ironic.common.driver_factory.default_interface(hw_type, interface_type,
driver_name=None, node=None)

Calculate and return the default interface implementation.

Finds the first implementation that is supported by the hardware type and is enabled in the config-
uration.

Parameters

• hw_type hardware type instance object.

• interface_type type of the interface (e.g. boot).

862 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• driver_name entrypoint name of the hw_type object. Is used for exception
message.

• node the identifier of a node. If specified, is used for exception message.

Returns
an entrypoint name of the calculated default implementation.

Raises
InterfaceNotFoundInEntrypoint if the entry point was not found.

Raises
NoValidDefaultForInterface if no default interface can be found.

ironic.common.driver_factory.enabled_supported_interfaces(hardware_type)
Get usable interfaces for a given hardware type.

For a given hardware type, find the intersection of enabled and supported interfaces for each inter-
face type. This is the set of interfaces that are usable for this hardware type.

Parameters
hardware_type The hardware type object to search.

Returns
a dict mapping interface types to a list of enabled and supported interface names.

ironic.common.driver_factory.get_hardware_type(hardware_type)
Get a hardware type instance by name.

Parameters
hardware_type the name of the hardware type to find

Returns
An instance of ironic.drivers.hardware_type.AbstractHardwareType

Raises
DriverNotFound if requested hardware type cannot be found

ironic.common.driver_factory.get_interface(hw_type, interface_type, interface_name)
Get interface implementation instance.

For hardware types also validates compatibility.

Parameters

• hw_type a hardware type instance.

• interface_type name of the interface type (e.g. boot).

• interface_name name of the interface implementation from an appropriate
entry point (ironic.hardware.interfaces.<interface type>).

Returns
instance of the requested interface implementation.

Raises
InterfaceNotFoundInEntrypoint if the entry point was not found.

Raises
IncompatibleInterface if hw_type is a hardware type and the requested implemen-
tation is not compatible with it.

5.1. Developers Guide 863

Ironic Documentation, Release 26.1.2.dev21

ironic.common.driver_factory.hardware_types()

Get all hardware types.

Returns
Dictionary mapping hardware type name to hardware type object.

ironic.common.driver_factory.interfaces(interface_type)
Get all interfaces for a given interface type.

Parameters
interface_type String, type of interface to fetch for.

Returns
Dictionary mapping interface name to interface object.

ironic.common.exception module

Ironic specific exceptions list.

exception ironic.common.exception.AgentAPIError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.AgentCommandTimeout(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.AgentConnectionFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.AgentInProgress(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.AllocationAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.AllocationDuplicateName(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.AllocationFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.AllocationNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.BIOSSettingAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.BIOSSettingListNotFound(message=None,
**kwargs)

Bases: NotFound

exception ironic.common.exception.BIOSSettingNotFound(message=None, **kwargs)
Bases: NotFound

864 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.exception.BadRequest

alias of Invalid

exception ironic.common.exception.BootModeNotAllowed(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.CatalogNotFound(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ChassisAlreadyExists(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.ChassisNotEmpty(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.ChassisNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.ClientSideError(msg=None, status_code=400,
faultcode=’Client’)

Bases: RuntimeError

property faultstring

exception ironic.common.exception.CommunicationError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ConcurrentActionLimit(message=None, **kwargs)
Bases: TemporaryFailure

exception ironic.common.exception.ConductorAlreadyRegistered(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.ConductorHardwareInterfacesAlreadyRegistered(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.ConductorNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.ConfigInvalid(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ConfigNotFound(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.Conflict(message=None, **kwargs)
Bases: IronicException

code = 409

exception ironic.common.exception.ConsoleError(message=None, **kwargs)
Bases: IronicException

5.1. Developers Guide 865

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.ConsoleSubprocessFailed(message=None,
**kwargs)

Bases: ConsoleError

exception ironic.common.exception.DHCPLoadError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.DatabaseVersionTooOld(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.DeployTemplateAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.DeployTemplateDuplicateName(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.DeployTemplateNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.DirectoryNotWritable(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.DracOperationError(message=None, **kwargs)
Bases: DriverOperationError

exception ironic.common.exception.DriverLoadError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.DriverNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.DriverNotFoundInEntrypoint(message=None,
**kwargs)

Bases: DriverNotFound

exception ironic.common.exception.DriverOperationError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.Duplicate(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.DuplicateName(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.DuplicateNodeOnLookup(message=None, **kwargs)
Bases: NodeNotFound

exception ironic.common.exception.ExclusiveLockRequired(message=None, **kwargs)
Bases: NotAuthorized

exception ironic.common.exception.FailedToCleanDHCPOpts(message=None, **kwargs)
Bases: IronicException

866 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.FailedToGetIPAddressOnPort(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.FailedToGetSensorData(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.FailedToParseSensorData(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.FailedToUpdateDHCPOptOnPort(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.FailedToUpdateMacOnPort(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.FileSystemNotSupported(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.FirmwareComponentAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.FirmwareComponentNotFound(message=None,
**kwargs)

Bases: NotFound

exception ironic.common.exception.Forbidden(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.GlanceConnectionFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.HTTPForbidden(message=None, **kwargs)
Bases: NotAuthorized

ironic.common.exception.HTTPNotFound

alias of NotFound

exception ironic.common.exception.HardwareInspectionFailure(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.IPMIFailure(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.IRMCOperationError(message=None, **kwargs)
Bases: DriverOperationError

exception ironic.common.exception.IRMCSharedFileSystemNotMounted(message=None,
**kwargs)

Bases: DriverOperationError

5.1. Developers Guide 867

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.IloOperationError(message=None, **kwargs)
Bases: DriverOperationError

exception ironic.common.exception.IloOperationNotSupported(message=None,
**kwargs)

Bases: DriverOperationError

exception ironic.common.exception.ImageChecksumAlgorithmFailure(message=None,
**kwargs)

Bases: InvalidImage

Cannot load the requested or required checksum algorithm.

exception ironic.common.exception.ImageChecksumError(message=None, **kwargs)
Bases: InvalidImage

Exception indicating checksum failed to match.

exception ironic.common.exception.ImageChecksumFileReadFailure(message=None,
**kwargs)

Bases: InvalidImage

An OSError was raised when trying to read the file.

code = 503

exception ironic.common.exception.ImageChecksumURLNotSupported(message=None,
**kwargs)

Bases: InvalidImage

Exception indicating we cannot support the remote checksum file.

exception ironic.common.exception.ImageConvertFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ImageCreationFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ImageDownloadFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ImageNotAuthorized(message=None, **kwargs)
Bases: NotAuthorized

exception ironic.common.exception.ImageNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.ImageRefIsARedirect(image_ref=None,
redirect_url=None, msg=None)

Bases: IronicException

redirect_url = None

exception ironic.common.exception.ImageRefValidationFailed(message=None,
**kwargs)

Bases: IronicException

868 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.ImageUnacceptable(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.ImageUploadFailed(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.IncompatibleInterface(message=None, **kwargs)
Bases: InvalidParameterValue

exception ironic.common.exception.IncompleteLookup(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.IncorrectConfiguration(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InputFileError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InstanceAssociated(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.InstanceDeployFailure(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InstanceNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.InstanceRescueFailure(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InstanceUnrescueFailure(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.InsufficientDiskSpace(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InsufficientMemory(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InterfaceNotFoundInEntrypoint(message=None,
**kwargs)

Bases: InvalidParameterValue

exception ironic.common.exception.Invalid(message=None, **kwargs)
Bases: IronicException

code = 400

exception ironic.common.exception.InvalidConductorGroup(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidDatapathID(message=None, **kwargs)
Bases: Invalid

5.1. Developers Guide 869

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.InvalidDeployTemplate(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidEndpoint(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InvalidIPAddress(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InvalidIPv4Address(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.InvalidIdentity(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidImage(message=None, **kwargs)
Bases: ImageUnacceptable

exception ironic.common.exception.InvalidImageRef(message=None, **kwargs)
Bases: InvalidParameterValue

exception ironic.common.exception.InvalidInput(fieldname, value, msg=”)
Bases: ClientSideError

property faultstring

exception ironic.common.exception.InvalidKickstartFile(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidKickstartTemplate(message=None,
**kwargs)

Bases: Invalid

exception ironic.common.exception.InvalidMAC(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidName(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidNodeInventory(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidParameterValue(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidRunbook(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidState(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.InvalidStateRequested(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidSwitchID(message=None, **kwargs)
Bases: Invalid

870 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.InvalidUUID(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.InvalidUuidOrName(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.KeystoneFailure(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.KeystoneUnauthorized(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.MACAlreadyExists(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.MissingParameterValue(message=None, **kwargs)
Bases: InvalidParameterValue

exception ironic.common.exception.NetworkError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.NoConsolePid(message=None, **kwargs)
Bases: ConsoleError

exception ironic.common.exception.NoDriversLoaded(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.NoFreeConductorWorker(message=None, **kwargs)
Bases: TemporaryFailure

code = 503

exception ironic.common.exception.NoFreeIPMITerminalPorts(message=None,
**kwargs)

Bases: TemporaryFailure

exception ironic.common.exception.NoFreePhysicalPorts(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.NoValidDefaultForInterface(message=None,
**kwargs)

Bases: InvalidParameterValue

exception ironic.common.exception.NoValidHost(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.NodeAlreadyExists(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.NodeAssociated(message=None, **kwargs)
Bases: InvalidState

exception ironic.common.exception.NodeCleaningFailure(message=None, **kwargs)
Bases: IronicException

5.1. Developers Guide 871

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.NodeConsoleNotEnabled(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.NodeHistoryNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.NodeInMaintenance(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.NodeInventoryAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.NodeInventoryNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.NodeIsRetired(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.NodeLocked(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.NodeMaintenanceFailure(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.NodeNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.NodeNotLocked(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.NodeProtected(message=None, **kwargs)
Bases: HTTPForbidden

exception ironic.common.exception.NodeServicingFailure(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.NodeTagNotFound(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.NodeTraitNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.NodeVerifyFailure(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.NotAcceptable(message=None, **kwargs)
Bases: IronicException

code = 406

exception ironic.common.exception.NotAuthorized(message=None, **kwargs)
Bases: IronicException

code = 403

872 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.NotFound(message=None, **kwargs)
Bases: IronicException

code = 404

exception ironic.common.exception.NotificationPayloadError(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.NotificationSchemaKeyError(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.NotificationSchemaObjectError(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.OperationNotPermitted(message=None, **kwargs)
Bases: NotAuthorized

exception ironic.common.exception.PasswordFileFailedToCreate(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.PatchError(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.PathNotFound(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.PortAlreadyExists(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.PortDuplicateName(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.PortNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.PortgroupAlreadyExists(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.PortgroupDuplicateName(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.PortgroupMACAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.PortgroupNotEmpty(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.PortgroupNotFound(message=None, **kwargs)
Bases: NotFound

5.1. Developers Guide 873

Ironic Documentation, Release 26.1.2.dev21

exception ironic.common.exception.PortgroupPhysnetInconsistent(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.PowerStateFailure(message=None, **kwargs)
Bases: InvalidState

exception ironic.common.exception.RedfishConnectionError(message=None, **kwargs)
Bases: RedfishError

exception ironic.common.exception.RedfishError(message=None, **kwargs)
Bases: DriverOperationError

exception ironic.common.exception.RunbookAlreadyExists(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.RunbookDuplicateName(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.RunbookNotFound(message=None, **kwargs)
Bases: NotFound

exception ironic.common.exception.SNMPFailure(message=None, **kwargs)
Bases: DriverOperationError

exception ironic.common.exception.ServiceUnavailable(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.StorageError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.SwiftObjectNotFoundError(message=None,
**kwargs)

Bases: SwiftOperationError

exception ironic.common.exception.SwiftObjectStillExists(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.SwiftOperationError(message=None, **kwargs)
Bases: IronicException

exception ironic.common.exception.TemporaryFailure(message=None, **kwargs)
Bases: IronicException

code = 503

exception ironic.common.exception.UnknownArgument(argname, msg=”)
Bases: ClientSideError

property faultstring

exception ironic.common.exception.UnknownAttribute(fieldname, attributes, msg=”)
Bases: ClientSideError

874 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

add_fieldname(name)
Add a fieldname to concatenate the full name.

Add a fieldname so that the whole hierarchy is displayed. Successive calls to this method
will prepend name to the hierarchy of names.

property faultstring

exception ironic.common.exception.UnsupportedDriverExtension(message=None,
**kwargs)

Bases: Invalid

exception ironic.common.exception.UnsupportedHardwareFeature(message=None,
**kwargs)

Bases: Invalid

exception ironic.common.exception.VendorPassthruException(message=None,
**kwargs)

Bases: IronicException

exception ironic.common.exception.VifAlreadyAttached(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.VifInvalidForAttach(message=None, **kwargs)
Bases: Conflict

exception ironic.common.exception.VifNotAttached(message=None, **kwargs)
Bases: Invalid

exception ironic.common.exception.VolumeConnectorAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.VolumeConnectorNotFound(message=None,
**kwargs)

Bases: NotFound

exception ironic.common.exception.VolumeConnectorTypeAndIdAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.VolumeTargetAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.VolumeTargetBootIndexAlreadyExists(message=None,
**kwargs)

Bases: Conflict

exception ironic.common.exception.VolumeTargetNotFound(message=None, **kwargs)
Bases: NotFound

5.1. Developers Guide 875

Ironic Documentation, Release 26.1.2.dev21

ironic.common.faults module

Fault definitions.

ironic.common.faults.CLEAN_FAILURE = 'clean failure'

Node is moved to maintenance due to failure of a cleaning operation.

ironic.common.faults.POWER_FAILURE = 'power failure'

Node is moved to maintenance due to power synchronization failure.

ironic.common.faults.RESCUE_ABORT_FAILURE = 'rescue abort failure'

Node is moved to maintenance due to failure of cleaning up during rescue abort.

ironic.common.faults.SERVICE_FAILURE = 'service failure'

Node is moved to maintenance due to failure of a service operation.

ironic.common.fsm module

class ironic.common.fsm.FSM

Bases: FiniteMachine

An ironic state-machine class with some ironic specific additions.

add_state(state, on_enter=None, on_exit=None, target=None, terminal=None, stable=False)
Adds a given state to the state machine.

Parameters

• stable Use this to specify that this state is a stable/passive state. A state
must have been previously defined as stable before it can be used as a target

• target The target state for state to go to. Before a state can be used as a
target it must have been previously added and specified as stable

Further arguments are interpreted as for parent method add_state.

add_transition(start, end, event, replace=False)
Adds an allowed transition from start -> end for the given event.

Parameters

• start starting state

• end ending state

• event event that causes start state to transition to end state

• replace replace existing event instead of raising a Duplicate exception
when the transition already exists.

initialize(start_state=None, target_state=None)
Initialize the FSM.

Parameters

• start_state the FSM is initialized to start from this state

• target_state if specified, the FSM is initialized to this target state. Oth-
erwise use the default target state

876 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

is_stable(state)
Is the state stable?

Parameters
state the state of interest

Raises
InvalidState if the state is invalid

Returns
True if it is a stable state; False otherwise

process_event(event, target_state=None)
process the event.

Parameters

• event the event to be processed

• target_state if specified, the final target state for the event. Otherwise,
use the default target state

property target_state

ironic.common.hash_ring module

class ironic.common.hash_ring.HashRingManager(use_groups=True, cache=True)
Bases: object

get_ring(driver_name, conductor_group)

classmethod reset()

property ring

ironic.common.i18n module

oslo.i18n integration module.

See https://docs.openstack.org/oslo.i18n/latest/user/

ironic.common.image_format_inspector module

This is a python implementation of virtual disk format inspection routines gathered from various public
specification documents, as well as qemu disk driver code. It attempts to store and parse the minimum
amount of data required, and in a streaming-friendly manner to collect metadata about complex-format
images.

class ironic.common.image_format_inspector.CaptureRegion(offset, length)
Bases: object

Represents a region of a file we want to capture.

A region of a file we want to capture requires a byte offset into the file and a length. This is expected
to be used by a data processing loop, calling capture() with the most recently-read chunk. This class

5.1. Developers Guide 877

https://docs.openstack.org/oslo.i18n/latest/user/

Ironic Documentation, Release 26.1.2.dev21

handles the task of grabbing the desired region of data across potentially multiple fractional and
unaligned reads.

Parameters

• offset Byte offset into the file starting the region

• length The length of the region

capture(chunk, current_position)
Process a chunk of data.

This should be called for each chunk in the read loop, at least until complete returns True.

Parameters

• chunk A chunk of bytes in the file

• current_position The position of the file processed by the read loop
so far. Note that this will be the position in the file after the chunk being
presented.

property complete

Returns True when we have captured the desired data.

class ironic.common.image_format_inspector.FileInspector(tracing=False)
Bases: object

A stream-based disk image inspector.

This base class works on raw images and is subclassed for more complex types. It is to be presented
with the file to be examined one chunk at a time, during read processing and will only store as much
data as necessary to determine required attributes of the file.

property actual_size

Returns the total size of the file, usually smaller than virtual_size.

NOTE: this will only be accurate if the entire file is read and processed.

property complete

Returns True if we have all the information needed.

property context_info

Return info on amount of data held in memory for auditing.

This is a dict of region:sizeinbytes items that the inspector uses to examine the file.

eat_chunk(chunk)
Call this to present chunks of the file to the inspector.

property format_match

Returns True if the file appears to be the expected format.

classmethod from_file(filename)
Read as much of a file as necessary to complete inspection.

NOTE: Because we only read as much of the file as necessary, the actual_size property will
not reflect the size of the file, but the amount of data we read before we satisfied the inspector.

Raises ImageFormatError if we cannot parse the file.

878 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

has_region(name)
Returns True if named region has been defined.

new_region(name, region)
Add a new CaptureRegion by name.

post_process()

Post-read hook to process what has been read so far.

This will be called after each chunk is read and potentially captured by the defined regions.
If any regions are defined by this call, those regions will be presented with the current chunk
in case it is within one of the new regions.

region(name)
Get a CaptureRegion by name.

safety_check()

Perform some checks to determine if this file is safe.

Returns True if safe, False otherwise. It may raise ImageFormatError if safety cannot be
guaranteed because of parsing or other errors.

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

class ironic.common.image_format_inspector.ISOInspector(*a, **k)
Bases: FileInspector

ISO 9660 and UDF format

we need to check the first 32KB + descriptor size to look for the ISO 9660 or UDF signature.

http://wiki.osdev.org/ISO_9660 http://wiki.osdev.org/UDF mkisofs help | grep udf

The Universal Disc Format or UDF is the filesystem used on DVDs and Blu-Ray discs.UDF is an
extension of ISO 9660 and shares the same header structure and initial layout.

Like the CDFS(ISO 9660) file system, the UDF file system uses a 2048 byte sector size, and it
designates that the first 16 sectors can be used by the OS to store proprietary data or boot logic.

That means we need to check the first 32KB + descriptor size to look for the ISO 9660 or UDF
signature. both formats have an extent based layout, so we cant determine ahead of time where the
descriptor will be located.

fortunately, the ISO 9660 and UDF formats have a Primary Volume Descriptor located at the be-
ginning of the image, which contains the volume size.

property format_match

Returns True if the file appears to be the expected format.

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

exception ironic.common.image_format_inspector.ImageFormatError

Bases: Exception

An unrecoverable image format error that aborts the process.

5.1. Developers Guide 879

http://wiki.osdev.org/ISO_9660
http://wiki.osdev.org/UDF

Ironic Documentation, Release 26.1.2.dev21

class ironic.common.image_format_inspector.InfoWrapper(source, fmt)
Bases: object

A file-like object that wraps another and updates a format inspector.

This passes chunks to the format inspector while reading. If the inspector fails, it logs the error
and stops calling it, but continues proxying data from the source to its user.

close()

read(size)

class ironic.common.image_format_inspector.QEDInspector(tracing=False)
Bases: FileInspector

property format_match

Returns True if the file appears to be the expected format.

safety_check()

Perform some checks to determine if this file is safe.

Returns True if safe, False otherwise. It may raise ImageFormatError if safety cannot be
guaranteed because of parsing or other errors.

class ironic.common.image_format_inspector.QcowInspector(*a, **k)
Bases: FileInspector

QEMU QCOW2 Format

This should only require about 32 bytes of the beginning of the file to determine the virtual size,
and 104 bytes to perform the safety check.

BF_OFFSET = 8

BF_OFFSET_LEN = 8

I_FEATURES = 72

I_FEATURES_DATAFILE_BIT = 3

I_FEATURES_LEN = 8

I_FEATURES_MAX_BIT = 4

property format_match

Returns True if the file appears to be the expected format.

property has_backing_file

property has_data_file

property has_header

property has_unknown_features

safety_check()

Perform some checks to determine if this file is safe.

Returns True if safe, False otherwise. It may raise ImageFormatError if safety cannot be
guaranteed because of parsing or other errors.

880 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

class ironic.common.image_format_inspector.TraceDisabled

Bases: object

A logger-like thing that swallows tracing when we do not want it.

debug(*a, **k)

error(*a, **k)

info(*a, **k)

warning(*a, **k)

class ironic.common.image_format_inspector.VDIInspector(*a, **k)
Bases: FileInspector

VirtualBox VDI format

This only needs to store the first 512 bytes of the image.

property format_match

Returns True if the file appears to be the expected format.

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

class ironic.common.image_format_inspector.VHDInspector(*a, **k)
Bases: FileInspector

Connectix/MS VPC VHD Format

This should only require about 512 bytes of the beginning of the file to determine the virtual size.

property format_match

Returns True if the file appears to be the expected format.

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

class ironic.common.image_format_inspector.VHDXInspector(*a, **k)
Bases: FileInspector

MS VHDX Format

This requires some complex parsing of the stream. The first 256KiB of the image is stored to
get the header and region information, and then we capture the first metadata region to read those
records, find the location of the virtual size data and parse it. This needs to store the metadata table
entries up until the VDS record, which may consist of up to 2047 32-byte entries at max. Finally,
it must store a chunk of data at the offset of the actual VDS uint64.

METAREGION = '8B7CA206-4790-4B9A-B8FE-575F050F886E'

VHDX_METADATA_TABLE_MAX_SIZE = 65536

VIRTUAL_DISK_SIZE = '2FA54224-CD1B-4876-B211-5DBED83BF4B8'

5.1. Developers Guide 881

Ironic Documentation, Release 26.1.2.dev21

property format_match

Returns True if the file appears to be the expected format.

post_process()

Post-read hook to process what has been read so far.

This will be called after each chunk is read and potentially captured by the defined regions.
If any regions are defined by this call, those regions will be presented with the current chunk
in case it is within one of the new regions.

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

class ironic.common.image_format_inspector.VMDKInspector(*a, **k)
Bases: FileInspector

vmware VMDK format (monolithicSparse and streamOptimized variants only)

This needs to store the 512 byte header and the descriptor region which should be just after that.
The descriptor region is some variable number of 512 byte sectors, but is just text defining the
layout of the disk.

DESC_MAX_SIZE = 1048575

DESC_OFFSET = 512

GD_AT_END = 18446744073709551615

property format_match

Returns True if the file appears to be the expected format.

post_process()

Post-read hook to process what has been read so far.

This will be called after each chunk is read and potentially captured by the defined regions.
If any regions are defined by this call, those regions will be presented with the current chunk
in case it is within one of the new regions.

safety_check()

Perform some checks to determine if this file is safe.

Returns True if safe, False otherwise. It may raise ImageFormatError if safety cannot be
guaranteed because of parsing or other errors.

property virtual_size

Returns the virtual size of the disk image, or zero if unknown.

ironic.common.image_format_inspector.chunked_reader(fileobj, chunk_size=512)

ironic.common.image_format_inspector.detect_file_format(filename)
Attempts to detect the format of a file.

This runs through a file one time, running all the known inspectors in parallel. It stops reading the
file once all of them matches or all of them are sure they dont match.

Parameters
filename The path to the file to inspect.

882 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A FormatInspector instance matching the file.

Raises
ImageFormatError if multiple formats are detected.

ironic.common.image_format_inspector.get_inspector(format_name)
Returns a FormatInspector class based on the given name.

Parameters
format_name The name of the disk_format (raw, qcow2, etc).

Returns
A FormatInspector or None if unsupported.

ironic.common.image_publisher module

class ironic.common.image_publisher.AbstractPublisher

Bases: object

Abstract base class for publishing images via HTTP.

abstract publish(source_path, file_name=None)
Publish an image.

Parameters

• source_path Path to the source file.

• file_name Destination file name. If None, the file component of
source_path is used.

Returns
The HTTP URL of the published image.

abstract unpublish(file_name)
Unpublish the image.

Parameters
file_name File name to unpublish.

class ironic.common.image_publisher.LocalPublisher(image_subdir=None,
file_permission=420,
dir_permission=493,
root_url=None)

Bases: AbstractPublisher

Image publisher using a local web server.

publish(source_path, file_name=None)
Publish an image.

Parameters

• source_path Path to the source file.

• file_name Destination file name. If None, the file component of
source_path is used.

5.1. Developers Guide 883

Ironic Documentation, Release 26.1.2.dev21

Returns
The HTTP URL of the published image.

unpublish(file_name)
Unpublish the image.

Parameters
file_name File name to unpublish.

class ironic.common.image_publisher.SwiftPublisher(container, delete_after)
Bases: AbstractPublisher

Image publisher using OpenStack Swift.

publish(source_path, file_name=None)
Publish an image.

Parameters

• source_path Path to the source file.

• file_name Destination file name. If None, the file component of
source_path is used.

Returns
The HTTP URL of the published image.

unpublish(file_name)
Unpublish the image.

Parameters
file_name File name to unpublish.

ironic.common.image_service module

class ironic.common.image_service.BaseImageService

Bases: object

Provides retrieval of disk images.

abstract download(image_href , image_file)
Downloads image to specified location.

Parameters

• image_href Image reference.

• image_file File object to write data to.

Raises
exception.ImageRefValidationFailed.

Raises
exception.ImageDownloadFailed.

abstract show(image_href)
Get dictionary of image properties.

884 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
image_href Image reference.

Raises
exception.ImageRefValidationFailed.

Returns
dictionary of image properties. It has three of them: size, updated_at and prop-
erties. updated_at attribute is a naive UTC datetime object.

abstract validate_href(image_href)
Validate image reference.

Parameters
image_href Image reference.

Raises
exception.ImageRefValidationFailed.

Returns
Information needed to further operate with an image.

class ironic.common.image_service.FileImageService

Bases: BaseImageService

Provides retrieval of disk images available locally on the conductor.

download(image_href , image_file)
Downloads image to specified location.

Parameters

• image_href Image reference.

• image_file File object to write data to.

Raises
exception.ImageRefValidationFailed if source image file doesnt exist.

Raises
exception.ImageDownloadFailed if exceptions were raised while writing to file
or creating hard link.

show(image_href)
Get dictionary of image properties.

Parameters
image_href Image reference.

Raises
exception.ImageRefValidationFailed if image file specified doesnt exist.

Returns
dictionary of image properties. It has three of them: size, updated_at and prop-
erties. updated_at attribute is a naive UTC datetime object.

validate_href(image_href)
Validate local image reference.

5.1. Developers Guide 885

Ironic Documentation, Release 26.1.2.dev21

Parameters
image_href Image reference.

Raises
exception.ImageRefValidationFailed if source image file doesnt exist.

Returns
Path to image file if it exists.

class ironic.common.image_service.HttpImageService

Bases: BaseImageService

Provides retrieval of disk images using HTTP.

download(image_href , image_file)
Downloads image to specified location.

Parameters

• image_href Image reference.

• image_file File object to write data to.

Raises
exception.ImageRefValidationFailed if GET request returned response code not
equal to 200.

Raises
exception.ImageDownloadFailed if: * IOError happened during file write; *
GET request failed.

static gen_auth_from_conf_user_pass(image_href)
This function is used to pass the credentials to the chosen

credential verifier and in case the verification is successful generate the compati-
ble authentication object that will be used with the request(s). This function han-
dles the authentication object generation for authentication strategies that are user-
name+password based. Credentials are collected from the oslo.config framework.

Parameters
image_href href of the image that is being acted upon

Returns
Authentication object used directly by the request library

Return type
requests.auth.HTTPBasicAuth

static get(image_href)
Downloads content and returns the response text.

Parameters
image_href Image reference.

Raises
exception.ImageRefValidationFailed if GET request returned response code not
equal to 200.

886 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
exception.ImageDownloadFailed if: * IOError happened during file write; *
GET request failed.

show(image_href)
Get dictionary of image properties.

Parameters
image_href Image reference.

Raises
exception.ImageRefValidationFailed if: * HEAD request failed; * HEAD re-
quest returned response code not equal to 200; * Content-Length header not
found in response to HEAD request.

Returns
dictionary of image properties. It has three of them: size, updated_at and prop-
erties. updated_at attribute is a naive UTC datetime object.

validate_href(image_href , secret=False)
Validate HTTP image reference.

Parameters

• image_href Image reference.

• secret Specify if image_href being validated should not be shown in ex-
ception message.

Raises
exception.ImageRefValidationFailed if HEAD request failed or returned re-
sponse code not equal to 200.

Raises
exception.ImageRefIsARedirect if the supplied URL is a redirect to a different
URL. The caller may be able to handle this.

Returns
Response to HEAD request.

static verify_basic_auth_cred_format(image_href , user=None, password=None)
Verify basic auth credentials used for image head request.

Parameters

• user auth username

• password auth password

Raises
exception.ImageRefValidationFailed if the credentials are not present

ironic.common.image_service.get_image_service(image_href , client=None, context=None)
Get image service instance to download the image.

Parameters

• image_href String containing href to get image service for.

• client Glance client to be used for download, used only if image_href is
Glance href.

5.1. Developers Guide 887

Ironic Documentation, Release 26.1.2.dev21

• context request context, used only if image_href is Glance href.

Raises
exception.ImageRefValidationFailed if no image service can handle specified href.

Returns
Instance of an image service class that is able to download specified image.

ironic.common.images module

Handling of VM disk images.

ironic.common.images.check_if_image_format_is_permitted(img_format,
expected_format=None,
node=None)

Checks image format consistency.

Params img_format
The determined image format by name.

Params expected_format
Optional, the expected format based upon supplied configuration values.

Params node
A node object or None implying image cache.

Raises
InvalidImage if the requested image format is not permitted by configuration, or
the expected_format does not match the determined format.

ironic.common.images.converted_size(path, estimate=False)
Get size of converted raw image.

The size of image converted to raw format can be growing up to the virtual size of the image.

Parameters

• path path to the image file.

• estimate Whether to estimate the size by scaling the original size

Returns
For estimate=False, return the size of the raw image file. For estimate=True,
return the size of the original image scaled by the configuration value
raw_image_growth_factor.

ironic.common.images.create_boot_iso(context, output_filename, kernel_href , ramdisk_href ,
deploy_iso_href=None, esp_image_href=None,
root_uuid=None, kernel_params=None,
boot_mode=None, inject_files=None,
publisher_id=None)

Creates a bootable ISO image for a node.

Given the hrefs for kernel, ramdisk, root partitions UUID and kernel cmdline arguments, this
method fetches the kernel and ramdisk, and builds a bootable ISO image that can be used to boot
up the baremetal node.

Parameters

888 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• context context

• output_filename the absolute path of the output ISO file

• kernel_href URL or glance uuid of the kernel to use

• ramdisk_href URL or glance uuid of the ramdisk to use

• deploy_iso_href URL or glance UUID of the deploy ISO image to extract
EFI system partition image. If not specified, the esp_image_href option must
be present if UEFI-bootable ISO is desired.

• esp_image_href URL or glance UUID of FAT12/16/32-formatted EFI sys-
tem partition image containing the EFI boot loader (e.g. GRUB2) for each
hardware architecture to boot. This image will be written onto the ISO im-
age. If not specified, the deploy_iso_href option is only required for building
UEFI-bootable ISO.

• kernel_params a string containing whitespace separated values kernel cmd-
line arguments of the form K=V or K (optional).

• inject_files Mapping of local source file paths to their location on the
final ISO image.

• publisher_id A value to set as the publisher identifier string in the ISO
image to be generated.

Boot_mode
the boot mode in which the deploy is to happen.

Raises
ImageCreationFailed, if creating boot ISO failed.

ironic.common.images.create_esp_image_for_uefi(output_file, kernel, ramdisk,
deploy_iso=None, esp_image=None,
kernel_params=None, inject_files=None,
publisher_id=None)

Creates an ESP image on the specified file.

Copies the provided kernel, ramdisk and EFI system partition image (ESP) to a directory, generates
the grub configuration file using kernel parameters and then generates a bootable ISO image for
UEFI.

Parameters

• output_file the path to the file where the iso image needs to be created.

• kernel the kernel to use.

• ramdisk the ramdisk to use.

• deploy_iso deploy ISO image to extract EFI system partition image from.
If not specified, the esp_image option is required.

• esp_image FAT12/16/32-formatted EFI system partition image containing
the EFI boot loader (e.g. GRUB2) for each hardware architecture to boot. This
image will be embedded into the ISO image. If not specified, the deploy_iso
option is required.

5.1. Developers Guide 889

Ironic Documentation, Release 26.1.2.dev21

• kernel_params a list of strings(each element being a string like K=V or K
or combination of them like K1=V1,K2,) to be added as the kernel cmdline.

• inject_files Mapping of local source file paths to their location on the
final ISO image.

• publisher_id A value to set as the publisher identifier string in the ISO
image to be generated.

Raises
ImageCreationFailed, if image creation failed while copying files or while running
command to generate iso.

ironic.common.images.create_isolinux_image_for_bios(output_file, kernel, ramdisk,
kernel_params=None,
inject_files=None,
publisher_id=None)

Creates an isolinux image on the specified file.

Copies the provided kernel, ramdisk to a directory, generates the isolinux configuration file using
the kernel parameters provided, and then generates a bootable ISO image.

Parameters

• output_file the path to the file where the iso image needs to be created.

• kernel the kernel to use.

• ramdisk the ramdisk to use.

• kernel_params a list of strings(each element being a string like K=V or K
or combination of them like K1=V1,K2,) to be added as the kernel cmdline.

• inject_files Mapping of local source file paths to their location on the
final ISO image.

• publisher_id A value to set as the publisher identifier string in the ISO
image to be generated.

Raises
ImageCreationFailed, if image creation failed while copying files or while running
command to generate iso.

ironic.common.images.create_vfat_image(output_file, files_info=None, parameters=None,
parameters_file=’parameters.txt’, fs_size_kib=100)

Creates the fat fs image on the desired file.

This method copies the given files to a root directory (optional), writes the parameters specified
to the parameters file within the root directory (optional), and then creates a vfat image of the root
directory.

Parameters

• output_file The path to the file where the fat fs image needs to be created.

• files_info A dict containing absolute path of file to be copied -> relative
path within the vfat image. For example:

890 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

{
'/absolute/path/to/file' -> 'relative/path/within/root'
...
}

• parameters A dict containing key-value pairs of parameters.

• parameters_file The filename for the parameters file.

• fs_size_kib size of the vfat filesystem in KiB.

Raises
ImageCreationFailed, if image creation failed while doing any of filesystem ma-
nipulation activities like creating dirs, mounting, creating filesystem, copying files,
etc.

ironic.common.images.download_size(context, image_href , image_service=None)

ironic.common.images.fetch(context, image_href , path, force_raw=False, checksum=None,
checksum_algo=None)

ironic.common.images.fetch_into(context, image_href , image_file)

ironic.common.images.force_raw_will_convert(image_href , path_tmp)

ironic.common.images.get_image_properties(context, image_href , properties=’all’)
Returns the values of several properties of an image

Parameters

• context context

• image_href href of the image

• properties the properties whose values are required. This argument is op-
tional, default value is all, so if not specified all properties will be returned.

Returns
a dict of the values of the properties. A property not on the glance metadata will
have a value of None.

ironic.common.images.get_source_format(image_href , path)

ironic.common.images.get_temp_url_for_glance_image(context, image_uuid)
Returns the tmp url for a glance image.

Parameters

• context context

• image_uuid the UUID of the image in glance

Returns
the tmp url for the glance image.

ironic.common.images.image_show(context, image_href , image_service=None)

ironic.common.images.image_to_raw(image_href , path, path_tmp)

5.1. Developers Guide 891

Ironic Documentation, Release 26.1.2.dev21

ironic.common.images.is_source_a_path(ctx, image_source)
Determine if the image source is a path.

This method determines if a supplied URL is a path.

Parameters

• ctx an admin/process context.

• image_source The supplied image source, expected to be a URL, which can
be used to attempt to determine if the source is a path.

Returns
True if the image_source appears to be a path as opposed to an image to be down-
loaded. If the image source is not a path, False is returned. If any error is detected,
None is returned.

ironic.common.images.is_whole_disk_image(ctx, instance_info)
Find out if the image is a partition image or a whole disk image.

Parameters

• ctx an admin context

• instance_info a nodes instance info dict

Returns
True for whole disk images and False for partition images and None on no im-
age_source, the source being a path, or upon an Error.

ironic.common.images.safety_check_image(image_path, node=None)
Performs a safety check on the supplied image.

This method triggers the image format inspectors to both identify the type of the supplied file and
safety check logic to identify if there are any known unsafe features being leveraged, and return
the detected file format in the form of a string for the caller.

Parameters

• image_path A fully qualified path to an image which needs to be evaluated
for safety.

• node A Node object, optional. When supplied logging indicates the node
which triggered this issue, but the node is not available in all invocation cases.

Returns
a string representing the the image type which is used.

Raises
InvalidImage when the supplied image is detected as unsafe, or the image format
inspector has failed to parse the supplied images contents.

892 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.indicator_states module

Mapping of the indicator LED states.

ironic.common.indicator_states.BLINKING = 'blinking'

LED is blinking

ironic.common.indicator_states.OFF = 'off'

LED is off

ironic.common.indicator_states.ON = 'on'

LED is on

ironic.common.indicator_states.UNKNOWN = 'unknown'

LED state is not known

ironic.common.keystone module

Central place for handling Keystone authorization and service lookup.

ironic.common.keystone.get_adapter(group, **adapter_kwargs)
Loads adapter from options in a configuration file section.

The adapter_kwargs will be passed directly to keystoneauth1 Adapter and will override the values
loaded from config. Consult keystoneauth1 docs for available adapter options.

Parameters
group name of the config section to load adapter options from

ironic.common.keystone.get_auth(group, **auth_kwargs)
Loads auth plugin from options in a configuration file section.

The auth_kwargs will be passed directly to keystoneauth1 auth plugin and will override the values
loaded from config. Note that the accepted kwargs will depend on auth plugin type as defined by
[group]auth_type option. Consult keystoneauth1 docs for available auth plugins and their options.

Parameters
group name of the config section to load auth plugin options from

ironic.common.keystone.get_endpoint(group, **adapter_kwargs)
Get an endpoint from an adapter.

The adapter_kwargs will be passed directly to keystoneauth1 Adapter and will override the values
loaded from config. Consult keystoneauth1 docs for available adapter options.

Parameters
group name of the config section to load adapter options from

Raises
CatalogNotFound if the endpoint is not found

ironic.common.keystone.get_service_auth(context, endpoint, service_auth,
only_service_auth=False)

Create auth plugin wrapping both user and service auth.

When properly configured and using auth_token middleware, requests with valid service auth will
not fail if the user token is expired.

5.1. Developers Guide 893

Ironic Documentation, Release 26.1.2.dev21

Ideally we would use the plugin provided by auth_token middleware however this plugin isnt seri-
alized yet.

Parameters

• context The RequestContext instance from which the user auth_token is
extracted.

• endpoint The requested endpoint to be utilized.

• service_auth The service authentication credentals to be used.

• only_service_auth Boolean, default False. When set to True, the resulting
Service token pair is generated as if it originates from the user itself. Useful
to cast admin level operations which are launched by Ironic itself, as opposed
to user initiated requests.

Returns
Returns a service token via the ServiceTokenAuthWrapper class.

ironic.common.keystone.get_session(group, **session_kwargs)
Loads session object from options in a configuration file section.

The session_kwargs will be passed directly to keystoneauth1 Session and will override the values
loaded from config. Consult keystoneauth1 docs for available options.

Parameters
group name of the config section to load session options from

ironic.common.keystone.ks_exceptions(f)
Wraps keystoneclient functions and centralizes exception handling.

ironic.common.kickstart_utils module

ironic.common.kickstart_utils.decode_and_extract_config_drive_iso(config_drive_iso_gz)

ironic.common.kickstart_utils.prepare_config_drive(task, con-
fig_drive_path=’/var/lib/cloud/seed/config_drive’)

Prepare config_drive for writing to kickstart file

ironic.common.kickstart_utils.read_iso9600_config_drive(config_drive)
Read config drive and store its contents in a dict

Parameters
config_drive Config drive in iso9600 format

Returns
A dict containing path as key and contents of the configdrive file as value.

894 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.lessee_sources module

Mapping of values for CONF.conductor.automatic_lessee_source, representing different possible sources
for lessee data.

ironic.common.lessee_sources.INSTANCE = 'instance'

Use instance_info[project_id]

ironic.common.lessee_sources.NONE = 'none'

Do not set lessee

ironic.common.lessee_sources.REQUEST = 'request'

Use metadata in request context

ironic.common.molds module

ironic.common.molds.get_configuration(task, url)
Gets configuration mold from indicated location.

Parameters

• task A TaskManager instance.

• url URL of the configuration item to get.

Returns
JSON configuration mold

Raises

• IronicException If using Swift storage and no authentication token found
in tasks context.

• HTTPError If failed to complete HTTP request.

ironic.common.molds.save_configuration(task, url, data)
Store configuration mold to indicated location.

Parameters

• task A TaskManager instance.

• name URL of the configuration item to save to.

• data Content of JSON data to save.

Raises

• IronicException If using Swift storage and no authentication token found
in tasks context.

• HTTPError If failed to complete HTTP request.

5.1. Developers Guide 895

Ironic Documentation, Release 26.1.2.dev21

ironic.common.network module

ironic.common.network.get_node_vif_ids(task)
Get all VIF ids for a node.

This function does not handle multi node operations.

Parameters
task a TaskManager instance.

Returns

A dict of Nodes neutron ports where keys are ports & portgroups and the values
are dict of UUIDs and their associated VIFs, e.g.

{'ports': {'port.uuid': vif.id},
'portgroups': {'portgroup.uuid': vif.id}}

ironic.common.network.get_physnets_by_portgroup_id(task, portgroup_id,
exclude_port=None)

Return the set of physical networks associated with a portgroup.

Parameters

• task a TaskManager instance.

• portgroup_id ID of the portgroup.

• exclude_port A Port object to exclude from the determination of the port-
groups physical network, or None.

Returns
The set of physical networks associated with the portgroup. The set will contain
zero or one physical networks.

Raises
PortgroupPhysnetInconsistent if the portgroups ports are not assigned the same
physical network.

ironic.common.network.get_physnets_for_node(task)
Return the set of physical networks for a node.

Returns the set of physical networks associated with a nodes ports. The physical network None is
excluded from the set.

Parameters
task a TaskManager instance

Returns
A set of physical networks.

ironic.common.network.get_portgroup_by_id(task, portgroup_id)
Lookup a portgroup by ID on a task object.

Parameters

• task a TaskManager instance

• portgroup_id ID of the portgroup.

896 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A Portgroup object or None.

ironic.common.network.get_ports_by_portgroup_id(task, portgroup_id)
Lookup ports by their portgroup ID on a task object.

Parameters

• task a TaskManager instance

• portgroup_id ID of the portgroup.

Returns
A list of Port objects.

ironic.common.network.remove_vifs_from_node(task)
Remove all vif attachment records from a node.

Parameters
task a TaskManager instance.

ironic.common.neutron module

class ironic.common.neutron.NeutronNetworkInterfaceMixin

Bases: object

get_cleaning_network_uuid(task)

get_inspection_network_uuid(task)

get_provisioning_network_uuid(task)

get_rescuing_network_uuid(task)

get_servicing_network_uuid(task)

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

Raises
UnsupportedDriverExtension

ironic.common.neutron.PHYSNET_PARAM_NAME = 'provider:physical_network'

Name of the neutron network API physical network parameter.

ironic.common.neutron.add_ports_to_network(task, network_uuid, security_groups=None)
Create neutron ports to boot the ramdisk.

Create neutron ports for each pxe_enabled port on task.node to boot the ramdisk.

If the config option neutron.add_all_ports is set, neutron ports for non-pxe-enabled ports are also
created these neutron ports will not have any assigned IP addresses.

5.1. Developers Guide 897

Ironic Documentation, Release 26.1.2.dev21

Parameters

• task a TaskManager instance.

• network_uuid UUID of a neutron network where ports will be created.

• security_groups List of Security Groups UUIDs to be used for network.

Raises
NetworkError

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

ironic.common.neutron.get_client(token=None, context=None, auth_from_config=False)
Retrieve a neutron client connection.

Parameters

• context request context, instance of ironic.common.context.RequestContext

• auth_from_config (boolean) When True, use auth values from conf param-
eters

Returns
A neutron client.

ironic.common.neutron.get_local_group_information(task, portgroup)
Extract the portgroup information.

The information is returned in the form of:

{
'id': portgroup.uuid,
'name': portgroup.name,
'bond_mode': portgroup.mode,
'bond_properties': {

'bond_propertyA': 'valueA',
'bond_propertyB': 'valueB',

}
}

Parameters

• task a task containing the Node object.

• portgroup Ironic portgroup object to extract data for.

Returns
port group information as a dict

ironic.common.neutron.get_neutron_port_data(port_id, vif_id, client=None, context=None)
Gather Neutron port and network configuration

Query Neutron for port and network configuration, return whatever is available.

Parameters

• port_id ironic port/portgroup ID.

898 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• vif_id Neutron port ID.

• client Optional a Neutron client object.

• context (ironic.common.context.RequestContext) request context

Raises
NetworkError

Returns
a dict holding network configuration information associated with this ironic or Neu-
tron port.

ironic.common.neutron.get_node_portmap(task)
Extract the switch port information for the node.

The information is returned in the form of:

{
port.uuid: {

'switch_id': 'abc',
'port_id': 'Po0/1',
'other_llc_key': 'val'

}
}

Parameters
task a task containing the Node object.

Returns
port information as a dict

ironic.common.neutron.get_physnets_by_port_uuid(client, port_uuid)
Return the set of physical networks associated with a neutron port.

Query the network to which the port is attached and return the set of physical networks associated
with the segments in that network.

Parameters

• client A Neutron client object.

• port_uuid UUID of a Neutron port to query.

Returns
A set of physical networks.

Raises
NetworkError if the network query fails.

Raises
InvalidParameterValue for missing network.

ironic.common.neutron.is_ovn_vtep_port(port_info)
Check if the current port is an OVN VTEP port

Parameters
port_info an instance of ironic.objects.port.Port or port data as a port like object

5.1. Developers Guide 899

Ironic Documentation, Release 26.1.2.dev21

Returns
Boolean indicating if the port is an OVN VTEP port

ironic.common.neutron.is_smartnic_port(port_data)
Check that the port is Smart NIC port

Parameters
port_data an instance of ironic.objects.port.Port or port data as dict.

Returns
A boolean to indicate port as Smart NIC port.

ironic.common.neutron.remove_neutron_ports(task, params)
Deletes the neutron ports matched by params.

Parameters

• task a TaskManager instance.

• params Dict of params to filter ports.

Raises
NetworkError

ironic.common.neutron.remove_ports_from_network(task, network_uuid)
Deletes the neutron ports created for booting the ramdisk.

Parameters

• task a TaskManager instance.

• network_uuid UUID of a neutron network ports will be deleted from.

Raises
NetworkError

ironic.common.neutron.rollback_ports(task, network_uuid)
Attempts to delete any ports created by cleaning/provisioning

Purposefully will not raise any exceptions so error handling can continue.

Parameters

• task a TaskManager instance.

• network_uuid UUID of a neutron network.

ironic.common.neutron.unbind_neutron_port(port_id, client=None, context=None,
reset_mac=True)

Unbind a neutron port

Remove a neutron ports binding profile and host ID so that it returns to an unbound state.

Parameters

• port_id Neutron port ID.

• client Optional a Neutron client object.

• context (ironic.common.context.RequestContext) request context

• reset_mac reset mac address

900 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NetworkError

ironic.common.neutron.update_neutron_port(context, port_id, attrs, client=None)
Undate a neutron port

Uses neutron client from conf client to update a neutron client an unbound state.

Parameters

• context request context, instance of ironic.common.context.RequestContext

• port_id Neutron port ID.

• attrs The attributes to update on the port

• client Optional Neutron client

ironic.common.neutron.update_port_address(port_id, address, context=None)
Update a ports mac address.

Parameters

• port_id Neutron port id.

• address new MAC address.

• context (ironic.common.context.RequestContext) request context

Raises
FailedToUpdateMacOnPort

ironic.common.neutron.validate_network(uuid_or_name, net_type=’network’, context=None)
Check that the given network is present.

Parameters

• uuid_or_name network UUID or name

• net_type human-readable network type for error messages

• context (ironic.common.context.RequestContext) request context

Returns
network UUID

Raises
MissingParameterValue if uuid_or_name is empty

Raises
NetworkError on failure to contact Neutron

Raises
InvalidParameterValue for missing or duplicated network

ironic.common.neutron.validate_port_info(node, port)
Check that port contains enough information for deploy.

Neutron network interface requires that local_link_information field is filled before we can use this
port.

Parameters

5.1. Developers Guide 901

Ironic Documentation, Release 26.1.2.dev21

• node Ironic node object.

• port Ironic port object.

Returns
True if port info is valid, False otherwise.

ironic.common.neutron.wait_for_host_agent(client, host_id, target_state=’up’)
Wait for neutron agent to become target state

Parameters

• client A Neutron client object.

• host_id Agent host_id

• target_state up: wait for up status, down: wait for down status

Returns
boolean indicates the agent state matches param value target_state_up.

Raises
exception.Invalid if target_state is not valid.

Raises
exception.NetworkError if host status didnt match the required status after max
retry attempts.

ironic.common.neutron.wait_for_port_status(client, port_id, status)
Wait for port status to be the desired status

Parameters

• client A Neutron client object.

• port_id Neutron port_id

• status Ports target status, can be ACTIVE, DOWN etc.

Returns
boolean indicates that the port status matches the required value passed by param
status.

Raises
InvalidParameterValue if the port does not exist.

Raises
exception.NetworkError if port status didnt match the required status after max
retry attempts.

902 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.nova module

ironic.common.nova.power_update(context, server_uuid, target_power_state)
Creates and sends power state change for the provided server_uuid.

Parameters

• context request context, instance of ironic.common.context.RequestContext

• server_uuid The uuid of the node whose power state changed.

• target_power_state Targeted power state change i.e POWER_ON or
POWER_OFF

Returns
A boolean which indicates if the power update was executed successfully (mainly
for testing purposes).

ironic.common.policy module

Policy Engine For Ironic.

ironic.common.policy.authorize(rule, target, creds, *args, **kwargs)
A shortcut for policy.Enforcer.authorize()

Checks authorization of a rule against the target and credentials, and raises an exception if the rule
is not defined. Always returns true if CONF.auth_strategy is not keystone.

ironic.common.policy.check(rule, target, creds, *args, **kwargs)
A shortcut for policy.Enforcer.enforce()

Checks authorization of a rule against the target and credentials and returns True or False.

ironic.common.policy.check_policy(rule, target, creds, *args, **kwargs)
Configuration aware role policy check wrapper.

Checks authorization of a rule against the target and credentials and returns True or False. Always
returns true if CONF.auth_strategy is not keystone.

ironic.common.policy.get_enforcer()

Provides access to the single instance of Policy enforcer.

ironic.common.policy.get_oslo_policy_enforcer()

ironic.common.policy.init_enforcer(policy_file=None, rules=None, default_rule=None,
use_conf=True)

Synchronously initializes the policy enforcer

Parameters

• policy_file Custom policy file to use, if none is specified,
CONF.oslo_policy.policy_file will be used.

• rules Default dictionary / Rules to use. It will be considered just in the first
instantiation.

• default_rule Default rule to use, CONF.oslo_policy.policy_default_rule
will be used if none is specified.

5.1. Developers Guide 903

Ironic Documentation, Release 26.1.2.dev21

• use_conf Whether to load rules from config file.

ironic.common.policy.list_policies()

ironic.common.profiler module

ironic.common.profiler.setup(name, host=’0.0.0.0’)
Setup OSprofiler notifier and enable profiling.

Parameters

• name name of the service that will be profiled

• host hostname or host IP address that the service will be running on. By
default host will be set to 0.0.0.0, but specifying host name / address usage is
highly recommended.

Raises
TypeError in case of invalid connection string for a notifier backend, which is
set in osprofiler.initializer.init_from_conf.

ironic.common.profiler.trace_cls(name, **kwargs)
Wrap the OSProfiler trace_cls decorator

Wrap the OSProfiler trace_cls decorator so that it will not try to patch the class unless OSProfiler
is present and enabled in the config

Parameters

• name The name of action. For example, wsgi, rpc, db, etc..

• kwargs Any other keyword args used by profiler.trace_cls

ironic.common.pxe_utils module

class ironic.common.pxe_utils.TFTPImageCache

Bases: ImageCache

ironic.common.pxe_utils.build_deploy_pxe_options(task, pxe_info, mode=’deploy’,
ipxe_enabled=False)

ironic.common.pxe_utils.build_extra_pxe_options(task, ramdisk_params=None)

ironic.common.pxe_utils.build_instance_pxe_options(task, pxe_info,
ipxe_enabled=False)

ironic.common.pxe_utils.build_kickstart_config_options(task)
Build the kickstart template options for a node

This method builds the kickstart template options for a node, given all the required parameters.

The options should then be passed to pxe_utils.create_kickstart_config to create the actual config
files.

Parameters
task A TaskManager object

904 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A dictionary of kickstart options to be used in the kickstart template.

ironic.common.pxe_utils.build_pxe_config_options(task, pxe_info, service=False,
ipxe_enabled=False,
ramdisk_params=None)

Build the PXE config options for a node

This method builds the PXE boot options for a node, given all the required parameters.

The options should then be passed to pxe_utils.create_pxe_config to create the actual config files.

Parameters

• task A TaskManager object

• pxe_info a dict of values to set on the configuration file

• service if True, build service mode pxe config for netboot-ed user image
and skip adding deployment image kernel and ramdisk info to PXE options.

• ipxe_enabled Default false boolean to indicate if ipxe is in use by the caller.

• ramdisk_params the parameters to be passed to the ramdisk. as kernel
command-line arguments.

Returns
A dictionary of pxe options to be used in the pxe bootfile template.

ironic.common.pxe_utils.build_service_pxe_config(task, instance_image_info,
root_uuid_or_disk_id,
ramdisk_boot=False,
ipxe_enabled=False,
is_whole_disk_image=None,
anaconda_boot=False)

ironic.common.pxe_utils.cache_ramdisk_kernel(task, pxe_info, ipxe_enabled=False)
Fetch the necessary kernels and ramdisks for the instance.

ironic.common.pxe_utils.clean_up_pxe_config(task, ipxe_enabled=False)
Clean up the TFTP environment for the tasks node.

Parameters
task A TaskManager instance.

ironic.common.pxe_utils.clean_up_pxe_env(task, images_info, ipxe_enabled=False)
Cleanup PXE environment of all the images in images_info.

Cleans up the PXE environment for the mentioned images in images_info.

Parameters

• task a TaskManager object

• images_info A dictionary of images whose keys are the image names to
be cleaned up (kernel, ramdisk, etc) and values are a tuple of identifier and
absolute path.

5.1. Developers Guide 905

Ironic Documentation, Release 26.1.2.dev21

ironic.common.pxe_utils.create_ipxe_boot_script()

Render the iPXE boot script into the HTTP root directory

ironic.common.pxe_utils.create_pxe_config(task, pxe_options, template=None,
ipxe_enabled=False)

Generate PXE configuration file and MAC address links for it.

This method will generate the PXE configuration file for the tasks node under a directory named
with the UUID of that node. For each MAC address or DHCP IP address (port) of that node, a
symlink for the configuration file will be created under the PXE configuration directory, so regard-
less of which port boots first theyll get the same PXE configuration. If grub2 bootloader is in use,
then its configuration will be created based on DHCP IP address in the form nn.nn.nn.nn.

Parameters

• task A TaskManager instance.

• pxe_options A dictionary with the PXE configuration parameters.

• template The PXE configuration template. If no template is given the node
specific template will be used.

ironic.common.pxe_utils.dhcp_options_for_instance(task, ipxe_enabled=False,
url_boot=False, ip_version=None,
http_boot_enabled=False)

Retrieves the DHCP PXE boot options.

Parameters

• task A TaskManager instance.

• ipxe_enabled Default false boolean that signals if iPXE formatting should
be returned by the method for DHCP server configuration.

• url_boot Default false boolean to inform the method if a URL should be
returned to boot the node. If [pxe]ip_version is set to 6, then this option has
no effect as url_boot form is required by DHCPv6 standards.

• ip_version The IP version of options to return as values differ by IP version.
Default to [pxe]ip_version. Possible options are integers 4 or 6.

Returns
Dictionary to be sent to the networking service describing the DHCP options to be
set.

Raises
InvalidParameterValue if the underlying configuration cannot be conveyed to Neu-
tron due to resulting value length.

ironic.common.pxe_utils.ensure_tree(path)

ironic.common.pxe_utils.get_file_path_from_label(node_uuid, root_dir, label)
Generate absolute paths to various images from their name(label)

This method generates absolute file system path on the conductor where various images need to
be placed. For example the kickstart template, file and stage2 squashfs.img needs to be placed in
the ipxe_root_dir since they will be transferred by anaconda ramdisk over http(s). The generated
paths will be added to the image_info dictionary as values.

906 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node_uuid the UUID of the node

• root_dir Directory in which the image must be placed

• label Name of the image

ironic.common.pxe_utils.get_http_url_path_from_label(http_url, node_uuid, label)
Generate http url path to various image artifacts

This method generates http(s) urls for various image artifacts int the webserver root. The generated
urls will be added to the pxe_options dict and used to render pxe/ipxe configuration templates.

Parameters

• http_url URL to access the root of the webserver

• node_uuid the UUID of the node

• label Name of the image

ironic.common.pxe_utils.get_image_info(node, mode=’deploy’, ipxe_enabled=False)
Generate the paths for TFTP files for deploy or rescue images.

This method generates the paths for the deploy (or rescue) kernel and deploy (or rescue) ramdisk.

Parameters

• node a node object

• mode Label indicating a deploy or rescue operation being carried out on the
node. Supported values are deploy and rescue. Defaults to deploy, indicating
deploy operation is being carried out.

• ipxe_enabled A default False boolean value to tell the method if the caller
is using iPXE.

Returns
a dictionary whose keys are the names of the images (deploy_kernel, de-
ploy_ramdisk, or rescue_kernel, rescue_ramdisk) and values are the absolute paths
of them.

Raises
MissingParameterValue, if deploy_kernel/deploy_ramdisk or res-
cue_kernel/rescue_ramdisk is missing in nodes driver_info.

ironic.common.pxe_utils.get_instance_image_info(task, ipxe_enabled=False)
Generate the paths for TFTP files for instance related images.

This method generates the paths for instance kernel and instance ramdisk. This method also updates
the node, so caller should already have a non-shared lock on the node.

Parameters

• task A TaskManager instance containing node and context.

• ipxe_enabled Default false boolean to indicate if ipxe is in use by the caller.

Returns
a dictionary whose keys are the names of the images (kernel, ramdisk) and values

5.1. Developers Guide 907

Ironic Documentation, Release 26.1.2.dev21

are the absolute paths of them. If its a whole disk image or node is configured for
localboot, it returns an empty dictionary.

ironic.common.pxe_utils.get_kernel_ramdisk_info(node_uuid, driver_info, mode=’deploy’,
ipxe_enabled=False)

Get href and tftp path for deploy or rescue kernel and ramdisk.

Parameters

• node_uuid UUID of the node

• driver_info Nodes driver_info dict

• mode A label to indicate whether paths for deploy or rescue ramdisk are being
requested. Supported values are deploy rescue. Defaults to deploy, indicating
deploy paths will be returned.

• ipxe_enabled A default False boolean value to tell the method if the caller
is using iPXE.

Returns
a dictionary whose keys are deploy_kernel and deploy_ramdisk or rescue_kernel
and rescue_ramdisk and whose values are the absolute paths to them.

Note: driver_info should be validated outside of this method.

ironic.common.pxe_utils.get_pxe_config_file_path(node_uuid, ipxe_enabled=False,
http_boot_enabled=False)

Generate the path for the nodes PXE configuration file.

Parameters

• node_uuid the UUID of the node.

• ipxe_enabled A default False boolean value to tell the method if the caller
is using iPXE.

Returns
The path to the nodes PXE configuration file.

ironic.common.pxe_utils.get_volume_pxe_options(task)
Identify volume information for iPXE template generation.

ironic.common.pxe_utils.is_ipxe_enabled(task)
Return true if ipxe is set.

Parameters
task A TaskManager object

Returns
boolean true if the task driver instance is the iPXE driver.

ironic.common.pxe_utils.parse_driver_info(node, mode=’deploy’)
Gets the driver specific Node deployment info.

This method validates whether the driver_info property of the supplied node contains the required
information for this driver to deploy images to, or rescue, the node.

Parameters

• node a single Node.

908 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• mode Label indicating a deploy or rescue operation being carried out on the
node. Supported values are deploy and rescue. Defaults to deploy, indicating
deploy operation is being carried out.

Returns
A dict with the driver_info values.

Raises
MissingParameterValue

ironic.common.pxe_utils.place_common_config()

Place template generated config which is not node specific.

Currently places the initial grub config for grub network boot.

ironic.common.pxe_utils.place_loaders_for_boot(base_path)
Place configured bootloaders from the host OS.

Example: grubaa64.efi:/path/to/grub-aarch64.efi,

Parameters
base_path Destination path where files should be copied to.

ironic.common.pxe_utils.prepare_instance_kickstart_config(task, image_info,
anaconda_boot=False)

Prepare to boot anaconda ramdisk by generating kickstart file

Parameters

• task a task from TaskManager.

• image_info a dict of values of instance image metadata to set on the config-
uration file.

• anaconda_boot if the boot is to a anaconda ramdisk configuration.

ironic.common.pxe_utils.prepare_instance_pxe_config(task, image_info,
iscsi_boot=False,
ramdisk_boot=False,
ipxe_enabled=False,
anaconda_boot=False,
http_boot_enabled=False)

Prepares the config file for PXE boot

Parameters

• task a task from TaskManager.

• image_info a dict of values of instance image metadata to set on the config-
uration file.

• iscsi_boot if boot is from an iSCSI volume or not.

• ramdisk_boot if the boot is to a ramdisk configuration.

• ipxe_enabled Default false boolean to indicate if ipxe is in use by the caller.

• anaconda_boot if the boot is to a anaconda ramdisk configuration.

• http_boot_enabled If httpboot models of use are to be used with the un-
derlying boot loaders.

5.1. Developers Guide 909

Ironic Documentation, Release 26.1.2.dev21

Returns
None

ironic.common.pxe_utils.validate_kickstart_file(ks_cfg)
Check if the kickstart file is valid

Parameters
ks_cfg Contents of kickstart file to validate

Raises
InvalidKickstartFile

ironic.common.pxe_utils.validate_kickstart_template(ks_template)
Validate the kickstart template

Parameters
ks_template Path to the kickstart template

Raises
InvalidKickstartTemplate

ironic.common.qemu_img module

ironic.common.qemu_img.convert_image(source, dest, out_format, run_as_root=False,
cache=None, out_of_order=False, sparse_size=None,
source_format=’qcow2’)

Convert image to other format.

ironic.common.raid module

ironic.common.raid.SAS = 'sas'

Serial Attached SCSI

ironic.common.raid.SATA = 'sata'

Serial AT Attachment

ironic.common.raid.SCSI = 'scsi'

Small Computer System Interface

ironic.common.raid.filter_target_raid_config(node, create_root_volume=True,
create_nonroot_volumes=True)

Filter the target raid config based on root volume creation

This method can be used by any raid interface which wants to filter out target raid config based on
condition whether the root volume will be created or not.

Parameters

• node a node object

• create_root_volume A boolean default value True governing if the root
volume is returned else root volumes will be filtered out.

• create_nonroot_volumes A boolean default value True governing if the
non root volume is returned else non-root volumes will be filtered out.

910 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue, if node.target_raid_config is missing or was found to be
empty after skipping root volume and/or non-root volumes.

Returns
It will return filtered target_raid_config

ironic.common.raid.get_logical_disk_properties(raid_config_schema)
Get logical disk properties from RAID configuration schema.

This method reads the logical properties and their textual description from the schema that is
passed.

Parameters
raid_config_schema A dictionary which is the schema to be used for getting
properties that may be specified for the logical disk.

Returns
A dictionary containing the logical disk properties as keys and a textual description
for them as values.

ironic.common.raid.update_raid_info(node, raid_config)
Update the nodes information based on the RAID config.

This method updates the nodes information to make use of the configured RAID for scheduling
purposes (through properties[capabilities] and properties[local_gb]) and deploying purposes (us-
ing properties[root_device]).

Parameters

• node a node object

• raid_config The dictionary containing the current RAID configuration.

Raises
InvalidParameterValue, if raid_config has more than one root volume or if
node.properties[capabilities] is malformed.

ironic.common.raid.validate_configuration(raid_config, raid_config_schema)
Validates the RAID configuration passed using JSON schema.

This method validates a RAID configuration against a RAID configuration schema.

Parameters

• raid_config A dictionary containing RAID configuration information

• raid_config_schema A dictionary which is the schema to be used for vali-
dation.

Raises
InvalidParameterValue, if validation of the RAID configuration fails.

5.1. Developers Guide 911

Ironic Documentation, Release 26.1.2.dev21

ironic.common.release_mappings module

ironic.common.release_mappings.get_object_versions(releases=None, objects=None)
Gets the supported versions for all objects.

Supported versions are from the RELEASE_MAPPINGs.

Parameters

• releases a list of release names; if empty/None, versions from all releases
are returned (the default).

• objects a list of names of objects of interest. If empty/None, versions of all
objects are returned (the default).

Returns
a dictionary where the key is the object name and the value is a set of supported
versions.

ironic.common.rpc module

class ironic.common.rpc.RequestContextSerializer(base)
Bases: Serializer

deserialize_context(context)
Deserialize a dictionary into a request context.

Parameters
ctxt Request context dictionary

Returns
Deserialized form of entity

deserialize_entity(context, entity)
Deserialize something from primitive form.

Parameters

• ctxt Request context, in deserialized form

• entity Primitive to be deserialized

Returns
Deserialized form of entity

serialize_context(context)
Serialize a request context into a dictionary.

Parameters
ctxt Request context

Returns
Serialized form of context

serialize_entity(context, entity)
Serialize something to primitive form.

Parameters

912 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• ctxt Request context, in deserialized form

• entity Entity to be serialized

Returns
Serialized form of entity

ironic.common.rpc.cleanup()

ironic.common.rpc.get_allowed_exmods()

ironic.common.rpc.get_client(target, version_cap=None, serializer=None)

ironic.common.rpc.get_sensors_notifier(service=None, host=None, publisher_id=None)

ironic.common.rpc.get_server(target, endpoints, serializer=None)

ironic.common.rpc.get_transport_url(url_str=None)

ironic.common.rpc.get_versioned_notifier(publisher_id=None)

ironic.common.rpc.init(conf)

ironic.common.rpc.set_defaults(control_exchange)

ironic.common.rpc.set_global_manager(manager)

ironic.common.rpc_service module

class ironic.common.rpc_service.BaseRPCService(host, manager_module, manager_class)
Bases: Service

handle_signal()

start()

Start a service.

wait_for_start()

ironic.common.service module

ironic.common.service.ensure_rpc_transport(conf=<oslo_config.cfg.ConfigOpts object>)

ironic.common.service.prepare_command(argv=None)
Prepare any Ironic command for execution.

Sets up configuration and logging, registers objects.

ironic.common.service.prepare_service(name, argv=None,
conf=<oslo_config.cfg.ConfigOpts object>)

Prepare an Ironic service executable.

In addition to what prepare_command does, set up guru meditation reporting and profiling.

ironic.common.service.process_launcher()

5.1. Developers Guide 913

Ironic Documentation, Release 26.1.2.dev21

ironic.common.states module

Mapping of bare metal node states.

Setting the node power_state is handled by the conductors power synchronization thread. Based on the
power state retrieved from the driver for the node, the state is set to POWER_ON or POWER_OFF,
accordingly. Should this fail, the power_state value is left unchanged, and the node is placed into main-
tenance mode.

The power_state can also be set manually via the API. A failure to change the state leaves the current
state unchanged. The node is NOT placed into maintenance mode in this case.

ironic.common.states.ACTIVE = 'active'

Node is successfully deployed and associated with an instance.

ironic.common.states.ADOPTFAIL = 'adopt failed'

Node failed to complete the adoption process.

This state is the resulting state of a node that failed to complete adoption, potentially due to invalid
or incompatible information being defined for the node.

ironic.common.states.ADOPTING = 'adopting'

Node is being adopted.

This provision state is intended for use to move a node from MANAGEABLE to ACTIVE state to
permit designation of nodes as being managed by Ironic, however deployed previously by external
means.

ironic.common.states.AVAILABLE = 'available'

Node is available for use and scheduling.

This state is replacing the NOSTATE state used prior to Kilo.

ironic.common.states.CLEANFAIL = 'clean failed'

Node failed cleaning. This requires operator intervention to resolve.

ironic.common.states.CLEANHOLD = 'clean hold'

Node is a holding state due to a clean step.

ironic.common.states.CLEANING = 'cleaning'

Node is being automatically cleaned to prepare it for provisioning.

ironic.common.states.CLEANWAIT = 'clean wait'

Node is waiting for a clean step to be finished.

This will be the nodes provision_state while the node is waiting for the driver to finish a cleaning
step.

ironic.common.states.DELETED = 'deleted'

Node tear down was successful.

In Juno, target_provision_state was set to this value during node tear down.

In Kilo, this will be a transitory value of provision_state, and never represented in tar-
get_provision_state.

914 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.states.DELETE_ALLOWED_STATES = ('manageable', 'enroll', 'adopt
failed')

States in which node deletion is allowed.

ironic.common.states.DELETING = 'deleting'

Node is actively being torn down.

ironic.common.states.DEPLOY = 'deploy'

Node is successfully deployed and associated with an instance. This is an alias for ACTIVE.

ironic.common.states.DEPLOYDONE = 'deploy complete'

Node was successfully deployed.

This is mainly a target provision state used during deployment. A successfully deployed node
should go to ACTIVE status.

ironic.common.states.DEPLOYFAIL = 'deploy failed'

Node deployment failed.

ironic.common.states.DEPLOYHOLD = 'deploy hold'

Node is being held by a deploy step.

ironic.common.states.DEPLOYING = 'deploying'

Node is ready to receive a deploy request, or is currently being deployed.

A node will have its provision_state set to DEPLOYING briefly before it receives its initial deploy
request. It will also move to this state from DEPLOYWAIT after the callback is triggered and
deployment is continued (disk partitioning and image copying).

ironic.common.states.DEPLOYWAIT = 'wait call-back'

Node is waiting to be deployed.

This will be the node provision_state while the node is waiting for the driver to finish deployment.

ironic.common.states.ENROLL = 'enroll'

Node is enrolled.

This state indicates that Ironic is aware of a node, but is not managing it.

ironic.common.states.ERROR = 'error'

An error occurred during node processing.

The last_error attribute of the node details should contain an error message.

ironic.common.states.FASTTRACK_LOOKUP_ALLOWED_STATES = frozenset({'available',
'clean wait', 'cleaning', 'deploying', 'enroll', 'inspect wait', 'inspecting',
'manageable', 'rescue wait', 'rescuing', 'service hold', 'service wait',
'servicing', 'wait call-back'})

States where API lookups are permitted with fast track enabled.

ironic.common.states.INSPECTFAIL = 'inspect failed'

Node inspection failed.

ironic.common.states.INSPECTING = 'inspecting'

Node is under inspection.

5.1. Developers Guide 915

Ironic Documentation, Release 26.1.2.dev21

This is the provision state used when inspection is started. A successfully inspected node shall
transition to MANAGEABLE state. For asynchronous inspection, node shall transition to IN-
SPECTWAIT state.

ironic.common.states.INSPECTWAIT = 'inspect wait'

Node is under inspection.

This is the provision state used when an asynchronous inspection is in progress. A successfully
inspected node shall transition to MANAGEABLE state.

ironic.common.states.LOOKUP_ALLOWED_STATES = frozenset({'clean wait',
'cleaning', 'deploying', 'inspect wait', 'inspecting', 'rescue wait',
'rescuing', 'wait call-back'})

States when API lookups are normally allowed for nodes.

ironic.common.states.MANAGEABLE = 'manageable'

Node is in a manageable state.

This state indicates that Ironic has verified, at least once, that it had sufficient information to manage
the hardware. While in this state, the node is not available for provisioning (it must be in the
AVAILABLE state for that).

ironic.common.states.NOSTATE = None

No state information.

This state is used with power_state to represent a lack of knowledge of power state, and in tar-
get_*_state fields when there is no target.

ironic.common.states.POWER_OFF = 'power off'

Node is powered off.

ironic.common.states.POWER_ON = 'power on'

Node is powered on.

ironic.common.states.REBOOT = 'rebooting'

Node is rebooting.

ironic.common.states.REBUILD = 'rebuild'

Node is to be rebuilt.

This is not used as a state, but rather as a verb when changing the nodes provision_state via the
REST API.

ironic.common.states.RESCUE = 'rescue'

Node is in rescue mode.

ironic.common.states.RESCUEFAIL = 'rescue failed'

Node rescue failed.

ironic.common.states.RESCUEWAIT = 'rescue wait'

Node is waiting on an external callback.

This will be the node provision_state while the node is waiting for the driver to finish rescuing the
node.

ironic.common.states.RESCUING = 'rescuing'

Node is in process of being rescued.

916 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.states.SERVICE = 'service'

Node is being requested to be modified through a service step.

ironic.common.states.SERVICEFAIL = 'service failed'

Node has failed in a service step execution.

ironic.common.states.SERVICEHOLD = 'service hold'

Node is being held for direct intervention from a service step.

ironic.common.states.SERVICEWAIT = 'service wait'

Node is waiting for an operation to complete.

ironic.common.states.SERVICING = 'servicing'

Node is actively being changed by a service step.

ironic.common.states.SOFT_POWER_OFF = 'soft power off'

Node is in the process of soft power off.

ironic.common.states.SOFT_REBOOT = 'soft rebooting'

Node is rebooting gracefully.

ironic.common.states.STABLE_STATES = ('enroll', 'manageable', 'available',
'active', 'error', 'rescue')

States that will not transition unless receiving a request.

ironic.common.states.STUCK_STATES_TREATED_AS_FAIL = ('deploying', 'cleaning',
'verifying', 'inspecting', 'adopting', 'rescuing', 'unrescuing', 'deleting')

States that cannot be resumed once a conductor dies.

If a node gets stuck with one of these states for some reason (eg. conductor goes down when
executing task), node will be moved to fail state.

ironic.common.states.UNDEPLOY = 'undeploy'

Node tear down process has started. This is an alias for DELETED.

ironic.common.states.UNRESCUEFAIL = 'unrescue failed'

Node unrescue failed.

ironic.common.states.UNRESCUING = 'unrescuing'

Node is being restored from rescue mode (to active state).

ironic.common.states.UNSTABLE_STATES = ('deploying', 'wait call-back',
'cleaning', 'clean wait', 'verifying', 'deleting', 'inspecting', 'inspect
wait', 'adopting', 'rescuing', 'rescue wait', 'unrescuing', 'servicing',
'service wait')

States that can be changed without external request.

ironic.common.states.UPDATE_ALLOWED_STATES = ('deploy failed', 'inspecting',
'inspect failed', 'inspect wait', 'clean failed', 'error', 'verifying', 'adopt
failed', 'rescue failed', 'unrescue failed', 'service', 'service hold',
'service failed')

Transitional states in which we allow updating a node.

5.1. Developers Guide 917

Ironic Documentation, Release 26.1.2.dev21

ironic.common.states.VERBS = {'abort': 'abort', 'active': 'deploy', 'adopt':
'adopt', 'clean': 'clean', 'deleted': 'delete', 'deploy': 'deploy',
'inspect': 'inspect', 'manage': 'manage', 'provide': 'provide', 'rescue':
'rescue', 'service': 'service', 'undeploy': 'delete', 'unhold': 'unhold',
'unrescue': 'unrescue'}

Mapping of state-changing events that are PUT to the REST API

This is a mapping of target states which are PUT to the API, eg,
PUT /v1/node/states/provision {target: active}

The dict format is:
{target string used by the API: internal verb}

This provides a reference set of supported actions, and in the future may be used to support renam-
ing these actions.

ironic.common.states.VERIFYING = 'verifying'

Node power management credentials are being verified.

ironic.common.states.on_enter(new_state, event)
Used to log when entering a state.

ironic.common.states.on_exit(old_state, event)
Used to log when a state is exited.

ironic.common.swift module

class ironic.common.swift.SwiftAPI

Bases: object

API for communicating with Swift.

create_object(container, obj, filename, object_headers=None)
Uploads a given file to Swift.

Parameters

• container The name of the container for the object.

• obj The name of the object in Swift

• filename The file to upload, as the object data

• object_headers the headers for the object to pass to Swift

Returns
The Swift UUID of the object

Raises
SwiftOperationError, if any operation with Swift fails.

create_object_from_data(obj, data, container)
Uploads a given string to Swift.

Parameters

• obj The name of the object in Swift

918 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• data string data to put in the object

• container The name of the container for the object. Defaults to the value
set in the configuration options.

Returns
The Swift UUID of the object

Raises
utils.Error, if any operation with Swift fails.

delete_object(container, obj)
Deletes the given Swift object.

Parameters

• container The name of the container in which Swift object is placed.

• obj The name of the object in Swift to be deleted.

Raises
SwiftObjectNotFoundError, if object is not found in Swift.

Raises
SwiftOperationError, if operation with Swift fails.

generate_temp_url(path, timeout, method, temp_url_key)
Returns the temp url for a given path

get_object(object, container)
Downloads a given object from Swift.

Parameters

• object The name of the object in Swift

• container The name of the container for the object. Defaults to the value
set in the configuration options.

Returns
Swift object

Raises
utils.Error, if the Swift operation fails.

get_temp_url(container, obj, timeout)
Returns the temp url for the given Swift object.

Parameters

• container The name of the container in which Swift object is placed.

• obj The name of the Swift object.

• timeout The timeout in seconds after which the generated url should expire.

Returns
The temp url for the object.

Raises
SwiftOperationError, if any operation with Swift fails.

5.1. Developers Guide 919

Ironic Documentation, Release 26.1.2.dev21

get_temp_url_key()

Get the best temporary url key from the account headers.

ironic.common.swift.get_swift_session()

ironic.common.utils module

Utilities and helper functions.

ironic.common.utils.check_dir(directory_to_check=None, required_space=1)
Check a directory is usable.

This function can be used by drivers to check that directories they need to write to are usable. This
should be called from the drivers init function. This function checks that the directory exists and
then calls check_dir_writable and check_dir_free_space. If directory_to_check is not provided the
default is to use the temp directory.

Parameters

• directory_to_check the directory to check.

• required_space amount of space to check for in MiB.

Raises
PathNotFound if directory can not be found

Raises
DirectoryNotWritable if user is unable to write to the directory

Raises
InsufficientDiskSpace if free space is < required space

ironic.common.utils.create_link_without_raise(source, link)

ironic.common.utils.execute(*cmd, **kwargs)
Convenience wrapper around oslos execute() method.

Parameters

• cmd Passed to processutils.execute.

• use_standard_locale True | False. Defaults to False. If set to True, execute
command with standard locale added to environment variables.

Returns
(stdout, stderr) from process execution

Raises
UnknownArgumentError

Raises
ProcessExecutionError

ironic.common.utils.fast_track_enabled(node)

ironic.common.utils.file_has_content(path, content, hash_algo=’sha256’)
Checks that content of the file is the same as provided reference.

Parameters

920 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• path path to file

• content reference content to check against

• hash_algo hashing algo from hashlib to use, default is sha256

Returns
True if the hash of reference content is the same as the hash of files content, False
otherwise

ironic.common.utils.file_mime_type(path)
Gets a mime type of the given file.

ironic.common.utils.get_updated_capabilities(current_capabilities, new_capabilities)
Returns an updated capability string.

This method updates the original (or current) capabilities with the new capabilities. The original
capabilities would typically be from a nodes properties[capabilities]. From new_capabilities, any
new capabilities are added, and existing capabilities may have their values updated. This updated
capabilities string is returned.

Parameters

• current_capabilities Current capability string

• new_capabilities the dictionary of capabilities to be updated.

Returns
An updated capability string. with new_capabilities.

Raises
ValueError, if current_capabilities is malformed or if new_capabilities is not a dic-
tionary

ironic.common.utils.is_fips_enabled()

Check if FIPS mode is enabled in the system.

ironic.common.utils.is_hostname_safe(hostname)
Old check for valid logical node names.

Retained for compatibility with REST API < 1.10.

Nominally, checks that the supplied hostname conforms to:

• http://en.wikipedia.org/wiki/Hostname

• http://tools.ietf.org/html/rfc952

• http://tools.ietf.org/html/rfc1123

In practice, this check has several shortcomings and errors that are more thoroughly documented
in bug #1468508.

Parameters
hostname The hostname to be validated.

Returns
True if valid. False if not.

ironic.common.utils.is_ironic_using_sqlite()

Return True if Ironic is configured to use SQLite

5.1. Developers Guide 921

http://en.wikipedia.org/wiki/Hostname
http://tools.ietf.org/html/rfc952
http://tools.ietf.org/html/rfc1123

Ironic Documentation, Release 26.1.2.dev21

ironic.common.utils.is_loopback(hostname_or_ip)
Check if the provided hostname or IP address is a loopback.

ironic.common.utils.is_memory_insufficient(raise_if_fail=False)
Checks available system memory and holds the deployment process.

Evaluates the current system memory available, meaning can be allocated to a process by the kernel
upon allocation request, and delays the execution until memory has been freed, or until it has timed
out.

This method will issue a sleep, if the amount of available memory is insuffi-
cient. This is configured using the [DEFAULT]minimum_memory_wait_time and the
[DEFAULT]minimum_memory_wait_retries.

Parameters
raise_if_fail Default False, but if set to true an InsufficientMemory exception
is raised upon insufficient memory.

Returns
True if the check has timed out. Otherwise None is returned.

Raises
InsufficientMemory if the raise_if_fail parameter is set to True.

ironic.common.utils.is_regex_string_in_file(path, string)

ironic.common.utils.is_valid_datapath_id(datapath_id)
Verify the format of an OpenFlow datapath_id.

Check if a datapath_id is valid and contains 16 hexadecimal digits. Datapath ID format: the lower
48-bits are for a MAC address, while the upper 16-bits are implementer-defined.

Parameters
datapath_id OpenFlow datapath_id to be validated.

Returns
True if valid. False if not.

ironic.common.utils.is_valid_logical_name(hostname)
Determine if a logical name is valid.

The logical name may only consist of RFC3986 unreserved characters:

ALPHA / DIGIT / - / . / _ / ~

ironic.common.utils.is_valid_no_proxy(no_proxy)
Check no_proxy validity

Check if no_proxy value that will be written to environment variable by ironic-python-agent is
valid.

Parameters
no_proxy the value that requires validity check. Expected to be a comma-
separated list of host names, IP addresses and domain names (with optional :port).

Returns
True if no_proxy is valid, False otherwise.

922 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.common.utils.parse_instance_info_capabilities(node)
Parse the instance_info capabilities.

One way of having these capabilities set is via Nova, where the capabilities are defined in the Flavor
extra_spec and passed to Ironic by the Nova Ironic driver.

NOTE: Although our API fully supports JSON fields, to maintain the backward compatibility with
Juno the Nova Ironic driver is sending it as a string.

Parameters
node a single Node.

Raises
InvalidParameterValue if the capabilities string is not a dictionary or is malformed.

Returns
A dictionary with the capabilities if found, otherwise an empty dictionary.

ironic.common.utils.parse_kernel_params(params)
Parse kernel parameters into a dictionary.

None is used as a value for parameters that are not in the key=value format.

Parameters
params kernel parameters as a space-delimited string.

ironic.common.utils.pop_node_nested_field(node, collection, field, default=None)
Pop a value from a dictionary field of a node.

Parameters

• node Node object.

• collection Name of the field with the dictionary.

• field Nested field name.

• default The default value to return.

Returns
The removed value or the default.

ironic.common.utils.remove_large_keys(var)
Remove specific keys from the var, recursing into dicts and lists.

ironic.common.utils.render_template(template, params, is_file=True, strict=False)
Renders Jinja2 template file with given parameters.

Parameters

• template full path to the Jinja2 template file

• params dictionary with parameters to use when rendering

• is_file whether template is file or string with template itself

• strict Enable strict template rendering. Default is False

Returns
Rendered template

5.1. Developers Guide 923

Ironic Documentation, Release 26.1.2.dev21

Raises
jinja2.exceptions.UndefinedError

ironic.common.utils.rmtree_without_raise(path)

ironic.common.utils.safe_rstrip(value, chars=None)
Removes trailing characters from a string if that does not make it empty

Parameters

• value A string value that will be stripped.

• chars Characters to remove.

Returns
Stripped value.

ironic.common.utils.set_node_nested_field(node, collection, field, value)
Set a value in a dictionary field of a node.

Parameters

• node Node object.

• collection Name of the field with the dictionary.

• field Nested field name.

• value New value.

ironic.common.utils.stop_after_retries(option, group=None)
A tenacity retry helper that stops after retries specified in conf.

ironic.common.utils.tempdir(**kwargs)

ironic.common.utils.unix_file_modification_datetime(file_name)

ironic.common.utils.validate_and_normalize_datapath_id(datapath_id)
Validate an OpenFlow datapath_id and return normalized form.

Checks whether the supplied OpenFlow datapath_id is formally correct and normalize it to all
lower case.

Parameters
datapath_id OpenFlow datapath_id to be validated and normalized.

Returns
Normalized and validated OpenFlow datapath_id.

Raises
InvalidDatapathID If an OpenFlow datapath_id is not valid.

ironic.common.utils.validate_and_normalize_mac(address)
Validate a MAC address and return normalized form.

Checks whether the supplied MAC address is formally correct and normalize it to all lower case.

Parameters
address MAC address to be validated and normalized.

Returns
Normalized and validated MAC address.

924 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidMAC If the MAC address is not valid.

ironic.common.utils.validate_conductor_group(conductor_group)

ironic.common.utils.validate_network_port(port, port_name=’Port’)
Validates the given port.

Parameters

• port TCP/UDP port.

• port_name Name of the port.

Returns
An integer port number.

Raises
InvalidParameterValue, if the port is invalid.

ironic.common.utils.wrap_ipv6(ip)
Wrap the address in square brackets if its an IPv6 address.

ironic.common.utils.write_to_file(path, contents, permission=None)

ironic.common.wsgi_service module

class ironic.common.wsgi_service.WSGIService(name, use_ssl=False)
Bases: ServiceBase

Provides ability to launch ironic API from wsgi app.

reset()

Reset server greenpool size to default.

Returns
None

start()

Start serving this service using loaded configuration.

Returns
None

stop()

Stop serving this API.

Returns
None

wait()

Wait for the service to stop serving this API.

Returns
None

5.1. Developers Guide 925

Ironic Documentation, Release 26.1.2.dev21

Module contents

ironic.conductor package

Submodules

ironic.conductor.allocations module

Functionality related to allocations.

ironic.conductor.allocations.backfill_allocation(context, allocation, node_id)
Assign the previously allocated node to the node allocation.

This is not the actual allocation process, but merely backfilling of allocation_uuid for a previously
allocated node.

Parameters

• context an admin context

• allocation an allocation object associated with the node

• node_id An ID of the node.

Raises
AllocationFailed if the node does not match the allocation

Raises
NodeAssociated if the node is already associated with another instance or alloca-
tion.

Raises
InstanceAssociated if the allocations UUID is already used on another node as
instance_uuid.

Raises
NodeNotFound if the node with the provided ID cannot be found.

ironic.conductor.allocations.do_allocate(context, allocation)
Process the allocation.

This call runs in a separate thread on a conductor. It finds suitable nodes for the allocation and
reserves one of them.

This call does not raise exceptions since its designed to work asynchronously.

Parameters

• context an admin context

• allocation an allocation object

ironic.conductor.allocations.verify_node_for_deallocation(node, allocation)
Verify that allocation can be removed for the node.

Parameters

• node a node object

926 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• allocation an allocation object associated with the node

ironic.conductor.base_manager module

Base conductor manager functionality.

class ironic.conductor.base_manager.BaseConductorManager(host, topic)
Bases: object

del_host(deregister=True, clear_node_reservations=True)

get_online_conductor_count()

Return a count of currently online conductors

has_reserved()

Determines if this host currently has any reserved nodes

Returns
True if this host has reserved nodes

init_host(admin_context=None, start_consoles=True, start_allocations=True)
Initialize the conductor host.

Parameters

• admin_context the admin context to pass to periodic tasks.

• start_consoles If consoles should be started in initialization.

• start_allocations If allocations should be started in initialization.

Raises
RuntimeError when conductor is already running.

Raises
NoDriversLoaded when no drivers are enabled on the conductor.

Raises
DriverNotFound if a driver is enabled that does not exist.

Raises
DriverLoadError if an enabled driver cannot be loaded.

Raises
DriverNameConflict if a classic driver and a dynamic driver are both enabled
and have the same name.

iter_nodes(fields=None, **kwargs)
Iterate over nodes mapped to this conductor.

Requests node set from and filters out nodes that are not mapped to this conductor.

Yields tuples (node_uuid, driver, conductor_group,) where is derived from fields argument,
e.g.: fields=None means yielding (uuid, driver, conductor_group), fields=[foo] means yield-
ing (uuid, driver, conductor_group, foo).

Parameters

• fields list of fields to fetch in addition to uuid, driver, and conductor_group

5.1. Developers Guide 927

Ironic Documentation, Release 26.1.2.dev21

• kwargs additional arguments to pass to dbapi when looking for nodes

Returns
generator yielding tuples of requested fields

keepalive_halt()

prepare_host()

Prepares host for initialization

Prepares the conductor for basic operation by removing any existing transitory node power
states and reservations which were previously held by this host.

Under normal operation, this is also when the initial database connectivity is established for
the conductors normal operation.

ironic.conductor.cleaning module

Functionality related to cleaning.

ironic.conductor.cleaning.continue_node_clean(task)
Continue cleaning after finishing an async clean step.

This function calculates which step has to run next and passes control into do_next_clean_step.

Parameters
task a TaskManager instance with an exclusive lock

ironic.conductor.cleaning.do_next_clean_step(task, step_index, disable_ramdisk=None)
Do cleaning, starting from the specified clean step.

Parameters

• task a TaskManager instance with an exclusive lock

• step_index The first clean step in the list to execute. This is the index (from
0) into the list of clean steps in the nodes driver_internal_info[clean_steps]. Is
None if there are no steps to execute.

• disable_ramdisk Whether to skip booting ramdisk for cleaning.

ironic.conductor.cleaning.do_node_clean(task, clean_steps=None, disable_ramdisk=False)
Internal RPC method to perform cleaning of a node.

Parameters

• task a TaskManager instance with an exclusive lock on its node

• clean_steps For a manual clean, the list of clean steps to perform. Is None
For automated cleaning (default). For more information, see the clean_steps
parameter of ConductorManager.do_node_clean().

• disable_ramdisk Whether to skip booting ramdisk for cleaning.

ironic.conductor.cleaning.do_node_clean_abort(task)
Internal method to abort an ongoing operation.

Parameters
task a TaskManager instance with an exclusive lock

928 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.cleaning.execute_step_on_child_nodes(task, step)
Execute a requested step against a child node.

Parameters

• task The TaskManager object for the parent node.

• step The requested step to be executed.

Returns
None on Success, the resulting error message if a failure has occurred.

ironic.conductor.cleaning.get_last_error(node)

ironic.conductor.deployments module

Functionality related to deploying and undeploying.

ironic.conductor.deployments.apply_automatic_lessee(task)
Apply a automatic lessee to the node, if applicable

First of all, until removed next cycle, we check to see if CONF.automatic_lessee was explicitly set
False by an operator if so, we do not apply a lessee.

When CONF.conductor.automatic_lessee_source is instance: - Take the lessee from in-
stance_info[project_id] (e.g. as set by nova)

When CONF.conductor.automatic_lessee_source is request: - Take the lessee from request context
(e.g. from keystone)

When CONF.conductor.automatic_lessee_source is none: OR the legacy CONF.automatic_lessee
is explicitly set by an operator to False (regardless of lessee_source) - Dont apply a lessee to the
node

Parameters
task a TaskManager instance.

Returns
True if node had a lessee applied

ironic.conductor.deployments.continue_node_deploy(task)
Continue deployment after finishing an async deploy step.

This function calculates which step has to run next and passes control into do_next_deploy_step.
On the first run, deploy steps and templates are also validated.

Parameters
task a TaskManager instance with an exclusive lock

ironic.conductor.deployments.do_next_deploy_step(task, step_index)
Do deployment, starting from the specified deploy step.

Parameters

• task a TaskManager instance with an exclusive lock

• step_index The first deploy step in the list to execute. This is the index (from
0) into the list of deploy steps in the nodes driver_internal_info[deploy_steps].
Is None if there are no steps to execute.

5.1. Developers Guide 929

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.deployments.do_node_deploy(task, conductor_id=None, configdrive=None,
deploy_steps=None)

Prepare the environment and deploy a node.

ironic.conductor.deployments.execute_step_on_child_nodes(task, step)
Execute a requested step against a child node.

Parameters

• task The TaskManager object for the parent node.

• step The requested step to be executed.

Returns
None on Success, the resulting error message if a failure has occurred.

ironic.conductor.deployments.start_deploy(task, manager, configdrive=None,
event=’deploy’, deploy_steps=None)

Start deployment or rebuilding on a node.

This function does not check the node suitability for deployment, its left up to the caller.

Parameters

• task a TaskManager instance.

• manager a ConductorManager to run tasks on.

• configdrive a configdrive, if requested.

• event event to process: deploy or rebuild.

• deploy_steps Optional deploy steps.

ironic.conductor.deployments.validate_deploy_steps(task)
Validate the deploy steps after the ramdisk learns about them.

ironic.conductor.deployments.validate_node(task, event=’deploy’)
Validate that a node is suitable for deployment/rebuilding.

Parameters

• task a TaskManager instance.

• event event to process: deploy or rebuild.

Raises
NodeInMaintenance, NodeProtected, InvalidStateRequested, BootModeNotAl-
lowed

930 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.inspection module

Inspection implementation for the conductor.

ironic.conductor.inspection.abort_inspection(task)
Abort inspection for the node.

ironic.conductor.inspection.continue_inspection(task, inventory, plugin_data)
Continue inspection for the node.

ironic.conductor.inspection.inspect_hardware(task)
Initiates inspection.

Parameters
task a TaskManager instance with an exclusive lock on its node.

Raises
HardwareInspectionFailure if driver doesnt return the state as
states.MANAGEABLE, states.INSPECTWAIT.

ironic.conductor.manager module

Conduct all activity related to bare-metal deployments.

A single instance of ironic.conductor.manager.ConductorManager is created within the ironic-
conductor process, and is responsible for performing all actions on bare metal resources (Chassis, Nodes,
and Ports). Commands are received via RPCs. The conductor service also performs periodic tasks, eg.
to monitor the status of active deployments.

Drivers are loaded via entrypoints by the ironic.common.driver_factory class. Each driver is in-
stantiated only once, when the ConductorManager service starts. In this way, a single ConductorManager
may use multiple drivers, and manage heterogeneous hardware.

When multiple ConductorManager are run on different hosts, they are all active and cooperatively
manage all nodes in the deployment. Nodes are locked by each conductor when performing actions which
change the state of that node; these locks are represented by the ironic.conductor.task_manager.
TaskManager class.

A tooz.hashring.HashRing is used to distribute nodes across the set of active conductors which support
each nodes driver. Rebalancing this ring can trigger various actions by each conductor, such as building
or tearing down the TFTP environment for a node, notifying Neutron of a change, etc.

class ironic.conductor.manager.ConductorManager(host,
topic=’ironic.conductor_manager’)

Bases: BaseConductorManager

Ironic Conductor manager main class.

RPC_API_VERSION = '1.61'

add_node_traits(**kwargs)

attach_virtual_media(**kwargs)

change_node_boot_mode(**kwargs)

5.1. Developers Guide 931

https://opendev.org/openstack/tooz/src/branch/master/tooz/hashring.py

Ironic Documentation, Release 26.1.2.dev21

change_node_power_state(**kwargs)

change_node_secure_boot(**kwargs)

continue_inspection(**kwargs)

continue_node_clean(context, node_id)
RPC method to continue cleaning a node.

This is useful for cleaning tasks that are async. When they complete, they call back via RPC,
a new worker and lock are set up, and cleaning continues. This can also be used to resume
cleaning on take_over.

Parameters

• context an admin context.

• node_id the id or uuid of a node.

Raises
InvalidStateRequested if the node is not in CLEANWAIT state

Raises
NoFreeConductorWorker when there is no free worker to start async task

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node no longer appears in the database

continue_node_deploy(context, node_id)
RPC method to continue deploying a node.

This is useful for deploying tasks that are async. When they complete, they call back via
RPC, a new worker and lock are set up, and deploying continues. This can also be used to
resume deploying on take_over.

Parameters

• context an admin context.

• node_id the ID or UUID of a node.

Raises
InvalidStateRequested if the node is not in DEPLOYWAIT state

Raises
NoFreeConductorWorker when there is no free worker to start async task

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node no longer appears in the database

continue_node_service(context, node_id)
RPC method to continue servicing a node.

932 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

This is useful for servicing tasks that are async. When they complete, they call back via RPC,
a new worker and lock are set up, and servicing continues. This can also be used to resume
servicing on take_over.

Parameters

• context an admin context.

• node_id the ID or UUID of a node.

Raises
InvalidStateRequested if the node is not in SERVICEWAIT state

Raises
NoFreeConductorWorker when there is no free worker to start async task

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node no longer appears in the database

create_allocation(**kwargs)

create_node(**kwargs)

create_port(**kwargs)

destroy_allocation(**kwargs)

destroy_node(**kwargs)

destroy_port(**kwargs)

destroy_portgroup(**kwargs)

destroy_volume_connector(**kwargs)

destroy_volume_target(**kwargs)

detach_virtual_media(context, node_id, device_types=None)
Detach some or all virtual media devices from the node.

Parameters

• context request context.

• node_id node ID or UUID.

• device_types A collection of device type, ones from ironic.common.
boot_devices.VMEDIA_DEVICES. If not provided, all devices are de-
tached.

Raises
UnsupportedDriverExtension if the driver does not support this call.

Raises
InvalidParameterValue if validation of management driver interface failed.

Raises
NodeLocked if node is locked by another conductor.

5.1. Developers Guide 933

Ironic Documentation, Release 26.1.2.dev21

Raises
NoFreeConductorWorker when there is no free worker to start async task.

do_node_clean(**kwargs)

do_node_deploy(**kwargs)

do_node_rescue(**kwargs)

do_node_service(**kwargs)

do_node_tear_down(**kwargs)

do_node_unrescue(**kwargs)

do_provisioning_action(**kwargs)

driver_vendor_passthru(**kwargs)

get_boot_device(**kwargs)

get_console_information(**kwargs)

get_driver_properties(**kwargs)

get_driver_vendor_passthru_methods(**kwargs)

get_indicator_state(**kwargs)

get_node_vendor_passthru_methods(**kwargs)

get_node_with_token(**kwargs)

get_raid_logical_disk_properties(**kwargs)

get_supported_boot_devices(**kwargs)

get_supported_indicators(**kwargs)

get_virtual_media(**kwargs)

heartbeat(**kwargs)

inject_nmi(**kwargs)

inspect_hardware(**kwargs)

manage_node_history(context)

object_action(context, objinst, objmethod, args, kwargs)
Perform an action on a VersionedObject instance.

Parameters

• context The context within which to perform the action

• objinst The object instance on which to perform the action

• objmethod The name of the action method to call

• args The positional arguments to the action method

934 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• kwargs The keyword arguments to the action method

Returns
A tuple with the updates made to the object and the result of the action method

object_backport_versions(context, objinst, object_versions)
Perform a backport of an object instance.

The default behavior of the base VersionedObjectSerializer, upon receiving an object with a
version newer than what is in the local registry, is to call this method to request a backport of
the object.

Parameters

• context The context within which to perform the backport

• objinst An instance of a VersionedObject to be backported

• object_versions A dict of {objname: version} mappings

Returns
The downgraded instance of objinst

object_class_action_versions(context, objname, objmethod, object_versions, args,
kwargs)

Perform an action on a VersionedObject class.

Parameters

• context The context within which to perform the action

• objname The registry name of the object

• objmethod The name of the action method to call

• object_versions A dict of {objname: version} mappings

• args The positional arguments to the action method

• kwargs The keyword arguments to the action method

Returns
The result of the action method, which may (or may not) be an instance of the
implementing VersionedObject class.

remove_node_traits(**kwargs)

set_boot_device(**kwargs)

set_console_mode(**kwargs)

set_indicator_state(**kwargs)

set_target_raid_config(**kwargs)

target = <Target version=1.61>

update_node(**kwargs)

update_port(**kwargs)

5.1. Developers Guide 935

Ironic Documentation, Release 26.1.2.dev21

update_portgroup(**kwargs)

update_volume_connector(**kwargs)

update_volume_target(**kwargs)

validate_driver_interfaces(**kwargs)

vendor_passthru(**kwargs)

vif_attach(**kwargs)

vif_detach(**kwargs)

vif_list(**kwargs)

ironic.conductor.manager.do_attach_virtual_media(task, device_type, image_url,
image_download_source)

ironic.conductor.manager.do_detach_virtual_media(task, device_types)

ironic.conductor.manager.do_sync_power_state(task, count)
Sync the power state for this node, incrementing the counter on failure.

When the limit of power_state_sync_max_retries is reached, the node is put into maintenance mode
and the error recorded.

Parameters

• task a TaskManager instance

• count number of times this node has previously failed a sync

Raises
NodeLocked if unable to upgrade task lock to an exclusive one

Returns
Count of failed attempts. On success, the counter is set to 0. On failure, the count
is incremented by one

ironic.conductor.manager.get_vendor_passthru_metadata(route_dict)

ironic.conductor.manager.handle_sync_power_state_max_retries_exceeded(task, ac-
tual_power_state,
excep-
tion=None)

Handles power state sync exceeding the max retries.

When synchronizing the power state between a node and the DB has exceeded the maximum num-
ber of retries, change the DB power state to be the actual node power state and place the node in
maintenance.

Parameters

• task a TaskManager instance with an exclusive lock

• actual_power_state the actual power state of the node; a power state from
ironic.common.states

936 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• exception the exception object that caused the sync power state to fail, if
present.

ironic.conductor.notification_utils module

ironic.conductor.notification_utils.emit_console_notification(task, action, status)
Helper for conductor sending a set console state notification.

Parameters

• task a TaskManager instance.

• action Action string to go in the EventType. Must be either console_set or
console_restore.

• status One of ironic.objects.fields.NotificationStatus.START, END or ER-
ROR.

ironic.conductor.notification_utils.emit_power_set_notification(task, level, status,
to_power)

Helper for conductor sending a set power state notification.

Parameters

• task a TaskManager instance.

• level Notification level. One of ironic.objects.fields.NotificationLevel.ALL

• status Status to go in the EventType. One of
ironic.objects.fields.NotificationStatus.SUCCESS or ERROR. ERROR
indicates that ironic-conductor couldnt retrieve the power state for this node,
or that it couldnt set the power state of the node.

• to_power the power state the conductor is attempting to set on the
node. This is used instead of the nodes target_power_state attribute
since the baremetal.node.power_set.start notification is sent early, before tar-
get_power_state is set on the node.

ironic.conductor.notification_utils.emit_power_state_corrected_notification(task,
from_power)

Helper for conductor sending a node power state corrected notification.

When ironic detects that the actual power state on a bare metal hardware is different
from the power state on an ironic node (DB), the ironic nodes power state is corrected
to be that of the bare metal hardware. A notification is emitted about this after the
database is updated to reflect this correction.

Parameters

• task a TaskManager instance.

• from_power the power state of the node before this change was detected

5.1. Developers Guide 937

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.notification_utils.emit_provision_set_notification(task, level,
status,
prev_state,
prev_target,
event)

Helper for conductor sending a set provision state notification.

Parameters

• task a TaskManager instance.

• level One of fields.NotificationLevel.

• status One of fields.NotificationStatus.

• prev_state Previous provision state.

• prev_target Previous target provision state.

• event FSM event that triggered provision state change.

ironic.conductor.periodics module

Conductor periodics.

exception ironic.conductor.periodics.Stop

Bases: Exception

A signal to stop the current iteration of a periodic task.

ironic.conductor.periodics.node_periodic(purpose, spacing, enabled=True, filters=None,
predicate=None, predicate_extra_fields=(),
limit=None, shared_task=True,
node_count_metric_name=None)

A decorator to define a periodic task to act on nodes.

Defines a periodic task that fetches the list of nodes mapped to the current conductor which satisfy
the provided filters.

The decorated function must be a method on either the conductor manager or a hardware interface.
The signature is:

• for conductor manager: (self, task, context)

• for hardware interfaces: (self, task, manager, context).

When the periodic is running on a hardware interface, only tasks using this interface are considered.

NodeNotFound and NodeLocked exceptions are ignored. Raise Stop to abort the current iteration
of the task and reschedule it.

Parameters

• purpose a human-readable description of the activity, e.g. verifying that the
cat is purring.

• spacing how often (in seconds) to run the periodic task.

• enabled whether the task is enabled; defaults to spacing > 0.

938 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• filters database-level filters for the nodes.

• predicate a callable to run on the fetched nodes before creating a task for
them. The only parameter will be a named tuple with fields uuid, driver,
conductor_group plus everything from predicate_extra_fields. If the
callable accepts a 2nd parameter, it will be the conductor manager instance.

• predicate_extra_fields extra fields to fetch on the initial request and pass
into the predicate. Must not contain uuid, driver and conductor_group
since they are always included.

• limit how many nodes to process before stopping the current iteration. If
predicate returns False, the node is not counted. If the decorated function
returns False, the node is not counted either. Can be a callable, in which case
it will be called on each iteration to determine the limit.

• shared_task if True, the task will have a shared lock. It is recommended
to start with a shared lock and upgrade it only if needed.

• node_count_metric_name A string value to identify a metric representing
the count of matching nodes to be recorded upon the completion of the peri-
odic.

ironic.conductor.periodics.periodic(spacing, enabled=True, **kwargs)
A decorator to define a periodic task.

Parameters

• spacing how often (in seconds) to run the periodic task.

• enabled whether the task is enabled; defaults to spacing > 0.

ironic.conductor.rpc_service module

class ironic.conductor.rpc_service.RPCService(host, manager_module, manager_class)
Bases: BaseRPCService

handle_signal()

Add a signal handler for SIGUSR1, SIGUSR2.

The SIGUSR1 handler ensures that the manager is not deregistered when it is shutdown.

The SIGUSR2 handler starts a drain shutdown.

stop()

Stop a service.

Parameters
graceful indicates whether to wait for all threads to finish or terminate them
instantly

5.1. Developers Guide 939

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.rpcapi module

Client side of the conductor RPC API.

class ironic.conductor.rpcapi.ConductorAPI(topic=None)
Bases: object

Client side of the conductor RPC API.

API version history:

1.0 - Initial version.
Included get_node_power_status

1.1 - Added update_node and start_power_state_change.
1.2 - Added vendor_passthru.
1.3 - Rename start_power_state_change to change_node_power_state.
1.4 - Added do_node_deploy and do_node_tear_down.
1.5 - Added validate_driver_interfaces.
1.6 - change_node_power_state, do_node_deploy and do_node_tear_down

accept node id instead of node object.
1.7 - Added topic parameter to RPC methods.
1.8 - Added change_node_maintenance_mode.
1.9 - Added destroy_node.
1.10 - Remove get_node_power_state
1.11 - Added get_console_information, set_console_mode.
1.12 - validate_vendor_action, do_vendor_action replaced by single

vendor_passthru method.
1.13 - Added update_port.
1.14 - Added driver_vendor_passthru.
1.15 - Added rebuild parameter to do_node_deploy.
1.16 - Added get_driver_properties.
1.17 - Added set_boot_device, get_boot_device and

get_supported_boot_devices.
1.18 - Remove change_node_maintenance_mode.
1.19 - Change return value of vendor_passthru and

driver_vendor_passthru
1.20 - Added http_method parameter to vendor_passthru and

driver_vendor_passthru
1.21 - Added get_node_vendor_passthru_methods and

get_driver_vendor_passthru_methods
1.22 - Added configdrive parameter to do_node_deploy.
1.23 - Added do_provisioning_action
1.24 - Added inspect_hardware method
1.25 - Added destroy_port
1.26 - Added continue_node_clean
1.27 - Convert continue_node_clean to cast

940 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

1.28 - Change exceptions raised by destroy_node
1.29 - Change return value of vendor_passthru and

driver_vendor_passthru to a dictionary
1.30 - Added set_target_raid_config and

get_raid_logical_disk_properties
1.31 - Added Versioned Objects indirection API methods:

object_class_action_versions, object_action and
object_backport_versions

1.32 - Add do_node_clean
1.33 - Added update and destroy portgroup.
1.34 - Added heartbeat
1.35 - Added destroy_volume_connector and update_volume_connector
1.36 - Added create_node
1.37 - Added destroy_volume_target and update_volume_target
1.38 - Added vif_attach, vif_detach, vif_list
1.39 - Added timeout optional parameter to change_node_power_state
1.40 - Added inject_nmi
1.41 - Added create_port
1.42 - Added optional agent_version to heartbeat
1.43 - Added do_node_rescue, do_node_unrescue and can_send_rescue
1.44 - Added add_node_traits and remove_node_traits.
1.45 - Added continue_node_deploy
1.46 - Added reset_interfaces to update_node
1.47 - Added support for conductor groups
1.48 - Added allocation API
1.49 - Added get_node_with_token and agent_token argument to heartbeat
1.50 - Added set_indicator_state, get_indicator_state and

get_supported_indicators.
1.51 - Added agent_verify_ca to heartbeat.
1.52 - Added deploy steps argument to provisioning
1.53 - Added disable_ramdisk to do_node_clean.
1.54 - Added optional agent_status and agent_status_message to heartbeat
1.55 - Added change_node_boot_mode
1.56 - Added continue_inspection
1.57 - Added do_node_service
1.58 - Added support for json-rpc port usage
1.59 - Added support for attaching/detaching virtual media
1.60 - Added continue_node_service
1.61 - Added get virtual media support

RPC_API_VERSION = '1.61'

add_node_traits(context, node_id, traits, replace=False, topic=None)
Add or replace traits for a node.

5.1. Developers Guide 941

Ironic Documentation, Release 26.1.2.dev21

Parameters

• context request context.

• node_id node ID or UUID.

• traits a list of traits to add to the node.

• replace True to replace all of the nodes traits.

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue if adding the traits would exceed the per-node traits
limit.

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node does not exist.

attach_virtual_media(context, node_id, device_type, image_url,
image_download_source=None, topic=None)

Attach a virtual media device to the node.

Parameters

• context request context.

• node_id node ID or UUID.

• image_url URL of the image to attach, HTTP or HTTPS.

• image_download_source Which way to serve the image to the BMC: http
to serve it from the provided location, local to serve it from the local web
server.

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if the driver does not support this call.

Raises
InvalidParameterValue if validation of management driver interface failed.

Raises
NodeLocked if node is locked by another conductor.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

can_send_create_port()

Return whether the RPCAPI supports the create_port method.

can_send_rescue()

Return whether the RPCAPI supports node rescue methods.

change_node_boot_mode(context, node_id, new_state, topic=None)
Change a nodes boot mode.

942 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Synchronously, acquire lock and start the conductor background task to change boot mode
of a node.

Parameters

• context request context.

• node_id node id or uuid.

• new_state one of ironic.common.boot_modes values (bios or uefi)

• topic RPC topic. Defaults to self.topic.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

change_node_power_state(context, node_id, new_state, topic=None, timeout=None)
Change a nodes power state.

Synchronously, acquire lock and start the conductor background task to change power state
of a node.

Parameters

• context request context.

• node_id node id or uuid.

• new_state one of ironic.common.states power state values

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

• topic RPC topic. Defaults to self.topic.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

change_node_secure_boot(context, node_id, new_state, topic=None)
Change a nodes secure_boot state.

Synchronously, acquire lock and start the conductor background task to change secure_boot
state of a node.

Parameters

• context request context.

• node_id node id or uuid.

• new_state Target secure boot state (True => on or False => off)

• topic RPC topic. Defaults to self.topic.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

continue_inspection(context, node_id, inventory, plugin_data=None, topic=None)
Continue in-band inspection.

Parameters

• context request context.

5.1. Developers Guide 943

Ironic Documentation, Release 26.1.2.dev21

• node_id node ID or UUID.

• inventory hardware inventory from the node.

• plugin_data optional plugin-specific data.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

continue_node_clean(context, node_id, topic=None)
Signal to conductor service to start the next cleaning action.

NOTE(JoshNang) this is an RPC cast, there will be no response or exception raised by the
conductor for this RPC.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

continue_node_deploy(context, node_id, topic=None)
Signal to conductor service to start the next deployment action.

NOTE(rloo): this is an RPC cast, there will be no response or exception raised by the con-
ductor for this RPC.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

continue_node_service(context, node_id, topic=None)
Signal to conductor service to start the next service action.

NOTE(janders): this is an RPC cast, there will be no response or exception raised by the
conductor for this RPC.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

create_allocation(context, allocation, topic=None)
Create an allocation.

Parameters

• context request context.

• allocation an allocation object.

• topic RPC topic. Defaults to self.topic.

944 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

create_node(context, node_obj, topic=None)
Synchronously, have a conductor validate and create a node.

Create the nodes information in the database and return a node object.

Parameters

• context request context.

• node_obj a created (but not saved) node object.

• topic RPC topic. Defaults to self.topic.

Returns
created node object.

Raises
InterfaceNotFoundInEntrypoint if validation fails for any dynamic interfaces
(e.g. network_interface).

Raises
NoValidDefaultForInterface if no default can be calculated for some interfaces,
and explicit values must be provided.

create_port(context, port_obj, topic=None)
Synchronously, have a conductor validate and create a port.

Create the ports information in the database and return a port object. The conductor will lock
related node and trigger specific driver actions if they are needed.

Parameters

• context request context.

• port_obj a created (but not saved) port object.

• topic RPC topic. Defaults to self.topic.

Returns
created port object.

destroy_allocation(context, allocation, topic=None)
Delete an allocation.

Parameters

• context request context.

• allocation an allocation object.

• topic RPC topic. Defaults to self.topic.

Raises
InvalidState if the associated node is in the wrong provision state to perform
deallocation.

destroy_node(context, node_id, topic=None)
Delete a node.

Parameters

• context request context.

5.1. Developers Guide 945

Ironic Documentation, Release 26.1.2.dev21

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeAssociated if the node contains an instance associated with it.

Raises
InvalidState if the node is in the wrong provision state to perform deletion.

destroy_port(context, port, topic=None)
Delete a port.

Parameters

• context request context.

• port port object

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node associated with the port does not exist.

destroy_portgroup(context, portgroup, topic=None)
Delete a portgroup.

Parameters

• context request context.

• portgroup portgroup object

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node associated with the portgroup does not exist.

Raises
PortgroupNotEmpty if portgroup is not empty

destroy_volume_connector(context, connector, topic=None)
Delete a volume connector.

Delete the volume connector. The conductor will lock the related node during this operation.

Parameters

• context request context

• connector volume connector object

• topic RPC topic. Defaults to self.topic.

946 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeLocked if node is locked by another conductor

Raises
NodeNotFound if the node associated with the connector does not exist

Raises
VolumeConnectorNotFound if the volume connector cannot be found

destroy_volume_target(context, target, topic=None)
Delete a volume target.

Parameters

• context request context

• target volume target object

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor

Raises
NodeNotFound if the node associated with the target does not exist

Raises
VolumeTargetNotFound if the volume target cannot be found

detach_virtual_media(context, node_id, device_types=None, topic=None)
Detach some or all virtual media devices from the node.

Parameters

• context request context.

• node_id node ID or UUID.

• device_types A collection of device type, ones from ironic.common.
boot_devices.VMEDIA_DEVICES. If not provided, all devices are de-
tached.

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if the driver does not support this call.

Raises
InvalidParameterValue if validation of management driver interface failed.

Raises
NodeLocked if node is locked by another conductor.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

do_node_clean(context, node_id, clean_steps, disable_ramdisk=None, topic=None)
Signal to conductor service to perform manual cleaning on a node.

Parameters

• context request context.

5.1. Developers Guide 947

Ironic Documentation, Release 26.1.2.dev21

• node_id node ID or UUID.

• clean_steps a list of clean step dictionaries.

• disable_ramdisk Whether to skip booting ramdisk for cleaning.

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue if validation of power driver interface failed.

Raises
InvalidStateRequested if cleaning can not be performed.

Raises
NodeInMaintenance if node is in maintenance mode.

Raises
NodeLocked if node is locked by another conductor.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

do_node_deploy(context, node_id, rebuild, configdrive, topic=None, deploy_steps=None)
Signal to conductor service to perform a deployment.

Parameters

• context request context.

• node_id node id or uuid.

• rebuild True if this is a rebuild request.

• configdrive A gzipped and base64 encoded configdrive.

• topic RPC topic. Defaults to self.topic.

• deploy_steps Deploy steps

Raises
InstanceDeployFailure

Raises
InvalidParameterValue if validation fails

Raises
MissingParameterValue if a required parameter is missing

Raises
NoFreeConductorWorker when there is no free worker to start async task.

The node must already be configured and in the appropriate undeployed state before this
method is called.

do_node_rescue(context, node_id, rescue_password, topic=None)
Signal to conductor service to perform a rescue.

Parameters

• context request context.

• node_id node ID or UUID.

948 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• rescue_password A string representing the password to be set inside the
rescue environment.

• topic RPC topic. Defaults to self.topic.

Raises
InstanceRescueFailure

Raises
NoFreeConductorWorker when there is no free worker to start async task.

The node must already be configured and in the appropriate state before this method is called.

do_node_service(context, node_id, service_steps, disable_ramdisk=None, topic=None)
Signal to conductor service to perform manual cleaning on a node.

Parameters

• context request context.

• node_id node ID or UUID.

• service_steps a list of service step dictionaries.

• disable_ramdisk Whether to skip booting ramdisk for service.

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue if validation of power driver interface failed.

Raises
InvalidStateRequested if cleaning can not be performed.

Raises
NodeInMaintenance if node is in maintenance mode.

Raises
NodeLocked if node is locked by another conductor.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

do_node_tear_down(context, node_id, topic=None)
Signal to conductor service to tear down a deployment.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Raises
InstanceDeployFailure

Raises
InvalidParameterValue if validation fails

Raises
MissingParameterValue if a required parameter is missing

5.1. Developers Guide 949

Ironic Documentation, Release 26.1.2.dev21

Raises
NoFreeConductorWorker when there is no free worker to start async task.

The node must already be configured and in the appropriate deployed state before this method
is called.

do_node_unrescue(context, node_id, topic=None)
Signal to conductor service to perform an unrescue.

Parameters

• context request context.

• node_id node ID or UUID.

• topic RPC topic. Defaults to self.topic.

Raises
InstanceUnrescueFailure

Raises
NoFreeConductorWorker when there is no free worker to start async task.

The node must already be configured and in the appropriate state before this method is called.

do_provisioning_action(context, node_id, action, topic=None)
Signal to conductor service to perform the given action on a node.

Parameters

• context request context.

• node_id node id or uuid.

• action an action. One of ironic.common.states.VERBS

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue

Raises
NoFreeConductorWorker when there is no free worker to start async task.

Raises
InvalidStateRequested if the requested action can not be performed.

This encapsulates some provisioning actions in a single call.

driver_vendor_passthru(context, driver_name, driver_method, http_method, info,
topic=None)

Pass vendor-specific calls which dont specify a node to a driver.

Handles driver-level vendor passthru calls. These calls dont require a node UUID and are
executed on a random conductor with the specified driver. If the method mode is async the
conductor will start background worker to perform vendor action.

Parameters

• context request context.

• driver_name name of the driver on which to call the method.

950 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• driver_method name of the vendor method, for use by the driver.

• http_method the HTTP method used for the request.

• info data to pass through to the driver.

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue for parameter errors.

Raises
MissingParameterValue if a required parameter is missing

Raises
UnsupportedDriverExtension if the driver doesnt have a vendor interface, or if
the vendor interface does not support the specified driver_method.

Raises
DriverNotFound if the supplied driver is not loaded.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

Raises
InterfaceNotFoundInEntrypoint if the default interface for a hardware type is
invalid.

Raises
NoValidDefaultForInterface if no default interface implementation can be
found for this drivers vendor interface.

Returns

A dictionary containing:

return
The response of the invoked vendor method

async
Boolean value. Whether the method was invoked asynchronously
(True) or synchronously (False). When invoked asynchronously the re-
sponse will be always None.

attach
Boolean value. Whether to attach the response of the invoked vendor
method to the HTTP response object (True) or return it in the response
body (False).

get_boot_device(context, node_id, topic=None)
Get the current boot device.

Returns the current boot device of a node.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

5.1. Developers Guide 951

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeLocked if node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management.

Raises
InvalidParameterValue when the wrong driver info is specified.

Raises
MissingParameterValue if missing supplied info.

Returns

a dictionary containing:

boot_device
the boot device, one of ironic.common.boot_devices or None if it
is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_conductor_for(node)
Get the conductor which the node is mapped to.

Parameters
node a node object.

Returns
the conductor hostname.

Raises
NoValidHost

get_console_information(context, node_id, topic=None)
Get connection information about the console.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support console.

Raises
InvalidParameterValue when the wrong driver info is specified.

Raises
MissingParameterValue if a required parameter is missing

get_current_topic()

Get RPC topic name for the current conductor.

952 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

get_driver_properties(context, driver_name, topic=None)
Get the properties of the driver.

Parameters

• context request context.

• driver_name name of the driver.

• topic RPC topic. Defaults to self.topic.

Returns
a dictionary with <property name>:<property description> entries.

Raises
DriverNotFound.

get_driver_vendor_passthru_methods(context, driver_name, topic=None)
Retrieve information about vendor methods of the given driver.

Parameters

• context an admin context.

• driver_name name of the driver.

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if current driver does not have vendor interface.

Raises
DriverNotFound if the supplied driver is not loaded.

Raises
InterfaceNotFoundInEntrypoint if the default interface for a hardware type is
invalid.

Raises
NoValidDefaultForInterface if no default interface implementation can be
found for this drivers vendor interface.

Returns
dictionary of <method name>:<method metadata> entries.

get_indicator_state(context, node_id, component, indicator, topic=None)
Get node hardware component indicator state.

Parameters

• context request context.

• node_id node id or uuid.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator IDs, as reported by get_supported_indicators)

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

5.1. Developers Guide 953

Ironic Documentation, Release 26.1.2.dev21

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management.

Raises
InvalidParameterValue when the wrong driver info is specified.

Raises
MissingParameterValue if missing supplied info.

Returns
Indicator state, one of mod:ironic.common.indicator_states.

get_node_vendor_passthru_methods(context, node_id, topic=None)
Retrieve information about vendor methods of the given node.

Parameters

• context an admin context.

• node_id the id or uuid of a node.

• topic RPC topic. Defaults to self.topic.

Returns
dictionary of <method name>:<method metadata> entries.

get_node_with_token(context, node_id, topic=None)
Request the node from the conductor with an agent token

Parameters

• context request context.

• node_id node ID or UUID.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Returns
A Node object with agent token.

get_raid_logical_disk_properties(context, driver_name, topic=None)
Get the logical disk properties for RAID configuration.

Gets the information about logical disk properties which can be specified in the input RAID
configuration.

Parameters

• context request context.

• driver_name name of the driver

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if the driver doesnt support RAID configuration.

Raises
InterfaceNotFoundInEntrypoint if the default interface for a hardware type is
invalid.

954 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NoValidDefaultForInterface if no default interface implementation can be
found for this drivers RAID interface.

Returns
A dictionary containing the properties that can be mentioned for logical disks
and a textual description for them.

get_random_topic()

Get an RPC topic for a random conductor service.

get_supported_boot_devices(context, node_id, topic=None)
Get the list of supported devices.

Returns the list of supported boot devices of a node.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management.

Raises
InvalidParameterValue when the wrong driver info is specified.

Raises
MissingParameterValue if missing supplied info.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

get_supported_indicators(context, node_id, component=None, topic=None)
Get node hardware components and their indicators.

Parameters

• context request context.

• node_id node id or uuid.

• component The hardware component, one of ironic.common.
components.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management.

Raises
InvalidParameterValue when the wrong driver info is specified.

5.1. Developers Guide 955

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if missing supplied info.

Returns

A dictionary of hardware components (ironic.common.components) as keys
with indicator IDs as values.

{
'chassis': ['enclosure-0'],
'system': ['blade-A']
'drive': ['ssd0']

}

get_topic_for(node)
Get the RPC topic for the conductor service the node is mapped to.

Parameters
node a node object.

Returns
an RPC topic string.

Raises
NoValidHost

get_topic_for_driver(driver_name)
Get RPC topic name for a conductor supporting the given driver.

The topic is used to route messages to the conductor supporting the specified driver. A con-
ductor is selected at random from the set of qualified conductors.

Parameters
driver_name the name of the driver to route to.

Returns
an RPC topic string.

Raises
DriverNotFound

get_virtual_media(context, node_id, topic=None)
Get all virtual media devices from the node.

Parameters

• context request context.

• node_id node ID or UUID.

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if the driver does not support this call.

Raises
InvalidParameterValue if validation of management driver interface failed.

Raises
NodeLocked if node is locked by another conductor.

956 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

heartbeat(context, node_id, callback_url, agent_version, agent_token=None,
agent_verify_ca=None, agent_status=None, agent_status_message=None,
topic=None)

Process a node heartbeat.

Parameters

• context request context.

• node_id node ID or UUID.

• callback_url URL to reach back to the ramdisk.

• topic RPC topic. Defaults to self.topic.

• agent_token randomly generated validation token.

• agent_version the version of the agent that is heartbeating

• agent_verify_ca TLS certificate for the agent.

• agent_status The status of the agent that is heartbeating

• agent_status_message Optional message describing the agent status

Raises
InvalidParameterValue if an invalid agent token is received.

inject_nmi(context, node_id, topic=None)
Inject NMI for a node.

Inject NMI (Non Maskable Interrupt) for a node immediately. Be aware that not all drivers
support this.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management
or management.inject_nmi.

Raises
InvalidParameterValue when the wrong driver info is specified or an invalid
boot device is specified.

Raises
MissingParameterValue if missing supplied info.

inspect_hardware(context, node_id, topic=None)
Signals the conductor service to perform hardware introspection.

Parameters

• context request context.

5.1. Developers Guide 957

Ironic Documentation, Release 26.1.2.dev21

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
HardwareInspectionFailure

Raises
NoFreeConductorWorker when there is no free worker to start async task.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support inspection.

Raises
InvalidStateRequested if inspect is not a valid action to do in the current state.

object_action(context, objinst, objmethod, args, kwargs)
Perform an action on a VersionedObject instance.

We want any conductor to handle this, so it is intentional that there is no topic argument for
this method.

Parameters

• context The context within which to perform the action

• objinst The object instance on which to perform the action

• objmethod The name of the action method to call

• args The positional arguments to the action method

• kwargs The keyword arguments to the action method

Raises
NotImplementedError when an operator makes an error during upgrade

Returns
A tuple with the updates made to the object and the result of the action method

object_backport_versions(context, objinst, object_versions)
Perform a backport of an object instance.

The default behavior of the base VersionedObjectSerializer, upon receiving an object with a
version newer than what is in the local registry, is to call this method to request a backport of
the object.

We want any conductor to handle this, so it is intentional that there is no topic argument for
this method.

Parameters

• context The context within which to perform the backport

• objinst An instance of a VersionedObject to be backported

• object_versions A dict of {objname: version} mappings

Raises
NotImplementedError when an operator makes an error during upgrade

958 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
The downgraded instance of objinst

object_class_action_versions(context, objname, objmethod, object_versions, args,
kwargs)

Perform an action on a VersionedObject class.

We want any conductor to handle this, so it is intentional that there is no topic argument for
this method.

Parameters

• context The context within which to perform the action

• objname The registry name of the object

• objmethod The name of the action method to call

• object_versions A dict of {objname: version} mappings

• args The positional arguments to the action method

• kwargs The keyword arguments to the action method

Raises
NotImplementedError when an operator makes an error during upgrade

Returns
The result of the action method, which may (or may not) be an instance of the
implementing VersionedObject class.

remove_node_traits(context, node_id, traits, topic=None)
Remove some or all traits from a node.

Parameters

• context request context.

• node_id node ID or UUID.

• traits a list of traits to remove from the node, or None. If None, all traits
will be removed from the node.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
NodeNotFound if the node does not exist.

Raises
NodeTraitNotFound if one of the traits is not found.

set_boot_device(context, node_id, device, persistent=False, topic=None)
Set the boot device for a node.

Set the boot device to use on next reboot of the node. Be aware that not all drivers support
this.

Parameters

• context request context.

5.1. Developers Guide 959

Ironic Documentation, Release 26.1.2.dev21

• node_id node id or uuid.

• device the boot device, one of ironic.common.boot_devices.

• persistent Whether to set next-boot, or make the change permanent. De-
fault: False.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management.

Raises
InvalidParameterValue when the wrong driver info is specified or an invalid
boot device is specified.

Raises
MissingParameterValue if missing supplied info.

set_console_mode(context, node_id, enabled, topic=None)
Enable/Disable the console.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

• enabled Boolean value; whether the console is enabled or disabled.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support console.

Raises
InvalidParameterValue when the wrong driver info is specified.

Raises
MissingParameterValue if a required parameter is missing

Raises
NoFreeConductorWorker when there is no free worker to start async task.

set_indicator_state(context, node_id, component, indicator, state, topic=None)
Set node hardware components indicator to the desired state.

Parameters

• context request context.

• node_id node id or uuid.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator IDs, as reported by get_supported_indicators)

• state Indicator state, one of mod:ironic.common.indicator_states.

960 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked if node is locked by another conductor.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support management.

Raises
InvalidParameterValue when the wrong driver info is specified or an invalid
boot device is specified.

Raises
MissingParameterValue if missing supplied info.

set_target_raid_config(context, node_id, target_raid_config, topic=None)
Stores the target RAID configuration on the node.

Stores the target RAID configuration on node.target_raid_config

Parameters

• context request context.

• node_id node id or uuid.

• target_raid_config Dictionary containing the target RAID configura-
tion. It may be an empty dictionary as well.

• topic RPC topic. Defaults to self.topic.

Raises
UnsupportedDriverExtension if the nodes driver doesnt support RAID config-
uration.

Raises
InvalidParameterValue, if validation of target raid config fails.

Raises
MissingParameterValue, if some required parameters are missing.

Raises
NodeLocked if node is locked by another conductor.

update_node(context, node_obj, topic=None, reset_interfaces=False)
Synchronously, have a conductor update the nodes information.

Update the nodes information in the database and return a node object. The conductor will
lock the node while it validates the supplied information. If driver_info is passed, it will be
validated by the core drivers. If instance_uuid is passed, it will be set or unset only if the
node is properly configured.

Note that power_state should not be passed via this method. Use change_node_power_state
for initiating driver actions.

Parameters

• context request context.

• node_obj a changed (but not saved) node object.

• topic RPC topic. Defaults to self.topic.

5.1. Developers Guide 961

Ironic Documentation, Release 26.1.2.dev21

• reset_interfaces whether to reset hardware interfaces to their defaults.

Returns
updated node object, including all fields.

Raises
NoValidDefaultForInterface if no default can be calculated for some interfaces,
and explicit values must be provided.

update_port(context, port_obj, topic=None)
Synchronously, have a conductor update the ports information.

Update the ports information in the database and return a port object. The conductor will
lock related node and trigger specific driver actions if they are needed.

Parameters

• context request context.

• port_obj a changed (but not saved) port object.

• topic RPC topic. Defaults to self.topic.

Returns
updated port object, including all fields.

update_portgroup(context, portgroup_obj, topic=None)
Synchronously, have a conductor update the portgroups information.

Update the portgroups information in the database and return a portgroup object. The con-
ductor will lock related node and trigger specific driver actions if they are needed.

Parameters

• context request context.

• portgroup_obj a changed (but not saved) portgroup object.

• topic RPC topic. Defaults to self.topic.

Returns
updated portgroup object, including all fields.

update_volume_connector(context, connector, topic=None)
Update the volume connectors information.

Update the volume connectors information in the database and return a volume connector
object. The conductor will lock the related node during this operation.

Parameters

• context request context

• connector a changed (but not saved) volume connector object

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue if the volume connectors UUID is being changed

Raises
NodeLocked if node is locked by another conductor

962 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node associated with the connector does not exist

Raises
VolumeConnectorNotFound if the volume connector cannot be found

Raises
VolumeConnectorTypeAndIdAlreadyExists if another connector already exists
with the same values for type and connector_id fields

Returns
updated volume connector object, including all fields.

update_volume_target(context, target, topic=None)
Update the volume targets information.

Update the volume targets information in the database and return a volume target object. The
conductor will lock the related node during this operation.

Parameters

• context request context

• target a changed (but not saved) volume target object

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue if the volume targets UUID is being changed

Raises
NodeLocked if the node is already locked

Raises
NodeNotFound if the node associated with the volume target does not exist

Raises
VolumeTargetNotFound if the volume target cannot be found

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same node ID and boot index values

Returns
updated volume target object, including all fields

validate_driver_interfaces(context, node_id, topic=None)
Validate the core and standardized interfaces for drivers.

Parameters

• context request context.

• node_id node id or uuid.

• topic RPC topic. Defaults to self.topic.

Returns
a dictionary containing the results of each interface validation.

5.1. Developers Guide 963

Ironic Documentation, Release 26.1.2.dev21

vendor_passthru(context, node_id, driver_method, http_method, info, topic=None)
Receive requests for vendor-specific actions.

Synchronously validate driver specific info or get driver status, and if successful invokes the
vendor method. If the method mode is async the conductor will start background worker to
perform vendor action.

Parameters

• context request context.

• node_id node id or uuid.

• driver_method name of method for driver.

• http_method the HTTP method used for the request.

• info info for node driver.

• topic RPC topic. Defaults to self.topic.

Raises
InvalidParameterValue if supplied info is not valid.

Raises
MissingParameterValue if a required parameter is missing

Raises
UnsupportedDriverExtension if current driver does not have vendor interface.

Raises
NoFreeConductorWorker when there is no free worker to start async task.

Raises
NodeLocked if node is locked by another conductor.

Returns

A dictionary containing:

return
The response of the invoked vendor method

async
Boolean value. Whether the method was invoked asynchronously
(True) or synchronously (False). When invoked asynchronously the re-
sponse will be always None.

attach
Boolean value. Whether to attach the response of the invoked vendor
method to the HTTP response object (True) or return it in the response
body (False).

vif_attach(context, node_id, vif_info, topic=None)
Attach VIF to a node

Parameters

• context request context.

• node_id node ID or UUID.

964 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• vif_info a dictionary representing VIF object. It must have an id key,
whose value is a unique identifier for that VIF.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked, if node has an exclusive lock held on it

Raises
NetworkError, if an error occurs during attaching the VIF.

Raises
InvalidParameterValue, if a parameter thats required for VIF attach is
wrong/missing.

vif_detach(context, node_id, vif_id, topic=None)
Detach VIF from a node

Parameters

• context request context.

• node_id node ID or UUID.

• vif_id an ID of a VIF.

• topic RPC topic. Defaults to self.topic.

Raises
NodeLocked, if node has an exclusive lock held on it

Raises
NetworkError, if an error occurs during detaching the VIF.

Raises
InvalidParameterValue, if a parameter thats required for VIF detach is
wrong/missing.

vif_list(context, node_id, topic=None)
List attached VIFs for a node

Parameters

• context request context.

• node_id node ID or UUID.

• topic RPC topic. Defaults to self.topic.

Returns
List of VIF dictionaries, each dictionary will have an id entry with the ID of
the VIF.

Raises
NetworkError, if an error occurs during listing the VIFs.

Raises
InvalidParameterValue, if a parameter thats required for VIF list is
wrong/missing.

5.1. Developers Guide 965

Ironic Documentation, Release 26.1.2.dev21

class ironic.conductor.rpcapi.LocalContext

Bases: object

Context to make calls to a local conductor.

call(context, rpc_call_name, **kwargs)
Make a local conductor call.

cast(context, rpc_call_name, **kwargs)
Make a local conductor call.

It is expected that the underlying call uses a thread to avoid blocking the caller.

Any exceptions are logged and ignored.

ironic.conductor.servicing module

Functionality related to servicing.

ironic.conductor.servicing.continue_node_service(task)
Continue servicing after finishing an async service step.

This function calculates which step has to run next and passes control into do_next_service_step.

Parameters
task a TaskManager instance with an exclusive lock

ironic.conductor.servicing.do_next_service_step(task, step_index,
disable_ramdisk=None)

Do service, starting from the specified service step.

Parameters

• task a TaskManager instance with an exclusive lock

• step_index The first service step in the list to execute. This is the index (from
0) into the list of service steps in the nodes driver_internal_info[service_steps].
Is None if there are no steps to execute.

• disable_ramdisk Whether to skip booting ramdisk for service.

ironic.conductor.servicing.do_node_service(task, service_steps=None,
disable_ramdisk=False)

Internal RPC method to perform servicing of a node.

Parameters

• task a TaskManager instance with an exclusive lock on its node

• service_steps The list of service steps to perform. If none, step validation
will fail.

• disable_ramdisk Whether to skip booting ramdisk for servicing.

ironic.conductor.servicing.do_node_service_abort(task)
Internal method to abort an ongoing operation.

Parameters
task a TaskManager instance with an exclusive lock

966 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.servicing.execute_step_on_child_nodes(task, step)
Execute a requested step against a child node.

Parameters

• task The TaskManager object for the parent node.

• step The requested step to be executed.

Returns
None on Success, the resulting error message if a failure has occurred.

ironic.conductor.servicing.get_last_error(node)

ironic.conductor.steps module

ironic.conductor.steps.find_step(steps, step)
Find an identical step in the list of steps.

ironic.conductor.steps.is_equivalent(step1, step2)
Compare steps, ignoring their priority.

ironic.conductor.steps.set_node_cleaning_steps(task, disable_ramdisk=False)
Set up the node with clean step information for cleaning.

For automated cleaning, get the clean steps from the driver. For manual cleaning, the users clean
steps are known but need to be validated against the drivers clean steps.

Parameters
disable_ramdisk If True, only steps with requires_ramdisk=False are accepted.

Raises
InvalidParameterValue if there is a problem with the users clean steps.

Raises
NodeCleaningFailure if there was a problem getting the clean steps.

ironic.conductor.steps.set_node_deployment_steps(task, reset_current=True,
skip_missing=False)

Set up the node with deployment step information for deploying.

Get the deploy steps from the driver.

Parameters
reset_current Whether to reset the current step to the first one.

Raises
InstanceDeployFailure if there was a problem getting the deployment steps.

ironic.conductor.steps.set_node_service_steps(task, disable_ramdisk=False)
Set up the node with clean step information for cleaning.

For automated cleaning, get the clean steps from the driver. For manual cleaning, the users clean
steps are known but need to be validated against the drivers clean steps.

Parameters
disable_ramdisk If True, only steps with requires_ramdisk=False are accepted.

5.1. Developers Guide 967

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if there is a problem with the users clean steps.

Raises
NodeCleaningFailure if there was a problem getting the service steps.

ironic.conductor.steps.step_id(step)
Return the ID of a deploy step.

The ID is a string, <interface>.<step>.

Parameters
step the step dictionary.

Returns
the steps ID string.

ironic.conductor.steps.use_reserved_step_handler(task, step)
Returns guidance for reserved step execution or process is used.

This method is utilized to handle some specific cases with the execution of steps. For example,
reserved step names, or reserved names which have specific meaning in the state machine.

Parameters

• task a TaskManager object.

• step The requested step.

ironic.conductor.steps.validate_user_deploy_steps_and_templates(task, de-
ploy_steps=None,
skip_missing=False)

Validate the user deploy steps and the deploy templates for a node.

Parameters

• task A TaskManager object

• deploy_steps Deploy steps to validate. Optional. If not provided then will
check nodes driver internal info.

• skip_missing whether skip missing steps that are not yet available at the
time of validation.

Raises
InvalidParameterValue if the instance has traits that map to deploy steps that are
unsupported by the nodes driver interfaces or user deploy steps are unsupported by
the nodes driver interfaces

Raises
InstanceDeployFailure if there was a problem getting the deploy steps from the
driver.

968 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.task_manager module

A context manager to perform a series of tasks on a set of resources.

TaskManager is a context manager, created on-demand to allow synchronized access to a node and its
resources.

The TaskManager will, by default, acquire an exclusive lock on a node for the duration that the TaskMan-
ager instance exists. You may create a TaskManager instance without locking by passing shared=True
when creating it, but certain operations on the resources held by such an instance of TaskManager will
not be possible. Requiring this exclusive lock guards against parallel operations interfering with each
other.

A shared lock is useful when performing non-interfering operations, such as validating the driver inter-
faces.

An exclusive lock is stored in the database to coordinate between ironic.conductor.manager in-
stances, that are typically deployed on different hosts.

TaskManager methods, as well as driver methods, may be decorated to determine whether their invoca-
tion requires an exclusive lock.

The TaskManager instance exposes certain node resources and properties as attributes that you may
access:

task.context
The context passed to TaskManager()

task.shared
False if Node is locked, True if it is not locked. (The shared kwarg arg of TaskMan-
ager())

task.node
The Node object

task.ports
Ports belonging to the Node

task.portgroups
Portgroups belonging to the Node

task.volume_connectors
Storage connectors belonging to the Node

task.volume_targets
Storage targets assigned to the Node

task.driver
The Driver for the Node, or the Driver based on the driver_name kwarg of TaskMan-
ager().

Example usage:

with task_manager.acquire(context, node_id, purpose='power on') as task:
task.driver.power.power_on(task.node)

If you need to execute task-requiring code in a background thread, the TaskManager instance provides an
interface to handle this for you, making sure to release resources when the thread finishes (successfully
or if an exception occurs). Common use of this is within the Manager like so:

5.1. Developers Guide 969

Ironic Documentation, Release 26.1.2.dev21

with task_manager.acquire(context, node_id, purpose='some work') as task:
<do some work>
task.spawn_after(self._spawn_worker,

utils.node_power_action, task, new_state)

All exceptions that occur in the current GreenThread as part of the spawn handling are re-raised. You
can specify a hook to execute custom code when such exceptions occur. For example, the hook is a more
elegant solution than wrapping the with task_manager.acquire() with a try..exception block. (Note that
this hook does not handle exceptions raised in the background thread.):

def on_error(e):
if isinstance(e, Exception):

...

with task_manager.acquire(context, node_id, purpose='some work') as task:
<do some work>
task.set_spawn_error_hook(on_error)
task.spawn_after(self._spawn_worker,

utils.node_power_action, task, new_state)

class ironic.conductor.task_manager.TaskManager(context, node_id, shared=False,
purpose=’unspecified action’,
retry=True, patient=False,
load_driver=True)

Bases: object

Context manager for tasks.

This class wraps the locking, driver loading, and acquisition of related resources (eg, Node and
Ports) when beginning a unit of work.

downgrade_lock()

Downgrade the lock to a shared one.

load_driver()

property node

property portgroups

property ports

process_event(event, callback=None, call_args=None, call_kwargs=None,
err_handler=None, target_state=None, last_error=None)

Process the given event for the tasks current state.

Parameters

• event the name of the event to process

• callback optional callback to invoke upon event transition

• call_args optional args to pass to the callback method

• call_kwargs optional kwargs to pass to the callback method

970 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• err_handler optional error handler to invoke if the callback fails, eg. be-
cause there are no workers available (err_handler should accept arguments
node, prev_prov_state, and prev_target_state)

• target_state if specified, the target provision state for the node. Other-
wise, use the target state from the fsm

• last_error last error to set on the node together with the state transition.

Raises
InvalidState if the event is not allowed by the associated state machine

release_resources()

Unlock a node and release resources.

If an exclusive lock is held, unlock the node. Reset attributes to make it clear that this instance
of TaskManager should no longer be accessed.

resume_cleaning()

A helper to resume cleaning with the right target state.

set_spawn_error_hook(_on_error_method, *args, **kwargs)
Create a hook to handle exceptions when spawning a task.

Create a hook that gets called upon an exception being raised from spawning a background
thread to do a task.

Parameters

• _on_error_method a callable object, its first parameter should accept the
Exception object that was raised.

• args additional args passed to the callable object.

• kwargs additional kwargs passed to the callable object.

spawn_after(_spawn_method, *args, **kwargs)
Call this to spawn a thread to complete the task.

The specified method will be called when the TaskManager instance exits.

Parameters

• _spawn_method a method that returns a GreenThread object

• args args passed to the method.

• kwargs additional kwargs passed to the method.

upgrade_lock(purpose=None, retry=None)
Upgrade a shared lock to an exclusive lock.

Also reloads node object from the database. If lock is already exclusive only changes the lock
purpose when provided with one.

Parameters

• purpose optionally change the purpose of the lock

• retry whether to retry locking if it fails, the class-level value is used by
default

5.1. Developers Guide 971

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeLocked if an exclusive lock remains on the node after
node_locked_retry_attempts

property volume_connectors

property volume_targets

ironic.conductor.task_manager.acquire(context, *args, **kwargs)
Shortcut for acquiring a lock on a Node.

Parameters
context Request context.

Returns
An instance of TaskManager.

ironic.conductor.task_manager.require_exclusive_lock(f)
Decorator to require an exclusive lock.

Decorated functions must take a TaskManager as the first parameter. Decorated class methods
should take a TaskManager as the first parameter after self.

ironic.conductor.utils module

ironic.conductor.utils.abort_on_conductor_take_over(task)
Set nodes state when a task was aborted due to conductor take over.

Parameters
task a TaskManager instance.

ironic.conductor.utils.add_secret_token(node, pregenerated=False)
Adds a secret token to driver_internal_info for IPA verification.

Parameters

• node Node object

• pregenerated Boolean value, default False, which indicates if the token
should be marked as pregenerated in order to facilitate virtual media booting
where the token is embedded into the configuration.

ironic.conductor.utils.agent_is_alive(node, timeout=None)
Check that the agent is likely alive.

The method then checks for the last agent heartbeat, and if it occurred within the timeout set by
[deploy]fast_track_timeout, then agent is presumed alive.

Parameters

• node A node object.

• timeout Heartbeat timeout, defaults to fast_track_timeout.

ironic.conductor.utils.build_configdrive(node, configdrive)
Build a configdrive from provided meta_data, network_data and user_data.

If uuid or name are not provided in the meta_data, theyre defaulted to the nodes uuid and name
accordingly.

972 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node an Ironic node object.

• configdrive A configdrive as a dict with keys meta_data, network_data,
user_data and vendor_data (all optional).

Returns
A gzipped and base64 encoded configdrive as a string.

ironic.conductor.utils.cleaning_error_handler(task, logmsg, errmsg=None,
traceback=False,
tear_down_cleaning=True,
set_fail_state=True,
set_maintenance=None)

Put a failed node in CLEANFAIL and maintenance (if needed).

Parameters

• task a TaskManager instance.

• logmsg Message to be logged.

• errmsg Message for the user. Optional, if not provided logmsg is used.

• traceback Whether to log a traceback. Defaults to False.

• tear_down_cleaning Whether to clean up the PXE and DHCP files after
cleaning. Default to True.

• set_fail_state Whether to set node to failed state. Default to True.

• set_maintenance Whether to set maintenance mode. If None, maintenance
mode will be set if and only if a clean step is being executed on a node.

ironic.conductor.utils.cleanup_after_timeout(task)
Cleanup deploy task after timeout.

Parameters
task a TaskManager instance.

ironic.conductor.utils.cleanup_cleanwait_timeout(task)
Cleanup a cleaning task after timeout.

Parameters
task a TaskManager instance.

ironic.conductor.utils.cleanup_rescuewait_timeout(task)
Cleanup rescue task after timeout.

Parameters
task a TaskManager instance.

ironic.conductor.utils.cleanup_servicewait_timeout(task)
Cleanup a servicing task after timeout.

Parameters
task a TaskManager instance.

5.1. Developers Guide 973

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.utils.deploying_error_handler(task, logmsg, errmsg=None,
traceback=False, clean_up=True)

Put a failed node in DEPLOYFAIL.

Parameters

• task the task

• logmsg message to be logged

• errmsg message for the user

• traceback Boolean; True to log a traceback

• clean_up Boolean; True to clean up

ironic.conductor.utils.exclude_current_conductor(current_conductor,
offline_conductors)

Wrapper to exclude current conductor from offline_conductors

In some cases the current conductor may have failed to update the heartbeat timestamp due to
failure or resource starvation. When this occurs the dbapi get_offline_conductors method will
include the current conductor in its return value.

Parameters

• current_conductor id or hostname of the current conductor

• offline_conductors List of offline conductors.

Returns
List of offline conductors, excluding current conductor

ironic.conductor.utils.fail_on_error(error_callback, msg, *error_args, **error_kwargs)
A decorator for failing operation on failure.

ironic.conductor.utils.fast_track_able(task)
Checks if the operation can be a streamlined deployment sequence.

This is mainly focused on ensuring that we are able to quickly sequence through operations if we
already have a ramdisk heartbeating through external means.

Parameters
task Taskmanager object

Returns
True if [deploy]fast_track is set to True, no iSCSI boot configuration is present,
and no last_error is present for the node indicating that there was a recent failure.

ironic.conductor.utils.get_attached_vif(port)
Get any attached vif ID for the port

Parameters
port The port object upon which to check for a vif record.

Returns
Returns a tuple of the vif if found and the use of the vif in the form of a string,
tenant, cleaning provisioning, rescuing.

Raises
InvalidState exception upon finding a port with a transient state vif on the port.

974 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.utils.get_configdrive_image(node)
Get configdrive as an ISO image or a URL.

Converts the JSON representation into an image. URLs and raw contents are returned unchanged.

Parameters
node an Ironic node object.

Returns
A gzipped and base64 encoded configdrive as a string.

ironic.conductor.utils.get_node_next_clean_steps(task, skip_current_step=True)

ironic.conductor.utils.get_node_next_deploy_steps(task, skip_current_step=True)

ironic.conductor.utils.get_token_project_from_request(ctx)
Identifies the request originator project via keystone token details.

This method evaluates the auth_token_info field, which is used to pass information returned
from keystone as a tokens verification. This information is based upon the actual, original requester
context provided auth_token.

When a service, such as Nova proxies a request, the request provided auth token value is intended
to be from the original user.

Returns
The project ID value.

ironic.conductor.utils.hash_password(password=”)
Hashes a supplied password.

Parameters
password password to be hashed

ironic.conductor.utils.is_agent_token_pregenerated(node)
Determines if the token was generated for out of band configuration.

Ironic supports the ability to provide configuration data to the agent through the a virtual floppy or
as part of the virtual media image which is attached to the BMC.

This method helps us identify WHEN we did so as we dont need to remove records of the token
prior to rebooting the token. This is important as tokens provided through out of band means
persist in the virtual media image, are loaded as part of the agent ramdisk, and do not require
regeneration of the token upon the initial lookup, ultimately making the overall usage of virtual
media and pregenerated tokens far more secure.

Parameters
node Node Object

Returns
True if the token was pregenerated as indicated by the nodes driver_internal_info
field. False in all other cases.

ironic.conductor.utils.is_agent_token_present(node)
Determines if an agent token is present upon a node.

Parameters
node Node object

5.1. Developers Guide 975

Ironic Documentation, Release 26.1.2.dev21

Returns
True if an agent_secret_token value is present in a node driver_internal_info field.

ironic.conductor.utils.is_agent_token_valid(node, token)
Validates if a supplied token is valid for the node.

Parameters

• node Node object

• token A token value to validate against the driver_internal_info field
agent_secret_token.

Returns
True if the supplied token matches the token recorded in the supplied node object.

ironic.conductor.utils.is_fast_track(task)
Checks a fast track is available.

This method first ensures that the node and conductor configuration is valid to perform a fast track
sequence meaning that we already have a ramdisk running through another means like discovery.
If not valid, False is returned.

The method then checks for the last agent heartbeat, and if it occurred within the timeout set by
[deploy]fast_track_timeout and the power state for the machine is POWER_ON, then fast track is
permitted.

Parameters
task Taskmanager object

Returns
True if the last heartbeat that was recorded was within the [de-
ploy]fast_track_timeout setting.

ironic.conductor.utils.make_salt()

Generate a random salt with the indicator tag for password type.

Returns
a valid salt for use with crypt.crypt

ironic.conductor.utils.node_cache_bios_settings(task)
Do caching of bios settings if supported by driver

ironic.conductor.utils.node_cache_boot_mode(task)
Cache boot_mode and secure_boot state if supported by driver.

Cache current boot_mode and secure_boot in ironics node representation

Parameters
task a TaskManager instance containing the node to check.

ironic.conductor.utils.node_cache_firmware_components(task)
Do caching of firmware components if supported by driver

ironic.conductor.utils.node_cache_vendor(task)
Cache the vendor if it can be detected.

ironic.conductor.utils.node_change_boot_mode(task, target_boot_mode)
Change boot mode to requested state for node

976 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• task a TaskManager instance containing the node to act on.

• target_boot_mode Any boot mode in ironic.common.boot_modes.

ironic.conductor.utils.node_change_secure_boot(task, secure_boot_target)
Change secure_boot state to requested state for node

Parameters

• task a TaskManager instance containing the node to act on.

• secure_boot_target (boolean) Target secure_boot state OneOf(True =>
on, False => off)

ironic.conductor.utils.node_get_boot_mode(task)
Read currently set boot mode from a node.

Reads the boot mode for a node. If boot mode cant be discovered, None is returned.

Parameters
task a TaskManager instance.

Raises
DriverOperationError or its derivative in case of driver runtime error.

Raises
UnsupportedDriverExtension if current driver does not have management interface
or get_boot_mode() method is not supported.

Returns
Boot mode. One of ironic.common.boot_mode or None if boot mode cant be
discovered

ironic.conductor.utils.node_history_record(node, conductor=None, event=None,
event_type=None, user=None, error=False)

Records a node history record

Adds an entry to the node history table with the appropriate fields populated to ensure consistent
experience by also updating the node last_error field. Please note the event is only recorded if
the [conductor]node_history_max_size parameter is set to a value greater than 0.

Parameters

• node A node object from a task object. Required.

• conductor The hostname of the conductor. If not specified this value is
populated with the conductor FQDN.

• event The text to record to the node history table. If no value is supplied, the
method silently returns to the caller.

• event_type The type activity where the event was encountered, either pro-
visioning, monitoring, cleaning, or whatever text the a driver author wishes
to supply based upon the activity. The purpose is to help guide an API con-
sumer/operator to have a better contextual understanding of what was going
on when the event occurred.

• user The user_id value which triggered the request, if available.

5.1. Developers Guide 977

Ironic Documentation, Release 26.1.2.dev21

• error Boolean value, default false, to signify if the event is an error which
should be recorded in the node last_error field.

Returns
None. No value is returned by this method.

ironic.conductor.utils.node_power_action(task, new_state, timeout=None)
Change power state or reset for a node.

Perform the requested power action if the transition is required.

Parameters

• task a TaskManager instance containing the node to act on.

• new_state Any power state from ironic.common.states.

• timeout timeout (in seconds) positive integer (> 0) for any power state. None
indicates to use default timeout.

Raises
InvalidParameterValue when the wrong state is specified or the wrong driver info
is specified.

Raises
StorageError when a failure occurs updating the nodes storage interface upon set-
ting power on.

Raises
other exceptions by the nodes power driver if something wrong occurred during
the power action.

ironic.conductor.utils.node_set_boot_device(task, device, persistent=False)
Set the boot device for a node.

If the node that the boot device change is being requested for is in ADOPTING state, the boot device
will not be set as that change could potentially result in the future running state of an adopted node
being modified erroneously.

Parameters

• task a TaskManager instance.

• device Boot device. Values are vendor-specific.

• persistent Whether to set next-boot, or make the change permanent. De-
fault: False.

Raises
InvalidParameterValue if the validation of the ManagementInterface fails.

ironic.conductor.utils.node_set_boot_mode(task, mode)
Set the boot mode for a node.

Sets the boot mode for a node if the nodes driver interface contains a management interface.

If the node that the boot mode change is being requested for is in ADOPTING state, the boot mode
will not be set as that change could potentially result in the future running state of an adopted node
being modified erroneously.

Parameters

978 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• task a TaskManager instance.

• mode Boot mode. Values are one of ironic.common.boot_modes

Raises
InvalidParameterValue if the validation of the ManagementInterface fails.

Raises
DriverOperationError or its derivative in case of driver runtime error.

Raises
UnsupportedDriverExtension if current driver does not have vendor interface or
method is unsupported.

ironic.conductor.utils.node_update_cache(task)
Updates various cached information.

Includes vendor, boot mode, BIOS settings and firmware components.

Parameters
task A TaskManager instance containing the node to act on.

ironic.conductor.utils.node_wait_for_power_state(task, new_state, timeout=None)
Wait for node to be in new power state.

Parameters

• task a TaskManager instance.

• new_state the desired new power state, one of the power states in ironic.
common.states.

• timeout number of seconds to wait before giving up. If not specified, uses
the conductor.power_state_change_timeout config value.

Raises
PowerStateFailure if timed out

ironic.conductor.utils.notify_conductor_resume_clean(task)

ironic.conductor.utils.notify_conductor_resume_deploy(task)

ironic.conductor.utils.notify_conductor_resume_operation(task, operation)
Notify the conductor to resume an operation.

Parameters

• task the task

• operation the operation, a string

ironic.conductor.utils.notify_conductor_resume_service(task)

ironic.conductor.utils.power_on_node_if_needed(task)
Powers on node if it is powered off and has a Smart NIC port

Parameters
task A TaskManager object

Returns
the previous power state or None if no changes were made

5.1. Developers Guide 979

Ironic Documentation, Release 26.1.2.dev21

Raises
exception.NetworkError if agent status didnt match the required status after max
retry attempts.

ironic.conductor.utils.power_state_error_handler(e, node, power_state)
Set the nodes power states if error occurs.

This hook gets called upon an exception being raised when spawning the worker thread to change
the power state of a node.

Parameters

• e the exception object that was raised.

• node an Ironic node object.

• power_state the power state to set on the node.

ironic.conductor.utils.power_state_for_network_configuration(task)
Handle the power state for a node reconfiguration.

Powers the node on if and only if it has a Smart NIC port. Yields for the actual reconfiguration,
then restores the power state.

Parameters
task A TaskManager object.

ironic.conductor.utils.provisioning_error_handler(e, node, provision_state,
target_provision_state)

Set the nodes provisioning states if error occurs.

This hook gets called upon an exception being raised when spawning the worker to do some pro-
visioning to a node like deployment, tear down, or cleaning.

Parameters

• e the exception object that was raised.

• node an Ironic node object.

• provision_state the provision state to be set on the node.

• target_provision_state the target provision state to be set on the node.

ironic.conductor.utils.remove_agent_url(node)
Helper to remove the agent_url record.

ironic.conductor.utils.remove_node_rescue_password(node, save=True)
Helper to remove rescue password from a node.

Removes rescue password from node. It saves node by default. If node should not be saved, then
caller needs to explicitly indicate it.

Parameters

• node an Ironic node object.

• save Boolean; True (default) to save the node; False otherwise.

980 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.utils.rescuing_error_handler(task, msg, set_fail_state=True)
Cleanup rescue task after timeout or failure.

Parameters

• task a TaskManager instance.

• msg a message to set into nodes last_error field

• set_fail_state a boolean flag to indicate if node needs to be transitioned
to a failed state. By default node would be transitioned to a failed state.

ironic.conductor.utils.restore_power_state_if_needed(task, power_state_to_restore)
Change the nodes power state if power_state_to_restore is not None

Parameters

• task A TaskManager object

• power_state_to_restore power state

ironic.conductor.utils.run_node_action(task, call, error_msg, success_msg=None,
**kwargs)

Run a node action and report any errors via last_error.

Parameters

• task A TaskManager instance containing the node to act on.

• call A callable object to invoke.

• error_msg A template for a failure message. Can use %(node)s, %(exc)s and
any variables from kwargs.

• success_msg A template for a success message. Can use %(node)s and any
variables from kwargs.

• kwargs Arguments to pass to the call.

ironic.conductor.utils.servicing_error_handler(task, logmsg, errmsg=None,
traceback=False,
tear_down_service=True,
set_fail_state=True,
set_maintenance=None)

Put a failed node in SERVICEFAIL and maintenance (if needed).

Parameters

• task a TaskManager instance.

• logmsg Message to be logged.

• errmsg Message for the user. Optional, if not provided logmsg is used.

• traceback Whether to log a traceback. Defaults to False.

• tear_down_service Whether to clean up the PXE and DHCP files after
service. Default to True.

• set_fail_state Whether to set node to failed state. Default to True.

5.1. Developers Guide 981

Ironic Documentation, Release 26.1.2.dev21

• set_maintenance Whether to set maintenance mode. If None, maintenance
mode will be set if and only if a clean step is being executed on a node.

ironic.conductor.utils.skip_automated_cleaning(node)
Checks if node cleaning needs to be skipped for an specific node.

Parameters
node the node to consider

ironic.conductor.utils.spawn_cleaning_error_handler(e, node)
Handle spawning error for node cleaning.

ironic.conductor.utils.spawn_deploying_error_handler(e, node)
Handle spawning error for node deploying.

ironic.conductor.utils.spawn_rescue_error_handler(e, node)
Handle spawning error for node rescue.

ironic.conductor.utils.spawn_servicing_error_handler(e, node)
Handle spawning error for node servicing.

ironic.conductor.utils.store_agent_certificate(node, agent_verify_ca)
Store certificate received from the agent and return its path.

ironic.conductor.utils.update_image_type(context, node)
Updates is_whole_disk_image and image_type based on the node data.

Parameters

• context Request context.

• node Node object.

Returns
True if any changes have been done, else False.

ironic.conductor.utils.update_next_step_index(task, step_type)
Calculate the next step index and update the node.

Parameters

• task A TaskManager object

• step_type The type of steps to process: clean or deploy.

Returns
Index of the next step.

ironic.conductor.utils.validate_instance_info_traits(node)
Validate traits in instance_info.

All traits in instance_info must also exist as node traits.

Parameters
node an Ironic node object.

Raises
InvalidParameterValue if the instance traits are badly formatted, or contain traits
that are not set on the node.

982 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.utils.validate_port_physnet(task, port_obj)
Validate the consistency of physical networks of ports in a portgroup.

Validate the consistency of a ports physical network with other ports in the same portgroup. All
ports in a portgroup should have the same value (which may be None) for their physical_network
field.

During creation or update of a port in a portgroup we apply the following validation criteria:

• If the portgroup has existing ports with different physical networks, we raise PortgroupPhys-
netInconsistent. This shouldnt ever happen.

• If the port has a physical network that is inconsistent with other ports in the portgroup, we
raise exception.Conflict.

If a ports physical network is None, this indicates that ironics VIF attachment mapping algorithm
should operate in a legacy (physical network unaware) mode for this port or portgroup. This al-
lows existing ironic nodes to continue to function after an upgrade to a release including physical
network support.

Parameters

• task a TaskManager instance

• port_obj a port object to be validated.

Raises
Conflict if the port is a member of a portgroup which is on a different physical
network.

Raises
PortgroupPhysnetInconsistent if the ports portgroup has ports which are not all
assigned the same physical network.

ironic.conductor.utils.value_within_timeout(value, timeout)
Checks if the time is within the previous timeout seconds from now.

Parameters

• value a datetime or string representing date and time or None.

• timeout timeout in seconds.

ironic.conductor.utils.verifying_error_handler(task, logmsg, errmsg=None,
traceback=False)

Handle errors during verification steps

Parameters

• task the task

• logmsg message to be logged

• errmsg message for the user

• traceback Boolean; True to log a traceback

ironic.conductor.utils.wipe_cleaning_internal_info(task)
Remove temporary cleaning fields from driver_internal_info.

5.1. Developers Guide 983

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.utils.wipe_deploy_internal_info(task)
Remove temporary deployment fields from driver_internal_info.

ironic.conductor.utils.wipe_internal_info_on_power_off(node)
Wipe information that should not survive reboot/power off.

ironic.conductor.utils.wipe_service_internal_info(task)
Remove temporary servicing fields from driver_internal_info.

ironic.conductor.utils.wipe_token_and_url(task)
Remove agent URL and token from the task.

ironic.conductor.verify module

Functionality related to verify steps.

ironic.conductor.verify.do_node_verify(task)
Internal method to perform power credentials verification.

Module contents

ironic.conf package

Submodules

ironic.conf.agent module

ironic.conf.agent.register_opts(conf)

ironic.conf.anaconda module

ironic.conf.anaconda.register_opts(conf)

ironic.conf.ansible module

ironic.conf.ansible.register_opts(conf)

ironic.conf.api module

class ironic.conf.api.Octal(min=None, max=None, type_name=’integer value’,
choices=None)

Bases: Integer

__call__(value)
Call self as a function.

ironic.conf.api.register_opts(conf)

984 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conf.audit module

ironic.conf.audit.register_opts(conf)

ironic.conf.auth module

ironic.conf.auth.add_auth_opts(options, service_type=None)
Add auth options to sample config

As these are dynamically registered at runtime, this adds options for most used auth_plugins when
generating sample config.

ironic.conf.auth.register_auth_opts(conf , group, service_type=None)
Register session- and auth-related options

Registers only basic auth options shared by all auth plugins. The rest are registered at runtime
depending on auth plugin used.

ironic.conf.cinder module

ironic.conf.cinder.list_opts()

ironic.conf.cinder.register_opts(conf)

ironic.conf.conductor module

ironic.conf.conductor.register_opts(conf)

ironic.conf.console module

ironic.conf.console.register_opts(conf)

ironic.conf.database module

ironic.conf.database.register_opts(conf)

ironic.conf.default module

ironic.conf.default.list_opts()

ironic.conf.default.register_opts(conf)

5.1. Developers Guide 985

Ironic Documentation, Release 26.1.2.dev21

ironic.conf.deploy module

ironic.conf.deploy.register_opts(conf)

ironic.conf.dhcp module

ironic.conf.dhcp.register_opts(conf)

ironic.conf.disk_utils module

ironic.conf.disk_utils.register_opts(conf)

ironic.conf.dnsmasq module

ironic.conf.dnsmasq.register_opts(conf)

ironic.conf.drac module

ironic.conf.drac.register_opts(conf)

ironic.conf.fake module

ironic.conf.fake.register_opts(conf)

ironic.conf.glance module

ironic.conf.glance.list_opts()

ironic.conf.glance.register_opts(conf)

ironic.conf.healthcheck module

ironic.conf.healthcheck.register_opts(conf)

986 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conf.ilo module

ironic.conf.ilo.register_opts(conf)

ironic.conf.inspector module

ironic.conf.inspector.list_opts()

ironic.conf.inspector.register_opts(conf)

ironic.conf.inventory module

ironic.conf.inventory.register_opts(conf)

ironic.conf.ipmi module

ironic.conf.ipmi.register_opts(conf)

ironic.conf.irmc module

ironic.conf.irmc.register_opts(conf)

ironic.conf.metrics module

ironic.conf.metrics.register_opts(conf)

ironic.conf.metrics_statsd module

ironic.conf.metrics_statsd.register_opts(conf)

ironic.conf.molds module

ironic.conf.molds.register_opts(conf)

5.1. Developers Guide 987

Ironic Documentation, Release 26.1.2.dev21

ironic.conf.neutron module

ironic.conf.neutron.list_opts()

ironic.conf.neutron.register_opts(conf)

ironic.conf.nova module

ironic.conf.nova.list_opts()

ironic.conf.nova.register_opts(conf)

ironic.conf.opts module

ironic.conf.opts.list_opts()

Return a list of oslo.config options available in Ironic code.

The returned list includes all oslo.config options. Each element of the list is a tuple. The first
element is the name of the group, the second element is the options.

The function is discoverable via the ironic entry point under the oslo.config.opts namespace.

The function is used by Oslo sample config file generator to discover the options.

Returns
a list of (group, options) tuples

ironic.conf.opts.update_opt_defaults()

ironic.conf.pxe module

ironic.conf.pxe.register_opts(conf)

ironic.conf.redfish module

ironic.conf.redfish.register_opts(conf)

ironic.conf.sensor_data module

ironic.conf.sensor_data.register_opts(conf)

988 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.conf.service_catalog module

ironic.conf.service_catalog.list_opts()

ironic.conf.service_catalog.register_opts(conf)

ironic.conf.snmp module

ironic.conf.snmp.register_opts(conf)

ironic.conf.swift module

ironic.conf.swift.list_opts()

ironic.conf.swift.register_opts(conf)

Module contents

ironic.db package

Subpackages

ironic.db.sqlalchemy package

Submodules

ironic.db.sqlalchemy.api module

SQLAlchemy storage backend.

class ironic.db.sqlalchemy.api.Connection

Bases: Connection

SqlAlchemy connection.

add_node_tag(node_id, tag)
Add tag to the node.

If the node_id and tag pair already exists, this should still succeed.

Parameters

• node_id The id of a node.

• tag A tag string.

Returns
the NodeTag object.

Raises
NodeNotFound if the node is not found.

5.1. Developers Guide 989

Ironic Documentation, Release 26.1.2.dev21

add_node_trait(node_id, trait, version)
Add trait to the node.

If the node_id and trait pair already exists, this should still succeed.

Parameters

• node_id The id of a node.

• trait A trait string.

• version the version of the object.Trait.

Returns
the NodeTrait object.

Raises
InvalidParameterValue if adding the trait would exceed the per-node traits limit.

Raises
NodeNotFound if the node is not found.

bulk_delete_node_history_records(entries)
Utility method to bulk delete node history entries.

Parameters
entries A list of node history entry ids to be queried for deletion.

check_node_list(idents, project=None)
Check a list of node identities and map it to UUIDs.

This call takes a list of node names and/or UUIDs and tries to convert them to UUIDs. It
fails early if any identities cannot possible be used as names or UUIDs.

Parameters
idents List of identities.

Returns
A mapping from requests identities to node UUIDs.

Raises
NodeNotFound if some identities were not found or cannot be valid names or
UUIDs.

check_versions(ignore_models=(), permit_initial_version=False)
Checks the whole database for incompatible objects.

This scans all the tables in search of objects that are not supported; i.e., those that are not
specified in ironic.common.release_mappings.RELEASE_MAPPING. This includes objects
that have null version values.

Parameters

• ignore_models List of model names to skip.

• permit_initial_version Boolean, default False, to permit a No-
SuchTableError exception to be raised by SQLAlchemy and accordingly by-
pass when an object has its initial object version.

Returns
A Boolean. True if all the objects have supported versions; False otherwise.

990 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

clear_node_reservations_for_conductor(hostname)

clear_node_target_power_state(hostname)

count_nodes_in_provision_state(state)
Count the number of nodes in given provision state.

Parameters
state A provision_state value to match for the count operation. This can be a
single provision state value or a list of values.

create_allocation(values)
Create a new allocation.

Parameters
values Dict of values to create an allocation with

Returns
An allocation

Raises
AllocationDuplicateName

Raises
AllocationAlreadyExists

create_bios_setting_list(node_id, settings, version)
Create a list of BIOSSetting records for a given node.

Parameters

• node_id The node id.

• settings A list of BIOS Settings to be created.

[
{
'name': String,
'value': String,
additional settings from BIOS registry
},
{
'name': String,
'value': String,
additional settings from BIOS registry
},
...

]

• version the version of the object.BIOSSetting.

Returns
A list of BIOSSetting object.

Raises
NodeNotFound if the node is not found.

5.1. Developers Guide 991

Ironic Documentation, Release 26.1.2.dev21

Raises
BIOSSettingAlreadyExists if any of the setting records already exists.

create_chassis(values)
Create a new chassis.

Parameters
values Dict of values.

create_deploy_template(values)
Create a deployment template.

Parameters
values A dict describing the deployment template. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
DeployTemplateDuplicateName if a deploy template with the same name ex-
ists.

Raises
DeployTemplateAlreadyExists if a deploy template with the same UUID exists.

Returns
A deploy template.

create_firmware_component(values)
Create a FirmwareComponent record for a given node.

Parameters
values a dictionary with the necessary information to create a FirmwareCom-
ponent.

{
'component': String,
'initial_version': String,
'current_version': String,
'last_version_flashed': String

}

Returns
A FirmwareComponent object.

Raises
FirmwareComponentAlreadyExists if any of the component records already ex-
ists.

create_node(values)
Create a new node.

Parameters
values A dict containing several items used to identify and track the node,

992 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

and several dicts which are passed into the Drivers when managing this node.
For example:

{
'uuid': uuidutils.generate_uuid(),
'instance_uuid': None,
'power_state': states.POWER_OFF,
'provision_state': states.AVAILABLE,
'driver': 'ipmi',
'driver_info': { ... },
'properties': { ... },
'extra': { ... },
}

Raises
InvalidParameterValue if values contains tags or traits.

Returns
A node.

create_node_history(values)
Create a new history record.

Parameters
values Dict of values.

create_node_inventory(values)
Create a new inventory record.

Parameters
values Dict of values.

create_port(values)
Create a new port.

Parameters
values Dict of values.

create_portgroup(values)
Create a new portgroup.

Parameters
values Dict of values with the following keys: id uuid name node_id address
extra created_at updated_at

Returns
A portgroup

Raises
PortgroupDuplicateName

Raises
PortgroupMACAlreadyExists

Raises
PortgroupAlreadyExists

5.1. Developers Guide 993

Ironic Documentation, Release 26.1.2.dev21

create_runbook(values)
Create a runbook.

Parameters
values A dict describing the runbook. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
RunbookDuplicateName if a runbook with the same name exists.

Raises
RunbookAlreadyExists if a runbook with the same UUID exists.

Returns
A runbook.

create_volume_connector(connector_info)
Create a new volume connector.

Parameters
connector_info Dictionary containing information about the connector. Ex-
ample:

{
'uuid': '000000-..',
'type': 'wwnn',
'connector_id': '00:01:02:03:04:05:06',
'node_id': 2

}

Returns
A volume connector.

Raises
VolumeConnectorTypeAndIdAlreadyExists If a connector already exists with
a matching type and connector_id.

Raises
VolumeConnectorAlreadyExists If a volume connector with the same UUID
already exists.

create_volume_target(target_info)
Create a new volume target.

Parameters
target_info Dictionary containing the information about the volume target.
Example:

{
'uuid': '000000-..',
'node_id': 2,

(continues on next page)

994 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'boot_index': 0,
'volume_id': '12345678-...'
'volume_type': 'some type',

}

Returns
A volume target.

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same boot index and node ID.

Raises
VolumeTargetAlreadyExists if a volume target with the same UUID exists.

delete_bios_setting_list(node_id, names)
Delete a list of BIOS settings.

Parameters

• node_id The node id.

• names List of BIOS setting names to be deleted.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingNotFound if any of BIOS setting name is not found.

delete_node_tag(node_id, tag)
Delete specified tag from the node.

Parameters

• node_id The id of a node.

• tag A tag string.

Raises
NodeNotFound if the node is not found.

Raises
NodeTagNotFound if the tag is not found.

delete_node_trait(node_id, trait)
Delete specified trait from the node.

Parameters

• node_id The id of a node.

• trait A trait string.

Raises
NodeNotFound if the node is not found.

Raises
NodeTraitNotFound if the trait is not found.

5.1. Developers Guide 995

Ironic Documentation, Release 26.1.2.dev21

destroy_allocation(allocation_id)
Destroy an allocation.

Parameters
allocation_id Allocation ID or UUID

Raises
AllocationNotFound

destroy_chassis(chassis_id)
Destroy a chassis.

Parameters
chassis_id The id or the uuid of a chassis.

destroy_deploy_template(template_id)
Destroy a deployment template.

Parameters
template_id ID of the deployment template to destroy.

Raises
DeployTemplateNotFound if the deploy template does not exist.

destroy_node(node_id)
Destroy a node and its associated resources.

Destroy a node, including any associated ports, port groups, tags, traits, volume connectors,
and volume targets.

Parameters
node_id The ID or UUID of a node.

destroy_node_history_by_uuid(history_uuid)
Destroy a history record.

Parameters
history_uuid The uuid of a history record

destroy_node_inventory_by_node_id(node_id)
Destroy a inventory record.

Parameters
inventory_uuid The uuid of a inventory record

destroy_port(port_id)
Destroy an port.

Parameters
port_id The id or MAC of a port.

destroy_portgroup(portgroup_id)
Destroy a portgroup.

Parameters
portgroup_id The UUID or MAC of a portgroup.

Raises
PortgroupNotEmpty

996 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
PortgroupNotFound

destroy_runbook(runbook_id)
Destroy a runbook.

Parameters
runbook_id ID of the runbook to destroy.

Raises
RunbookNotFound if the runbook does not exist.

destroy_volume_connector(ident)
Destroy a volume connector.

Parameters
ident The UUID or integer ID of a volume connector.

Raises
VolumeConnectorNotFound If a volume connector with the specified ident does
not exist.

destroy_volume_target(ident)
Destroy a volume target.

Parameters
ident The UUID or integer ID of a volume target.

Raises
VolumeTargetNotFound if a volume target with the specified ident does not
exist.

get_active_hardware_type_dict(use_groups=False)
Retrieve hardware types for the registered and active conductors.

Parameters
use_groups Whether to factor conductor_group into the keys.

Returns

A dict which maps hardware type names to the set of hosts which support them.
For example:

{hardware-type-a: set([host1, host2]),
hardware-type-b: set([host2, host3])}

get_allocation_by_id(allocation_id)
Return an allocation representation.

Parameters
allocation_id The id of an allocation.

Returns
An allocation.

Raises
AllocationNotFound

5.1. Developers Guide 997

Ironic Documentation, Release 26.1.2.dev21

get_allocation_by_name(name)
Return an allocation representation.

Parameters
name The logical name of an allocation.

Returns
An allocation.

Raises
AllocationNotFound

get_allocation_by_uuid(allocation_uuid)
Return an allocation representation.

Parameters
allocation_uuid The uuid of an allocation.

Returns
An allocation.

Raises
AllocationNotFound

get_allocation_list(filters=None, limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of allocations.

Parameters

• filters Filters to apply. Defaults to None.

node_uuid
uuid of node

state
allocation state

resource_class
requested resource class

• limit Maximum number of allocations to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

Returns
A list of allocations.

get_bios_setting(node_id, name)
Retrieve BIOS setting value.

Parameters

• node_id The node id.

• name String containing name of BIOS setting to be retrieved.

998 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
The BIOSSetting object.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingNotFound if the BIOS setting is not found.

get_bios_setting_list(node_id)
Retrieve BIOS settings of a given node.

Parameters
node_id The node id.

Returns
A list of BIOSSetting objects.

Raises
NodeNotFound if the node is not found.

get_chassis_by_id(chassis_id)
Return a chassis representation.

Parameters
chassis_id The id of a chassis.

Returns
A chassis.

get_chassis_by_uuid(chassis_uuid)
Return a chassis representation.

Parameters
chassis_uuid The uuid of a chassis.

Returns
A chassis.

get_chassis_list(limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of chassis.

Parameters

• limit Maximum number of chassis to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

get_conductor(hostname, online=True)
Retrieve a conductors service record from the database.

Parameters

• hostname The hostname of the conductor service.

• online Specify the filter value on the online field when querying conduc-
tors. The online field is ignored if this value is set to None.

5.1. Developers Guide 999

Ironic Documentation, Release 26.1.2.dev21

Returns
A conductor.

Raises
ConductorNotFound if the conductor with given hostname does not exist or
doesnt meet the specified online expectation.

get_conductor_list(limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of conductors.

Parameters

• limit Maximum number of conductors to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

get_deploy_template_by_id(template_id)
Retrieve a deployment template by ID.

Parameters
template_id ID of the deployment template to retrieve.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

get_deploy_template_by_name(template_name)
Retrieve a deployment template by name.

Parameters
template_name name of the deployment template to retrieve.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

get_deploy_template_by_uuid(template_uuid)
Retrieve a deployment template by UUID.

Parameters
template_uuid UUID of the deployment template to retrieve.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

get_deploy_template_list(limit=None, marker=None, sort_key=None, sort_dir=None)
Retrieve a list of deployment templates.

Parameters

1000 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• limit Maximum number of deploy templates to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

Returns
A list of deploy templates.

get_deploy_template_list_by_names(names)
Return a list of deployment templates with one of a list of names.

Parameters
names List of names to filter by.

Returns
A list of deploy templates.

get_firmware_component(node_id, name)
Retrieve Firmware Component.

Parameters

• node_id The node id.

• name name of Firmware component.

Returns
The FirmwareComponent object.

Raises
NodeNotFound if the node is not found.

Raises
FirmwareComponentNotFound if the FirmwareComponent is not found.

get_firmware_component_list(node_id)
Retrieve Firmware Components of a given node.

Parameters
node_id The node id.

Returns
A list of FirmwareComponent objects.

Raises
NodeNotFound if the node is not found.

get_node_by_id(node_id)
Return a node.

Parameters
node_id The id of a node.

Returns
A node.

get_node_by_instance(instance)
Return a node.

5.1. Developers Guide 1001

Ironic Documentation, Release 26.1.2.dev21

Parameters
instance The instance uuid to search for.

Returns
A node.

Raises
InstanceNotFound if the instance is not found.

Raises
InvalidUUID if the instance uuid is invalid.

get_node_by_name(node_name)
Return a node.

Parameters
node_name The logical name of a node.

Returns
A node.

get_node_by_port_addresses(addresses)
Find a node by any matching port address.

Parameters
addresses list of port addresses (e.g. MACs).

Returns
Node object.

Raises
NodeNotFound if none or several nodes are found.

get_node_by_uuid(node_uuid)
Return a node.

Parameters
node_uuid The uuid of a node.

Returns
A node.

get_node_history_by_id(history_id)
Return a node history representation.

Parameters
history_id The id of a history record.

Returns
A history.

get_node_history_by_node_id(node_id, limit=None, marker=None, sort_key=None,
sort_dir=None)

List all the history records for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of history records to return.

1002 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

Returns
A list of histories.

get_node_history_by_uuid(history_uuid)
Return a node history representation.

Parameters
history_uuid The uuid of a history record

Returns
A history.

get_node_history_list(limit=None, marker=None, sort_key=’created_at’, sort_dir=’asc’)
Return a list of node history records

Parameters

• limit Maximum number of history records to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

get_node_inventory_by_node_id(node_id)
Get the node inventory for a given node.

Parameters
node_id The integer node ID.

Returns
An inventory of a node.

get_node_list(filters=None, limit=None, marker=None, sort_key=None, sort_dir=None,
fields=None)

Return a list of nodes.

Parameters

• filters Filters to apply. Defaults to None.

associated
True | False

reserved
True | False

maintenance
True | False

chassis_uuid
uuid of chassis

driver
drivers name

5.1. Developers Guide 1003

Ironic Documentation, Release 26.1.2.dev21

provision_state
provision state of node

provisioned_before
nodes with provision_updated_at field before this interval in seconds

shard
nodes with the given shard

• limit Maximum number of nodes to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

• fields Comma separated field list to return, to allow for only specific
fields to be returned to have maximum API performance calls where not all
columns are needed from the database.

get_node_list_columns(columns=None, filters=None, limit=None, marker=None,
sort_key=None, sort_dir=None)

Get a node list with specific fields/columns.

Parameters

• columns A list of columns to retrieve from the database and populate into
the object.

• filters The requested database field filters in the form of a dictionary with
the applicable key, and filter value.

• limit Limit the number of returned nodes, default None.

• marker Starting marker to generate a paginated result set for the consumer.

• sort_key Sort key to apply to the result set.

• sort_dir Sort direction to apply to the result set.

Returns
A list of Node objects based on the data model from a SQLAlchemy result set,
which the object layer can use to convert the node into an Node object list.

get_node_tags_by_node_id(node_id)
Get node tags based on its id.

Parameters
node_id The id of a node.

Returns
A list of NodeTag objects.

Raises
NodeNotFound if the node is not found.

get_node_traits_by_node_id(node_id)
Get node traits based on its id.

Parameters
node_id The id of a node.

1004 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of NodeTrait objects.

Raises
NodeNotFound if the node is not found.

get_nodeinfo_list(columns=None, filters=None, limit=None, marker=None,
sort_key=None, sort_dir=None)

Get specific columns for matching nodes.

Return a list of the specified columns for all nodes that match the specified filters.

Parameters

• columns List of column names to return. Defaults to id column when
columns == None.

• filters Filters to apply. Defaults to None.

associated
True | False

chassis_uuid
uuid of chassis

conductor_group
conductor group name

console_enabled
True | False

description_contains
substring in description

driver
drivers name

fault
current fault type

id
numeric ID

inspection_started_before
nodes with inspection_started_at field before this interval in seconds

instance_uuid
uuid of instance

lessee
nodes lessee (e.g. project ID)

maintenance
True | False

owner
nodes owner (e.g. project ID)

project
either owner or lessee

5.1. Developers Guide 1005

Ironic Documentation, Release 26.1.2.dev21

reserved
True | False

reserved_by_any_of
[conductor1, conductor2]

resource_class
resource class name

retired
True | False

shard_in
shard (multiple possibilities)

provision_state
provision state of node

provision_state_in
provision state of node (multiple possibilities)

provisioned_before
nodes with provision_updated_at field before this interval in seconds

uuid
uuid of node

uuid_in
uuid of node (multiple possibilities)

with_power_state
True | False

• limit Maximum number of nodes to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

Returns
A list of tuples of the specified columns.

get_offline_conductors(field=’hostname’)
Get a list conductors that are offline (dead).

Parameters
field A field to return, hostname by default.

Returns
A list of requested fields of offline conductors.

get_online_conductors()

Get a list conductor hostnames that are online and active.

Returns
A list of conductor hostnames.

get_port_by_address(address, owner=None, project=None)
Return a network port representation.

1006 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
address The MAC address of a port.

Returns
A port.

get_port_by_id(port_id)
Return a network port representation.

Parameters
port_id The id of a port.

Returns
A port.

get_port_by_name(port_name)
Return a network port representation.

Parameters
port_name The name of a port.

Returns
A port.

get_port_by_uuid(port_uuid)
Return a network port representation.

Parameters
port_uuid The uuid of a port.

Returns
A port.

get_port_list(limit=None, marker=None, sort_key=None, sort_dir=None, owner=None,
project=None)

Return a list of ports.

Parameters

• limit Maximum number of ports to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

get_portgroup_by_address(address, project=None)
Return a network portgroup representation.

Parameters

• address The MAC address of a portgroup.

• project A node owner or lessee to filter by.

Returns
A portgroup.

Raises
PortgroupNotFound

5.1. Developers Guide 1007

Ironic Documentation, Release 26.1.2.dev21

get_portgroup_by_id(portgroup_id, project=None)
Return a network portgroup representation.

Parameters
portgroup_id The id of a portgroup.

Returns
A portgroup.

Raises
PortgroupNotFound

get_portgroup_by_name(name)
Return a network portgroup representation.

Parameters
name The logical name of a portgroup.

Returns
A portgroup.

Raises
PortgroupNotFound

get_portgroup_by_uuid(portgroup_uuid)
Return a network portgroup representation.

Parameters
portgroup_uuid The uuid of a portgroup.

Returns
A portgroup.

Raises
PortgroupNotFound

get_portgroup_list(limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of portgroups.

Parameters

• limit Maximum number of portgroups to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

• project A node owner or lessee to filter by.

Returns
A list of portgroups.

get_portgroups_by_node_id(node_id, limit=None, marker=None, sort_key=None,
sort_dir=None, project=None)

List all the portgroups for a given node.

Parameters

1008 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• node_id The integer node ID.

• limit Maximum number of portgroups to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir Direction in which results should be sorted (asc, desc)

• project A node owner or lessee to filter by.

Returns
A list of portgroups.

get_ports_by_node_id(node_id, limit=None, marker=None, sort_key=None,
sort_dir=None, owner=None, project=None)

List all the ports for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of ports to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

Returns
A list of ports.

get_ports_by_portgroup_id(portgroup_id, limit=None, marker=None, sort_key=None,
sort_dir=None, owner=None, project=None)

List all the ports for a given portgroup.

Parameters

• portgroup_id The integer portgroup ID.

• limit Maximum number of ports to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir Direction in which results should be sorted (asc, desc)

Returns
A list of ports.

get_ports_by_shards(shards, limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of ports contained in the provided shards.

Parameters
shard_ids A list of shards to filter ports by.

get_runbook_by_id(runbook_id)
Retrieve a runbook by ID.

5.1. Developers Guide 1009

Ironic Documentation, Release 26.1.2.dev21

Parameters
runbook_id ID of the runbook to retrieve.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

get_runbook_by_name(runbook_name)
Retrieve a runbook by name.

Parameters
runbook_name name of the runbook to retrieve.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

get_runbook_by_uuid(runbook_uuid)
Retrieve a runbook by UUID.

Parameters
runbook_uuid UUID of the runbook to retrieve.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

get_runbook_list(limit=None, marker=None, filters=None, sort_key=None, sort_dir=None)
Retrieve a list of runbooks.

Parameters

• limit Maximum number of runbooks to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

Returns
A list of runbooks.

get_runbook_list_by_names(names)
Return a list of runbooks with one of a list of names.

Parameters
names List of names to filter by.

Returns
A list of runbooks.

get_shard_list()

Return a list of shards.

1010 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of dicts containing the keys name and count.

get_volume_connector_by_id(db_id)
Return a volume connector representation.

Parameters
db_id The integer database ID of a volume connector.

Returns
A volume connector with the specified ID.

Raises
VolumeConnectorNotFound If a volume connector with the specified ID is not
found.

get_volume_connector_by_uuid(connector_uuid)
Return a volume connector representation.

Parameters
connector_uuid The UUID of a connector.

Returns
A volume connector with the specified UUID.

Raises
VolumeConnectorNotFound If a volume connector with the specified UUID is
not found.

get_volume_connector_list(limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of volume connectors.

Parameters

• limit Maximum number of volume connectors to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
A list of volume connectors.

Raises
InvalidParameterValue If sort_key does not exist.

get_volume_connectors_by_node_id(node_id, limit=None, marker=None, sort_key=None,
sort_dir=None, project=None)

List all the volume connectors for a given node.

Parameters

• node_id The integer node ID.

5.1. Developers Guide 1011

Ironic Documentation, Release 26.1.2.dev21

• limit Maximum number of volume connectors to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir Direction in which results should be sorted (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
A list of volume connectors.

Raises
InvalidParameterValue If sort_key does not exist.

get_volume_target_by_id(db_id)
Return a volume target representation.

Parameters
db_id The database primary key (integer) ID of a volume target.

Returns
A volume target.

Raises
VolumeTargetNotFound if no volume target with this ID exists.

get_volume_target_by_uuid(uuid)
Return a volume target representation.

Parameters
uuid The UUID of a volume target.

Returns
A volume target.

Raises
VolumeTargetNotFound if no volume target with this UUID exists.

get_volume_target_list(limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of volume targets.

Parameters

• limit Maximum number of volume targets to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

1012 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of volume targets.

Raises
InvalidParameterValue if sort_key does not exist.

get_volume_targets_by_node_id(node_id, limit=None, marker=None, sort_key=None,
sort_dir=None, project=None)

List all the volume targets for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of volume targets to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
A list of volume targets.

Raises
InvalidParameterValue if sort_key does not exist.

get_volume_targets_by_volume_id(volume_id, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

List all the volume targets for a given volume id.

Parameters

• volume_id The UUID of the volume.

• limit Maximum number of volume targets to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

Returns
A list of volume targets.

Raises
InvalidParameterValue if sort_key does not exist.

list_conductor_hardware_interfaces(conductor_id)
List all registered hardware interfaces for a conductor.

Parameters
conductor_id Database ID of conductor.

Returns
List of ConductorHardwareInterfaces objects.

5.1. Developers Guide 1013

Ironic Documentation, Release 26.1.2.dev21

list_hardware_type_interfaces(hardware_types)
List registered hardware interfaces for given hardware types.

This is restricted to only active conductors. :param hardware_types: list of hardware types
to filter by. :returns: list of ConductorHardwareInterfaces objects.

migrate_to_builtin_inspection(context, max_count)
Handle the migration from inspector to agent inspection.

Parameters

• context the admin context

• max_count The maximum number of objects to migrate. Must be >= 0. If
zero, all the objects will be migrated.

Returns
A 2-tuple, 1. the total number of objects that need to be migrated (at the begin-
ning of this call) and 2. the number of migrated objects.

node_tag_exists(node_id, tag)
Check if the specified tag exist on the node.

Parameters

• node_id The id of a node.

• tag A tag string.

Returns
True if the tag exists otherwise False.

Raises
NodeNotFound if the node is not found.

node_trait_exists(node_id, trait)
Check if the specified trait exists on the node.

Parameters

• node_id The id of a node.

• trait A trait string.

Returns
True if the trait exists otherwise False.

Raises
NodeNotFound if the node is not found.

query_node_history_records_for_purge(conductor_id)
Utility method to identify nodes to clean history records for.

Parameters
conductor_id Id value for the conductor to perform this query on behalf of.

Returns
A dictionary with key values of node database ID values and a list of values
associated with the node.

1014 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

register_conductor(values, update_existing=False)
Register an active conductor with the cluster.

Parameters

• values A dict of values which must contain the following:

{
'hostname': the unique hostname which identifies

this Conductor service.
'drivers': a list of supported drivers.
'version': the version of the object.Conductor
}

• update_existing When false, registration will raise an exception when
a conflicting online record is found. When true, will overwrite the existing
record. Default: False.

Returns
A conductor.

Raises
ConductorAlreadyRegistered

register_conductor_hardware_interfaces(conductor_id, interfaces)
Registers hardware interfaces for a conductor.

Parameters

• conductor_id Database ID of conductor to register for.

• hardware_type Name of hardware type for the interfaces.

• interface_type Type of interfaces, e.g. deploy or boot.

• interfaces List of interface names to register.

• default_interface String, the default interface for this hardware type
and interface type.

Raises
ConductorHardwareInterfacesAlreadyRegistered if at least one of the inter-
faces in the combination of all parameters is already registered.

release_node(tag, node_id)
Release the reservation on a node.

Parameters

• tag A string uniquely identifying the reservation holder.

• node_id A node id or uuid.

Raises
NodeNotFound if the node is not found.

Raises
NodeLocked if the node is reserved by another host.

5.1. Developers Guide 1015

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotLocked if the node was found to not have a reservation at all.

reserve_node(tag, node_id)
Reserve a node.

To prevent other ManagerServices from manipulating the given Node while a Task is per-
formed, mark it reserved by this host.

Parameters

• tag A string uniquely identifying the reservation holder.

• node_id A node id or uuid.

Returns
A Node object.

Raises
NodeNotFound if the node is not found.

Raises
NodeLocked if the node is already reserved.

set_node_tags(node_id, tags)
Replace all of the node tags with specified list of tags.

This ignores duplicate tags in the specified list.

Parameters

• node_id The id of a node.

• tags List of tags.

Returns
A list of NodeTag objects.

Raises
NodeNotFound if the node is not found.

set_node_traits(node_id, traits, version)
Replace all of the node traits with specified list of traits.

This ignores duplicate traits in the specified list.

Parameters

• node_id The id of a node.

• traits List of traits.

• version the version of the object.Trait.

Returns
A list of NodeTrait objects.

Raises
InvalidParameterValue if setting the traits would exceed the per-node traits
limit.

Raises
NodeNotFound if the node is not found.

1016 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

take_over_allocation(allocation_id, old_conductor_id, new_conductor_id)
Do a take over for an allocation.

The allocation is only updated if the old conductor matches the provided value, thus guarding
against races.

Parameters

• allocation_id Allocation ID

• old_conductor_id The conductor ID we expect to be the current
conductor_affinity of the allocation.

• new_conductor_id The conductor ID of the new conductor_affinity.

Returns
True if the take over was successful, False otherwise.

Raises
AllocationNotFound

touch_conductor(hostname, online=True)
Mark a conductor as active by updating its updated_at property.

Calling periodically with online=Falsewill result in the conductor appearing unregistered,
but recently enough to prevent other conductors failing orphan nodes. This improves the
behaviour of graceful and drain shutdown.

Parameters

• hostname The hostname of this conductor service.

• online Whether the conductor is online.

Raises
ConductorNotFound

touch_node_provisioning(node_id)
Mark the nodes provisioning as running.

Mark the nodes provisioning as running by updating its provision_updated_at property.

Parameters
node_id The id of a node.

Raises
NodeNotFound

unregister_conductor(hostname)
Remove this conductor from the service registry immediately.

Parameters
hostname The hostname of this conductor service.

Raises
ConductorNotFound

unregister_conductor_hardware_interfaces(conductor_id)
Unregisters all hardware interfaces for a conductor.

5.1. Developers Guide 1017

Ironic Documentation, Release 26.1.2.dev21

Parameters
conductor_id Database ID of conductor to unregister for.

unset_node_tags(node_id)
Remove all tags of the node.

Parameters
node_id The id of a node.

Raises
NodeNotFound if the node is not found.

unset_node_traits(node_id)
Remove all traits of the node.

Parameters
node_id The id of a node.

Raises
NodeNotFound if the node is not found.

update_allocation(allocation_id, values, update_node=True)
Update properties of an allocation.

Parameters

• allocation_id Allocation ID

• values Dict of values to update.

• update_node If True and node_id is updated, update the node with in-
stance_uuid and traits from the allocation

Returns
An allocation.

Raises
AllocationNotFound

Raises
AllocationDuplicateName

Raises
InstanceAssociated

Raises
NodeAssociated

update_bios_setting_list(node_id, settings, version)
Update a list of BIOSSetting records.

Parameters

• node_id The node id.

• settings A list of BIOS Settings to be updated.

[
{
'name': String,

(continues on next page)

1018 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'value': String,
additional settings from BIOS registry
},
{
'name': String,
'value': String,
additional settings from BIOS registry
},
...

]

• version the version of the object.BIOSSetting.

Returns
A list of BIOSSetting objects.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingNotFound if any of the settings is not found.

update_chassis(chassis_id, values)
Update properties of an chassis.

Parameters

• chassis_id The id or the uuid of a chassis.

• values Dict of values to update.

Returns
A chassis.

update_deploy_template(template_id, values)
Update a deployment template.

Parameters

• template_id ID of the deployment template to update.

• values A dict describing the deployment template. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
DeployTemplateDuplicateName if a deploy template with the same name ex-
ists.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

5.1. Developers Guide 1019

Ironic Documentation, Release 26.1.2.dev21

update_firmware_component(node_id, component, values)
Update a FirmwareComponent record.

Parameters

• node_id The node id.

• component The component of the node to update.

• values A dictionary with the new information about the FirmwareCompo-
nent.

{
'current_version': String,
'last_version_flashed': String

}

Returns
A FirmwareComponent object.

Raises
FirmwareComponentNotFound the component is not found.

update_node(node_id, values)
Update properties of a node.

Parameters

• node_id The id or uuid of a node.

• values Dict of values to update. May be a partial list, eg. when setting the
properties for a driver. For example:

{
'driver_info':

{
'my-field-1': val1,
'my-field-2': val2,

}
}

Returns
A node.

Raises
NodeAssociated

Raises
NodeNotFound

update_port(port_id, values)
Update properties of an port.

Parameters

• port_id The id or MAC of a port.

• values Dict of values to update.

1020 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A port.

update_portgroup(portgroup_id, values)
Update properties of a portgroup.

Parameters

• portgroup_id The UUID or MAC of a portgroup.

• values Dict of values to update. May contain the following keys: uuid
name node_id address extra created_at updated_at

Returns
A portgroup.

Raises
InvalidParameterValue

Raises
PortgroupNotFound

Raises
PortgroupDuplicateName

Raises
PortgroupMACAlreadyExists

update_runbook(runbook_id, values)
Update a runbook.

Parameters

• runbook_id ID of the runbook to update.

• values A dict describing the runbook. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
RunbookDuplicateName if a runbook with the same name exists.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

update_to_latest_versions(context, max_count)
Updates objects to their latest known versions.

This scans all the tables and for objects that are not in their latest version, updates them to
that version.

Parameters

• context the admin context

5.1. Developers Guide 1021

Ironic Documentation, Release 26.1.2.dev21

• max_count The maximum number of objects to migrate. Must be >= 0. If
zero, all the objects will be migrated.

Returns
A 2-tuple, 1. the total number of objects that need to be migrated (at the begin-
ning of this call) and 2. the number of migrated objects.

update_volume_connector(ident, connector_info)
Update properties of a volume connector.

Parameters

• ident The UUID or integer ID of a volume connector.

• connector_info Dictionary containing the information about connector
to update.

Returns
A volume connector.

Raises
VolumeConnectorTypeAndIdAlreadyExists If another connector already exists
with a matching type and connector_id field.

Raises
VolumeConnectorNotFound If a volume connector with the specified ident does
not exist.

Raises
InvalidParameterValue When a UUID is included in connector_info.

update_volume_target(ident, target_info)
Update information for a volume target.

Parameters

• ident The UUID or integer ID of a volume target.

• target_info Dictionary containing the information about volume target
to update.

Returns
A volume target.

Raises
InvalidParameterValue if a UUID is included in target_info.

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same boot index and node ID.

Raises
VolumeTargetNotFound if no volume target with this ident exists.

ironic.db.sqlalchemy.api.add_allocation_filter_by_conductor(query, value)

ironic.db.sqlalchemy.api.add_allocation_filter_by_node(query, value)

1022 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.db.sqlalchemy.api.add_identity_filter(query, value)
Adds an identity filter to a query.

Filters results by ID, if supplied value is a valid integer. Otherwise attempts to filter results by
UUID.

Parameters

• query Initial query to add filter to.

• value Value for filtering results by.

Returns
Modified query.

ironic.db.sqlalchemy.api.add_identity_where(op, model, value)
Adds an identity filter to operation for where method.

Filters results by ID, if supplied value is a valid integer. Otherwise attempts to filter results by
UUID.

Parameters

• op Initial operation to add filter to. i.e. a update or delete statement.

• model The SQLAlchemy model to apply.

• value Value for filtering results by.

Returns
Modified query.

ironic.db.sqlalchemy.api.add_node_filter_by_chassis(query, value)

ironic.db.sqlalchemy.api.add_port_filter(query, value)
Adds a port-specific filter to a query.

Filters results by address, if supplied value is a valid MAC address. Otherwise attempts to filter
results by identity.

Parameters

• query Initial query to add filter to.

• value Value for filtering results by.

Returns
Modified query.

ironic.db.sqlalchemy.api.add_port_filter_by_node(query, value)

ironic.db.sqlalchemy.api.add_port_filter_by_node_owner(query, value)

ironic.db.sqlalchemy.api.add_port_filter_by_node_project(query, value)

ironic.db.sqlalchemy.api.add_port_filter_by_portgroup(query, value)

ironic.db.sqlalchemy.api.add_portgroup_filter(query, value)
Adds a portgroup-specific filter to a query.

Filters results by address, if supplied value is a valid MAC address. Otherwise attempts to filter
results by identity.

5.1. Developers Guide 1023

Ironic Documentation, Release 26.1.2.dev21

Parameters

• query Initial query to add filter to.

• value Value for filtering results by.

Returns
Modified query.

ironic.db.sqlalchemy.api.add_portgroup_filter_by_node(query, value)

ironic.db.sqlalchemy.api.add_portgroup_filter_by_node_project(query, value)

ironic.db.sqlalchemy.api.add_volume_conn_filter_by_node_project(query, value)

ironic.db.sqlalchemy.api.add_volume_target_filter_by_node_project(query, value)

ironic.db.sqlalchemy.api.get_backend()

The backend is this module itself.

ironic.db.sqlalchemy.api.model_query(model, *args, **kwargs)
Query helper for simpler session usage.

WARNING: DO NOT USE, unless you know exactly what your doing AND are okay with a trans-
action possibly hanging.

Parameters
session if present, the session to use

ironic.db.sqlalchemy.api.wrap_sqlite_retry(f)

ironic.db.sqlalchemy.migration module

ironic.db.sqlalchemy.migration.create_schema(config=None, engine=None)
Create database schema from models description.

Can be used for initial installation instead of upgrade(head).

ironic.db.sqlalchemy.migration.downgrade(revision, config=None)
Used for downgrading database.

Parameters
version (string) Desired database version

ironic.db.sqlalchemy.migration.revision(message=None, autogenerate=False,
config=None)

Creates template for migration.

Parameters

• message (string) Text that will be used for migration title

• autogenerate (bool) If True - generates diff based on current database state

ironic.db.sqlalchemy.migration.stamp(revision, config=None)
Stamps database with provided revision.

Dont run any migrations.

1024 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
revision (string) Should match one from repository or head - to stamp database
with most recent revision

ironic.db.sqlalchemy.migration.upgrade(revision, config=None)
Used for upgrading database.

Parameters
version (string) Desired database version

ironic.db.sqlalchemy.migration.version(config=None, engine=None)
Current database version.

Returns
Database version

Return type
string

ironic.db.sqlalchemy.models module

SQLAlchemy models for baremetal data.

class ironic.db.sqlalchemy.models.Allocation(**kwargs)
Bases: Base

Represents an allocation of a node for deployment.

candidate_nodes

conductor_affinity

created_at

extra

id

last_error

name

node_id

owner

resource_class

state

traits

updated_at

uuid

version

5.1. Developers Guide 1025

Ironic Documentation, Release 26.1.2.dev21

class ironic.db.sqlalchemy.models.BIOSSetting(**kwargs)
Bases: Base

Represents a bios setting of a bare metal node.

allowable_values

attribute_type

created_at

lower_bound

max_length

min_length

name

node_id

read_only

reset_required

unique

updated_at

upper_bound

value

version

class ironic.db.sqlalchemy.models.Chassis(**kwargs)
Bases: Base

Represents a hardware chassis.

created_at

description

extra

id

updated_at

uuid

version

class ironic.db.sqlalchemy.models.Conductor(**kwargs)
Bases: Base

Represents a conductor service entry.

1026 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

conductor_group

created_at

drivers

hostname

id

online

updated_at

version

class ironic.db.sqlalchemy.models.ConductorHardwareInterfaces(**kwargs)
Bases: Base

Internal table used to track what is loaded on each conductor.

conductor_id

created_at

default

hardware_type

id

interface_name

interface_type

updated_at

version

class ironic.db.sqlalchemy.models.DeployTemplate(**kwargs)
Bases: Base

Represents a deployment template.

created_at

extra

id

name

steps: Mapped[List[DeployTemplateStep]]

updated_at

uuid

version

5.1. Developers Guide 1027

Ironic Documentation, Release 26.1.2.dev21

class ironic.db.sqlalchemy.models.DeployTemplateStep(**kwargs)
Bases: Base

Represents a deployment step in a deployment template.

args

created_at

deploy_template

deploy_template_id

id

interface

priority

step

updated_at

version

class ironic.db.sqlalchemy.models.FirmwareComponent(**kwargs)
Bases: Base

Represents the firmware information of a bare metal node.

component

created_at

current_version

id

initial_version

last_version_flashed

node_id

updated_at

version

class ironic.db.sqlalchemy.models.IronicBase

Bases: TimestampMixin, ModelBase

as_dict()

metadata = None

version = Column(None, String(length=15), table=None)

1028 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.db.sqlalchemy.models.Node(**kwargs)
Bases: NodeBase

Represents a bare metal node.

allocation_id

automated_clean

bios_interface

boot_interface

boot_mode

chassis_id

clean_step

conductor_affinity

conductor_group

console_enabled

console_interface

created_at

deploy_interface

deploy_step

description

driver

driver_info

driver_internal_info

extra

fault

firmware_interface

id

inspect_interface

inspection_finished_at

inspection_started_at

instance_info

instance_uuid

5.1. Developers Guide 1029

Ironic Documentation, Release 26.1.2.dev21

last_error

lessee

maintenance

maintenance_reason

management_interface

name

network_data

network_interface

owner

parent_node

power_interface

power_state

properties

protected

protected_reason

provision_state

provision_updated_at

raid_config

raid_interface

rescue_interface

reservation

resource_class

retired

retired_reason

secure_boot

service_step

shard

storage_interface

tags: Mapped[List[NodeTag]]

target_power_state

1030 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

target_provision_state

target_raid_config

traits: Mapped[List[NodeTrait]]

updated_at

uuid

vendor_interface

version

class ironic.db.sqlalchemy.models.NodeBase(**kwargs)
Bases: Base

Represents a base bare metal node.

allocation_id

automated_clean

bios_interface

boot_interface

boot_mode

chassis_id

clean_step

conductor_affinity

conductor_group

console_enabled

console_interface

created_at

deploy_interface

deploy_step

description

driver

driver_info

driver_internal_info

extra

fault

5.1. Developers Guide 1031

Ironic Documentation, Release 26.1.2.dev21

firmware_interface

id

inspect_interface

inspection_finished_at

inspection_started_at

instance_info

instance_uuid

last_error

lessee

maintenance

maintenance_reason

management_interface

name

network_data

network_interface

owner

parent_node

power_interface

power_state

properties

protected

protected_reason

provision_state

provision_updated_at

raid_config

raid_interface

rescue_interface

reservation

resource_class

retired

1032 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

retired_reason

secure_boot

service_step

shard

storage_interface

target_power_state

target_provision_state

target_raid_config

updated_at

uuid

vendor_interface

version

class ironic.db.sqlalchemy.models.NodeHistory(**kwargs)
Bases: Base

Represents a history event of a bare metal node.

conductor

created_at

event

event_type

id

node_id

severity

updated_at

user

uuid

version

class ironic.db.sqlalchemy.models.NodeInventory(**kwargs)
Bases: Base

Represents an inventory of a baremetal node.

created_at

id

5.1. Developers Guide 1033

Ironic Documentation, Release 26.1.2.dev21

inventory_data

node_id

plugin_data

updated_at

version

class ironic.db.sqlalchemy.models.NodeTag(**kwargs)
Bases: Base

Represents a tag of a bare metal node.

created_at

node

node_id

tag

updated_at

version

class ironic.db.sqlalchemy.models.NodeTrait(**kwargs)
Bases: Base

Represents a trait of a bare metal node.

created_at

node

node_id

trait

updated_at

version

class ironic.db.sqlalchemy.models.Port(**kwargs)
Bases: Base

Represents a network port of a bare metal node.

address

created_at

extra

id

internal_info

1034 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

is_smartnic

local_link_connection

name

node_id

node_uuid = ColumnAssociationProxyInstance(AssociationProxy('_node_uuid',
'uuid'))

physical_network

portgroup_id

pxe_enabled

updated_at

uuid

version

class ironic.db.sqlalchemy.models.Portgroup(**kwargs)
Bases: Base

Represents a group of network ports of a bare metal node.

address

created_at

extra

id

internal_info

mode

name

node_id

node_uuid = ColumnAssociationProxyInstance(AssociationProxy('_node_uuid',
'uuid'))

properties

standalone_ports_supported

updated_at

uuid

version

5.1. Developers Guide 1035

Ironic Documentation, Release 26.1.2.dev21

class ironic.db.sqlalchemy.models.Runbook(**kwargs)
Bases: Base

Represents a runbook.

created_at

disable_ramdisk

extra

id

name

owner

public

steps: Mapped[List[RunbookStep]]

updated_at

uuid

version

class ironic.db.sqlalchemy.models.RunbookStep(**kwargs)
Bases: Base

Represents a deployment step in a runbook.

args

created_at

id

interface

order

runbook

runbook_id

step

updated_at

version

class ironic.db.sqlalchemy.models.VolumeConnector(**kwargs)
Bases: Base

Represents a volume connector of a bare metal node.

connector_id

1036 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

created_at

extra

id

node_id

type

updated_at

uuid

version

class ironic.db.sqlalchemy.models.VolumeTarget(**kwargs)
Bases: Base

Represents a volume target of a bare metal node.

boot_index

created_at

extra

id

node_id

properties

updated_at

uuid

version

volume_id

volume_type

ironic.db.sqlalchemy.models.get_class(model_name)
Returns the model class with the specified name.

Parameters
model_name the name of the class

Returns
the class with the specified name

Raises
Exception if there is no class associated with the name

ironic.db.sqlalchemy.models.table_args()

5.1. Developers Guide 1037

Ironic Documentation, Release 26.1.2.dev21

Module contents

Submodules

ironic.db.api module

Base classes for storage engines

class ironic.db.api.Connection

Bases: object

Base class for storage system connections.

abstract add_node_tag(node_id, tag)
Add tag to the node.

If the node_id and tag pair already exists, this should still succeed.

Parameters

• node_id The id of a node.

• tag A tag string.

Returns
the NodeTag object.

Raises
NodeNotFound if the node is not found.

abstract add_node_trait(node_id, trait, version)
Add trait to the node.

If the node_id and trait pair already exists, this should still succeed.

Parameters

• node_id The id of a node.

• trait A trait string.

• version the version of the object.Trait.

Returns
the NodeTrait object.

Raises
InvalidParameterValue if adding the trait would exceed the per-node traits limit.

Raises
NodeNotFound if the node is not found.

abstract bulk_delete_node_history_records(node_id, limit)
Utility method to bulk delete node history entries.

Parameters
entries A list of node history entry ids to be queried for deletion.

1038 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract check_node_list(idents)
Check a list of node identities and map it to UUIDs.

This call takes a list of node names and/or UUIDs and tries to convert them to UUIDs. It
fails early if any identities cannot possible be used as names or UUIDs.

Parameters
idents List of identities.

Returns
A mapping from requests identities to node UUIDs.

Raises
NodeNotFound if some identities were not found or cannot be valid names or
UUIDs.

abstract check_versions(ignore_models=())
Checks the whole database for incompatible objects.

This scans all the tables in search of objects that are not supported; i.e., those that are not
specified in ironic.common.release_mappings.RELEASE_MAPPING.

Parameters
ignore_models List of model names to skip.

Returns
A Boolean. True if all the objects have supported versions; False otherwise.

abstract count_nodes_in_provision_state(state)
Count the number of nodes in given provision state.

Parameters
state A provision_state value to match for the count operation. This can be a
single provision state value or a list of values.

abstract create_allocation(values)
Create a new allocation.

Parameters
values Dict of values to create an allocation with

Returns
An allocation

Raises
AllocationDuplicateName

Raises
AllocationAlreadyExists

abstract create_bios_setting_list(node_id, settings, version)
Create a list of BIOSSetting records for a given node.

Parameters

• node_id The node id.

• settings A list of BIOS Settings to be created.

5.1. Developers Guide 1039

Ironic Documentation, Release 26.1.2.dev21

[
{
'name': String,
'value': String,
additional settings from BIOS registry
},
{
'name': String,
'value': String,
additional settings from BIOS registry
},
...

]

• version the version of the object.BIOSSetting.

Returns
A list of BIOSSetting object.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingAlreadyExists if any of the setting records already exists.

abstract create_chassis(values)
Create a new chassis.

Parameters
values Dict of values.

abstract create_deploy_template(values)
Create a deployment template.

Parameters
values A dict describing the deployment template. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
DeployTemplateDuplicateName if a deploy template with the same name ex-
ists.

Raises
DeployTemplateAlreadyExists if a deploy template with the same UUID exists.

Returns
A deploy template.

abstract classmethod create_firmware_component(values)
Create a FirmwareComponent record for a given node.

1040 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
values a dictionary with the necessary information to create a FirmwareCom-
ponent.

{
'component': String,
'initial_version': String,
'current_version': String,
'last_version_flashed': String

}

Returns
A FirmwareComponent object.

Raises
FirmwareComponentAlreadyExists if any of the component records already ex-
ists.

abstract create_node(values)
Create a new node.

Parameters
values A dict containing several items used to identify and track the node,
and several dicts which are passed into the Drivers when managing this node.
For example:

{
'uuid': uuidutils.generate_uuid(),
'instance_uuid': None,
'power_state': states.POWER_OFF,
'provision_state': states.AVAILABLE,
'driver': 'ipmi',
'driver_info': { ... },
'properties': { ... },
'extra': { ... },
}

Raises
InvalidParameterValue if values contains tags or traits.

Returns
A node.

abstract create_node_history(values)
Create a new history record.

Parameters
values Dict of values.

abstract create_node_inventory(values)
Create a new inventory record.

Parameters
values Dict of values.

5.1. Developers Guide 1041

Ironic Documentation, Release 26.1.2.dev21

abstract create_port(values)
Create a new port.

Parameters
values Dict of values.

abstract create_portgroup(values)
Create a new portgroup.

Parameters
values Dict of values with the following keys: id uuid name node_id address
extra created_at updated_at

Returns
A portgroup

Raises
PortgroupDuplicateName

Raises
PortgroupMACAlreadyExists

Raises
PortgroupAlreadyExists

abstract create_runbook(values)
Create a runbook.

Parameters
values A dict describing the runbook. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
RunbookDuplicateName if a runbook with the same name exists.

Raises
RunbookAlreadyExists if a runbook with the same UUID exists.

Returns
A runbook.

abstract create_volume_connector(connector_info)
Create a new volume connector.

Parameters
connector_info Dictionary containing information about the connector. Ex-
ample:

{
'uuid': '000000-..',
'type': 'wwnn',
'connector_id': '00:01:02:03:04:05:06',

(continues on next page)

1042 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'node_id': 2
}

Returns
A volume connector.

Raises
VolumeConnectorTypeAndIdAlreadyExists If a connector already exists with
a matching type and connector_id.

Raises
VolumeConnectorAlreadyExists If a volume connector with the same UUID
already exists.

abstract create_volume_target(target_info)
Create a new volume target.

Parameters
target_info Dictionary containing the information about the volume target.
Example:

{
'uuid': '000000-..',
'node_id': 2,
'boot_index': 0,
'volume_id': '12345678-...'
'volume_type': 'some type',

}

Returns
A volume target.

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same boot index and node ID.

Raises
VolumeTargetAlreadyExists if a volume target with the same UUID exists.

abstract delete_bios_setting_list(node_id, names)
Delete a list of BIOS settings.

Parameters

• node_id The node id.

• names List of BIOS setting names to be deleted.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingNotFound if any of BIOS setting name is not found.

abstract delete_node_tag(node_id, tag)
Delete specified tag from the node.

5.1. Developers Guide 1043

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node_id The id of a node.

• tag A tag string.

Raises
NodeNotFound if the node is not found.

Raises
NodeTagNotFound if the tag is not found.

abstract delete_node_trait(node_id, trait)
Delete specified trait from the node.

Parameters

• node_id The id of a node.

• trait A trait string.

Raises
NodeNotFound if the node is not found.

Raises
NodeTraitNotFound if the trait is not found.

abstract destroy_allocation(allocation_id)
Destroy an allocation.

Parameters
allocation_id Allocation ID

Raises
AllocationNotFound

abstract destroy_chassis(chassis_id)
Destroy a chassis.

Parameters
chassis_id The id or the uuid of a chassis.

abstract destroy_deploy_template(template_id)
Destroy a deployment template.

Parameters
template_id ID of the deployment template to destroy.

Raises
DeployTemplateNotFound if the deploy template does not exist.

abstract destroy_node(node_id)
Destroy a node and its associated resources.

Destroy a node, including any associated ports, port groups, tags, traits, volume connectors,
and volume targets.

Parameters
node_id The ID or UUID of a node.

1044 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract destroy_node_history_by_uuid(history_uuid)
Destroy a history record.

Parameters
history_uuid The uuid of a history record

abstract destroy_node_inventory_by_node_id(inventory_node_id)
Destroy a inventory record.

Parameters
inventory_uuid The uuid of a inventory record

abstract destroy_port(port_id)
Destroy an port.

Parameters
port_id The id or MAC of a port.

abstract destroy_portgroup(portgroup_id)
Destroy a portgroup.

Parameters
portgroup_id The UUID or MAC of a portgroup.

Raises
PortgroupNotEmpty

Raises
PortgroupNotFound

abstract destroy_runbook(runbook_id)
Destroy a runbook.

Parameters
runbook_id ID of the runbook to destroy.

Raises
RunbookNotFound if the runbook does not exist.

abstract destroy_volume_connector(ident)
Destroy a volume connector.

Parameters
ident The UUID or integer ID of a volume connector.

Raises
VolumeConnectorNotFound If a volume connector with the specified ident does
not exist.

abstract destroy_volume_target(ident)
Destroy a volume target.

Parameters
ident The UUID or integer ID of a volume target.

Raises
VolumeTargetNotFound if a volume target with the specified ident does not
exist.

5.1. Developers Guide 1045

Ironic Documentation, Release 26.1.2.dev21

abstract get_active_hardware_type_dict(use_groups=False)
Retrieve hardware types for the registered and active conductors.

Parameters
use_groups Whether to factor conductor_group into the keys.

Returns

A dict which maps hardware type names to the set of hosts which support them.
For example:

{hardware-type-a: set([host1, host2]),
hardware-type-b: set([host2, host3])}

abstract get_allocation_by_id(allocation_id)
Return an allocation representation.

Parameters
allocation_id The id of an allocation.

Returns
An allocation.

Raises
AllocationNotFound

abstract get_allocation_by_name(name)
Return an allocation representation.

Parameters
name The logical name of an allocation.

Returns
An allocation.

Raises
AllocationNotFound

abstract get_allocation_by_uuid(allocation_uuid)
Return an allocation representation.

Parameters
allocation_uuid The uuid of an allocation.

Returns
An allocation.

Raises
AllocationNotFound

abstract get_allocation_list(filters=None, limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of allocations.

Parameters

• filters Filters to apply. Defaults to None.

node_uuid
uuid of node

1046 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

state
allocation state

resource_class
requested resource class

• limit Maximum number of allocations to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

Returns
A list of allocations.

abstract get_bios_setting(node_id, name)
Retrieve BIOS setting value.

Parameters

• node_id The node id.

• name String containing name of BIOS setting to be retrieved.

Returns
The BIOSSetting object.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingNotFound if the BIOS setting is not found.

abstract get_bios_setting_list(node_id)
Retrieve BIOS settings of a given node.

Parameters
node_id The node id.

Returns
A list of BIOSSetting objects.

Raises
NodeNotFound if the node is not found.

abstract get_chassis_by_id(chassis_id)
Return a chassis representation.

Parameters
chassis_id The id of a chassis.

Returns
A chassis.

abstract get_chassis_by_uuid(chassis_uuid)
Return a chassis representation.

Parameters
chassis_uuid The uuid of a chassis.

5.1. Developers Guide 1047

Ironic Documentation, Release 26.1.2.dev21

Returns
A chassis.

abstract get_chassis_list(limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of chassis.

Parameters

• limit Maximum number of chassis to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

abstract get_conductor(hostname, online=True)
Retrieve a conductors service record from the database.

Parameters

• hostname The hostname of the conductor service.

• online Specify the filter value on the online field when querying conduc-
tors. The online field is ignored if this value is set to None.

Returns
A conductor.

Raises
ConductorNotFound if the conductor with given hostname does not exist or
doesnt meet the specified online expectation.

abstract get_conductor_list(limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of conductors.

Parameters

• limit Maximum number of conductors to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

abstract get_deploy_template_by_id(template_id)
Retrieve a deployment template by ID.

Parameters
template_id ID of the deployment template to retrieve.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

abstract get_deploy_template_by_name(template_name)
Retrieve a deployment template by name.

1048 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
template_name name of the deployment template to retrieve.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

abstract get_deploy_template_by_uuid(template_uuid)
Retrieve a deployment template by UUID.

Parameters
template_uuid UUID of the deployment template to retrieve.

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

abstract get_deploy_template_list(limit=None, marker=None, sort_key=None,
sort_dir=None)

Retrieve a list of deployment templates.

Parameters

• limit Maximum number of deploy templates to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

Returns
A list of deploy templates.

abstract get_deploy_template_list_by_names(names)
Return a list of deployment templates with one of a list of names.

Parameters
names List of names to filter by.

Returns
A list of deploy templates.

abstract get_firmware_component(node_id, name)
Retrieve Firmware Component.

Parameters

• node_id The node id.

• name name of Firmware component.

Returns
The FirmwareComponent object.

Raises
NodeNotFound if the node is not found.

5.1. Developers Guide 1049

Ironic Documentation, Release 26.1.2.dev21

Raises
FirmwareComponentNotFound if the Firmware component is not found.

abstract classmethod get_firmware_component_list(node_id)
Retrieve a list Firmware Components of a given node.

Parameters
node_id The node id.

Returns
A list of FirmwareComponent objects.

Raises
NodeNotFound if the node is not found.

abstract get_node_by_id(node_id)
Return a node.

Parameters
node_id The id of a node.

Returns
A node.

abstract get_node_by_instance(instance)
Return a node.

Parameters
instance The instance uuid to search for.

Returns
A node.

Raises
InstanceNotFound if the instance is not found.

Raises
InvalidUUID if the instance uuid is invalid.

abstract get_node_by_name(node_name)
Return a node.

Parameters
node_name The logical name of a node.

Returns
A node.

abstract get_node_by_port_addresses(addresses)
Find a node by any matching port address.

Parameters
addresses list of port addresses (e.g. MACs).

Returns
Node object.

Raises
NodeNotFound if none or several nodes are found.

1050 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract get_node_by_uuid(node_uuid)
Return a node.

Parameters
node_uuid The uuid of a node.

Returns
A node.

abstract get_node_history_by_id(history_id)
Return a node history representation.

Parameters
history_id The id of a history record.

Returns
A history.

abstract get_node_history_by_node_id(node_id, limit=None, marker=None,
sort_key=None, sort_dir=None)

List all the history records for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of history records to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

Returns
A list of histories.

abstract get_node_history_by_uuid(history_uuid)
Return a node history representation.

Parameters
history_uuid The uuid of a history record

Returns
A history.

abstract get_node_history_list(limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of node history records

Parameters

• limit Maximum number of history records to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

5.1. Developers Guide 1051

Ironic Documentation, Release 26.1.2.dev21

abstract get_node_inventory_by_node_id(node_id)
Get the node inventory for a given node.

Parameters
node_id The integer node ID.

Returns
An inventory of a node.

abstract get_node_list(filters=None, limit=None, marker=None, sort_key=None,
sort_dir=None, fields=None)

Return a list of nodes.

Parameters

• filters Filters to apply. Defaults to None.

associated
True | False

reserved
True | False

maintenance
True | False

chassis_uuid
uuid of chassis

driver
drivers name

provision_state
provision state of node

provisioned_before
nodes with provision_updated_at field before this interval in seconds

shard
nodes with the given shard

• limit Maximum number of nodes to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

• fields Comma separated field list to return, to allow for only specific
fields to be returned to have maximum API performance calls where not all
columns are needed from the database.

abstract get_node_tags_by_node_id(node_id)
Get node tags based on its id.

Parameters
node_id The id of a node.

Returns
A list of NodeTag objects.

1052 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node is not found.

abstract get_node_traits_by_node_id(node_id)
Get node traits based on its id.

Parameters
node_id The id of a node.

Returns
A list of NodeTrait objects.

Raises
NodeNotFound if the node is not found.

abstract get_nodeinfo_list(columns=None, filters=None, limit=None, marker=None,
sort_key=None, sort_dir=None)

Get specific columns for matching nodes.

Return a list of the specified columns for all nodes that match the specified filters.

Parameters

• columns List of column names to return. Defaults to id column when
columns == None.

• filters Filters to apply. Defaults to None.

associated
True | False

chassis_uuid
uuid of chassis

conductor_group
conductor group name

console_enabled
True | False

description_contains
substring in description

driver
drivers name

fault
current fault type

id
numeric ID

inspection_started_before
nodes with inspection_started_at field before this interval in seconds

instance_uuid
uuid of instance

lessee
nodes lessee (e.g. project ID)

5.1. Developers Guide 1053

Ironic Documentation, Release 26.1.2.dev21

maintenance
True | False

owner
nodes owner (e.g. project ID)

project
either owner or lessee

reserved
True | False

reserved_by_any_of
[conductor1, conductor2]

resource_class
resource class name

retired
True | False

shard_in
shard (multiple possibilities)

provision_state
provision state of node

provision_state_in
provision state of node (multiple possibilities)

provisioned_before
nodes with provision_updated_at field before this interval in seconds

uuid
uuid of node

uuid_in
uuid of node (multiple possibilities)

with_power_state
True | False

• limit Maximum number of nodes to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

Returns
A list of tuples of the specified columns.

abstract get_offline_conductors(field=’hostname’)
Get a list conductors that are offline (dead).

Parameters
field A field to return, hostname by default.

Returns
A list of requested fields of offline conductors.

1054 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract get_online_conductors()

Get a list conductor hostnames that are online and active.

Returns
A list of conductor hostnames.

abstract get_port_by_address(address)
Return a network port representation.

Parameters
address The MAC address of a port.

Returns
A port.

abstract get_port_by_id(port_id)
Return a network port representation.

Parameters
port_id The id of a port.

Returns
A port.

abstract get_port_by_name(port_name)
Return a network port representation.

Parameters
port_name The name of a port.

Returns
A port.

abstract get_port_by_uuid(port_uuid)
Return a network port representation.

Parameters
port_uuid The uuid of a port.

Returns
A port.

abstract get_port_list(limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of ports.

Parameters

• limit Maximum number of ports to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

abstract get_portgroup_by_address(address, project=None)
Return a network portgroup representation.

Parameters

• address The MAC address of a portgroup.

5.1. Developers Guide 1055

Ironic Documentation, Release 26.1.2.dev21

• project A node owner or lessee to filter by.

Returns
A portgroup.

Raises
PortgroupNotFound

abstract get_portgroup_by_id(portgroup_id)
Return a network portgroup representation.

Parameters
portgroup_id The id of a portgroup.

Returns
A portgroup.

Raises
PortgroupNotFound

abstract get_portgroup_by_name(name)
Return a network portgroup representation.

Parameters
name The logical name of a portgroup.

Returns
A portgroup.

Raises
PortgroupNotFound

abstract get_portgroup_by_uuid(portgroup_uuid)
Return a network portgroup representation.

Parameters
portgroup_uuid The uuid of a portgroup.

Returns
A portgroup.

Raises
PortgroupNotFound

abstract get_portgroup_list(limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of portgroups.

Parameters

• limit Maximum number of portgroups to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

• project A node owner or lessee to filter by.

1056 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of portgroups.

abstract get_portgroups_by_node_id(node_id, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

List all the portgroups for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of portgroups to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir Direction in which results should be sorted (asc, desc)

• project A node owner or lessee to filter by.

Returns
A list of portgroups.

abstract get_ports_by_node_id(node_id, limit=None, marker=None, sort_key=None,
sort_dir=None)

List all the ports for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of ports to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

Returns
A list of ports.

abstract get_ports_by_portgroup_id(portgroup_id, limit=None, marker=None,
sort_key=None, sort_dir=None)

List all the ports for a given portgroup.

Parameters

• portgroup_id The integer portgroup ID.

• limit Maximum number of ports to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir Direction in which results should be sorted (asc, desc)

Returns
A list of ports.

5.1. Developers Guide 1057

Ironic Documentation, Release 26.1.2.dev21

abstract get_ports_by_shards(shards, limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of ports contained in the provided shards.

Parameters
shard_ids A list of shards to filter ports by.

abstract get_runbook_by_id(runbook_id)
Retrieve a runbook by ID.

Parameters
runbook_id ID of the runbook to retrieve.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

abstract get_runbook_by_name(runbook_name)
Retrieve a runbook by name.

Parameters
runbook_name name of the runbook to retrieve.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

abstract get_runbook_by_uuid(runbook_uuid)
Retrieve a runbook by UUID.

Parameters
runbook_uuid UUID of the runbook to retrieve.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

abstract get_runbook_list(limit=None, marker=None, filters=None, sort_key=None,
sort_dir=None)

Retrieve a list of runbooks.

Parameters

• limit Maximum number of runbooks to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

Returns
A list of runbooks.

1058 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract get_runbook_list_by_names(names)
Return a list of runbooks with one of a list of names.

Parameters
names List of names to filter by.

Returns
A list of runbooks.

abstract get_shard_list()

Retrieve a list of shards.

Returns
list of dicts containing shard names and count

abstract get_volume_connector_by_id(db_id)
Return a volume connector representation.

Parameters
db_id The integer database ID of a volume connector.

Returns
A volume connector with the specified ID.

Raises
VolumeConnectorNotFound If a volume connector with the specified ID is not
found.

abstract get_volume_connector_by_uuid(connector_uuid)
Return a volume connector representation.

Parameters
connector_uuid The UUID of a connector.

Returns
A volume connector with the specified UUID.

Raises
VolumeConnectorNotFound If a volume connector with the specified UUID is
not found.

abstract get_volume_connector_list(limit=None, marker=None, sort_key=None,
sort_dir=None, project=None)

Return a list of volume connectors.

Parameters

• limit Maximum number of volume connectors to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir Direction in which results should be sorted. (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

5.1. Developers Guide 1059

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of volume connectors.

Raises
InvalidParameterValue If sort_key does not exist.

abstract get_volume_connectors_by_node_id(node_id, limit=None, marker=None,
sort_key=None, sort_dir=None,
project=None)

List all the volume connectors for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of volume connectors to return.

• marker The last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir Direction in which results should be sorted (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
A list of volume connectors.

Raises
InvalidParameterValue If sort_key does not exist.

abstract get_volume_target_by_id(db_id)
Return a volume target representation.

Parameters
db_id The database primary key (integer) ID of a volume target.

Returns
A volume target.

Raises
VolumeTargetNotFound if no volume target with this ID exists.

abstract get_volume_target_by_uuid(uuid)
Return a volume target representation.

Parameters
uuid The UUID of a volume target.

Returns
A volume target.

Raises
VolumeTargetNotFound if no volume target with this UUID exists.

abstract get_volume_target_list(limit=None, marker=None, sort_key=None,
sort_dir=None, project=None)

Return a list of volume targets.

1060 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• limit Maximum number of volume targets to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted.

• sort_dir direction in which results should be sorted. (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
A list of volume targets.

Raises
InvalidParameterValue if sort_key does not exist.

abstract get_volume_targets_by_node_id(node_id, limit=None, marker=None,
sort_key=None, sort_dir=None,
project=None)

List all the volume targets for a given node.

Parameters

• node_id The integer node ID.

• limit Maximum number of volume targets to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

• sort_dir direction in which results should be sorted (asc, desc)

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
A list of volume targets.

Raises
InvalidParameterValue if sort_key does not exist.

abstract get_volume_targets_by_volume_id(volume_id, limit=None, marker=None,
sort_key=None, sort_dir=None,
project=None)

List all the volume targets for a given volume id.

Parameters

• volume_id The UUID of the volume.

• limit Maximum number of volume targets to return.

• marker the last item of the previous page; we return the next result set.

• sort_key Attribute by which results should be sorted

5.1. Developers Guide 1061

Ironic Documentation, Release 26.1.2.dev21

• sort_dir direction in which results should be sorted (asc, desc)

Returns
A list of volume targets.

Raises
InvalidParameterValue if sort_key does not exist.

abstract list_conductor_hardware_interfaces(conductor_id)
List all registered hardware interfaces for a conductor.

Parameters
conductor_id Database ID of conductor.

Returns
List of ConductorHardwareInterfaces objects.

abstract list_hardware_type_interfaces(hardware_types)
List registered hardware interfaces for given hardware types.

This is restricted to only active conductors. :param hardware_types: list of hardware types
to filter by. :returns: list of ConductorHardwareInterfaces objects.

abstract node_tag_exists(node_id, tag)
Check if the specified tag exist on the node.

Parameters

• node_id The id of a node.

• tag A tag string.

Returns
True if the tag exists otherwise False.

Raises
NodeNotFound if the node is not found.

abstract node_trait_exists(node_id, trait)
Check if the specified trait exists on the node.

Parameters

• node_id The id of a node.

• trait A trait string.

Returns
True if the trait exists otherwise False.

Raises
NodeNotFound if the node is not found.

abstract query_node_history_records_for_purge(conductor_id)
Utility method to identify nodes to clean history records for.

Parameters
conductor_id Id value for the conductor to perform this query on behalf of.

1062 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A dictionary with key values of node database ID values and a list of values
associated with the node.

abstract register_conductor(values, update_existing=False)
Register an active conductor with the cluster.

Parameters

• values A dict of values which must contain the following:

{
'hostname': the unique hostname which identifies

this Conductor service.
'drivers': a list of supported drivers.
'version': the version of the object.Conductor
}

• update_existing When false, registration will raise an exception when
a conflicting online record is found. When true, will overwrite the existing
record. Default: False.

Returns
A conductor.

Raises
ConductorAlreadyRegistered

abstract register_conductor_hardware_interfaces(conductor_id, hardware_type,
interface_type, interfaces,
default_interface)

Registers hardware interfaces for a conductor.

Parameters

• conductor_id Database ID of conductor to register for.

• hardware_type Name of hardware type for the interfaces.

• interface_type Type of interfaces, e.g. deploy or boot.

• interfaces List of interface names to register.

• default_interface String, the default interface for this hardware type
and interface type.

Raises
ConductorHardwareInterfacesAlreadyRegistered if at least one of the inter-
faces in the combination of all parameters is already registered.

abstract release_node(tag, node_id)
Release the reservation on a node.

Parameters

• tag A string uniquely identifying the reservation holder.

• node_id A node id or uuid.

5.1. Developers Guide 1063

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node is not found.

Raises
NodeLocked if the node is reserved by another host.

Raises
NodeNotLocked if the node was found to not have a reservation at all.

abstract reserve_node(tag, node_id)
Reserve a node.

To prevent other ManagerServices from manipulating the given Node while a Task is per-
formed, mark it reserved by this host.

Parameters

• tag A string uniquely identifying the reservation holder.

• node_id A node id or uuid.

Returns
A Node object.

Raises
NodeNotFound if the node is not found.

Raises
NodeLocked if the node is already reserved.

abstract set_node_tags(node_id, tags)
Replace all of the node tags with specified list of tags.

This ignores duplicate tags in the specified list.

Parameters

• node_id The id of a node.

• tags List of tags.

Returns
A list of NodeTag objects.

Raises
NodeNotFound if the node is not found.

abstract set_node_traits(node_id, traits, version)
Replace all of the node traits with specified list of traits.

This ignores duplicate traits in the specified list.

Parameters

• node_id The id of a node.

• traits List of traits.

• version the version of the object.Trait.

Returns
A list of NodeTrait objects.

1064 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if setting the traits would exceed the per-node traits
limit.

Raises
NodeNotFound if the node is not found.

abstract take_over_allocation(allocation_id, old_conductor_id, new_conductor_id)
Do a take over for an allocation.

The allocation is only updated if the old conductor matches the provided value, thus guarding
against races.

Parameters

• allocation_id Allocation ID

• old_conductor_id The conductor ID we expect to be the current
conductor_affinity of the allocation.

• new_conductor_id The conductor ID of the new conductor_affinity.

Returns
True if the take over was successful, False otherwise.

Raises
AllocationNotFound

abstract touch_conductor(hostname, online=True)
Mark a conductor as active by updating its updated_at property.

Calling periodically with online=Falsewill result in the conductor appearing unregistered,
but recently enough to prevent other conductors failing orphan nodes. This improves the
behaviour of graceful and drain shutdown.

Parameters

• hostname The hostname of this conductor service.

• online Whether the conductor is online.

Raises
ConductorNotFound

abstract touch_node_provisioning(node_id)
Mark the nodes provisioning as running.

Mark the nodes provisioning as running by updating its provision_updated_at property.

Parameters
node_id The id of a node.

Raises
NodeNotFound

abstract unregister_conductor(hostname)
Remove this conductor from the service registry immediately.

Parameters
hostname The hostname of this conductor service.

5.1. Developers Guide 1065

Ironic Documentation, Release 26.1.2.dev21

Raises
ConductorNotFound

abstract unregister_conductor_hardware_interfaces(conductor_id)
Unregisters all hardware interfaces for a conductor.

Parameters
conductor_id Database ID of conductor to unregister for.

abstract unset_node_tags(node_id)
Remove all tags of the node.

Parameters
node_id The id of a node.

Raises
NodeNotFound if the node is not found.

abstract unset_node_traits(node_id)
Remove all traits of the node.

Parameters
node_id The id of a node.

Raises
NodeNotFound if the node is not found.

abstract update_allocation(allocation_id, values, update_node=True)
Update properties of an allocation.

Parameters

• allocation_id Allocation ID

• values Dict of values to update.

• update_node If True and node_id is updated, update the node with in-
stance_uuid and traits from the allocation

Returns
An allocation.

Raises
AllocationNotFound

Raises
AllocationDuplicateName

Raises
InstanceAssociated

Raises
NodeAssociated

abstract update_bios_setting_list(node_id, settings, version)
Update a list of BIOSSetting records.

Parameters

• node_id The node id.

1066 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• settings A list of BIOS Settings to be updated.

[
{
'name': String,
'value': String,
additional settings from BIOS registry
},
{
'name': String,
'value': String,
additional settings from BIOS registry
},
...

]

• version the version of the object.BIOSSetting.

Returns
A list of BIOSSetting objects.

Raises
NodeNotFound if the node is not found.

Raises
BIOSSettingNotFound if any of the settings is not found.

abstract update_chassis(chassis_id, values)
Update properties of an chassis.

Parameters

• chassis_id The id or the uuid of a chassis.

• values Dict of values to update.

Returns
A chassis.

abstract update_deploy_template(template_id, values)
Update a deployment template.

Parameters

• template_id ID of the deployment template to update.

• values A dict describing the deployment template. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
DeployTemplateDuplicateName if a deploy template with the same name ex-
ists.

5.1. Developers Guide 1067

Ironic Documentation, Release 26.1.2.dev21

Raises
DeployTemplateNotFound if the deploy template does not exist.

Returns
A deploy template.

abstract classmethod update_firmware_component(node_id, component, values)
Update a FirmwareComponent record.

Parameters

• node_id The node id.

• component The component of the node to update.

• values A dictionary with the new information about the FirmwareCompo-
nent.

{
'current_version': String,
'last_version_flashed': String

}

Returns
A FirmwareComponent object.

Raises
FirmwareComponentNotFound the component is not found.

abstract update_node(node_id, values)
Update properties of a node.

Parameters

• node_id The id or uuid of a node.

• values Dict of values to update. May be a partial list, eg. when setting the
properties for a driver. For example:

{
'driver_info':

{
'my-field-1': val1,
'my-field-2': val2,

}
}

Returns
A node.

Raises
NodeAssociated

Raises
NodeNotFound

abstract update_port(port_id, values)
Update properties of an port.

1068 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• port_id The id or MAC of a port.

• values Dict of values to update.

Returns
A port.

abstract update_portgroup(portgroup_id, values)
Update properties of a portgroup.

Parameters

• portgroup_id The UUID or MAC of a portgroup.

• values Dict of values to update. May contain the following keys: uuid
name node_id address extra created_at updated_at

Returns
A portgroup.

Raises
InvalidParameterValue

Raises
PortgroupNotFound

Raises
PortgroupDuplicateName

Raises
PortgroupMACAlreadyExists

abstract update_runbook(runbook_id, values)
Update a runbook.

Parameters

• runbook_id ID of the runbook to update.

• values A dict describing the runbook. For example:

{
'uuid': uuidutils.generate_uuid(),
'name': 'CUSTOM_DT1',
}

Raises
RunbookDuplicateName if a runbook with the same name exists.

Raises
RunbookNotFound if the runbook does not exist.

Returns
A runbook.

abstract update_to_latest_versions(context, max_count)
Updates objects to their latest known versions.

5.1. Developers Guide 1069

Ironic Documentation, Release 26.1.2.dev21

This scans all the tables and for objects that are not in their latest version, updates them to
that version.

Parameters

• context the admin context

• max_count The maximum number of objects to migrate. Must be >= 0. If
zero, all the objects will be migrated.

Returns
A 2-tuple, 1. the total number of objects that need to be migrated (at the begin-
ning of this call) and 2. the number of migrated objects.

abstract update_volume_connector(ident, connector_info)
Update properties of a volume connector.

Parameters

• ident The UUID or integer ID of a volume connector.

• connector_info Dictionary containing the information about connector
to update.

Returns
A volume connector.

Raises
VolumeConnectorTypeAndIdAlreadyExists If another connector already exists
with a matching type and connector_id field.

Raises
VolumeConnectorNotFound If a volume connector with the specified ident does
not exist.

Raises
InvalidParameterValue When a UUID is included in connector_info.

abstract update_volume_target(ident, target_info)
Update information for a volume target.

Parameters

• ident The UUID or integer ID of a volume target.

• target_info Dictionary containing the information about volume target
to update.

Returns
A volume target.

Raises
InvalidParameterValue if a UUID is included in target_info.

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same boot index and node ID.

Raises
VolumeTargetNotFound if no volume target with this ident exists.

1070 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.db.api.get_instance()

Return a DB API instance.

ironic.db.migration module

Database setup and migration commands.

ironic.db.migration.create_schema()

ironic.db.migration.get_backend()

ironic.db.migration.revision(message, autogenerate)

ironic.db.migration.stamp(version)

ironic.db.migration.upgrade(version=None)
Migrate the database to version or the most recent version.

ironic.db.migration.version()

Module contents

ironic.dhcp package

Submodules

ironic.dhcp.base module

Abstract base class for dhcp providers.

class ironic.dhcp.base.BaseDHCP

Bases: object

Base class for DHCP provider APIs.

clean_dhcp_opts(task)
Clean up the DHCP BOOT options for all ports in task.

Parameters
task A TaskManager instance.

Raises
FailedToCleanDHCPOpts

get_ip_addresses(task)
Get IP addresses for all ports/portgroups in task.

Parameters
task A TaskManager instance.

Returns
List of IP addresses associated with tasks ports and portgroups.

5.1. Developers Guide 1071

Ironic Documentation, Release 26.1.2.dev21

supports_ipxe_tag()

Whether the provider will correctly apply the ipxe tag.

When iPXE makes a DHCP request, does this provider support adding the tag ipxe or ipxe6
(for IPv6). When the provider returns True, options can be added which filter on these tags.

Returns
True when the driver supports tagging iPXE DHCP requests

abstract update_dhcp_opts(task, options, vifs=None)
Send or update the DHCP BOOT options for this node.

Parameters

• task A TaskManager instance.

• options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

• vifs A dict with keys ports and portgroups and dicts as values. Each dict
has key/value pairs of the form <ironic UUID>:<neutron port UUID>. e.g.

{'ports': {'port.uuid': vif.id},
'portgroups': {'portgroup.uuid': vif.id}}

If the value is None, will get the list of ports/portgroups from the Ironic
port/portgroup objects.

Raises
FailedToUpdateDHCPOptOnPort

abstract update_port_dhcp_opts(port_id, dhcp_options, token=None, context=None)
Update one or more DHCP options on the specified port.

Parameters

• port_id designate which port these attributes will be applied to.

• dhcp_options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

• token An optional authentication token. Deprecated, use context

• context (ironic.common.context.RequestContext) request context

1072 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
FailedToUpdateDHCPOptOnPort

ironic.dhcp.dnsmasq module

class ironic.dhcp.dnsmasq.DnsmasqDHCPApi

Bases: BaseDHCP

API for managing host specific Dnsmasq configuration.

clean_dhcp_opts(task)
Clean up the DHCP BOOT options for the host in task.

Parameters
task A TaskManager instance.

Raises
FailedToCleanDHCPOpts

get_ip_addresses(task)
Get IP addresses for all ports/portgroups in task.

Parameters
task a TaskManager instance.

Returns
List of IP addresses associated with tasks ports/portgroups.

supports_ipxe_tag()

Whether the provider will correctly apply the ipxe tag.

When iPXE makes a DHCP request, does this provider support adding the tag ipxe or ipxe6
(for IPv6). When the provider returns True, options can be added which filter on these tags.

The dnsmasq provider sets this to True on the assumption that the following is included in
the dnsmasq.conf:

dhcp-match=set:ipxe,175

Returns
True

update_dhcp_opts(task, options, vifs=None)
Send or update the DHCP BOOT options for this node.

Parameters

• task A TaskManager instance.

• options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

5.1. Developers Guide 1073

Ironic Documentation, Release 26.1.2.dev21

• vifs Ignored argument

update_port_dhcp_opts(port_id, dhcp_options, token=None, context=None)
Update one or more DHCP options on the specified port.

Parameters

• port_id designate which port these attributes will be applied to.

• dhcp_options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

• token An optional authentication token. Deprecated, use context

• context (ironic.common.context.RequestContext) request context

Raises
FailedToUpdateDHCPOptOnPort

ironic.dhcp.neutron module

class ironic.dhcp.neutron.NeutronDHCPApi

Bases: BaseDHCP

API for communicating to neutron 2.x API.

get_ip_addresses(task)
Get IP addresses for all ports/portgroups in task.

Parameters
task a TaskManager instance.

Returns
List of IP addresses associated with tasks ports/portgroups.

supports_ipxe_tag()

Whether the provider will correctly apply the ipxe tag.

When iPXE makes a DHCP request, does this provider support adding the tag ipxe or ipxe6
(for IPv6). When the provider returns True, options can be added which filter on these tags.

Returns
True

update_dhcp_opts(task, options, vifs=None)
Send or update the DHCP BOOT options for this node.

Parameters

• task A TaskManager instance.

• options this will be a list of dicts, e.g.

1074 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

• vifs a dict of Neutron port/portgroup dicts to update DHCP options on. The
port/portgroup dict key should be Ironic port UUIDs, and the values should
be Neutron port UUIDs, e.g.

{'ports': {'port.uuid': vif.id},
'portgroups': {'portgroup.uuid': vif.id}}
If the value is None, will get the list of
ports/portgroups from the Ironic port/portgroup
objects.

update_port_dhcp_opts(port_id, dhcp_options, token=None, context=None)
Update a ports attributes.

Update one or more DHCP options on the specified port. For the relevant API spec, see
https://docs.openstack.org/api-ref/network/v2/index.html#update-port

Parameters

• port_id designate which port these attributes will be applied to.

• dhcp_options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456'},
'ip_version': 4}]

• token optional auth token. Deprecated, use context.

• context (ironic.common.context.RequestContext) request context

Raises
FailedToUpdateDHCPOptOnPort

ironic.dhcp.none module

class ironic.dhcp.none.NoneDHCPApi

Bases: BaseDHCP

No-op DHCP API.

get_ip_addresses(task)
Get IP addresses for all ports/portgroups in task.

5.1. Developers Guide 1075

https://docs.openstack.org/api-ref/network/v2/index.html#update-port

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance.

Returns
List of IP addresses associated with tasks ports and portgroups.

update_dhcp_opts(task, options, vifs=None)
Send or update the DHCP BOOT options for this node.

Parameters

• task A TaskManager instance.

• options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

• vifs A dict with keys ports and portgroups and dicts as values. Each dict
has key/value pairs of the form <ironic UUID>:<neutron port UUID>. e.g.

{'ports': {'port.uuid': vif.id},
'portgroups': {'portgroup.uuid': vif.id}}

If the value is None, will get the list of ports/portgroups from the Ironic
port/portgroup objects.

Raises
FailedToUpdateDHCPOptOnPort

update_port_dhcp_opts(port_id, dhcp_options, token=None, context=None)
Update one or more DHCP options on the specified port.

Parameters

• port_id designate which port these attributes will be applied to.

• dhcp_options this will be a list of dicts, e.g.

[{'opt_name': '67',
'opt_value': 'pxelinux.0',
'ip_version': 4},

{'opt_name': '66',
'opt_value': '123.123.123.456',
'ip_version': 4}]

• token An optional authentication token. Deprecated, use context

• context (ironic.common.context.RequestContext) request context

Raises
FailedToUpdateDHCPOptOnPort

1076 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Module contents

ironic.drivers package

Subpackages

ironic.drivers.modules package

Subpackages

ironic.drivers.modules.ansible package

Submodules

ironic.drivers.modules.ansible.deploy module

Ansible deploy interface

class ironic.drivers.modules.ansible.deploy.AnsibleDeploy(*args, **kwargs)
Bases: HeartbeatMixin, AgentOobStepsMixin, DeployInterface

Interface for deploy-related actions.

clean_up(task)
Clean up the deployment environment for this node.

collect_deploy_logs = False

deploy(task)
Perform a deployment to a node.

execute_clean_step(task, step)
Execute a clean step.

Parameters

• task a TaskManager object containing the node

• step a clean step dictionary to execute

Returns
None

get_clean_steps(task)
Get the list of clean steps from the file.

Parameters
task a TaskManager object containing the node

Returns
A list of clean step dictionaries

get_properties()

Return the properties of the interface.

5.1. Developers Guide 1077

Ironic Documentation, Release 26.1.2.dev21

in_core_deploy_step(task)
Check if we are in the deploy.deploy deploy step.

Assumes that we are in the DEPLOYWAIT state.

Parameters
task a TaskManager instance

Returns
True if the current deploy step is deploy.deploy.

prepare(task)
Prepare the deployment environment for this node.

prepare_cleaning(task)
Boot into the ramdisk to prepare for cleaning.

Parameters
task a TaskManager object containing the node

Raises
NodeCleaningFailure if the previous cleaning ports cannot be removed or
if new cleaning ports cannot be created

Returns
None or states.CLEANWAIT for async prepare.

process_next_step(task, step_type)
Start the next clean/deploy step if the previous one is complete.

Parameters

• task a TaskManager instance

• step_type clean or deploy

take_over(task)
Take over management of this tasks node from a dead conductor.

If conductors hosts maintain a static relationship to nodes, this method should be imple-
mented by the driver to allow conductors to perform the necessary work during the remapping
of nodes to conductors when a conductor joins or leaves the cluster.

For example, the PXE driver has an external dependency:
Neutron must forward DHCP BOOT requests to a conductor which has prepared the
tftpboot environment for the given node. When a conductor goes offline, another con-
ductor must change this setting in Neutron as part of remapping that nodes control to
itself. This is performed within the takeover method.

Parameters
task A TaskManager instance containing the node to act on.

tear_down(task)
Tear down a previous deployment on the tasks node.

tear_down_agent(task)
A deploy step to tear down the agent.

Shuts down the machine and removes it from the provisioning network.

1078 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task a TaskManager object containing the node

tear_down_cleaning(task)
Clean up the PXE and DHCP files after cleaning.

Parameters
task a TaskManager object containing the node

Raises
NodeCleaningFailure if the cleaning ports cannot be removed

validate(task)
Validate the driver-specific Node deployment info.

write_image(task)

exception ironic.drivers.modules.ansible.deploy.PlaybookNotFound(message=None,
**kwargs)

Bases: IronicException

Module contents

ironic.drivers.modules.drac package

Submodules

ironic.drivers.modules.drac.bios module

DRAC BIOS configuration specific methods

class ironic.drivers.modules.drac.bios.DracRedfishBIOS(*args, **kwargs)
Bases: RedfishBIOS

iDRAC Redfish interface for BIOS settings-related actions.

Presently, this class entirely defers to its base class, a generic, vendor-independent Redfish inter-
face. Future resolution of Dell EMC- specific incompatibilities and introduction of vendor value
added should be implemented by this class.

supported = False

Indicates if an interface is supported.

This will be set to False for interfaces which are untested in first- or third-party CI, or in the
process of being deprecated.

5.1. Developers Guide 1079

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.drac.boot module

class ironic.drivers.modules.drac.boot.DracRedfishVirtualMediaBoot(*args,
**kwargs)

Bases: RedfishVirtualMediaBoot

iDRAC Redfish interface for virtual media boot-related actions.

Virtual Media allows booting the system from virtual CD/DVD drive containing user image that
BMC inserts into the drive.

The CD/DVD images must be in ISO format and (depending on BMC implementation) could be
pulled over HTTP, served as iSCSI targets or NFS volumes.

The baseline boot workflow is mostly based on the standard Redfish virtual media boot interface,
which looks like this:

1. Pull kernel, ramdisk and ESP if UEFI boot is requested (FAT partition image with EFI boot
loader) images

2. Create bootable ISO out of images (#1), push it to Glance and pass to the BMC as Swift
temporary URL

3. Optionally create floppy image with desired system configuration data, push it to Glance and
pass to the BMC as Swift temporary URL

4. Insert CD/DVD and (optionally) floppy images and set proper boot mode

For building deploy or rescue ISO, redfish boot interface uses deploy_kernel/deploy_ramdisk or
rescue_kernel/rescue_ramdisk properties from [instance_info] or [driver_info].

For building boot (user) ISO, redfish boot interface seeks kernel_id and ramdisk_id properties in
the Glance image metadata found in [instance_info]image_source node property.

iDRAC virtual media boot interface only differs by the way how it sets the node to boot from a
virtual media device - this is done via OEM action call implemented in Dell sushy OEM extension
package.

VIRTUAL_MEDIA_DEVICES = {'cdrom': VirtualMediaType.CD, 'floppy':
VirtualMediaType.FLOPPY}

ironic.drivers.modules.drac.inspect module

DRAC inspection interface

class ironic.drivers.modules.drac.inspect.DracRedfishInspect(*args, **kwargs)
Bases: RedfishInspect

iDRAC Redfish interface for inspection-related actions.

inspect_hardware(task)
Inspect hardware to get the hardware properties.

Inspects hardware to get the essential properties. It fails if any of the essential properties are
not received from the node.

Parameters
task a TaskManager instance.

1080 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
HardwareInspectionFailure if essential properties could not be retrieved suc-
cessfully.

Returns
The resulting state of inspection.

ironic.drivers.modules.drac.management module

DRAC management interface

class ironic.drivers.modules.drac.management.DracRedfishManagement(*args,
**kwargs)

Bases: RedfishManagement

iDRAC Redfish interface for management-related actions.

EXPORT_CONFIGURATION_ARGSINFO = {'export_configuration_location':
{'description': 'URL of location to save the configuration to.',
'required': True}}

IMPORT_CONFIGURATION_ARGSINFO = {'import_configuration_location':
{'description': 'URL of location to fetch desired configuration from.',
'required': True}}

IMPORT_EXPORT_CONFIGURATION_ARGSINFO = {'export_configuration_location':
{'description': 'URL of location to save the configuration to.',
'required': True}, 'import_configuration_location': {'description':
'URL of location to fetch desired configuration from.', 'required':
True}}

clear_job_queue(task)
Clear iDRAC job queue.

Parameters
task a TaskManager instance containing the node to act on.

Raises
RedfishError on an error.

export_configuration(task, export_configuration_location)
(Deprecated) Export the configuration of the server.

Exports the configuration of the server against which the step is run and stores it in specific
format in indicated location.

Uses Dells Server Configuration Profile (SCP) from sushy-oem-idrac library to get ALL con-
figuration for cloning.

Parameters

• task A task from TaskManager.

• export_configuration_location URL of location to save the configu-
ration to.

5.1. Developers Guide 1081

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if missing configuration name of a file to save the con-
figuration to

Raises
DracOperatationError when no managagers for Redfish system found or con-
figuration export from SCP failed

Raises
RedfishError when loading OEM extension failed

import_configuration(task, import_configuration_location)
(Deprecated) Import and apply the configuration to the server.

Gets pre-created configuration from storage by given location and imports that into given
server. Uses Dells Server Configuration Profile (SCP).

Parameters

• task A task from TaskManager.

• import_configuration_location URL of location to fetch desired con-
figuration from.

Raises
MissingParameterValue if missing configuration name of a file to fetch the con-
figuration from

import_export_configuration(task, import_configuration_location,
export_configuration_location)

Import and export configuration in one go.

Gets pre-created configuration from storage by given name and imports that into given server.
After that exports the configuration of the server against which the step is run and stores it in
specific format in indicated storage as configured by Ironic.

Parameters

• import_configuration_location URL of location to fetch desired con-
figuration from.

• export_configuration_location URL of location to save the configu-
ration to.

known_good_state(task)
Reset iDRAC to known good state.

An iDRAC is reset to a known good state by resetting it and clearing its job queue.

Parameters
task a TaskManager instance containing the node to act on.

Raises
RedfishError on an error.

reset_idrac(task)
Reset the iDRAC.

Parameters
task a TaskManager instance containing the node to act on.

1082 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
RedfishError on an error.

ironic.drivers.modules.drac.power module

DRAC power interface

class ironic.drivers.modules.drac.power.DracRedfishPower(*args, **kwargs)
Bases: RedfishPower

iDRAC Redfish interface for power-related actions.

Presently, this class entirely defers to its base class, a generic, vendor-independent Redfish inter-
face. Future resolution of Dell EMC- specific incompatibilities and introduction of vendor value
added should be implemented by this class.

supported = False

Indicates if an interface is supported.

This will be set to False for interfaces which are untested in first- or third-party CI, or in the
process of being deprecated.

ironic.drivers.modules.drac.raid module

DRAC RAID specific methods

class ironic.drivers.modules.drac.raid.DracRedfishRAID(*args, **kwargs)
Bases: RedfishRAID

iDRAC Redfish interface for RAID related actions.

Includes iDRAC specific adjustments for RAID related actions.

create_configuration(task, create_root_volume=True, create_nonroot_volumes=True,
delete_existing=False)

Create RAID configuration on the node.

This method creates the RAID configuration as read from node.target_raid_config. This
method by default will create all logical disks.

Parameters

• task TaskManager object containing the node.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in the nodes target_raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in the nodes target_raid_config.
Default value is True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration. Default is False.

Returns
states.CLEANWAIT if RAID configuration is in progress asynchronously or
None if it is complete.

5.1. Developers Guide 1083

Ironic Documentation, Release 26.1.2.dev21

Raises
RedfishError if there is an error creating the configuration

delete_configuration(task)
Delete RAID configuration on the node.

Parameters
task TaskManager object containing the node.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if dele-
tion is in progress asynchronously or None if it is complete.

post_delete_configuration(task, raid_configs, return_state=None)
Perform post delete_configuration action to commit the config.

Clears foreign configuration for all RAID controllers. If no foreign configuration to clear,
then checks if any controllers can be converted to RAID mode.

Parameters

• task a TaskManager instance containing the node to act on.

• raid_configs a list of dictionaries containing the RAID configuration op-
eration details.

• return_state state to return based on operation being invoked

pre_create_configuration(task, logical_disks_to_create)
Perform required actions before creating config.

Converts any physical disks of selected controllers to RAID mode if in non-RAID mode.

Parameters

• task a TaskManager instance containing the node to act on.

• logical_disks_to_create list of logical disks to create.

Returns
updated list of logical disks to create

ironic.drivers.modules.drac.utils module

ironic.drivers.modules.drac.utils.execute_oem_manager_method(task, process_name,
lambda_oem_func)

Loads OEM manager and executes passed method on it.

Known iDRAC Redfish systems has only one manager, but as Redfish schema allows a list this
method iterates through all values in case this changes in future. If there are several managers, this
will try starting from the first in the list until the first success.

Parameters

• task a TaskManager instance.

• process_name user friendly name of method to be executed. Used in excep-
tion and log messages.

1084 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• lambda_oem_func method to execute as lambda function with input param-
eter OEM extension manager. Example: lambda m: m.reset_idrac()

Returns
Returned value of lambda_oem_func

Raises
RedfishError if cant execute OEM function either because there are no managers to
the system, failed to load OEM extension or execution of the OEM method failed
itself.

ironic.drivers.modules.drac.vendor_passthru module

DRAC vendor-passthru interface

class ironic.drivers.modules.drac.vendor_passthru.DracRedfishVendorPassthru(*args,
**kwargs)

Bases: RedfishVendorPassthru

iDRAC Redfish interface for vendor_passthru.

Use the Redfish implementation for vendor passthru.

supported = False

Indicates if an interface is supported.

This will be set to False for interfaces which are untested in first- or third-party CI, or in the
process of being deprecated.

Module contents

ironic.drivers.modules.ibmc package

Module contents

ironic.drivers.modules.ilo package

Submodules

ironic.drivers.modules.ilo.bios module

iLO BIOS Interface

class ironic.drivers.modules.ilo.bios.IloBIOS(*args, **kwargs)
Bases: BIOSInterface

apply_configuration(task, settings)
Applies the provided configuration on the node.

Parameters

• task a TaskManager instance.

5.1. Developers Guide 1085

Ironic Documentation, Release 26.1.2.dev21

• settings Settings intended to be applied on the node.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

cache_bios_settings(task)
Store the BIOS settings in the database.

Parameters
task a TaskManager instance.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

factory_reset(task)
Reset the BIOS settings to factory configuration.

Parameters
task a TaskManager instance.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

validate(task)
Check that driver_info contains required ILO credentials.

Validates whether the driver_info property of the supplied tasks node contains the required
credentials information.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue if required iLO parameters are not valid.

Raises
MissingParameterValue if a required parameter is missing.

1086 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.ilo.boot module

Boot Interface for iLO drivers and its supporting methods.

class ironic.drivers.modules.ilo.boot.IloPXEBoot(*args, **kwargs)
Bases: PXEBoot

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the PXE environment that was setup for booting the instance. It
unlinks the instance kernel/ramdisk in the nodes directory in tftproot and removes its PXE
config. In case of UEFI iSCSI booting, it cleans up iSCSI target information from the node.

Parameters
task a task from TaskManager.

Returns
None

Raises
IloOperationError, if some operation on iLO failed.

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info. In case of localboot, it cleans up the PXE config. In case of boot from
volume, it updates the iSCSI info onto iLO and sets the node to boot from UefiTarget boot
device.

Parameters
task a task from TaskManager.

Returns
None

Raises
IloOperationError, if some operation on iLO failed.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of Ironic ramdisk using PXE.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes driver_info and instance_info.

Parameters

• task a task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

5.1. Developers Guide 1087

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

Raises
IloOperationError, if some operation on iLO failed.

class ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot(*args, **kwargs)
Bases: BootInterface

capabilities = ['ramdisk_boot']

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance.

Parameters
task A task from TaskManager.

Returns
None

clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up the environment that was setup for booting the deploy ramdisk.

Parameters
task A task from TaskManager.

Returns
None

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info. It does the following depending on boot_option for deploy:

• If the boot_option requested for this deploy is local or image is a whole disk image, then
it sets the node to boot from disk.

• Otherwise it finds/creates the boot ISO, sets the node boot option to UEFIHTTP and sets
the URL as the boot ISO to boot the instance image.

Parameters
task a task from TaskManager.

Returns
None

1088 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
IloOperationError, if some operation on iLO failed.

Raises
InstanceDeployFailure, if its try to boot iSCSI volume in BIOS boot mode.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of deploy ramdisk using UEFI-HTTPS boot.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes driver_info and instance_info.

Parameters

• task a task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

Raises
IloOperationError, if some operation on iLO failed.

validate(task)
Validate the deployment information for the tasks node.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

5.1. Developers Guide 1089

Ironic Documentation, Release 26.1.2.dev21

Raises
UnsupportedDriverExtension

validate_rescue(task)
Validate that the node has required properties for rescue.

Parameters
task a TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

class ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot(*args, **kwargs)
Bases: BootInterface

capabilities = ['iscsi_volume_boot', 'ramdisk_boot']

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance. It ejects
virtual media. In case of UEFI iSCSI booting, it cleans up iSCSI target information from the
node.

Parameters
task a task from TaskManager.

Returns
None

Raises
IloOperationError, if some operation on iLO failed.

clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up virtual media devices setup for the deploy or rescue ramdisk.

Parameters
task a task from TaskManager.

Returns
None

Raises
IloOperationError, if some operation on iLO failed.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info. It does the following depending on boot_option for deploy:

1090 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• If the boot mode is uefi and its booting from volume, then it sets the iSCSI target info
and node to boot from UefiTarget boot device.

• If not boot from volume and the boot_option requested for this deploy is local or image
is a whole disk image, then it sets the node to boot from disk.

• Otherwise it finds/creates the boot ISO to boot the instance image, attaches the boot ISO
to the bare metal and then sets the node to boot from CDROM.

Parameters
task a task from TaskManager.

Returns
None

Raises
IloOperationError, if some operation on iLO failed.

Raises
InstanceDeployFailure, if its try to boot iSCSI volume in BIOS boot mode.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of deploy ramdisk using virtual media.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes driver_info and instance_info.

Parameters

• task a task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

Raises
IloOperationError, if some operation on iLO failed.

validate(task)
Validate the deployment information for the tasks node.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue, if some information is invalid.

5.1. Developers Guide 1091

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if kernel_id and ramdisk_id are missing in the Glance
image or kernel and ramdisk not provided in instance_info for non-Glance im-
age.

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

Raises
UnsupportedDriverExtension

validate_rescue(task)
Validate that the node has required properties for rescue.

Parameters
task a TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

class ironic.drivers.modules.ilo.boot.IloiPXEBoot(*args, **kwargs)
Bases: iPXEBoot

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the PXE environment that was setup for booting the instance. It
unlinks the instance kernel/ramdisk in the nodes directory in tftproot and removes its PXE
config. In case of UEFI iSCSI booting, it cleans up iSCSI target information from the node.

Parameters
task a task from TaskManager.

Returns
None

Raises
IloOperationError, if some operation on iLO failed.

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info. In case of localboot, it cleans up the PXE config. In case of boot from
volume, it updates the iSCSI info onto iLO and sets the node to boot from UefiTarget boot
device.

Parameters
task a task from TaskManager.

Returns
None

1092 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
IloOperationError, if some operation on iLO failed.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of Ironic ramdisk using PXE.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes driver_info and instance_info.

Parameters

• task a task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

Raises
IloOperationError, if some operation on iLO failed.

ironic.drivers.modules.ilo.boot.parse_driver_info(node, mode=’deploy’)
Gets the driver specific Node deployment info.

This method validates whether the driver_info property of the supplied node contains the required
information for this driver to deploy images to the node.

Parameters

• node a single Node.

• mode Label indicating a deploy or rescue operation being carried out on the
node. Supported values are deploy and rescue. Defaults to deploy, indicating
deploy operation is being carried out.

Returns
A dict with the driver_info values.

Raises
MissingParameterValue, if any of the required parameters are missing.

ironic.drivers.modules.ilo.boot.prepare_node_for_deploy(task)
Common preparatory steps for all iLO drivers.

This method performs common preparatory steps required for all drivers. 1. Power off node 2.
Disables secure boot, if it is in enabled state. 3. Updates boot_mode capability to uefi if secure
boot is requested. 4. Changes boot mode of the node if secure boot is disabled currently.

Parameters
task a TaskManager instance containing the node to act on.

5.1. Developers Guide 1093

Ironic Documentation, Release 26.1.2.dev21

Raises
IloOperationError, if some operation on iLO failed.

ironic.drivers.modules.ilo.common module

Common functionalities shared between different iLO modules.

ironic.drivers.modules.ilo.common.POST_FINISHEDPOST_STATE = 'FinishedPost'

Node is in FinishedPost post state.

ironic.drivers.modules.ilo.common.POST_INPOSTDISCOVERY_STATE =
'InPostDiscoveryComplete'

Node is in InPostDiscoveryComplete post state.

ironic.drivers.modules.ilo.common.POST_INPOST_STATE = 'InPost'

Node is in InPost post state.

ironic.drivers.modules.ilo.common.POST_NULL_STATE = 'Null'

Node is in Null post state.

ironic.drivers.modules.ilo.common.POST_POWEROFF_STATE = 'PowerOff'

Node is in PowerOff post state.

ironic.drivers.modules.ilo.common.POST_RESET_STATE = 'Reset'

Node is in Reset post state.

ironic.drivers.modules.ilo.common.POST_UNKNOWN_STATE = 'Unknown'

Node is in Unknown post state.

ironic.drivers.modules.ilo.common.SUPPORTED_BOOT_MODE_LEGACY_BIOS_AND_UEFI =
'legacy bios and uefi'

Node supports both legacy BIOS and UEFI boot mode.

ironic.drivers.modules.ilo.common.SUPPORTED_BOOT_MODE_LEGACY_BIOS_ONLY =
'legacy bios only'

Node supports only legacy BIOS boot mode.

ironic.drivers.modules.ilo.common.SUPPORTED_BOOT_MODE_UEFI_ONLY = 'uefi only'

Node supports only UEFI boot mode.

ironic.drivers.modules.ilo.common.add_certificates(task, cert_file_list=None)
Adds certificates to the node.

Adds certificates to the node based on the driver info provided.

Parameters

• task a TaskManager instance containing the node to act on.

• cert_file_list List of certificates to be added to the node. If None, certifi-
cates from path configured in webserver_verify_ca will be added to the node.

Raises
IloOperationError on an error from IloClient library.

Raises
IloOperationNotSupported if retrieving post state is not supported on the server.

1094 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue, if any of the required parameters are invalid.

ironic.drivers.modules.ilo.common.attach_vmedia(node, device, url)
Attaches the given url as virtual media on the node.

Parameters

• node an ironic node object.

• device the virtual media device to attach

• url the http/https url to attach as the virtual media device

Raises
IloOperationError if insert virtual media failed.

ironic.drivers.modules.ilo.common.cleanup_vmedia_boot(task)
Cleans a node after a virtual media boot.

This method cleans up a node after a virtual media boot. It deletes the floppy image if it exists in
CONF.ilo.swift_ilo_container or web server. It also ejects both virtual media cdrom and virtual
media floppy.

Parameters
task a TaskManager instance containing the node to act on.

ironic.drivers.modules.ilo.common.clear_certificates(task, cert_file_list=None)
Clears any certificates added to the node.

Clears the certificates added to the node as part of any Ironic operation

Parameters

• task a TaskManager instance containing the node to act on.

• cert_file_list List of certificates to be removed from node. If None, all
the certificates present on the node will be removed.

Raises
IloOperationError on an error from IloClient library.

Raises
IloOperationNotSupported if retrieving post state is not supported on the server.

ironic.drivers.modules.ilo.common.copy_image_to_swift(source_file_path,
destination_object_name)

Uploads the given image to swift.

This method copies the given image to swift.

Parameters

• source_file_path The absolute path of the image file which needs to be
copied to swift.

• destination_object_name The name of the object that will contain the
copied image.

Raises
SwiftOperationError, if any operation with Swift fails.

5.1. Developers Guide 1095

Ironic Documentation, Release 26.1.2.dev21

Returns
temp url from swift after the source image is uploaded.

ironic.drivers.modules.ilo.common.copy_image_to_web_server(source_file_path,
destination)

Copies the given image to the http web server.

This method copies the given image to the http_root location. It enables read-write access to the
image else the deploy fails as the image file at the web_server url is inaccessible.

Parameters

• source_file_path The absolute path of the image file which needs to be
copied to the web server root.

• destination The name of the file that will contain the copied image.

Raises
ImageUploadFailed exception if copying the source file to the web server fails.

Returns
image url after the source image is uploaded.

ironic.drivers.modules.ilo.common.destroy_floppy_image_from_web_server(node)
Removes the temporary floppy image.

It removes the floppy image created for deploy. :param node: an ironic node object.

ironic.drivers.modules.ilo.common.download(target_file, file_url)
Downloads file based on the scheme.

It downloads the file (url) to given location. The supported url schemes are file, http, and https.
:param target_file: target file for copying the downloaded file. :param file_url: source file url from
where file needs to be downloaded. :raises: ImageDownloadFailed, on failure to download the file.

ironic.drivers.modules.ilo.common.eject_vmedia_devices(task)
Ejects virtual media devices.

This method ejects virtual media floppy and cdrom.

Parameters
task a TaskManager instance containing the node to act on.

Returns
None

Raises
IloOperationError, if some error was encountered while trying to eject virtual me-
dia floppy or cdrom.

ironic.drivers.modules.ilo.common.get_current_boot_mode(node)
Get the current boot mode for a node.

Parameters
node an ironic node object.

Raises
IloOperationError if failed to fetch boot mode.

1096 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
IloOperationNotSupported if node does not support getting pending boot mode.

ironic.drivers.modules.ilo.common.get_ilo_object(node)
Gets an IloClient object from proliantutils library.

Given an ironic node object, this method gives back a IloClient object to do operations on the iLO.

Parameters
node an ironic node object.

Returns
an IloClient object.

Raises
InvalidParameterValue on invalid inputs.

Raises
MissingParameterValue if some mandatory information is missing on the node

ironic.drivers.modules.ilo.common.get_secure_boot_mode(task)
Retrieves current enabled state of UEFI secure boot on the node

Returns the current enabled state of UEFI secure boot on the node.

Parameters
task a task from TaskManager.

Raises
MissingParameterValue if a required iLO parameter is missing.

Raises
IloOperationError on an error from IloClient library.

Raises
IloOperationNotSupported if UEFI secure boot is not supported.

Returns
Boolean value indicating current state of UEFI secure boot on the node.

ironic.drivers.modules.ilo.common.get_server_post_state(node)
Get the current state of system POST.

Parameters
node an ironic node object.

Returns
POST state of the server. The valida states are:- null, Unknown, Reset, PowerOff,
InPost, InPostDiscoveryComplete and FinishedPost.

Raises
IloOperationError on an error from IloClient library.

Raises
IloOperationNotSupported if retrieving post state is not supported on the server.

ironic.drivers.modules.ilo.common.parse_driver_info(node)
Gets the driver specific Node info.

This method validates whether the driver_info property of the supplied node contains the required
information for this driver.

5.1. Developers Guide 1097

Ironic Documentation, Release 26.1.2.dev21

Parameters
node an ironic Node object.

Returns
a dict containing information from driver_info (or where applicable, config values).

Raises
InvalidParameterValue if any parameters are incorrect

Raises
MissingParameterValue if some mandatory information is missing on the node

ironic.drivers.modules.ilo.common.remove_image_from_swift(object_name,
associated_with=None)

Removes the given image from swift.

This method removes the given image name from swift. It deletes the image if it exists in
CONF.ilo.swift_ilo_container

Parameters

• object_name The name of the object which needs to be removed from swift.

• associated_with string to depict the component/operation this object is
associated to.

ironic.drivers.modules.ilo.common.remove_image_from_web_server(object_name)
Removes the given image from the configured web server.

This method removes the given image from the http_root location, if the image exists.

Parameters
object_name The name of the image file which needs to be removed from the
web server root.

ironic.drivers.modules.ilo.common.remove_single_or_list_of_files(file_location)
Removes (deletes) the file or list of files.

This method only accepts single or list of files to delete. If single file is passed, this method removes
(deletes) the file. If list of files is passed, this method removes (deletes) each of the files iteratively.

Parameters
file_location a single or a list of file paths

ironic.drivers.modules.ilo.common.set_boot_mode(node, boot_mode)
Sets the node to boot using boot_mode for the next boot.

Parameters

• node an ironic node object.

• boot_mode Next boot mode.

Raises
IloOperationError if setting boot mode failed.

ironic.drivers.modules.ilo.common.set_secure_boot_mode(task, flag)
Enable or disable UEFI Secure Boot for the next boot

Enable or disable UEFI Secure Boot for the next boot

1098 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• task a task from TaskManager.

• flag Boolean value. True if the secure boot to be enabled in next boot.

Raises
IloOperationError on an error from IloClient library.

Raises
IloOperationNotSupported if UEFI secure boot is not supported.

ironic.drivers.modules.ilo.common.setup_uefi_https(task, iso, persistent=False)
Sets up system to boot from UEFIHTTP boot device.

Sets the one-time/persistent boot device to UEFIHTTP based on the argument supplied.

Parameters

• task a TaskManager instance containing the node to act on.

• iso ISO URL to be set to boot from.

• persistent Indicates whether the system should be set to boot from the
given device one-time or each time.

Raises
IloOperationError on an error from IloClient library.

Raises
IloOperationNotSupported if retrieving post state is not supported on the server.

ironic.drivers.modules.ilo.common.setup_vmedia(task, iso, ramdisk_options=None)
Attaches virtual media and sets it as boot device.

This method attaches the given bootable ISO as virtual media, prepares the arguments for ramdisk
in virtual media floppy.

Parameters

• task a TaskManager instance containing the node to act on.

• iso a bootable ISO image href to attach to. Should be either of below:

– A Swift object - It should be of format swift:<object-name>. It is as-
sumed that the image object is present in CONF.ilo.swift_ilo_container;

– A Glance image - It should be format glance://<glance-image-uuid>
or just <glance-image-uuid>;

– An HTTP URL.

• ramdisk_options the options to be passed to the ramdisk in virtual media
floppy.

Raises
ImageCreationFailed, if it failed while creating the floppy image.

Raises
IloOperationError, if some operation on iLO failed.

5.1. Developers Guide 1099

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.ilo.common.setup_vmedia_for_boot(task, boot_iso,
parameters=None)

Sets up the node to boot from the given ISO image.

This method attaches the given boot_iso on the node and passes the required parameters to it via
virtual floppy image.

Parameters

• task a TaskManager instance containing the node to act on.

• boot_iso a bootable ISO image to attach to. Should be either of below:

– A Swift object - It should be of format swift:<object-name>. It is as-
sumed that the image object is present in CONF.ilo.swift_ilo_container;

– A Glance image - It should be format glance://<glance-image-uuid>
or just <glance-image-uuid>;

– An HTTP URL.

• parameters the parameters to pass in the virtual floppy image in a dictionary.
This is optional.

Raises
ImageCreationFailed, if it failed while creating the floppy image.

Raises
SwiftOperationError, if any operation with Swift fails.

Raises
IloOperationError, if attaching virtual media failed.

ironic.drivers.modules.ilo.common.update_boot_mode(task)
Update instance_info with boot mode to be used for deploy.

This method updates instance_info with boot mode to be used for deploy if node proper-
ties[capabilities] do not have boot_mode. It sets the boot mode on the node.

Parameters
task Task object.

Raises
IloOperationError if setting boot mode failed.

ironic.drivers.modules.ilo.common.update_ipmi_properties(task)
Update ipmi properties to node driver_info

Parameters
task a task from TaskManager.

ironic.drivers.modules.ilo.common.update_redfish_properties(task)
Update redfish properties to node driver_info

This method updates the nodes driver info with redfish driver driver_info. :param task: a task from
TaskManager.

ironic.drivers.modules.ilo.common.validate_security_parameter_values(sec_param_info)
Validate security parameter with valid values.

1100 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
sec_param_info dict object containing the security parameter info

Raises
MissingParameterValue, for missing fields (or values) in security parameter info.

Raises
InvalidParameterValue, for unsupported security parameter

Returns
tuple of security param, ignore and enable parameters.

ironic.drivers.modules.ilo.common.verify_image_checksum(image_location,
expected_checksum)

Verifies checksum of image file against the expected one.

This method generates the checksum of the image file on the fly and verifies it against the expected
checksum provided as argument.

Parameters

• image_location location of image file whose checksum is verified.

• expected_checksum checksum to be checked against

Raises
ImageRefValidationFailed, if invalid file path or verification fails.

ironic.drivers.modules.ilo.console module

iLO Deploy Driver(s) and supporting methods.

class ironic.drivers.modules.ilo.console.IloConsoleInterface(*args, **kwargs)
Bases: IPMIShellinaboxConsole

A ConsoleInterface that uses ipmitool and shellinabox.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

validate(task)
Validate the Node console info.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue

Raises
MissingParameterValue when a required parameter is missing

5.1. Developers Guide 1101

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.ilo.firmware_processor module

Firmware file processor

class ironic.drivers.modules.ilo.firmware_processor.FirmwareImageLocation(fw_image_location,
fw_image_filename)

Bases: object

Firmware image location class

This class acts as a wrapper class for the firmware image location. It primarily helps in removing
the firmware files from their respective locations, made available for firmware update operation.

remove()

Exposed method to remove the wrapped firmware file

This method gets overridden by the remove method for the respective type of firmware file
location it wraps.

class ironic.drivers.modules.ilo.firmware_processor.FirmwareProcessor(url)
Bases: object

Firmware file processor

This class helps in downloading the firmware file from url, extracting the firmware file (if its in
compact format) and makes it ready for firmware update operation. In future, methods can be
added as and when required to extend functionality for different firmware file types.

process_fw_on(node, expected_checksum)

Processes the firmware file from the url

This is the template method which downloads the firmware file from url, verifies
checksum and extracts the firmware and makes it ready for firmware update operation.
_download_fw_to method is set in the firmware processor object creation factory method,
get_fw_processor(), based on the url type. :param node: a single Node. :param ex-
pected_checksum: checksum to be checked against. :returns: wrapper object of raw firmware
image location :raises: IloOperationError, on failure to process firmware file. :raises: Image-
DownloadFailed, on failure to download the original file. :raises: ImageRefValidationFailed,
on failure to verify the checksum. :raises: SwiftOperationError, if upload to Swift fails.
:raises: ImageUploadFailed, if upload to web server fails.

ironic.drivers.modules.ilo.firmware_processor.get_and_validate_firmware_image_info(firmware_image_info,
firmware_update_mode)

Validates the firmware image info and returns the retrieved values.

Parameters
firmware_image_info dict object containing the firmware image info

Raises
MissingParameterValue, for missing fields (or values) in image info.

Raises
InvalidParameterValue, for unsupported firmware component

Returns
tuple of firmware url, checksum, component when the firmware update is ilo based.

1102 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.ilo.firmware_processor.get_swift_url(parsed_url)
Gets swift temp url.

It generates a temp url for the swift based firmware url to the target file. Expecting url as
swift://containername/objectname.

Parameters
parsed_url Parsed url object.

Raises
SwiftOperationError, on failure to get url from swift.

ironic.drivers.modules.ilo.firmware_processor.verify_firmware_update_args(func)
Verifies the firmware update arguments.

ironic.drivers.modules.ilo.inspect module

iLO Inspect Interface

class ironic.drivers.modules.ilo.inspect.IloInspect(*args, **kwargs)
Bases: InspectInterface

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

inspect_hardware(task)
Inspect hardware to get the hardware properties.

Inspects hardware to get the essential and additional hardware properties. It fails if any of
the essential properties are not received from the node. It doesnt fail if node fails to return
any capabilities as the capabilities differ from hardware to hardware mostly.

Parameters
task a TaskManager instance.

Raises
HardwareInspectionFailure if essential properties could not be retrieved suc-
cessfully.

Raises
IloOperationError if system fails to get power state.

Returns
The resulting state of inspection.

validate(task)
Check that driver_info contains required ILO credentials.

Validates whether the driver_info property of the supplied tasks node contains the required
credentials information.

Parameters
task a task from TaskManager.

5.1. Developers Guide 1103

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if required iLO parameters are not valid.

Raises
MissingParameterValue if a required parameter is missing.

ironic.drivers.modules.ilo.management module

iLO Management Interface

class ironic.drivers.modules.ilo.management.Ilo5Management(*args, **kwargs)
Bases: IloManagement

clear_ca_certificates(task, certificate_files)
Clears the certificates provided in the list of files to iLO.

Parameters

• task a task from TaskManager.

• certificate_files a list of certificate files.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

erase_devices(task, **kwargs)
Erase all the drives on the node.

This method performs out-of-band sanitize disk erase on all the supported physical drives in
the node. This erase cannot be performed on logical drives.

Parameters
task a TaskManager instance.

Raises
InvalidParameterValue, if any of the arguments are invalid.

Raises
IloError on an error from iLO.

one_button_secure_erase(task)
Erase the whole system securely.

The One-button secure erase process resets iLO and deletes all licenses stored there, resets
BIOS settings, and deletes all Active Health System (AHS) and warranty data stored on the
system. It also erases supported non-volatile storage data and deletes any deployment setting
profiles.

Parameters
task a TaskManager instance.

Raises
IloError on an error from iLO.

1104 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.ilo.management.IloManagement(*args, **kwargs)
Bases: ManagementInterface

activate_license(task, **kwargs)
Activates iLO Advanced license.

Parameters
task a TaskManager object.

Raises
InvalidParameterValue, if any of the arguments are invalid.

Raises
NodeCleaningFailure, on failure to execute of clean step.

add_https_certificate(task, **kwargs)
Adds the signed HTTPS certificate to the iLO.

Parameters
task a TaskManager object.

clear_iscsi_boot_target(task)
Unset iSCSI details of the system in UEFI boot mode.

Parameters
task a task from TaskManager.

Raises
IloCommandNotSupportedInBiosError if system in BIOS boot mode.

Raises
IloError on an error from iLO.

clear_secure_boot_keys(task)
Clear all secure boot keys.

Clears all the secure boot keys. This operation is supported only on HP Proliant Gen9 and
above servers.

Parameters
task a task from TaskManager.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

create_csr(task, **kwargs)
Creates the CSR.

Parameters
task a TaskManager object.

flash_firmware_sum(task, **kwargs)
Deploy step to Update the firmware using Smart Update Manager (SUM).

Parameters
task a TaskManager object.

5.1. Developers Guide 1105

Ironic Documentation, Release 26.1.2.dev21

Raises
InstanceDeployFailure, on failure to execute of deploy step.

Returns
states.DEPLOYWAIT to signify the step will be completed async

get_boot_device(task)
Get the current boot device for a node.

Returns the current boot device of the node.

Parameters
task a task from TaskManager.

Raises
MissingParameterValue if a required iLO parameter is missing.

Raises
IloOperationError on an error from IloClient library.

Returns

a dictionary containing:

boot_device
the boot device, one of the supported devices listed in ironic.
common.boot_devices or None if it is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_boot_mode(task)
Get the current boot mode for a node.

Provides the current boot mode of the node.

Parameters
task A task from TaskManager.

Raises
IloOperationError on an error from IloClient library.

Returns
The boot mode, one of ironic.common.boot_mode or None if it is unknown.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_secure_boot_state(task)
Get the current secure boot state for the node.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

1106 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
IloOperationError on an error from IloClient library.

Raises
UnsupportedDriverExtension if secure boot is not supported by the hardware

Returns
Boolean

get_sensors_data(task)
Get sensors data.

Parameters
task a TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

Raises
FailedToParseSensorData when parsing sensor data fails.

Raises
InvalidParameterValue if required ipmi parameters are missing.

Raises
MissingParameterValue if a required parameter is missing.

Returns
returns a dict of sensor data group by sensor type.

get_supported_boot_devices(task)
Get a list of the supported boot devices.

Parameters
task a task from TaskManager.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

get_supported_boot_modes(task)
Get a list of the supported boot devices.

Parameters
task a task from TaskManager.

Raises
IloOperationError if any exception happens in proliantutils

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

inject_nmi(task)
Inject NMI, Non Maskable Interrupt.

Inject NMI (Non Maskable Interrupt) for a node immediately.

Parameters
task A TaskManager instance containing the node to act on.

5.1. Developers Guide 1107

Ironic Documentation, Release 26.1.2.dev21

Raises
IloCommandNotSupportedError if system does not support NMI injection.

Raises
IloError on an error from iLO.

Returns
None

reset_bios_to_default(task)
Resets the BIOS settings to default values.

Resets BIOS to default settings. This operation is currently supported only on HP Proliant
Gen9 and above servers.

Parameters
task a task from TaskManager.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

reset_ilo(task)
Resets the iLO.

Parameters
task a task from TaskManager.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

reset_ilo_credential(task, change_password=None)
Resets the iLO password.

Parameters

• task a task from TaskManager.

• change_password Value for password to update on iLO.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

reset_secure_boot_keys_to_default(task)
Reset secure boot keys to manufacturing defaults.

Resets the secure boot keys to manufacturing defaults. This operation is supported only on
HP Proliant Gen9 and above servers.

Parameters
task a task from TaskManager.

1108 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

security_parameters_update(task, **kwargs)
Updates the security parameters.

Parameters
task a TaskManager object.

set_boot_device(task, device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• task a task from TaskManager.

• device the boot device, one of the supported devices listed in ironic.
common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue if an invalid boot device is specified.

Raises
MissingParameterValue if a required parameter is missing.

Raises
IloOperationError on an error from IloClient library.

set_boot_mode(task, mode)
Set the boot mode for a node.

Set the boot mode to use on next reboot of the node.

Parameters

• task A task from TaskManager.

• mode The boot mode, one of ironic.common.boot_modes.

Raises
InvalidParameterValue if an invalid boot mode is specified.

Raises
IloOperationError if setting boot mode failed.

set_iscsi_boot_target(task)
Set iSCSI details of the system in UEFI boot mode.

The initiator is set with the target details like IQN, LUN, IP, Port etc. :param task: a task from
TaskManager. :raises: MissingParameterValue if a required parameter is missing. :raises:
IloCommandNotSupportedInBiosError if system in BIOS boot mode. :raises: IloError on
an error from iLO.

5.1. Developers Guide 1109

Ironic Documentation, Release 26.1.2.dev21

set_secure_boot_state(task, state)
Set the current secure boot state for the node.

Parameters

• task A task from TaskManager.

• state A new state as a boolean.

Raises
MissingParameterValue if a required parameter is missing

Raises
IloOperationError on an error from IloClient library.

Raises
UnsupportedDriverExtension if secure boot is not supported by the hardware

update_auth_failure_logging_threshold(task, **kwargs)
Updates the Auth Failure Logging Threshold security parameter.

Parameters
task a TaskManager object.

update_firmware(task, **kwargs)
Updates the firmware.

Parameters
task a TaskManager object.

Raises
InvalidParameterValue if update firmware mode is not ilo. Even applicable for
invalid input cases.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Raises
InstanceDeployFailure, on failure to execute of deploy step.

update_firmware_sum(task, **kwargs)
Clean step to update the firmware using Smart Update Manager (SUM)

Parameters
task a TaskManager object.

Raises
NodeCleaningFailure, on failure to execute of clean step.

Returns
states.CLEANWAIT to signify the step will be completed async

update_minimum_password_length(task, **kwargs)
Updates the Minimum Password Length security parameter.

Parameters
task a TaskManager object.

1110 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

validate(task)
Check that driver_info contains required ILO credentials.

Validates whether the driver_info property of the supplied tasks node contains the required
credentials information.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue if required iLO parameters are not valid.

Raises
MissingParameterValue if a required parameter is missing.

ironic.drivers.modules.ilo.power module

iLO Power Driver

class ironic.drivers.modules.ilo.power.IloPower(*args, **kwargs)
Bases: PowerInterface

get_power_state(task)
Gets the current power state.

Parameters

• task a TaskManager instance.

• node The Node.

Returns
one of ironic.common.states POWER_OFF, POWER_ON or ERROR.

Raises
InvalidParameterValue if required iLO credentials are missing.

Raises
IloOperationError on an error from IloClient library.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_supported_power_states(task)
Get a list of the supported power states.

Parameters
task A TaskManager instance containing the node to act on. currently not
used.

Returns
A list with the supported power states defined in ironic.common.states.

5.1. Developers Guide 1111

Ironic Documentation, Release 26.1.2.dev21

reboot(task, timeout=None)
Reboot the node

Parameters

• task a TaskManager instance.

• timeout timeout (in seconds). Unsupported by this interface.

Raises
PowerStateFailure if the final state of the node is not POWER_ON.

Raises
IloOperationError on an error from IloClient library.

set_power_state(task, power_state, timeout=None)
Turn the current power state on or off.

Parameters

• task a TaskManager instance.

• power_state The desired power state POWER_ON,POWER_OFF or RE-
BOOT from ironic.common.states.

• timeout timeout (in seconds). Unsupported by this interface.

Raises
InvalidParameterValue if an invalid power state was specified.

Raises
IloOperationError on an error from IloClient library.

Raises
PowerStateFailure if the power couldnt be set to power_state.

validate(task)
Check if node.driver_info contains the required iLO credentials.

Parameters

• task a TaskManager instance.

• node Single node object.

Raises
InvalidParameterValue if required iLO credentials are missing.

ironic.drivers.modules.ilo.raid module

iLO5 RAID specific methods

class ironic.drivers.modules.ilo.raid.Ilo5RAID(*args, **kwargs)
Bases: RAIDInterface

Implementation of OOB RAIDInterface for iLO5.

apply_configuration(task, raid_config, create_root_volume=True,
create_nonroot_volumes=False)

Applies RAID configuration on the given node.

1112 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• task A TaskManager instance.

• raid_config The RAID configuration to apply.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in raid_config. Default value is
True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

Returns
states.DEPLOYWAIT if RAID configuration is in progress asynchronously or
None if it is complete.

create_configuration(task, create_root_volume=True, create_nonroot_volumes=True)
Create a RAID configuration on a bare metal using agent ramdisk.

This method creates a RAID configuration on the given node.

Parameters

• task a TaskManager instance.

• create_root_volume If True, a root volume is created during RAID con-
figuration. Otherwise, no root volume is created. Default is True.

• create_nonroot_volumes If True, non-root volumes are created. If False,
no non-root volumes are created. Default is True.

Raises
MissingParameterValue, if node.target_raid_config is missing or was found to
be empty after skipping root volume and/or non-root volumes.

Raises
NodeCleaningFailure, on failure to execute clean step.

Raises
InstanceDeployFailure, on failure to execute deploy step.

delete_configuration(task)
Delete the RAID configuration.

Parameters
task a TaskManager instance containing the node to act on.

Raises
NodeCleaningFailure, on failure to execute clean step.

Raises
InstanceDeployFailure, on failure to execute deploy step.

5.1. Developers Guide 1113

Ironic Documentation, Release 26.1.2.dev21

get_properties()

Return the properties of the interface.

ironic.drivers.modules.ilo.vendor module

Vendor Interface for iLO drivers and its supporting methods.

class ironic.drivers.modules.ilo.vendor.VendorPassthru(*args, **kwargs)
Bases: RedfishVendorPassthru

Vendor-specific interfaces for iLO deploy drivers.

boot_into_iso(task, **kwargs)
Attaches an ISO image in glance and reboots bare metal.

This method accepts an ISO image href (a Glance UUID or an HTTP(S) URL) attaches it as
virtual media and then reboots the node. This is useful for debugging purposes. This can be
invoked only when the node is in manage state.

Parameters

• task A TaskManager object.

• kwargs The arguments sent with vendor passthru. The expected kwargs are:

'boot_iso_href': href of the image to be booted. This␣
↪→can be

a Glance UUID or an HTTP(S) URL.

validate(task, method, **kwargs)
Validate vendor-specific actions.

Checks if a valid vendor passthru method was passed and validates the parameters for the
vendor passthru method.

Parameters

• task a TaskManager instance containing the node to act on.

• method method to be validated.

• kwargs kwargs containing the vendor passthru methods parameters.

Raises
MissingParameterValue, if some required parameters were not passed.

Raises
InvalidParameterValue, if any of the parameters have invalid value.

Raises
IloOperationNotSupported, if the driver does not support the given operation
with ilo vendor interface.

1114 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Module contents

ironic.drivers.modules.inspector package

Subpackages

ironic.drivers.modules.inspector.hooks package

Submodules

ironic.drivers.modules.inspector.hooks.accelerators module

class ironic.drivers.modules.inspector.hooks.accelerators.AcceleratorsHook

Bases: InspectionHook

Hook to set the nodes accelerators property.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.architecture module

class ironic.drivers.modules.inspector.hooks.architecture.ArchitectureHook

Bases: InspectionHook

Hook to set the nodes cpu_arch property based on the inventory.

__call__(task, inventory, plugin_data)
Update node properties with CPU architecture.

5.1. Developers Guide 1115

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.hooks.base module

Base code for inspection hooks support.

class ironic.drivers.modules.inspector.hooks.base.InspectionHook

Bases: object

Abstract base class for inspection hooks.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

dependencies = []

An ordered list of hooks that must be enabled before this one.

The items here should be entry point names, not classes.

preprocess(task, inventory, plugin_data)
Hook to run before the main inspection data processing.

This hook is run even before sanity checks.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.base.inspection_hooks_manager(*args)
Create a Stevedore extension manager for inspection hooks.

Parameters
args arguments to pass to the hooks constructor

Returns
a Stevedore NamedExtensionManager

1116 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.hooks.base.missing_entrypoints_callback(names)
Raise RuntimeError with comma-separated list of missing hooks

ironic.drivers.modules.inspector.hooks.base.reset()

Reset cached managers.

ironic.drivers.modules.inspector.hooks.base.validate_inspection_hooks()

Validate the enabled inspection hooks.

Raises
RuntimeError on missing or failed to load hooks

Returns
the list of hooks that passed validation

ironic.drivers.modules.inspector.hooks.boot_mode module

class ironic.drivers.modules.inspector.hooks.boot_mode.BootModeHook

Bases: InspectionHook

Hook to set the nodes boot_mode capability in node properties.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.cpu_capabilities module

class
ironic.drivers.modules.inspector.hooks.cpu_capabilities.CPUCapabilitiesHook

Bases: InspectionHook

Hook to set nodes capabilities based on cpu flags in the inventory.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

5.1. Developers Guide 1117

Ironic Documentation, Release 26.1.2.dev21

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.extra_hardware module

class ironic.drivers.modules.inspector.hooks.extra_hardware.ExtraHardwareHook

Bases: InspectionHook

Hook to gather extra information about the node hardware.

__call__(task, inventory, plugin_data)
Store extra hardware information in plugin_data[extra]

Convert the extra collected data from the format of the hardware-detect tool (list of lists) to a
nested dictionary. Remove the original data field from plugin_data, and save the converted
data into a new field extra instead.

ironic.drivers.modules.inspector.hooks.local_link_connection module

class ironic.drivers.modules.inspector.hooks.local_link_connection.
LocalLinkConnectionHook

Bases: InspectionHook

Hook to process mandatory LLDP packet fields

__call__(task, inventory, plugin_data)
Process LLDP data and patch Ironic port local link connection.

Process the non-vendor-specific LLDP packet fields for each NIC found for a baremetal node,
port ID and chassis ID. These fields, if found and if valid, will be saved into the local link
connection information (port id and switch id) fields on the Ironic port that represents that
NIC.

dependencies = ['validate-interfaces']

An ordered list of hooks that must be enabled before this one.

The items here should be entry point names, not classes.

1118 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.hooks.memory module

class ironic.drivers.modules.inspector.hooks.memory.MemoryHook

Bases: InspectionHook

Hook to set the nodes memory_mb property based on the inventory.

__call__(task, inventory, plugin_data)
Update node properties with memory information.

ironic.drivers.modules.inspector.hooks.parse_lldp module

LLDP Processing Hook for basic TLVs

class ironic.drivers.modules.inspector.hooks.parse_lldp.ParseLLDPHook

Bases: InspectionHook

Process LLDP packet fields and store them in plugin_data[parsed_lldp]

Convert binary LLDP information into a readable form. Loop through raw LLDP TLVs and parse
those from the basic management, 802.1, and 802.3 TLV sets. Store parsed data in the plugin_data
as a new parsed_lldp dictionary with interface names as keys.

__call__(task, inventory, plugin_data)
Process LLDP data and update plugin_data with processed data

ironic.drivers.modules.inspector.hooks.pci_devices module

Gather and distinguish PCI devices from plugin_data.

class ironic.drivers.modules.inspector.hooks.pci_devices.PciDevicesHook

Bases: InspectionHook

Hook to count various PCI devices, and set the nodes capabilities.

This information can later be used by nova for node scheduling.

__call__(task, inventory, plugin_data)
Update node capabilities with PCI devices.

ironic.drivers.modules.inspector.hooks.physical_network module

Port Physical Network Hook

class
ironic.drivers.modules.inspector.hooks.physical_network.PhysicalNetworkHook

Bases: InspectionHook

Hook to set the ports physical_network field.

Set the ironic ports physical_network field based on a CIDR to physical network mapping in the
configuration.

5.1. Developers Guide 1119

Ironic Documentation, Release 26.1.2.dev21

__call__(task, inventory, plugin_data)
Process inspection data and patch the ports physical network.

dependencies = ['validate-interfaces']

An ordered list of hooks that must be enabled before this one.

The items here should be entry point names, not classes.

get_physical_network(interface)
Return a physical network to apply to an ironic port.

Parameters
interface The interface from the inventory.

Returns
The physical network to set, or None.

ironic.drivers.modules.inspector.hooks.ports module

class ironic.drivers.modules.inspector.hooks.ports.PortsHook

Bases: InspectionHook

Hook to create ironic ports.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

dependencies = ['validate-interfaces']

An ordered list of hooks that must be enabled before this one.

The items here should be entry point names, not classes.

ironic.drivers.modules.inspector.hooks.ports.add_ports(task, interfaces)
Add ports for all previously validated interfaces.

ironic.drivers.modules.inspector.hooks.ports.update_ports(task, all_interfaces,
valid_macs)

Update ports to match the valid MACs.

Depending on the value of [inspector]keep_ports, some ports may be removed.

1120 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.hooks.raid_device module

class ironic.drivers.modules.inspector.hooks.raid_device.RaidDeviceHook

Bases: InspectionHook

Hook for learning the root device after RAID creation.

This hook can figure out the root device in 2 runs. In the first run, the nodes inventory is saved as
usual, and the hook does not do anything. The second run will check the difference between the
recently discovered block devices (as reported by the inspection results) and the previously saved
ones (from the previously saved inventory). If there is exactly one new block device, its serial
number is saved in node.properties under the root_device key.

This way, it helps to figure out the root device hint in cases when Ironic doesnt have enough in-
formation to do so otherwise. One such usecase is DRAC RAID configuration, where the BMC
doesnt provide any useful information about the created RAID disks. Using this hook immediately
before and after creating the root RAID device will solve the issue of root device hints.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.ramdisk_error module

class ironic.drivers.modules.inspector.hooks.ramdisk_error.RamdiskErrorHook

Bases: InspectionHook

Hook to process error sent from the ramdisk.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

5.1. Developers Guide 1121

Ironic Documentation, Release 26.1.2.dev21

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

preprocess(task, inventory, plugin_data)
Hook to run before the main inspection data processing.

This hook is run even before sanity checks.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.root_device module

class ironic.drivers.modules.inspector.hooks.root_device.RootDeviceHook

Bases: InspectionHook

Smarter root disk selection using Ironic root device hints.

__call__(task, inventory, plugin_data)
Process root disk information.

ironic.drivers.modules.inspector.hooks.validate_interfaces module

class ironic.drivers.modules.inspector.hooks.validate_interfaces.
ValidateInterfacesHook

Bases: InspectionHook

Hook to validate network interfaces.

__call__(task, inventory, plugin_data)
Hook to run to process inspection data (before Ironic node update).

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

1122 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
nothing.

preprocess(task, inventory, plugin_data)
Hook to run before the main inspection data processing.

This hook is run even before sanity checks.

Parameters

• task A TaskManager instance.

• inventory Hardware inventory information sent by the ramdisk. Must not
be modified by the hook.

• plugin_data Plugin data sent by the ramdisk. May be modified by the
hook.

Returns
nothing.

ironic.drivers.modules.inspector.hooks.validate_interfaces.get_interfaces(node,
inven-
tory)

Convert inventory to a dict with interfaces.

Returns
dict interface name -> interface (for valid interfaces).

ironic.drivers.modules.inspector.hooks.validate_interfaces.get_pxe_mac(inventory)
Get MAC address of the PXE interface.

ironic.drivers.modules.inspector.hooks.validate_interfaces.validate_interfaces(node,
in-
ven-
tory,
in-
ter-
faces)

Validate interfaces on correctness and suitability.

Returns
dict interface name -> interface.

Module contents

Submodules

ironic.drivers.modules.inspector.agent module

In-band inspection implementation.

class ironic.drivers.modules.inspector.agent.AgentInspect(*args, **kwargs)
Bases: Common

In-band inspection.

5.1. Developers Guide 1123

Ironic Documentation, Release 26.1.2.dev21

abort(task)
Abort hardware inspection.

Parameters
task a task from TaskManager.

continue_inspection(task, inventory, plugin_data)
Continue in-band hardware inspection.

Parameters

• task a task from TaskManager.

• inventory hardware inventory from the node.

• plugin_data optional plugin-specific data.

default_require_managed_boot = True

ironic.drivers.modules.inspector.agent.run_inspection_hooks(task, inventory,
plugin_data, hooks)

Process data from the ramdisk using inspection hooks.

ironic.drivers.modules.inspector.client module

Client helper for ironic-inspector.

ironic.drivers.modules.inspector.client.get_client(context)
Helper to get inspector client instance.

ironic.drivers.modules.inspector.interface module

Modules required to work with ironic_inspector:
https://pypi.org/project/ironic-inspector

class ironic.drivers.modules.inspector.interface.Common(*args, **kwargs)
Bases: InspectInterface

default_require_managed_boot = False

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

inspect_hardware(task)
Inspect hardware to obtain the hardware properties.

Results will be checked in a periodic task.

Parameters
task a task from TaskManager.

Returns
states.INSPECTWAIT

1124 Chapter 5. Contributor Guide

https://pypi.org/project/ironic-inspector

Ironic Documentation, Release 26.1.2.dev21

Raises
HardwareInspectionFailure on failure

validate(task)
Validate the driver-specific inspection information.

If invalid, raises an exception; otherwise returns None.

Parameters
task a task from TaskManager.

Raises
UnsupportedDriverExtension

class ironic.drivers.modules.inspector.interface.Inspector(*args, **kwargs)
Bases: Common

In-band inspection via ironic-inspector project.

abort(task)
Abort hardware inspection.

Parameters
task a task from TaskManager.

continue_inspection(task, inventory, plugin_data=None)
Continue in-band hardware inspection.

This implementation simply defers to ironic-inspector. It only exists to simplify the transition
to Ironic-native in-band inspection.

Parameters

• task a task from TaskManager.

• inventory hardware inventory from the node.

• plugin_data optional plugin-specific data.

ironic.drivers.modules.inspector.interface.clean_up(task, finish=True,
always_power_off=False)

ironic.drivers.modules.inspector.interface.inspection_error_handler(task, error,
raise_exc=False,
clean_up=True)

ironic.drivers.modules.inspector.interface.ironic_manages_boot(task,
raise_exc=False)

Whether ironic should manage boot for this node.

ironic.drivers.modules.inspector.interface.prepare_managed_inspection(task,
endpoint)

Prepare the boot interface for managed inspection.

ironic.drivers.modules.inspector.interface.tear_down_managed_boot(task, al-
ways_power_off=False)

5.1. Developers Guide 1125

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.lldp_parsers module

Names and mapping functions used to map LLDP TLVs to name/value pairs

class ironic.drivers.modules.inspector.lldp_parsers.LLDPBasicMgmtParser(nv=None)
Bases: LLDPParser

Class to handle parsing of 802.1AB Basic Management set

This class will also handle 802.1Q and 802.3 OUI TLVs.

add_capabilities(struct, name, data)
Handle LLDP_TLV_SYS_CAPABILITIES

add_mgmt_address(struct, name, data)
Handle LLDP_TLV_MGMT_ADDRESS

There can be multiple Mgmt Address TLVs, store in list.

handle_org_specific_tlv(struct, name, data)
Handle Organizationally Unique ID TLVs

This class supports 802.1Q and 802.3 OUI TLVs.

See http://www.ieee802.org/1/pages/802.1Q-2014.html, Annex D and http://standards.ieee.
org/about/get/802/802.3.html

class ironic.drivers.modules.inspector.lldp_parsers.LLDPParser(node_uuid,
nv=None)

Bases: object

Base class to handle parsing of LLDP TLVs

Each class that inherits from this base class must provide a parser map. Parser maps are used to
associate a LLDP TLV with a function handler and arguments necessary to parse the TLV and
generate one or more name/value pairs. Each LLDP TLV maps to a tuple with the following fields:

function - Handler function to generate name/value pairs

construct - Name of construct definition for TLV

name - User-friendly name of TLV. For TLVs that generate only one name/value pair, this is the
name used

len_check - Boolean indicating if length check should be done on construct

It is valid to have a function handler of None, this is for TLVs that are not mapped to a name/value
pair (e.g.LLDP_TLV_TTL).

add_dot1_link_aggregation(struct, name, data)
Add name/value pairs for TLV Dot1_LinkAggregationId

This is in the base class since it can be used by both dot1 and dot3.

add_nested_value(struct, name, data)
Add a single nested name/value pair to the dictionary

add_single_value(struct, name, data)
Add a single name/value pair to the nv dictionary

1126 Chapter 5. Contributor Guide

http://www.ieee802.org/1/pages/802.1Q-2014.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

Ironic Documentation, Release 26.1.2.dev21

append_value(name, value)
Add value to a list mapped to name

parse_tlv(tlv_type, data)
Parse TLVs from mapping table

This functions takes the TLV type and the raw data for this TLV and gets a tuple from the
parser_map. The construct field in the tuple contains the construct lib definition of the TLV
which can be parsed to access individual fields. Once the TLV is parsed, the handler function
for each TLV will store the individual fields as name/value pairs in nv_dict.

If the handler function does not exist, then no name/value pairs will be added to nv_dict, but
since the TLV was handled, True will be returned.

Param
tlv_type - type identifier for TLV

Param
data - raw TLV value

Returns
True if TLV in parser_map and data is valid, otherwise False.

set_value(name, value)
Set name value pair in dictionary

The value for a name should not be changed if it exists.

class ironic.drivers.modules.inspector.lldp_parsers.LLDPdot1Parser(node_uuid,
nv=None)

Bases: LLDPParser

Class to handle parsing of 802.1Q TLVs

add_dot1_port_protocol_vlan(struct, name, data)
Handle dot1_PORT_PROTOCOL_VLANID

add_dot1_protocol_identities(struct, name, data)
Handle dot1_PROTOCOL_IDENTITY

There can be multiple protocol ids TLVs, store in list

add_dot1_vlans(struct, name, data)
Handle dot1_VLAN_NAME

There can be multiple VLAN TLVs, add dictionary entry with id/vlan to list.

class ironic.drivers.modules.inspector.lldp_parsers.LLDPdot3Parser(node_uuid,
nv=None)

Bases: LLDPParser

Class to handle parsing of 802.3 TLVs

add_dot3_macphy_config(struct, name, data)
Handle dot3_MACPHY_CONFIG_STATUS

5.1. Developers Guide 1127

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.lldp_tlvs module

Link Layer Discovery Protocol TLVs

ironic.drivers.modules.inspector.lldp_tlvs.bytes_to_int(obj)
Convert bytes to an integer

Param
obj - array of bytes

ironic.drivers.modules.inspector.lldp_tlvs.get_autoneg_cap(pmd)
Get autonegotiated capability strings

This returns a list of capability strings from the Physical Media Dependent (PMD) capability bits.

Parameters
pmd PMD bits

Returns
Sorted list containing capability strings

ironic.drivers.modules.inspector.lldp_tlvs.mapping_for_enum(mapping)
Return tuple used for keys as a dict

Param
mapping - dict with tuple as keys

ironic.drivers.modules.inspector.lldp_tlvs.mapping_for_switch(mapping)
Return dict from values

Param
mapping - dict with tuple as keys

Module contents

class ironic.drivers.modules.inspector.AgentInspect(*args, **kwargs)
Bases: Common

In-band inspection.

abort(task)
Abort hardware inspection.

Parameters
task a task from TaskManager.

continue_inspection(task, inventory, plugin_data)
Continue in-band hardware inspection.

Parameters

• task a task from TaskManager.

• inventory hardware inventory from the node.

• plugin_data optional plugin-specific data.

1128 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

default_require_managed_boot = True

class ironic.drivers.modules.inspector.Inspector(*args, **kwargs)
Bases: Common

In-band inspection via ironic-inspector project.

abort(task)
Abort hardware inspection.

Parameters
task a task from TaskManager.

continue_inspection(task, inventory, plugin_data=None)
Continue in-band hardware inspection.

This implementation simply defers to ironic-inspector. It only exists to simplify the transition
to Ironic-native in-band inspection.

Parameters

• task a task from TaskManager.

• inventory hardware inventory from the node.

• plugin_data optional plugin-specific data.

ironic.drivers.modules.intel_ipmi package

Submodules

ironic.drivers.modules.intel_ipmi.management module

Intel IPMI Hardware.

Supports Intel Speed Select Performance Profile.

class ironic.drivers.modules.intel_ipmi.management.IntelIPMIManagement(*args,
**kwargs)

Bases: IPMIManagement

configure_intel_speedselect(task, **kwargs)

Module contents

ironic.drivers.modules.irmc package

Submodules

ironic.drivers.modules.irmc.bios module

iRMC BIOS configuration specific methods

5.1. Developers Guide 1129

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.irmc.bios.IRMCBIOS(*args, **kwargs)
Bases: BIOSInterface

apply_configuration(task, settings)
Applies BIOS configuration on the given node.

This method takes the BIOS settings from the settings param and applies BIOS configuration
on the given node. After the BIOS configuration is done, self.cache_bios_settings() may be
called to sync the nodes BIOS-related information with the BIOS configuration applied on
the node. It will also validate the given settings before applying any settings and manage
failures when setting an invalid BIOS config. In the case of needing password to update the
BIOS config, it will be taken from the driver_info properties.

Parameters

• task a TaskManager instance.

• settings Dictionary containing the BIOS configuration. It may be an
empty dictionary as well.

Raises
IRMCOperationError,if apply bios settings failed.

cache_bios_settings(task)
Store or update BIOS settings on the given node.

This method stores BIOS properties to the bios settings db

Parameters
task a TaskManager instance.

Raises
IRMCOperationError,if get bios settings failed.

Returns
None if it is complete.

factory_reset(task)
Reset BIOS configuration to factory default on the given node.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS reset.

get_properties()

Return the properties of the interface.

validate(task)
Validate the driver-specific Node info.

This method validates whether the driver_info property of the supplied node contains the
required information for this driver to manage the BIOS settings of the node.

Parameters
task a TaskManager instance containing the node to act on.

1130 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if required driver_info attribute is missing or invalid on
the node.

Raises
MissingParameterValue if a required parameter is missing in the driver_info
property.

ironic.drivers.modules.irmc.boot module

iRMC Boot Driver

class ironic.drivers.modules.irmc.boot.IRMCPXEBoot(*args, **kwargs)
Bases: PXEBoot

iRMC PXE boot.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of Ironic ramdisk using PXE.

This method prepares the boot of the deploy kernel/ramdisk after reading relevant information
from the nodes driver_info and instance_info.

Parameters

• task a task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk. pxe driver
passes these parameters as kernel command-line arguments.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot device operation failed on the node.

class ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot(*args, **kwargs)
Bases: BootInterface, IRMCVolumeBootMixIn

iRMC Virtual Media boot-related actions.

capabilities = ['iscsi_volume_boot', 'fibre_channel_volume_boot']

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance.

Parameters
task a task from TaskManager.

5.1. Developers Guide 1131

Ironic Documentation, Release 26.1.2.dev21

Returns
None

Raises
IRMCOperationError if iRMC operation failed.

clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up the environment that was setup for booting the deploy or rescue
ramdisk.

Parameters
task a task from TaskManager.

Returns
None

Raises
IRMCOperationError if iRMC operation failed.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes database.

Parameters
task a task from TaskManager.

Returns
None

prepare_ramdisk(task, ramdisk_params)
Prepares the deploy or rescue ramdisk using virtual media.

Prepares the options for the deploy or rescue ramdisk, sets the node to boot from virtual media
cdrom.

Parameters

• task a TaskManager instance containing the node to act on.

• ramdisk_params the options to be passed to the ramdisk.

Raises
ImageRefValidationFailed if no image service can handle specified href.

Raises
ImageCreationFailed, if it failed while creating the floppy image.

Raises
InvalidParameterValue if the validation of the PowerInterface or Manage-
mentInterface fails.

1132 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
IRMCOperationError, if some operation on iRMC fails.

validate(task)
Validate the deployment information for the tasks node.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue, if config option has invalid value.

Raises
IRMCSharedFileSystemNotMounted, if shared file system is not mounted.

Raises
InvalidParameterValue, if some information is invalid.

Raises
MissingParameterValue if kernel_id and ramdisk_id are missing in the Glance
image, or if kernel and ramdisk are missing in the Non Glance image.

validate_rescue(task)
Validate that the node has required properties for rescue.

Parameters
task a TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

Raises
InvalidParameterValue, if any of the parameters have invalid value.

class ironic.drivers.modules.irmc.boot.IRMCVolumeBootMixIn

Bases: object

Mix-in class for volume boot configuration to iRMC

iRMC has a feature to set up remote boot to a server. This feature can be used by VIOM (Virtual
I/O Manager) library of SCCI client.

ironic.drivers.modules.irmc.boot.attach_boot_iso_if_needed(task)
Attaches boot ISO for a deployed node if it exists.

This method checks the instance info of the bare metal node for a boot ISO. If the instance info has
a value of key boot_iso, it indicates ramdisk deploy. Therefore it attaches the boot ISO on the bare
metal node and then sets the node to boot from virtual media cdrom.

Parameters
task a TaskManager instance containing the node to act on.

Raises
IRMCOperationError if attaching virtual media failed.

Raises
InvalidParameterValue if the validation of the ManagementInterface fails.

5.1. Developers Guide 1133

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.irmc.boot.check_share_fs_mounted()

Check if Share File System (NFS or CIFS) is mounted.

Raises
InvalidParameterValue, if config option has invalid value.

Raises
IRMCSharedFileSystemNotMounted, if shared file system is not mounted.

ironic.drivers.modules.irmc.common module

Common functionalities shared between different iRMC modules.

ironic.drivers.modules.irmc.common.check_elcm_license(node)
Connect to iRMC and return status of eLCM license

This function connects to iRMC REST API and check whether eLCM license is active. This
function can be used to check connection to iRMC REST API.

Parameters
node An ironic node object

Returns
dictionary whose keys are active and status_code. value of active is boolean show-
ing if eLCM license is active and value of status_code is int which is HTTP return
code from iRMC REST API access

Raises
InvalidParameterValue if invalid value is contained in the driver_info property.

Raises
MissingParameterValue if some mandatory key is missing in the driver_info prop-
erty.

Raises
IRMCOperationError if the operation fails.

ironic.drivers.modules.irmc.common.get_irmc_client(node)
Gets an iRMC SCCI client.

Given an ironic node object, this method gives back a iRMC SCCI client to do operations on the
iRMC.

Parameters
node An ironic node object.

Returns
scci_cmd partial function which takes a SCCI command param.

Raises
InvalidParameterValue on invalid inputs.

Raises
MissingParameterValue if some mandatory information is missing on the node

Raises
IRMCOperationError if iRMC operation failed

1134 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.irmc.common.get_irmc_report(node)
Gets iRMC SCCI report.

Given an ironic node object, this method gives back a iRMC SCCI report.

Parameters
node An ironic node object.

Returns
A xml.etree.ElementTree object.

Raises
InvalidParameterValue on invalid inputs.

Raises
MissingParameterValue if some mandatory information is missing on the node.

Raises
scci.SCCIInvalidInputError if required parameters are invalid.

Raises
scci.SCCIClientError if SCCI failed.

ironic.drivers.modules.irmc.common.get_secure_boot_mode(node)
Get the current secure boot mode.

Parameters
node An ironic node object.

Raises
UnsupportedDriverExtension if secure boot is not present.

Raises
IRMCOperationError if the operation fails.

ironic.drivers.modules.irmc.common.parse_driver_info(node)
Gets the specific Node driver info.

This method validates whether the driver_info property of the supplied node contains the required
information for this driver.

Parameters
node An ironic node object.

Returns
A dict containing information from driver_info and default values.

Raises
InvalidParameterValue if invalid value is contained in the driver_info property.

Raises
MissingParameterValue if some mandatory key is missing in the driver_info prop-
erty.

ironic.drivers.modules.irmc.common.set_irmc_version(task)
Fetch and save iRMC firmware version.

This function should be called before calling any other functions which need to check nodes iRMC
firmware version.

Set <iRMC OS>/<fw version> to driver_internal_info[irmc_fw_version]

5.1. Developers Guide 1135

Ironic Documentation, Release 26.1.2.dev21

Parameters
node An ironic node object

Raises
InvalidParameterValue if invalid value is contained in the driver_info property.

Raises
MissingParameterValue if some mandatory key is missing in the driver_info prop-
erty.

Raises
IRMCOperationError if the operation fails.

Raises
NodeLocked if the target node is already locked.

ironic.drivers.modules.irmc.common.set_secure_boot_mode(node, enable)
Enable or disable UEFI Secure Boot

Parameters

• node An ironic node object.

• enable Boolean value. True if the secure boot to be enabled.

Raises
IRMCOperationError if the operation fails.

ironic.drivers.modules.irmc.common.update_ipmi_properties(task)
Update ipmi properties to node driver_info.

Parameters
task A task from TaskManager.

ironic.drivers.modules.irmc.common.within_version_ranges(node, version_ranges)
Read saved iRMC FW version and check if it is within the passed ranges.

Parameters

• node An ironic node object

• version_ranges A Python dictionary containing version ranges in the next
format: <os_n>: <ranges>, where <os_n> is a string representing iRMC OS
number (e.g. 4) and <ranges> is a dictionaries indicating the specific firmware
version ranges under the iRMC OS number <os_n>.

The dictionary used in <ranges> only has two keys: min and upper, and value
of each key is a string representing iRMC firmware version number or None.
Both keys can be absent and their value can be None.

It is acceptable to not set ranges for a <os_n> (for example set <ranges> to
None, {}, etc), in this case, this function only checks if the nodes iRMC OS
number matches the <os_n>.

Valid <version_ranges> example:

{3: None, # all version of iRMC S3 matches
4: {}, # all version of iRMC S4 matches # all version of iRMC S5 matches
5: {min: None, upper: None}, # iRMC S6 whose version is >=1.20

1136 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

matches 6: {min: 1.20, upper: None}, # iRMC S7 whose version is #
5.51<= (version) <8.23 matches 7: {min: 5.51, upper: 8.23}}

Returns
True if nodes iRMC FW is in range, False if not or fails to parse firmware version

ironic.drivers.modules.irmc.inspect module

iRMC Inspect Interface

class ironic.drivers.modules.irmc.inspect.IRMCInspect(*args, **kwargs)
Bases: InspectInterface

Interface for out of band inspection.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

inspect_hardware(task)
Inspect hardware.

Inspect hardware to obtain the essential hardware properties and mac addresses.

Parameters
task a task from TaskManager.

Raises
HardwareInspectionFailure, if hardware inspection failed.

Returns
states.MANAGEABLE, if hardware inspection succeeded.

validate(task)
Validate the driver-specific inspection information.

This method validates whether the driver_info property of the supplied node contains the
required information for this driver.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue if required driver_info attribute is missing or invalid on
the node.

Raises
MissingParameterValue if a required parameter is missing.

ironic.drivers.modules.irmc.inspect.METRICS =
<ironic_lib.metrics.NoopMetricLogger object>

SC2.mib: sc2UnitNodeClass returns NIC type.

sc2UnitNodeClass OBJECT-TYPE
SYNTAX INTEGER { unknown(1), primary(2), secondary(3), management-blade(4),
secondary-remote(5), secondary-remote-backup(6), baseboard-controller(7) } ACCESS

5.1. Developers Guide 1137

Ironic Documentation, Release 26.1.2.dev21

read-only STATUS mandatory DESCRIPTION Management node class: primary: lo-
cal operating system interface secondary: local management controller LAN interface
management-blade: management blade interface (in a blade server chassis) secondary-
remote: remote management controller (in an RSB concentrator environment) secondary-
remote-backup: backup remote management controller baseboard-controller: local base-
board management controller (BMC) ::= { sc2ManagementNodes 8 }

ironic.drivers.modules.irmc.inspect.NODE_CLASS_OID =
'1.3.6.1.4.1.231.2.10.2.2.10.3.1.1.8.1'

SC2.mib: sc2UnitNodeMacAddress returns NIC MAC address

sc2UnitNodeMacAddress OBJECT-TYPE
SYNTAX PhysAddress ACCESS read-only STATUS mandatory DESCRIPTION Manage-
ment node hardware (MAC) address ::= { sc2ManagementNodes 9 }

ironic.drivers.modules.irmc.management module

iRMC Management Driver

class ironic.drivers.modules.irmc.management.IRMCManagement(*args, **kwargs)
Bases: IPMIManagement, RedfishManagement

detect_vendor(task)
Detects and returns the hardware vendor.

Parameters
task A task from TaskManager.

Raises
InvalidParameterValue if a required parameter is missing

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishError on Redfish operation error.

Raises
PasswordFileFailedToCreate from creating or writing to the temporary file dur-
ing IPMI operation.

Raises
processutils.ProcessExecutionError from executing ipmi command

Returns
String representing the BMC reported Vendor or Manufacturer, otherwise re-
turns None.

get_boot_device(task)
Get the current boot device for the tasks node.

Returns the current boot device of the node.

Parameters
task a task from TaskManager.

1138 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if an invalid boot device is specified.

Raises
MissingParameterValue if a required parameter is missing.

Raises
IPMIFailure on an error from ipmitool.

Raises
RedfishConnectionError on Redfish operation failure.

Raises
RedfishError on Redfish operation failure.

Returns

a dictionary containing:

boot_device
the boot device, one of ironic.common.boot_devices or None if it
is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_boot_mode(task)
Get the current boot mode for a node.

IRMCManagement class doesnt support this method

Parameters
task a task from TaskManager.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

get_indicator_state(task, component, indicator)
Get current state of the indicator of the hardware component.

IRMCManagement class doesnt support this method

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator ID (as reported by get_supported_indicators).

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

get_mac_addresses(task)
Get MAC address information for the node.

IRMCManagement class doesnt support this method

5.1. Developers Guide 1139

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

Raises
UnsupportedDriverExtension

get_properties()

Return the properties of the interface.

Returns
Dictionary of <property name>:<property description> entries.

get_secure_boot_state(task)
Get the current secure boot state for the node.

NOTE: Not all drivers support this method. Older hardware
may not implement that.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Raises
DriverOperationError or its derivative in case of driver runtime error.

Raises
UnsupportedDriverExtension if secure boot is not supported by the driver or
the hardware

Returns
Boolean

get_sensors_data(task)
Get sensors data method.

It gets sensor data from the tasks node via SCCI, and convert the data from XML to the dict
format.

Parameters
task A TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

Raises
FailedToParseSensorData when parsing sensor data fails.

Raises
InvalidParameterValue if required parameters are invalid.

Raises
MissingParameterValue if a required parameter is missing.

Returns

Returns a consistent formatted dict of sensor data grouped by sensor type, which
can be processed by Ceilometer. Example:

1140 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

{
'Sensor Type 1': {
'Sensor ID 1': {
'Sensor Reading': 'Value1 Units1',
'Sensor ID': 'Sensor ID 1',
'Units': 'Units1'

},
'Sensor ID 2': {
'Sensor Reading': 'Value2 Units2',
'Sensor ID': 'Sensor ID 2',
'Units': 'Units2'

}
},
'Sensor Type 2': {
'Sensor ID 3': {
'Sensor Reading': 'Value3 Units3',
'Sensor ID': 'Sensor ID 3',
'Units': 'Units3'

},
'Sensor ID 4': {
'Sensor Reading': 'Value4 Units4',
'Sensor ID': 'Sensor ID 4',
'Units': 'Units4'

}
}

}

get_supported_boot_devices(task)
Get list of supported boot devices

Actual code is delegated to IPMIManagement or RedfishManagement based on iRMC
firmware version.

Parameters
task A TaskManager instance

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

get_supported_boot_modes(task)
Get a list of the supported boot modes.

IRMCManagement class doesnt support this method

Parameters
task a task from TaskManager.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

get_supported_indicators(task, component=None)
Get a map of the supported indicators (e.g. LEDs).

5.1. Developers Guide 1141

Ironic Documentation, Release 26.1.2.dev21

IRMCManagement class doesnt support this method

Parameters

• task a task from TaskManager.

• component If not None, return indicator information for just this component,
otherwise return indicators for all existing components.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

inject_nmi(task)
Inject NMI, Non Maskable Interrupt.

Inject NMI (Non Maskable Interrupt) for a node immediately.

Parameters
task A TaskManager instance containing the node to act on.

Raises
IRMCOperationError on an error from SCCI

Returns
None

restore_irmc_bios_config(task)
Restore BIOS config for a node.

Parameters
task a task from TaskManager.

Raises
NodeCleaningFailure, on failure to execute step.

Returns
None.

set_boot_device(task, device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• task A task from TaskManager.

• device The boot device, one of the supported devices listed in ironic.
common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue if an invalid boot device is specified.

Raises
MissingParameterValue if a required parameter is missing.

Raises
IPMIFailure on an error from ipmitool.

1142 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
RedfishConnectionError on Redfish operation failure.

Raises
RedfishError on Redfish operation failure.

set_boot_mode(task, mode)
Set the boot mode for a node.

IRMCManagement class doesnt support this method

Parameters

• task a task from TaskManager.

• mode The boot mode, one of ironic.common.boot_modes.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

set_indicator_state(task, component, indicator, state)
Set indicator on the hardware component to the desired state.

IRMCManagement class doesnt support this method

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator ID (as reported by get_supported_indicators).

State
Desired state of the indicator, one of ironic.common.indicator_states.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

set_secure_boot_state(task, state)
Set the current secure boot state for the node.

NOTE: Not all drivers support this method. Older hardware
may not implement that.

Parameters

• task A task from TaskManager.

• state A new state as a boolean.

Raises
MissingParameterValue if a required parameter is missing

Raises
DriverOperationError or its derivative in case of driver runtime error.

5.1. Developers Guide 1143

Ironic Documentation, Release 26.1.2.dev21

Raises
UnsupportedDriverExtension if secure boot is not supported by the driver or
the hardware

validate(task)
Validate the driver-specific management information.

This method validates whether the driver_info property of the supplied node contains the
required information for this driver.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue if required parameters are invalid.

Raises
MissingParameterValue if a required parameter is missing.

verify_http_https_connection_and_fw_version(task)
Check http(s) connection to iRMC and save fw version

:param task A task from TaskManager raises: IRMCOperationError

ironic.drivers.modules.irmc.management.backup_bios_config(task)
Backup BIOS config from a node.

Parameters
task a TaskManager instance containing the node to act on.

Raises
IRMCOperationError on failure.

ironic.drivers.modules.irmc.power module

iRMC Power Driver using the Base Server Profile

class ironic.drivers.modules.irmc.power.IRMCPower(*args, **kwargs)
Bases: RedfishPower, PowerInterface

Interface for power-related actions.

get_power_state(task)
Return the power state of the tasks node.

Parameters
task a TaskManager instance containing the node to act on.

Returns
a power state. One of ironic.common.states.

Raises
InvalidParameterValue if required parameters are incorrect.

Raises
MissingParameterValue if required parameters are missing.

1144 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
IRMCOperationError If IPMI or Redfish operation fails

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_supported_power_states(task)
Get a list of the supported power states.

Parameters
task A TaskManager instance containing the node to act on. currently not
used.

Returns
A list with the supported power states defined in ironic.common.states.

reboot(task, timeout=None)
Perform a hard reboot of the tasks node.

Parameters

• task a TaskManager instance containing the node to act on.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates default timeout.

Raises
InvalidParameterValue if an invalid power state was specified.

Raises
IRMCOperationError if failed to set the power state.

set_power_state(task, power_state, timeout=None)
Set the power state of the tasks node.

Parameters

• task a TaskManager instance containing the node to act on.

• power_state Any power state from ironic.common.states.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates default timeout.

Raises
InvalidParameterValue if an invalid power state was specified.

Raises
MissingParameterValue if some mandatory information is missing on the node

Raises
IRMCOperationError if failed to set the power state.

validate(task)
Validate the driver-specific Node power info.

This method validates whether the driver_info property of the supplied node contains the
required information for this driver to manage the power state of the node.

5.1. Developers Guide 1145

Ironic Documentation, Release 26.1.2.dev21

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue if required driver_info attribute is missing or invalid on
the node.

Raises
MissingParameterValue if a required parameter is missing.

ironic.drivers.modules.irmc.power.METRICS =
<ironic_lib.metrics.NoopMetricLogger object>

SC2.mib: sc2srvCurrentBootStatus returns status of the current boot

ironic.drivers.modules.irmc.raid module

Irmc RAID specific methods

class ironic.drivers.modules.irmc.raid.IRMCRAID(*args, **kwargs)
Bases: RAIDInterface

create_configuration(task, create_root_volume=True, create_nonroot_volumes=True)
Create the RAID configuration.

This method creates the RAID configuration on the given node.

Parameters

• task a TaskManager instance containing the node to act on.

• create_root_volume If True, a root volume is created during RAID con-
figuration. Otherwise, no root volume is created. Default is True.

• create_nonroot_volumes If True, non-root volumes are created. If False,
no non-root volumes are created. Default is True.

Returns
states.CLEANWAIT if RAID configuration is in progress asynchronously.

Raises
MissingParameterValue, if node.target_raid_config is missing or empty.

Raises
IRMCOperationError on an error from scciclient

delete_configuration(task)
Delete the RAID configuration.

Parameters
task a TaskManager instance containing the node to act on.

Returns
states.CLEANWAIT if deletion is in progress asynchronously or None if it is
complete.

get_properties()

Return the properties of the interface.

1146 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.irmc.vendor module

Vendor interface of iRMC driver

class ironic.drivers.modules.irmc.vendor.IRMCVendorPassthru(*args, **kwargs)
Bases: VendorInterface

cache_irmc_firmware_version(task, **kwargs)
Fetch and save iRMC firmware version.

This method connects to iRMC and fetch iRMC firmware version. If fetched firmware ver-
sion is not cached in or is different from one in driver_internal_info/irmc_fw_version, store
fetched version in driver_internal_info/irmc_fw_version.

Parameters
task An instance of TaskManager.

Raises
IRMCOperationError if some error occurs

get_properties()

Return the properties of the interface.

Returns
Dictionary of <property name>:<property description> entries.

validate(task, method=None, **kwargs)
Validate vendor-specific actions.

This method validates whether the driver_info property of the supplied node contains the
required information for this driver.

Parameters

• task An instance of TaskManager.

• method Name of vendor passthru method

Raises
InvalidParameterValue if invalid value is contained in the driver_info property.

Raises
MissingParameterValue if some mandatory key is missing in the driver_info
property.

Module contents

ironic.drivers.modules.network package

Submodules

ironic.drivers.modules.network.common module

5.1. Developers Guide 1147

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.network.common.NeutronVIFPortIDMixin

Bases: VIFPortIDMixin

VIF port ID mixin class for neutron network interfaces.

Mixin class that provides VIF-related network interface methods for neutron network interfaces.
On VIF attach/detach, the associated neutron port will be updated.

get_node_network_data(task)
Get network configuration data for node ports.

Pull network data from ironic node object if present, otherwise collect it for Neutron VIFs.

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

Returns
a dict holding network configuration information adhering Nova network meta-
data layout (network_data.json).

port_changed(task, port_obj)
Handle any actions required when a port changes

Parameters

• task a TaskManager instance.

• port_obj a changed Port object from the API before it is saved to database.

Raises
FailedToUpdateDHCPOptOnPort, Conflict

portgroup_changed(task, portgroup_obj)
Handle any actions required when a portgroup changes

Parameters

• task a TaskManager instance.

• portgroup_obj a changed Portgroup object from the API before it is saved
to database.

Raises
FailedToUpdateDHCPOptOnPort, Conflict

vif_attach(task, vif_info)
Attach a virtual network interface to a node

Attach a virtual interface to a node. When selecting a port or portgroup to attach the virtual
interface to, the following ordered criteria are applied:

• Require ports or portgroups to have a physical network that is either None or one of the
VIFs allowed physical networks.

• Prefer ports or portgroups with a physical network field which is not None.

1148 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• Prefer portgroups to ports.

• Prefer ports with PXE enabled.

Parameters

• task A TaskManager instance.

• vif_info a dictionary of information about a VIF. It must have an id key,
whose value is a unique identifier for that VIF.

Raises
NetworkError, VifAlreadyAttached, NoFreePhysicalPorts

Raises
PortgroupPhysnetInconsistent if one of the nodes portgroups has ports which
are not all assigned the same physical network.

vif_detach(task, vif_id)
Detach a virtual network interface from a node

Parameters

• task A TaskManager instance.

• vif_id A VIF ID to detach

Raises
VifNotAttached if VIF not attached.

Raises
NetworkError if unbind Neutron port failed.

class ironic.drivers.modules.network.common.VIFPortIDMixin

Bases: object

VIF port ID mixin class for non-neutron network interfaces.

Mixin class that provides VIF-related network interface methods for non-neutron network inter-
faces. There are no effects due to VIF attach/detach that are external to ironic.

NOTE: This does not yet support the full set of VIF methods, as it does not provide vif_attach,
vif_detach, port_changed, or portgroup_changed.

get_current_vif(task, p_obj)
Returns the currently used VIF associated with port or portgroup

We are booting the node only in one network at a time, and presence of clean-
ing_vif_port_id means were doing cleaning, of provisioning_vif_port_id - provisioning, of
rescuing_vif_port_id - rescuing. Otherwise its a tenant network

Parameters

• task A TaskManager instance.

• p_obj Ironic port or portgroup object.

Returns
VIF ID associated with p_obj or None.

5.1. Developers Guide 1149

Ironic Documentation, Release 26.1.2.dev21

vif_list(task)
List attached VIF IDs for a node

Parameters
task A TaskManager instance.

Returns
List of VIF dictionaries, each dictionary will have an id entry with the ID of
the VIF.

ironic.drivers.modules.network.common.get_free_port_like_object(task, vif_id,
physnets,
vif_info={})

Find free port-like object (portgroup or port) VIF will be attached to.

Ensures that the VIF is not already attached to this node. When selecting a port or portgroup to
attach the virtual interface to, the following ordered criteria are applied:

• Require ports or portgroups to have a physical network that is either None or one of the VIFs
allowed physical networks.

• Prefer ports or portgroups with a physical network field which is not None.

• Prefer portgroups to ports.

• Prefer ports with PXE enabled.

Parameters

• task a TaskManager instance.

• vif_id Name or UUID of a VIF.

• physnets Set of physical networks on which the VIF may be attached. This
is governed by the segments of the VIFs network. An empty set indicates that
the ports physical networks should be ignored.

• vif_info dict that may contain extra information, such as port_uuid

Raises
VifAlreadyAttached, if VIF is already attached to the node.

Raises
NoFreePhysicalPorts, if there is no port-like object VIF can be attached to.

Raises
PortgroupPhysnetInconsistent if one of the nodes portgroups has ports which are
not all assigned the same physical network.

Returns
port-like object VIF will be attached to.

ironic.drivers.modules.network.common.plug_port_to_tenant_network(task,
port_like_obj,
client=None)

Plug port like object to tenant network.

Parameters

1150 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• task A TaskManager instance.

• port_like_obj port-like object to plug.

• client Neutron client instance.

Raises
NetworkError if failed to update Neutron port.

Raises
VifNotAttached if tenant VIF is not associated with port_like_obj.

ironic.drivers.modules.network.flat module

Flat network interface. Useful for shared, flat networks.

class ironic.drivers.modules.network.flat.FlatNetwork(*args, **kwargs)
Bases: NeutronVIFPortIDMixin, NeutronNetworkInterfaceMixin, NetworkInterface

Flat network interface.

add_cleaning_network(task)
Add the cleaning network to a node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError, InvalidParameterValue

add_inspection_network(task)
Add the inspection network to the node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

add_provisioning_network(task)
Add the provisioning network to a node.

Parameters
task A TaskManager instance.

Raises
NetworkError when failed to set binding:host_id

5.1. Developers Guide 1151

Ironic Documentation, Release 26.1.2.dev21

add_rescuing_network(task)
Add the rescuing network to a node.

Flat network does not use the rescuing network. Bind the port again since unconfig-
ure_tenant_network() unbound it.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError, InvalidParameterValue

add_servicing_network(task)
Add the rescuing network to a node.

Flat network does not use the servicing network. Bind the port again since unconfig-
ure_tenant_network() unbound it.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError, InvalidParameterValue

configure_tenant_networks(task)
Configure tenant networks for a node.

Parameters
task A TaskManager instance.

remove_cleaning_network(task)
Remove the cleaning network from a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

remove_inspection_network(task)
Removes the inspection network from a node.

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

remove_provisioning_network(task)
Remove the provisioning network from a node.

1152 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance.

remove_rescuing_network(task)
Remove the rescuing network from a node.

Flat network does not use the rescuing network. Unbind the port again since
add_rescuing_network() bound it.

Parameters
task A TaskManager instance.

Raises
NetworkError

remove_servicing_network(task)
Remove the servicing network from a node.

Flat network does not use the servicing network. Unbind the port again since
add_rescuing_network() bound it.

Parameters
task A TaskManager instance.

Raises
NetworkError

unconfigure_tenant_networks(task)
Unconfigure tenant networks for a node.

Unbind the port here/now to avoid the possibility of the ironic port being bound to the tenant
and cleaning networks at the same time.

Parameters
task A TaskManager instance.

Raises
NetworkError

validate(task)
Validates the network interface.

Parameters
task a TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

5.1. Developers Guide 1153

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.network.neutron module

class ironic.drivers.modules.network.neutron.NeutronNetwork(*args, **kwargs)
Bases: NeutronVIFPortIDMixin, NeutronNetworkInterfaceMixin, NetworkInterface

Neutron v2 network interface

add_cleaning_network(task)
Create neutron ports for each port on task.node to boot the ramdisk.

Parameters
task a TaskManager instance.

Raises
NetworkError

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

add_inspection_network(task)
Add the inspection network to the node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

add_provisioning_network(task)
Add the provisioning network to a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

add_rescuing_network(task)
Create neutron ports for each port to boot the rescue ramdisk.

Parameters
task a TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

add_servicing_network(task)
Create neutron ports for each port to boot the servicing ramdisk.

Parameters
task a TaskManager instance.

1154 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

configure_tenant_networks(task)
Configure tenant networks for a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

need_power_on(task)
Check if the node has any Smart NIC ports

Parameters
task A TaskManager instance.

Returns
A boolean to indicate Smart NIC port presence

remove_cleaning_network(task)
Deletes the neutron port created for booting the ramdisk.

Parameters
task a TaskManager instance.

Raises
NetworkError

remove_inspection_network(task)
Removes the inspection network from a node.

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

remove_provisioning_network(task)
Remove the provisioning network from a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

remove_rescuing_network(task)
Deletes neutron port created for booting the rescue ramdisk.

Parameters
task a TaskManager instance.

Raises
NetworkError

5.1. Developers Guide 1155

Ironic Documentation, Release 26.1.2.dev21

remove_servicing_network(task)
Deletes neutron port created for booting the servicing ramdisk.

Parameters
task a TaskManager instance.

Raises
NetworkError

unconfigure_tenant_networks(task)
Unconfigure tenant networks for a node.

Nova takes care of port removal from tenant network, we unbind it here/now to avoid the
possibility of the ironic port being bound to the tenant and cleaning networks at the same
time.

Parameters
task A TaskManager instance.

Raises
NetworkError

validate(task)
Validates the network interface.

Parameters
task a TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

validate_rescue(task)
Validates the network interface for rescue operation.

Parameters
task a TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

validate_servicing(task)
Validates the network interface for servicing operation.

Parameters
task a TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

1156 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.network.noop module

class ironic.drivers.modules.network.noop.NoopNetwork(*args, **kwargs)
Bases: NetworkInterface

Noop network interface.

add_cleaning_network(task)
Add the cleaning network to a node.

Parameters
task A TaskManager instance.

add_provisioning_network(task)
Add the provisioning network to a node.

Parameters
task A TaskManager instance.

configure_tenant_networks(task)
Configure tenant networks for a node.

Parameters
task A TaskManager instance.

get_current_vif(task, p_obj)
Returns the currently used VIF associated with port or portgroup

We are booting the node only in one network at a time, and presence of clean-
ing_vif_port_id means were doing cleaning, of provisioning_vif_port_id - provisioning of
rescuing_vif_port_id - rescuing. Otherwise its a tenant network

Parameters

• task A TaskManager instance.

• p_obj Ironic port or portgroup object.

Returns
VIF ID associated with p_obj or None.

port_changed(task, port_obj)
Handle any actions required when a port changes

Parameters

• task a TaskManager instance.

• port_obj a changed Port object.

Raises
Conflict, FailedToUpdateDHCPOptOnPort

portgroup_changed(task, portgroup_obj)
Handle any actions required when a portgroup changes

Parameters

• task a TaskManager instance.

• portgroup_obj a changed Portgroup object.

5.1. Developers Guide 1157

Ironic Documentation, Release 26.1.2.dev21

Raises
Conflict, FailedToUpdateDHCPOptOnPort

remove_cleaning_network(task)
Remove the cleaning network from a node.

Parameters
task A TaskManager instance.

remove_provisioning_network(task)
Remove the provisioning network from a node.

Parameters
task A TaskManager instance.

unconfigure_tenant_networks(task)
Unconfigure tenant networks for a node.

Parameters
task A TaskManager instance.

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

vif_attach(task, vif_info)
Attach a virtual network interface to a node

Parameters

• task A TaskManager instance.

• vif_info a dictionary of information about a VIF. It must have an id key,
whose value is a unique identifier for that VIF.

Raises
NetworkError, VifAlreadyAttached, NoFreePhysicalPorts

vif_detach(task, vif_id)
Detach a virtual network interface from a node

Parameters

• task A TaskManager instance.

• vif_id A VIF ID to detach

Raises
NetworkError, VifNotAttached

vif_list(task)
List attached VIF IDs for a node.

Parameters
task A TaskManager instance.

Returns
List of VIF dictionaries, each dictionary will have an id entry with the ID of
the VIF.

1158 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Module contents

ironic.drivers.modules.redfish package

Submodules

ironic.drivers.modules.redfish.bios module

class ironic.drivers.modules.redfish.bios.RedfishBIOS(*args, **kwargs)
Bases: BIOSInterface

apply_configuration(task, settings)
Apply the BIOS settings to the node.

Parameters

• task a TaskManager instance containing the node to act on.

• settings a list of BIOS settings to be updated.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

cache_bios_settings(task)
Store or update the current BIOS settings for the node.

Get the current BIOS settings and store them in the bios_settings database table.

Parameters
task a TaskManager instance containing the node to act on.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

Raises
UnsupportedDriverExtension if the system does not support BIOS settings

factory_reset(task)
Reset the BIOS settings of the node to the factory default.

Parameters
task a TaskManager instance containing the node to act on.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

get_properties()

Return the properties of the interface.

5.1. Developers Guide 1159

Ironic Documentation, Release 26.1.2.dev21

Returns
dictionary of <property name>:<property description> entries.

post_configuration(task, settings)
Perform post configuration action to store the BIOS settings.

Extension point to allow vendor implementations to extend this class and override this method
to perform a custom action to write the BIOS settings to the Redfish service. The default
implementation performs a reboot.

Parameters

• task a TaskManager instance containing the node to act on.

• settings a list of BIOS settings to be updated.

post_reset(task)
Perform post reset action to apply the BIOS factory reset.

Extension point to allow vendor implementations to extend this class and override this method
to perform a custom action to apply the BIOS factory reset to the Redfish service. The default
implementation performs a reboot.

Parameters
task a TaskManager instance containing the node to act on.

validate(task)
Validates the driver information needed by the redfish driver.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.redfish.boot module

class ironic.drivers.modules.redfish.boot.RedfishHttpsBoot(*args, **kwargs)
Bases: BootInterface

A driver which utilizes UefiHttp like virtual media.

Utilizes the virtual media image build to craft a ISO image to signal to remote BMC to boot.

This interface comes with some constraints. For example, this interface is built under the operat-
ing assumption that DHCP is used. The UEFI Firmware needs to load some base configuration,
regardless. Also depending on UEFI Firmware, and how it handles UefiHttp Boot, additional ISO
contents, such as configuration drive materials might be unavailable. A similar constraint exists
with ramdisk deployment.

capabilities = ['ramdisk_boot']

1160 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance.

Parameters
task A task from TaskManager.

Returns
None

clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up the environment that was setup for booting the deploy ramdisk.

Parameters
task A task from TaskManager.

Returns
None

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare_instance(task)
Prepares the boot of instance over virtual media.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info.

The internal logic is as follows:

• Cleanup any related files

• Sync the boot mode with the machine.

• Configure Secure boot, if required.

• If local boot, or a whole disk image was deployed, set the next boot device as disk.

• If ramdisk is the desired, then the UefiHttp boot option is set to the BMC with a request
for this to be persistent.

Parameters
task a task from TaskManager.

Returns
None

Raises
InstanceDeployFailure, if its try to boot iSCSI volume in BIOS boot mode.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of the agent ramdisk.

5.1. Developers Guide 1161

Ironic Documentation, Release 26.1.2.dev21

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes driver_info and instance_info.

Parameters

• task A task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

validate(task)
Validate the deployment information for the tasks node.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

class ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot(*args,
**kwargs)

Bases: BootInterface

Virtual media boot interface over Redfish.

Virtual Media allows booting the system from the virtual CD/DVD drive containing the user image
that BMC inserts into the drive.

The CD/DVD images must be in ISO format and (depending on BMC implementation) could be
pulled over HTTP, served as iSCSI targets or NFS volumes.

The baseline boot workflow looks like this:

1162 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

1. Pull kernel, ramdisk and ESP (FAT partition image with EFI boot loader) images (ESP is
only needed for UEFI boot)

2. Create bootable ISO out of images (#1), push it to Glance and pass to the BMC as Swift
temporary URL

3. Optionally create floppy image with desired system configuration data, push it to Glance and
pass to the BMC as Swift temporary URL

4. Insert CD/DVD and (optionally) floppy images and set proper boot mode

For building deploy or rescue ISO, redfish boot interface uses deploy_kernel/deploy_ramdisk or
rescue_kernel/rescue_ramdisk properties from [instance_info] or [driver_info].

For building boot (user) ISO, redfish boot interface seeks kernel_id and ramdisk_id properties in
the Glance image metadata found in [instance_info]image_source node property.

capabilities = ['iscsi_volume_boot', 'ramdisk_boot',
'ramdisk_boot_configdrive']

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance.

Parameters
task A task from TaskManager.

Returns
None

clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up the environment that was setup for booting the deploy ramdisk.

Parameters
task A task from TaskManager.

Returns
None

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare_instance(task)
Prepares the boot of instance over virtual media.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info.

The internal logic is as follows:

• If boot_option requested for this deploy is local, then set the node to boot from disk.

• Unless boot_option requested for this deploy is ramdisk, pass root disk/partition ID to
virtual media boot image

5.1. Developers Guide 1163

Ironic Documentation, Release 26.1.2.dev21

• Otherwise build boot image, insert it into virtual media device and set node to boot from
CD.

Parameters
task a task from TaskManager.

Returns
None

Raises
InstanceDeployFailure, if its try to boot iSCSI volume in BIOS boot mode.

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of deploy or rescue ramdisk over virtual media.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes driver_info and instance_info.

Parameters

• task A task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

validate(task)
Validate the deployment information for the tasks node.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

1164 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if node is missing one or more required parameters

ironic.drivers.modules.redfish.boot.eject_vmedia(task, boot_device=None)
Eject virtual CDs and DVDs

Parameters

• task A task from TaskManager.

• boot_device sushy boot device e.g. VIRTUAL_MEDIA_CD, VIR-
TUAL_MEDIA_DVD or VIRTUAL_MEDIA_FLOPPY or None to eject every-
thing (default).

Raises
InvalidParameterValue, if no suitable virtual CD or DVD is found on the node.

ironic.drivers.modules.redfish.boot.get_vmedia(task)
Get the attached virtual CDs and DVDs for a node

Parameters
task A task from TaskManager.

Raises
InvalidParameterValue, if no suitable virtual CD or DVD is found on the node.

ironic.drivers.modules.redfish.boot.insert_vmedia(task, image_url, device_type)
Insert virtual CDs and DVDs

Parameters

• task A task from TaskManager.

• image_url

• device_type sushy boot device e.g. VIRTUAL_MEDIA_CD, VIR-
TUAL_MEDIA_DVD or VIRTUAL_MEDIA_FLOPPY or None to eject every-
thing (default).

Raises
InvalidParameterValue, if no suitable virtual CD or DVD is found on the node.

ironic.drivers.modules.redfish.firmware module

class ironic.drivers.modules.redfish.firmware.RedfishFirmware(*args, **kwargs)
Bases: FirmwareInterface

cache_firmware_components(task)
Store or update Firmware Components on the given node.

This method stores Firmware Components to the firmware_information table during cleaning
operation. It will also update the timestamp of each Firmware Component.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting
Firmware Components from bare metal.

5.1. Developers Guide 1165

Ironic Documentation, Release 26.1.2.dev21

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

update(task, settings)
Update the Firmware on the node using the settings for components.

Parameters

• task a TaskManager instance.

• settings a list of dictionaries, each dictionary contains the component
name and the url that will be used to update the firmware.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support update via the
interface.

Raises
InvalidParameterValue, if validation of the settings fails.

Raises
MissingParamterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if Firmware update with the settings is in progress asyn-
chronously of None if it is complete.

validate(task)
Validates the driver information needed by the redfish driver.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.redfish.firmware_utils module

ironic.drivers.modules.redfish.firmware_utils.cleanup(node)
Clean up staged files

Parameters
node Node for which to clean up. Should contain firmware_cleanup entry in
driver_internal_info to indicate source(s) to be cleaned up.

ironic.drivers.modules.redfish.firmware_utils.download_to_temp(node, url)
Downloads to temporary location from given URL

Parameters

• node Node for which to download to temporary location

1166 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• url URL to download from

Returns
File path of temporary location file is downloaded to

ironic.drivers.modules.redfish.firmware_utils.get_swift_temp_url(parsed_url)
Gets Swift temporary URL

Parameters
parsed_url Parsed URL from URL in format swift://container/[sub-folder/]file

Returns
Swift temporary URL

ironic.drivers.modules.redfish.firmware_utils.stage(node, source, temp_file)
Stage temporary file to configured location

Parameters

• node Node for which to stage the file

• source Where to stage the file. Corresponds to
CONF.redfish.firmware_source.

• temp_file File path of temporary file to stage

Returns
Tuple of staged URL and source (http or swift) that needs cleanup of staged files
afterwards.

Raises
RedfishError If staging to HTTP server has failed.

ironic.drivers.modules.redfish.firmware_utils.validate_firmware_interface_update_args(settings)
Validate update step input argument

Parameters
settings args to validate.

Raises
InvalidParameterValue When argument is not valid

ironic.drivers.modules.redfish.firmware_utils.validate_update_firmware_args(firmware_images)
Validate update_firmware step input argument

Parameters
firmware_images args to validate.

Raises
InvalidParameterValue When argument is not valid

ironic.drivers.modules.redfish.firmware_utils.verify_checksum(node, checksum,
file_path)

Verify checksum.

Parameters

• node Node for which file to verify checksum

• checksum Expected checksum value

5.1. Developers Guide 1167

Ironic Documentation, Release 26.1.2.dev21

• file_path File path for which to verify checksum

Raises
RedfishError When checksum does not match

ironic.drivers.modules.redfish.inspect module

Redfish Inspect Interface

class ironic.drivers.modules.redfish.inspect.RedfishInspect(*args, **kwargs)
Bases: InspectInterface

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

inspect_hardware(task)
Inspect hardware to get the hardware properties.

Inspects hardware to get the essential properties. It fails if any of the essential properties are
not received from the node.

Parameters
task a TaskManager instance.

Raises
HardwareInspectionFailure if essential properties could not be retrieved suc-
cessfully.

Returns
The resulting state of inspection.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info properties of the tasks node contains the re-
quired information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

1168 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.redfish.management module

class ironic.drivers.modules.redfish.management.RedfishManagement(*args,
**kwargs)

Bases: ManagementInterface

attach_virtual_media(task, device_type, image_url)
Attach a virtual media device to the node.

Parameters

• task A task from TaskManager.

• device_type A device type from ironic.common.boot_devices.
VMEDIA_DEVICES.

• image_url URL of the image to attach, HTTP or HTTPS.

clear_secure_boot_keys(task)
Clear all secure boot keys.

Parameters
task a task from TaskManager.

Raises
UnsupportedDriverExtension if secure boot is now supported.

Raises
RedfishError on runtime driver error.

detach_virtual_media(task, device_types=None)
Detach some or all virtual media devices from the node.

Parameters

• task A task from TaskManager.

• device_types A list of device types from ironic.common.
boot_devices.VMEDIA_DEVICES. If not provided, all devices are
detached.

detect_vendor(task)
Detects and returns the hardware vendor.

Uses the Systems Manufacturer field.

Parameters
task A task from TaskManager.

Raises
InvalidParameterValue if an invalid component, indicator or state is specified.

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishError on driver-specific problems.

5.1. Developers Guide 1169

Ironic Documentation, Release 26.1.2.dev21

Returns
String representing the BMC reported Vendor or Manufacturer, otherwise re-
turns None.

get_boot_device(task)
Get the current boot device for a node.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

Returns

a dictionary containing:

boot_device
the boot device, one of ironic.common.boot_devices or None if it
is unknown.

persistent
Boolean value or None, True if the boot device persists, False otherwise.
None if its unknown.

get_boot_mode(task)
Get the current boot mode for a node.

Provides the current boot mode of the node.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Raises
DriverOperationError or its derivative in case of driver runtime error.

Returns
The boot mode, one of ironic.common.boot_mode or None if it is unknown.

get_indicator_state(task, component, indicator)
Get current state of the indicator of the hardware component.

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

1170 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• indicator Indicator ID (as reported by get_supported_indicators).

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishError on an error from the Sushy library

Returns
Current state of the indicator, one of ironic.common.indicator_states.

get_mac_addresses(task)
Get MAC address information for the node.

Parameters
task A TaskManager instance containing the node to act on.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

Returns
A list of MAC addresses for the node

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_secure_boot_state(task)
Get the current secure boot state for the node.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishError or its derivative in case of a driver runtime error.

Raises
UnsupportedDriverExtension if secure boot is not supported by the hardware.

Returns
Boolean

get_sensors_data(task)
Get sensors data.

Parameters
task a TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

Raises
FailedToParseSensorData when parsing sensor data fails.

5.1. Developers Guide 1171

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if required parameters are missing.

Raises
MissingParameterValue if a required parameter is missing.

Returns
returns a dict of sensor data grouped by sensor type.

get_supported_boot_devices(task)
Get a list of the supported boot devices.

Parameters
task a task from TaskManager.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

get_supported_boot_modes(task)
Get a list of the supported boot modes.

Parameters
task A task from TaskManager.

Returns
A list with the supported boot modes defined in ironic.common.
boot_modes. If boot mode support cant be determined, empty list is returned.

get_supported_indicators(task, component=None)
Get a map of the supported indicators (e.g. LEDs).

Parameters

• task A task from TaskManager.

• component If not None, return indicator information for just this component,
otherwise return indicators for all existing components.

Returns

A dictionary of hardware components (ironic.common.components) as keys
with values being dictionaries having indicator IDs as keys and indicator prop-
erties as values.

{
'chassis': {

'enclosure-0': {
"readonly": true,
"states": [

"OFF",
"ON"

]
}

},
'system':

'blade-A': {
(continues on next page)

1172 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"readonly": true,
"states": [

"OFF",
"ON"

]
}

},
'drive':

'ssd0': {
"readonly": true,
"states": [

"OFF",
"ON"

]
}

}
}

get_virtual_media(task)
Get all virtual media devices from the node.

Parameters
task A task from TaskManager.

inject_nmi(task)
Inject NMI, Non Maskable Interrupt.

Inject NMI (Non Maskable Interrupt) for a node immediately.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

reset_secure_boot_keys_to_default(task)
Reset secure boot keys to manufacturing defaults.

Parameters
task a task from TaskManager.

Raises
UnsupportedDriverExtension if secure boot is now supported.

Raises
RedfishError on runtime driver error.

5.1. Developers Guide 1173

Ironic Documentation, Release 26.1.2.dev21

restore_boot_device(task, system)

Restore boot device if needed.

Checks the redfish_boot_device internal flag and sets the one-time boot device accordingly.
A warning is issued if it fails.

This method is supposed to be called from the Redfish power interface and should be con-
sidered private to the Redfish hardware type.

Parameters

• task a task from TaskManager.

• system a Redfish System object.

set_boot_device(task, device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• task a task from TaskManager.

• device the boot device, one of ironic.common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

set_boot_mode(task, mode)
Set the boot mode for a node.

Set the boot mode to use on next reboot of the node.

Parameters

• task A task from TaskManager.

• mode The boot mode, one of ironic.common.boot_modes.

Raises
InvalidParameterValue if an invalid boot mode is specified.

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

1174 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

set_indicator_state(task, component, indicator, state)
Set indicator on the hardware component to the desired state.

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator ID (as reported by get_supported_indicators).

• state Desired state of the indicator, one of ironic.common.
indicator_states.

Raises
InvalidParameterValue if an invalid component, indicator or state is specified.

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishError on an error from the Sushy library

set_secure_boot_state(task, state)
Set the current secure boot state for the node.

Parameters

• task A task from TaskManager.

• state A new state as a boolean.

Raises
MissingParameterValue if a required parameter is missing

Raises
RedfishError or its derivative in case of a driver runtime error.

Raises
UnsupportedDriverExtension if secure boot is not supported by the hardware.

update_firmware(task, firmware_images)
Updates the firmware on the node.

Parameters

• task a TaskManager instance containing the node to act on.

• firmware_images A list of firmware images are to apply.

Returns
None if it is completed.

Raises
RedfishError on an error from the Sushy library.

validate(task)
Validates the driver information needed by the redfish driver.

Parameters
task a TaskManager instance containing the node to act on.

5.1. Developers Guide 1175

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.redfish.power module

class ironic.drivers.modules.redfish.power.RedfishPower(*args, **kwargs)
Bases: PowerInterface

get_power_state(task)
Get the current power state of the tasks node.

Parameters
task a TaskManager instance containing the node to act on.

Returns
a power state. One of ironic.common.states.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_supported_power_states(task)
Get a list of the supported power states.

Parameters
task A TaskManager instance containing the node to act on. Not used by this
driver at the moment.

Returns
A list with the supported power states defined in ironic.common.states.

reboot(task, timeout=None)
Perform a hard reboot of the tasks node.

Parameters

• task a TaskManager instance containing the node to act on.

• timeout Time to wait for the node to become powered on.

1176 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if a required parameter is missing.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

set_power_state(task, power_state, timeout=None)
Set the power state of the tasks node.

Parameters

• task a TaskManager instance containing the node to act on.

• power_state Any power state from ironic.common.states.

• timeout Time to wait for the node to reach the requested state.

Raises
MissingParameterValue if a required parameter is missing.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError on an error from the Sushy library

validate(task)
Validates the driver information needed by the redfish driver.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.redfish.raid module

class ironic.drivers.modules.redfish.raid.RedfishRAID(*args, **kwargs)
Bases: RAIDInterface

apply_configuration(task, raid_config, create_root_volume=True,
create_nonroot_volumes=False, delete_existing=False)

Applies RAID configuration on the given node.

Parameters

• task A TaskManager instance.

• raid_config The RAID configuration to apply.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in raid_config. Default value is True.

5.1. Developers Guide 1177

Ironic Documentation, Release 26.1.2.dev21

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in raid_config. Default value is
True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

Returns
states.DEPLOYWAIT if RAID configuration is in progress asynchronously or
None if it is complete.

create_configuration(task, create_root_volume=True, create_nonroot_volumes=True,
delete_existing=False)

Create RAID configuration on the node.

This method creates the RAID configuration as read from node.target_raid_config. This
method by default will create all logical disks.

Parameters

• task TaskManager object containing the node.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in the nodes target_raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in the nodes target_raid_config.
Default value is True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration. Default is False.

Returns
states.CLEANWAIT if RAID configuration is in progress asynchronously or
None if it is complete.

Raises
RedfishError if there is an error creating the configuration

delete_configuration(task)
Delete RAID configuration on the node.

Parameters
task TaskManager object containing the node.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if dele-
tion is in progress asynchronously or None if it is complete.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

1178 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

post_create_configuration(task, raid_configs, return_state=None)
Perform post create_configuration action to commit the config.

Extension point to allow vendor implementations to extend this class and override this method
to perform a custom action to commit the RAID create configuration to the Redfish service.

Parameters

• task a TaskManager instance containing the node to act on.

• raid_configs a list of dictionaries containing the RAID configuration op-
eration details.

• return_state state to return based on operation being invoked

post_delete_configuration(task, raid_configs, return_state=None)
Perform post delete_configuration action to commit the config.

Extension point to allow vendor implementations to extend this class and override this method
to perform a custom action to commit the RAID delete configuration to the Redfish service.

Parameters

• task a TaskManager instance containing the node to act on.

• raid_configs a list of dictionaries containing the RAID configuration op-
eration details.

• return_state state to return based on operation being invoked

pre_create_configuration(task, logical_disks_to_create)
Perform required actions before creating config.

Extension point to allow vendor implementations to extend this class and override this method
to perform custom actions prior to creating the RAID configuration on the Redfish service.

Parameters

• task a TaskManager instance containing the node to act on.

• logical_disks_to_create list of logical disks to create.

Returns
updated list of logical disks to create.

pre_delete_configuration(task, vols_to_delete)
Perform required actions before deleting config.

Extension point to allow vendor implementations to extend this class and override this method
to perform custom actions prior to deleting the RAID configuration on the Redfish service.

Parameters

• task a TaskManager instance containing the node to act on.

• vols_to_delete list of volumes to delete.

validate_raid_config(task, raid_config)
Validates the given RAID configuration.

Parameters

• task A TaskManager instance.

5.1. Developers Guide 1179

Ironic Documentation, Release 26.1.2.dev21

• raid_config The RAID configuration to validate.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

volume_create_error_handler(task, exc, volume_collection, payload)
Handle error from failed VolumeCollection.create()

Extension point to allow vendor implementations to extend this class and override this method
to perform a custom action if the call to VolumeCollection.create() fails.

Parameters

• task a TaskManager instance containing the node to act on.

• exc the exception raised by VolumeCollection.create().

• volume_collection the sushy VolumeCollection instance.

• payload the payload passed to the failed create().

Returns
Newly created Volume resource or TaskMonitor if async task.

Raises
RedfishError if there is an error creating the virtual disk.

ironic.drivers.modules.redfish.raid.convert_drive_units(logical_disks, node)
Convert size in logical_disks from gb to bytes

ironic.drivers.modules.redfish.raid.create_virtual_disk(task, raid_controller,
physical_disks, raid_level,
size_bytes, disk_name=None,
span_length=None,
span_depth=None,
error_handler=None)

Create a single virtual disk on a RAID controller.

Parameters

• task TaskManager object containing the node.

• raid_controller id of the RAID controller.

• physical_disks ids of the physical disks.

• raid_level RAID level of the virtual disk.

• size_bytes size of the virtual disk.

• disk_name name of the virtual disk. (optional)

• span_depth Number of spans in virtual disk. (optional)

• span_length Number of disks per span. (optional)

• error_handler function to call if volume create fails. (optional)

Returns
Newly created Volume resource or TaskMonitor if async task.

Raises
RedfishConnectionError when it fails to connect to Redfish.

1180 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
RedfishError if there is an error creating the virtual disk.

ironic.drivers.modules.redfish.raid.get_physical_disks(node)
Get the physical drives of the node for RAID controllers.

Parameters
node an ironic node object.

Returns
a list of Drive objects from sushy

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError if there is an error getting the drives via Redfish

ironic.drivers.modules.redfish.raid.update_raid_config(node)
Updates nodes raid_config field with current logical disks.

Parameters
node node for which to update the raid_config field

ironic.drivers.modules.redfish.utils module

ironic.drivers.modules.redfish.utils.BIOS = 'bios'

BIOS Firmware Component

ironic.drivers.modules.redfish.utils.BMC = 'bmc'

BMC Firmware Component

ironic.drivers.modules.redfish.utils.FIRMWARE_COMPONENTS = ['bios', 'bmc']

Firmware Components available to update

class ironic.drivers.modules.redfish.utils.SessionCache(driver_info)
Bases: object

Cache of HTTP sessions credentials

AUTH_CLASSES = {'auto': <class 'sushy.auth.SessionOrBasicAuth'>, 'basic':
<class 'sushy.auth.BasicAuth'>, 'session': <class
'sushy.auth.SessionAuth'>}

ironic.drivers.modules.redfish.utils.get_enabled_macs(task, system)

Get information on MAC addresses of enabled ports using Redfish.

Parameters

• task a TaskManager instance containing the node to act on.

• system a Redfish System object

Returns
a dictionary containing MAC addresses of enabled interfaces in a {mac: <state>}
format, where <state> is a sushy constant

5.1. Developers Guide 1181

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.redfish.utils.get_event_service(node)
Get a nodes event service.

Parameters
node an Ironic node object.

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError when the EventService is not registered in Redfish

ironic.drivers.modules.redfish.utils.get_first_controller(storage)
Get the first storage controller from a storage object.

Parameters
storage a storage object

Returns
the first storage controller or None

ironic.drivers.modules.redfish.utils.get_manager(node, system, manager_id=None)
Get a nodes manager.

Parameters

• system a Sushy system object

• manager_id the id of the manager

Returns
a sushy Manager

Raises
RedfishError when the System doesnt have Managers associated

ironic.drivers.modules.redfish.utils.get_system(node)
Get a Redfish System that represents a node.

Parameters
node an Ironic node object

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError if the System is not registered in Redfish

ironic.drivers.modules.redfish.utils.get_system_collection(node)
Get a Redfish System Collection that includes the node

Parameters
node an Ironic node object

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError if the System is not registered in Redfish

1182 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.redfish.utils.get_task_monitor(node, uri)
Get a TaskMonitor for a node.

Parameters

• node an Ironic node object

• uri the URI of a TaskMonitor

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError when the TaskMonitor is not available in Redfish

ironic.drivers.modules.redfish.utils.get_update_service(node)
Get a nodes update service.

Parameters
node an Ironic node object

Raises
RedfishConnectionError when it fails to connect to Redfish

Raises
RedfishError when the UpdateService is not registered in Redfish

ironic.drivers.modules.redfish.utils.parse_driver_info(node)
Parse the information required for Ironic to connect to Redfish.

Parameters
node an Ironic node object

Returns
dictionary of parameters

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.redfish.utils.wait_until_get_system_ready(node)
Wait until Redfish system is ready.

Parameters
node an Ironic node object

Raises
RedfishConnectionError on time out.

5.1. Developers Guide 1183

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.redfish.vendor module

Vendor Interface for Redfish drivers and its supporting methods.

class ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru(*args,
**kwargs)

Bases: VendorInterface

Vendor-specific interfaces for Redfish drivers.

create_subscription(task, **kwargs)
Creates a subscription.

Parameters

• task A TaskManager object.

• kwargs The arguments sent with vendor passthru.

Raises
RedfishError, if any problem occurs when trying to create a subscription.

delete_subscription(task, **kwargs)
Delete a subscription.

Parameters

• task A TaskManager object.

• kwargs The arguments sent with vendor passthru.

Raises
RedfishError, if any problem occurs when trying to delete the subscription.

eject_vmedia(task, **kwargs)
Eject a virtual media device.

Deprecated in favour of the generic API. This should be removed during the 2024.2 cycle.

Parameters

• task A TaskManager object.

• kwargs The arguments sent with vendor passthru. The optional kwargs are::
boot_device: the boot device to eject

get_all_subscriptions(task, **kwargs)
Get all Subscriptions on the node

Parameters

• task A TaskManager object.

• kwargs Not used.

Raises
RedfishError, if any problem occurs when retrieving all subscriptions.

get_properties()

Return the properties of the interface.

1184 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
dictionary of <property name>:<property description> entries.

get_subscription(task, **kwargs)
Get a specific subscription on the node

Parameters

• task A TaskManager object.

• kwargs The arguments sent with vendor passthru.

Raises
RedfishError, if any problem occurs when retrieving the subscription.

validate(task, method, **kwargs)
Validate vendor-specific actions.

Checks if a valid vendor passthru method was passed and validates the parameters for the
vendor passthru method.

Parameters

• task a TaskManager instance containing the node to act on.

• method method to be validated.

• kwargs kwargs containing the vendor passthru methods parameters.

Raises
InvalidParameterValue, if any of the parameters have invalid value.

Module contents

ironic.drivers.modules.storage package

Submodules

ironic.drivers.modules.storage.cinder module

class ironic.drivers.modules.storage.cinder.CinderStorage(*args, **kwargs)
Bases: StorageInterface

A storage_interface driver supporting Cinder.

attach_volumes(task)
Informs the storage subsystem to attach all volumes for the node.

Parameters
task The task object.

Raises
StorageError If an underlying exception or failure is detected.

5.1. Developers Guide 1185

Ironic Documentation, Release 26.1.2.dev21

detach_volumes(task, connector=None, aborting_attach=False)
Informs the storage subsystem to detach all volumes for the node.

This action is retried in case of failure.

Parameters

• task The task object.

• connector The dictionary representing a nodes connectivity as defined by
_generate_connector(). Generated if not passed.

• aborting_attach Boolean representing if this detachment was requested
to handle aborting a failed attachment

Raises
StorageError If an underlying exception or failure is detected.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

should_write_image(task)
Determines if deploy should perform the image write-out.

Parameters
task The task object.

Returns
True if the deployment write-out process should be executed.

validate(task)
Validate storage_interface configuration for Cinder usage.

In order to provide fail fast functionality prior to nodes being requested to enter the active
state, this method performs basic checks of the volume connectors, volume targets, and op-
erator defined capabilities. These checks are to help ensure that we should have a compatible
configuration prior to activating the node.

Parameters
task The task object.

Raises
InvalidParameterValue If a misconfiguration or mismatch exists that would pre-
vent storage the cinder storage driver from initializing attachments.

ironic.drivers.modules.storage.external module

class ironic.drivers.modules.storage.external.ExternalStorage(*args, **kwargs)
Bases: StorageInterface

Externally driven Storage Interface.

attach_volumes(task)
Informs the storage subsystem to attach all volumes for the node.

1186 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

detach_volumes(task)
Informs the storage subsystem to detach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

should_write_image(task)
Determines if deploy should perform the image write-out.

This enables the user to define a volume and Ironic understand that the image may already
exist and we may be booting to that volume.

Parameters
task The task object.

Returns
True if the deployment write-out process should be executed.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

5.1. Developers Guide 1187

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.storage.noop module

class ironic.drivers.modules.storage.noop.NoopStorage(*args, **kwargs)
Bases: StorageInterface

No-op Storage Interface.

attach_volumes(task)
Informs the storage subsystem to attach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

detach_volumes(task)
Informs the storage subsystem to detach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

should_write_image(task)
Determines if deploy should perform the image write-out.

Parameters
task A TaskManager instance.

Returns
Boolean value to indicate if the interface expects the image to be written by
Ironic.

Raises
UnsupportedDriverExtension

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

1188 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue on missing parameter(s)

Module contents

ironic.drivers.modules.xclarity package

Module contents

Submodules

ironic.drivers.modules.agent module

class ironic.drivers.modules.agent.AgentDeploy(*args, **kwargs)
Bases: CustomAgentDeploy

Interface for deploy-related actions.

prepare_instance_boot(task)
Prepare instance for booting.

The base version only calls prepare_instance on the boot interface.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the properties of the supplied node contain the required infor-
mation for this driver to deploy images to the node.

Parameters
task a TaskManager instance

Raises
MissingParameterValue, if any of the required parameters are missing.

Raises
InvalidParameterValue, if any of the parameters have invalid value.

write_image(task)

class ironic.drivers.modules.agent.AgentRAID(*args, **kwargs)
Bases: RAIDInterface

Implementation of RAIDInterface which uses agent ramdisk.

apply_configuration(task, raid_config, delete_existing=True)
Applies RAID configuration on the given node.

Parameters

• task A TaskManager instance.

• raid_config The RAID configuration to apply.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

5.1. Developers Guide 1189

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue, if the RAID configuration is invalid.

Returns
states.DEPLOYWAIT if RAID configuration is in progress asynchronously or
None if it is complete.

create_configuration(task, create_root_volume=True, create_nonroot_volumes=True)
Create a RAID configuration on a bare metal using agent ramdisk.

This method creates a RAID configuration on the given node.

Parameters

• task a TaskManager instance.

• create_root_volume If True, a root volume is created during RAID con-
figuration. Otherwise, no root volume is created. Default is True.

• create_nonroot_volumes If True, non-root volumes are created. If False,
no non-root volumes are created. Default is True.

Returns
states.CLEANWAIT if operation was successfully invoked.

Raises
MissingParameterValue, if node.target_raid_config is missing or was found to
be empty after skipping root volume and/or non-root volumes.

delete_configuration(task)
Deletes RAID configuration on the given node.

Parameters
task a TaskManager instance.

Returns
states.CLEANWAIT if operation was successfully invoked

get_clean_steps(task)
Get the list of clean steps from the agent.

Parameters
task a TaskManager object containing the node

Raises
NodeCleaningFailure if the clean steps are not yet available (cached), for
example, when a node has just been enrolled and has not been cleaned yet.

Returns
A list of clean step dictionaries

get_deploy_steps(task)
Get the list of deploy steps from the agent.

Parameters
task a TaskManager object containing the node

Raises
InstanceDeployFailure if the deploy steps are not yet available (cached),
for example, when a node has just been enrolled and has not been deployed yet.

1190 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of deploy step dictionaries

get_properties()

Return the properties of the interface.

class ironic.drivers.modules.agent.AgentRescue(*args, **kwargs)
Bases: RescueInterface

Implementation of RescueInterface which uses agent ramdisk.

clean_up(task)
Clean up after RESCUEWAIT timeout/failure or finishing rescue.

Rescue password should be removed from the node and ramdisk boot environment should be
cleaned if Ironic is managing the ramdisk boot.

Parameters
task a TaskManager instance with the node.

Raises
NetworkError if the rescue ports cannot be removed.

get_properties()

Return the properties of the interface.

rescue(task)
Boot a rescue ramdisk on the node.

Parameters
task a TaskManager instance.

Raises
NetworkError if the tenant ports cannot be removed.

Raises
InvalidParameterValue when the wrong power state is specified or the wrong
driver info is specified for power management.

Raises
other exceptions by the nodes power driver if something wrong occurred during
the power action.

Raises
any boot interfaces prepare_ramdisk exceptions.

Returns
Returns states.RESCUEWAIT

unrescue(task)
Attempt to move a rescued node back to active state.

Parameters
task a TaskManager instance.

Raises
NetworkError if the rescue ports cannot be removed.

5.1. Developers Guide 1191

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue when the wrong power state is specified or the wrong
driver info is specified for power management.

Raises
other exceptions by the nodes power driver if something wrong occurred during
the power action.

Raises
any boot interfaces prepare_instance exceptions.

Returns
Returns states.ACTIVE

validate(task)
Validate that the node has required properties for agent rescue.

Parameters
task a TaskManager instance with the node being checked

Raises
InvalidParameterValue if instance_info/rescue_password has empty password
or rescuing network UUID config option has an invalid value.

Raises
MissingParameterValue if node is missing one or more required parameters

class ironic.drivers.modules.agent.CustomAgentDeploy(*args, **kwargs)
Bases: AgentBaseMixin, AgentDeployMixin, DeployInterface

A deploy interface that relies on a custom agent to deploy.

Only provides the basic deploy steps to start the ramdisk, tear down the ramdisk and prepare the
instance boot.

clean_up(task)
Clean up the deployment environment for this node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver. It should erase anything cached by the prepare method.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor, and it may be called by multiple conductors in parallel.
Therefore, it must not require an exclusive lock.

This method is called before tear_down.

Parameters
task a TaskManager instance.

deploy(task)
Perform a deployment to a node.

Perform the necessary work to deploy an image onto the specified node. This method will
be called after prepare(), which may have already performed any preparatory steps, such as
pre-caching some data for the node.

Parameters
task a TaskManager instance.

1192 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
status of the deploy. One of ironic.common.states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare(task)
Prepare the deployment environment for this node.

Parameters
task a TaskManager instance.

Raises
NetworkError: if the previous cleaning ports cannot be removed or if new clean-
ing ports cannot be created.

Raises
InvalidParameterValue when the wrong power state is specified or the wrong
driver info is specified for power management.

Raises
StorageError If the storage driver is unable to attach the configured volumes.

Raises
other exceptions by the nodes power driver if something wrong occurred during
the power action.

Raises
exception.ImageRefValidationFailed if image_source is not Glance href and is
not HTTP(S) URL.

Raises
exception.InvalidParameterValue if network validation fails.

Raises
any boot interfaces prepare_ramdisk exceptions.

prepare_instance_boot(task)
Prepare instance for booting.

The base version only calls prepare_instance on the boot interface.

should_manage_boot(task)
Whether agent boot is managed by ironic.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the properties of the supplied node contain the required infor-
mation for this driver to deploy images to the node.

Parameters
task a TaskManager instance

Raises
MissingParameterValue, if any of the required parameters are missing.

5.1. Developers Guide 1193

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue, if any of the parameters have invalid value.

ironic.drivers.modules.agent.check_image_size(task)
Check if the requested image is larger than the ram size.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue if size of the image is greater than the available ram size.

ironic.drivers.modules.agent.validate_http_provisioning_configuration(node)
Validate configuration options required to perform HTTP provisioning.

Parameters
node an ironic node object

Raises
MissingParameterValue if required option(s) is not set.

ironic.drivers.modules.agent.validate_image_proxies(node)
Check that the provided proxy parameters are valid.

Parameters
node an Ironic node.

Raises
InvalidParameterValue if any of the provided proxy parameters are incorrect.

ironic.drivers.modules.agent_base module

class ironic.drivers.modules.agent_base.AgentBaseMixin

Bases: object

Mixin with base methods not relying on any deploy steps.

Provides full support for in-band and out-of-band cleaning and the machinery to support both
deploy and clean in-band steps.

clean_up(task)
Clean up the deployment environment for the tasks node.

Unlinks TFTP and instance images and triggers image cache cleanup. Removes the TFTP
configuration files for this node.

Parameters
task a TaskManager instance containing the node to act on.

execute_clean_step(task, step)
Execute a clean step asynchronously on the agent.

Parameters

• task a TaskManager object containing the node

• step a clean step dictionary to execute

1194 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeCleaningFailure if the agent does not return a command status

Returns
states.CLEANWAIT to signify the step will be completed async

execute_service_step(task, step)
Execute a service step asynchronously on the agent.

Parameters

• task a TaskManager object containing the node

• step a service step dictionary to execute

Raises
NodeServicingFailure if the agent does not return a command status

Returns
states.SERVICEWAIT to signify the step will be completed async

get_clean_steps(task)
Get the list of clean steps from the agent.

Parameters
task a TaskManager object containing the node

Raises
NodeCleaningFailure if the clean steps are not yet available (cached), for
example, when a node has just been enrolled and has not been cleaned yet.

Returns
A list of clean step dictionaries

get_service_steps(task)
Get the list of clean steps from the agent.

Parameters
task a TaskManager object containing the node

Returns
A list of service step dictionaries, if an error occurs, then an empty list is re-
turned.

prepare_cleaning(task)
Boot into the agent to prepare for cleaning.

Parameters
task a TaskManager object containing the node

Raises
NodeCleaningFailure, NetworkError if the previous cleaning ports cannot be
removed or if new cleaning ports cannot be created.

Raises
InvalidParameterValue if cleaning network UUID config option has an invalid
value.

Returns
states.CLEANWAIT to signify an asynchronous prepare

5.1. Developers Guide 1195

Ironic Documentation, Release 26.1.2.dev21

prepare_service(task)
Boot into the agent to prepare for service.

Parameters
task a TaskManager object containing the node

Raises
NodeServiceFailure, NetworkError if: the previous service ports cannot be re-
moved or if new service ports cannot be created.

Raises
InvalidParameterValue if cleaning network UUID config option has an invalid
value.

Returns
states.SERVICEWAIT to signify an asynchronous prepare

process_next_step(task, step_type, **kwargs)
Start the next clean/deploy step if the previous one is complete.

In order to avoid errors and make agent upgrades painless, the agent compares the version
of all hardware managers at the start of the process (the agents get_clean|deploy_steps() call)
and before executing each step. If the version has changed between steps, the agent is unable
to tell if an ordering change will cause an issue so it returns VERSION_MISMATCH. For
automated cleaning, we restart the entire cleaning cycle. For manual cleaning or deploy, we
dont.

Additionally, if a step includes the reboot_requested property set to True, this method will
coordinate the reboot once the step is completed.

refresh_steps(task, step_type)
Refresh the nodes cached clean/deploy steps from the booted agent.

Gets the nodes steps from the booted agent and caches them. The steps are cached to make
get_clean_steps() calls synchronous, and should be refreshed as soon as the agent boots to
start cleaning/deploy or if cleaning is restarted because of a hardware manager version mis-
match.

Parameters

• task a TaskManager instance

• step_type clean or deploy

Raises
NodeCleaningFailure or InstanceDeployFailure if the agent returns invalid re-
sults

should_manage_boot(task)
Whether agent boot is managed by ironic.

take_over(task)
Take over management of this node from a dead conductor.

Parameters
task a TaskManager instance.

1196 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

tear_down(task)
Tear down a previous deployment on the tasks node.

Power off the node. All actual clean-up is done in the clean_up() method which should be
called separately.

Parameters
task a TaskManager instance containing the node to act on.

Returns
deploy state DELETED.

Raises
NetworkError if the cleaning ports cannot be removed.

Raises
InvalidParameterValue when the wrong state is specified or the wrong driver
info is specified.

Raises
StorageError when volume detachment fails.

Raises
other exceptions by the nodes power driver if something wrong occurred during
the power action.

tear_down_cleaning(task)
Clean up the PXE and DHCP files after cleaning.

Parameters
task a TaskManager object containing the node

Raises
NodeCleaningFailure, NetworkError if the cleaning ports cannot be removed

tear_down_service(task)
Clean up the PXE and DHCP files after service.

Parameters
task a TaskManager object containing the node

Raises
NodeServiceFailure, NetworkError if the servicing ports cannot be removed

class ironic.drivers.modules.agent_base.AgentDeployMixin

Bases: HeartbeatMixin, AgentOobStepsMixin

Mixin with deploy methods.

configure_local_boot(task, root_uuid=None, efi_system_part_uuid=None,
prep_boot_part_uuid=None)

Helper method to configure local boot on the node.

This method triggers bootloader installation on the node. On successful installation of boot-
loader, this method sets the node to boot from disk.

Parameters

• task a TaskManager object containing the node

5.1. Developers Guide 1197

Ironic Documentation, Release 26.1.2.dev21

• root_uuid The UUID of the root partition. This is used for identifying the
partition which contains the image deployed or None in case of whole disk
images which we expect to already have a bootloader installed.

• efi_system_part_uuid The UUID of the efi system partition. This is
used only in uefi boot mode.

• prep_boot_part_uuid The UUID of the PReP Boot partition. This is
used only for booting ppc64* hardware.

Raises
InstanceDeployFailure if bootloader installation failed or on encountering error
while setting the boot device on the node.

execute_deploy_step(task, step)
Execute a deploy step.

Were trying to find a step among both out-of-band and in-band steps. In case of duplicates,
out-of-band steps take priority. This property allows having an out-of-band deploy step that
calls into a corresponding in-band step after some preparation (e.g. with additional input).

Parameters

• task a TaskManager object containing the node

• step a deploy step dictionary to execute

Raises
InstanceDeployFailure if the agent does not return a command status

Returns
states.DEPLOYWAIT to signify the step will be completed async

get_deploy_steps(task)
Get the list of deploy steps from the agent.

Parameters
task a TaskManager object containing the node

Raises
InstanceDeployFailure if the deploy steps are not yet available (cached),
for example, when a node has just been enrolled and has not been deployed yet.

Returns
A list of deploy step dictionaries

prepare_instance_to_boot(task, root_uuid, efi_sys_uuid, prep_boot_part_uuid=None)
Prepares instance to boot.

Parameters

• task a TaskManager object containing the node

• root_uuid the UUID for root partition

• efi_sys_uuid the UUID for the efi partition

Raises
InvalidState if fails to prepare instance

1198 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

tear_down_agent(task)
A deploy step to tear down the agent.

Parameters
task a TaskManager object containing the node

class ironic.drivers.modules.agent_base.AgentOobStepsMixin

Bases: object

Mixin with out-of-band deploy steps.

boot_instance(task)
Deploy step to boot the final instance.

Parameters
task a TaskManager object containing the node

switch_to_tenant_network(task)
Deploy step to switch the node to the tenant network.

Parameters
task a TaskManager object containing the node

class ironic.drivers.modules.agent_base.HeartbeatMixin

Bases: object

Mixin class implementing heartbeat processing.

collect_deploy_logs = True

continue_cleaning(task)
Start the next cleaning step if the previous one is complete.

Parameters
task a TaskManager instance

continue_servicing(task)
Start the next cleaning step if the previous one is complete.

Parameters
task a TaskManager instance

heartbeat(task, callback_url, agent_version, agent_verify_ca=None, agent_status=None,
agent_status_message=None)

Process a heartbeat.

Parameters

• task task to work with.

• callback_url agent HTTP API URL.

• agent_version The version of the agent that is heartbeating

• agent_verify_ca TLS certificate for the agent.

• agent_status Status of the heartbeating agent

• agent_status_message Status message that describes the agent_status

5.1. Developers Guide 1199

Ironic Documentation, Release 26.1.2.dev21

heartbeat_allowed(node)

process_next_step(task, step_type)
Start the next step if the previous one is complete.

Parameters

• task a TaskManager instance

• step_type clean, deploy, service

reboot_to_instance(task)
Method invoked after the deployment is completed.

Parameters
task a TaskManager instance

refresh_clean_steps(task)
Refresh the nodes cached clean steps

Parameters
task a TaskManager instance

refresh_service_steps(task)
Refresh the nodes cached service steps

Parameters
task a TaskManager instance

refresh_steps(task, step_type)
Refresh the nodes cached clean steps

Parameters

• task a TaskManager instance

• step_type clean or deploy

ironic.drivers.modules.agent_base.execute_clean_step(task, step)

ironic.drivers.modules.agent_base.execute_step(task, step, step_type, client=None)
Execute a clean or deploy step asynchronously on the agent.

Parameters

• task a TaskManager object containing the node

• step a step dictionary to execute

• step_type clean or deploy

• client agent client (if available)

Raises
NodeCleaningFailure (clean step) or InstanceDeployFailure (deploy step) or Node-
ServicingFailure (service step) if the agent does not return a command status.

Returns
states.CLEANWAIT/DEPLOYWAIT/SERVICEWAIT to signify the step will be
completed async

1200 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.agent_base.find_step(task, step_type, interface, name)
Find the given in-band step.

ironic.drivers.modules.agent_base.get_steps(task, step_type, interface=None,
override_priorities=None)

Get the list of cached clean or deploy steps from the agent.

The steps cache is updated at the beginning of cleaning or deploy.

Parameters

• task a TaskManager object containing the node

• step_type clean or deploy

• interface The interface for which clean/deploy steps are to be returned. If
this is not provided, it returns the steps for all interfaces.

• override_priorities a dictionary with keys being step names and values
being new priorities for them. If a step isnt in this dictionary, the steps original
priority is used.

Returns
A list of clean/deploy step dictionaries

ironic.drivers.modules.agent_base.log_and_raise_deployment_error(task, msg, col-
lect_logs=True,
exc=None)

Helper method to log the error and raise exception.

Parameters

• task a TaskManager instance containing the node to act on.

• msg the message to set in last_error of the node.

• collect_logs Boolean indicating whether to attempt to collect logs from
IPA-based ramdisk. Defaults to True. Actual log collection is also affected by
CONF.agent.deploy_logs_collect config option.

• exc Exception that caused the failure.

ironic.drivers.modules.agent_base.post_clean_step_hook(interface, step)
Decorator method for adding a post clean step hook.

This is a mechanism for adding a post clean step hook for a particular clean step. The hook will
get executed after the clean step gets executed successfully. The hook is not invoked on failure of
the clean step.

Any method to be made as a hook may be decorated with @post_clean_step_hook mentioning
the interface and step after which the hook should be executed. A TaskManager instance and the
object for the last completed command (provided by agent) will be passed to the hook method. The
return value of this method will be ignored. Any exception raised by this method will be treated
as a failure of the clean step and the node will be moved to CLEANFAIL state.

Parameters

• interface name of the interface

• step The name of the step after which it should be executed.

5.1. Developers Guide 1201

Ironic Documentation, Release 26.1.2.dev21

Returns
A method which registers the given method as a post clean step hook.

ironic.drivers.modules.agent_base.post_deploy_step_hook(interface, step)
Decorator method for adding a post deploy step hook.

This is a mechanism for adding a post deploy step hook for a particular deploy step. The hook will
get executed after the deploy step gets executed successfully. The hook is not invoked on failure of
the deploy step.

Any method to be made as a hook may be decorated with @post_deploy_step_hook mentioning
the interface and step after which the hook should be executed. A TaskManager instance and the
object for the last completed command (provided by agent) will be passed to the hook method. The
return value of this method will be ignored. Any exception raised by this method will be treated
as a failure of the deploy step and the node will be moved to DEPLOYFAIL state.

Parameters

• interface name of the interface

• step The name of the step after which it should be executed.

Returns
A method which registers the given method as a post deploy step hook.

ironic.drivers.modules.agent_client module

class ironic.drivers.modules.agent_client.AgentClient

Bases: object

Client for interacting with nodes via a REST API.

collect_system_logs(node)
Collect and package diagnostic and support data from the ramdisk.

Parameters
node A Node object.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns
A dict containing command response from agent. See
get_commands_status() for a command result sample.

execute_clean_step(step, node, ports)
Execute specified clean step.

Parameters

1202 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• step A clean step dictionary to execute.

• node A Node object.

• ports Ports associated with the node.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns

A dict containing command response from agent. See
get_commands_status() for a command result sample. The value of
key command_result is in the form of:

{
'clean_result': <the result of execution, step specific>,
'clean_step': <the clean step issued to agent>

}

execute_deploy_step(step, node, ports)
Execute specified deploy step.

Parameters

• step A deploy step dictionary to execute.

• node A Node object.

• ports Ports associated with the node.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns

A dict containing command response from agent. See
get_commands_status() for a command result sample. The value of
key command_result is in the form of:

{
'deploy_result': <the result of execution, step specific>

↪→,
(continues on next page)

5.1. Developers Guide 1203

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'deploy_step': <the deploy step issued to agent>
}

execute_service_step(step, node, ports)
Execute specified service step.

Parameters

• step A service step dictionary to execute.

• node A Node object.

• ports Ports associated with the node.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns

A dict containing command response from agent. See
get_commands_status() for a command result sample. The value of
key command_result is in the form of:

{
'service_result': <the result of execution, step␣

↪→specific>,
'service_step': <the service step issued to agent>

}

finalize_rescue(node)
Instruct the ramdisk to finalize entering of rescue mode.

Parameters
node A Node object.

Raises
IronicException if rescue_password is missing, or when failed to issue the re-
quest, or there was a malformed response from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Raises
InstanceRescueFailure when the agent ramdisk is too old to support transmis-
sion of the rescue password.

1204 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A dict containing command response from agent. See
get_commands_status() for a command result sample.

get_clean_steps(node, ports)
Get clean steps from agent.

Parameters

• node A node object.

• ports Ports associated with the node.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns

A dict containing command response from agent. See
get_commands_status() for a command result sample. The value of
key command_result is in the form of:

{
'clean_steps': <a list of clean steps>,
'hardware_manager_version': <manager version>

}

get_commands_status(node, retry_connection=True, expect_errors=False)
Get command status from agent.

Parameters

• node A Node object.

• retry_connection Whether to retry connection problems.

• expect_errors If True, do not log connection problems as errors.

Returns

A list of command results, each result is related to a command been issued to
agent. A typical result can be:

{
'command_name': <command name related to the result>,
'command_params': <params related with the command>,
'command_status': <current command status,

e.g. 'RUNNING', 'SUCCEEDED', 'FAILED'>,
'command_error': <error message if command execution

failed>,
(continues on next page)

5.1. Developers Guide 1205

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'command_result': <command result if command execution
succeeded, the value is command␣

↪→specific,
e.g.:
* a dictionary containing keys clean_

↪→result
and clean_step for the command
clean.execute_clean_step;

* a dictionary containing keys deploy_
↪→result

and deploy_step for the command
deploy.execute_deploy_step;

* a string representing result message␣
↪→for

the command standby.cache_image;
* None for the command standby.sync.>

}

get_deploy_steps(node, ports)
Get deploy steps from agent.

Parameters

• node A node object.

• ports Ports associated with the node.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Returns

A dict containing command response from agent. See
get_commands_status() for a command result sample. The value of
key command_result is in the form of:

{
'deploy_steps': <a list of deploy steps>,
'hardware_manager_version': <manager version>

}

get_last_command_status(node, method)
Get the last status for the given command.

Parameters

• node A Node object.

• method Command name.

1206 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A dict containing command status from agent or None if the command was not
found.

get_partition_uuids(node)
Get deploy steps from agent.

Parameters
node A node object.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns
A dict containing command response from agent.

get_service_steps(node, ports)
Get service steps from agent.

Parameters

• node A node object.

• ports Ports associated with the node.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns

A dict containing command response from agent. See
get_commands_status() for a command result sample. The value of
key command_result is in the form of:

{
'service_steps': <a list of service steps>,
'hardware_manager_version': <manager version>

}

install_bootloader(node, root_uuid, target_boot_mode, efi_system_part_uuid=None,
prep_boot_part_uuid=None, software_raid=False)

Install a boot loader on the image.

5.1. Developers Guide 1207

Ironic Documentation, Release 26.1.2.dev21

Parameters

• node A node object.

• root_uuid The UUID of the root partition.

• target_boot_mode The target deployment boot mode.

• efi_system_part_uuid The UUID of the efi system partition where the
bootloader will be installed to, only used for uefi boot mode.

• prep_boot_part_uuid The UUID of the PReP Boot partition where the
bootloader will be installed to when local booting a partition image on a
ppc64* system.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns
A dict containing command response from agent. See
get_commands_status() for a command result sample.

power_off(node)
Soft powers off the bare metal node by shutting down ramdisk OS.

Parameters
node A Node object.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns
A dict containing command response from agent. See
get_commands_status() for a command result sample.

reboot(node)
Soft reboots the bare metal node by shutting down ramdisk OS.

Parameters
node A Node object.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

1208 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns
A dict containing command response from agent. See
get_commands_status() for a command result sample.

sync(node)
Flush file system buffers forcing changed blocks to disk.

Parameters
node A Node object.

Raises
IronicException when failed to issue the request or there was a malformed re-
sponse from the agent.

Raises
AgentAPIError when agent failed to execute specified command.

Raises
AgentInProgress when the command fails to execute as the agent is presently
executing the prior command.

Returns
A dict containing command response from agent. See
get_commands_status() for a command result sample.

ironic.drivers.modules.agent_client.get_client(task)
Get client for this node.

ironic.drivers.modules.agent_client.get_command_error(command)
Extract an error string from the command result.

Parameters
command Command information from the agent.

Returns
Error string.

ironic.drivers.modules.agent_power module

The agent power interface.

class ironic.drivers.modules.agent_power.AgentPower(*args, **kwargs)
Bases: PowerInterface

Power interface using the running agent for power actions.

get_power_state(task)
Return the power state of the tasks node.

Essentially, the only known state is POWER ON, everything else is an error (or more precisely
None).

5.1. Developers Guide 1209

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

Returns
A power state. One of ironic.common.states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_supported_power_states(task)
Get a list of the supported power states.

Only contains REBOOT.

Parameters
task A TaskManager instance containing the node to act on.

Returns
A list with the supported power states defined in ironic.common.states.

reboot(task, timeout=None)
Perform a reboot of the tasks node.

Only soft reboot is implemented.

Parameters

• task A TaskManager instance containing the node to act on.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

set_power_state(task, power_state, timeout=None)
Set the power state of the tasks node.

Parameters

• task A TaskManager instance containing the node to act on.

• power_state Power state from ironic.common.states. Only REBOOT
and SOFT_REBOOT are supported and are synonymous.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

Raises
PowerStateFailure on non-supported power state.

supports_power_sync(task)
Check if power sync is supported for the given node.

Not supported for the agent power since it is not possible to power on/off nodes.

Parameters
task A TaskManager instance containing the node to act on with a shared
lock.

1210 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
boolean, whether power sync is supported.

validate(task)
Validate the driver-specific Node deployment info.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

ironic.drivers.modules.boot_mode_utils module

ironic.drivers.modules.boot_mode_utils.configure_secure_boot_if_needed(task)
Configures secure boot if it has been requested for the node.

ironic.drivers.modules.boot_mode_utils.deconfigure_secure_boot_if_needed(task)
Deconfigures secure boot if it has been requested for the node.

ironic.drivers.modules.boot_mode_utils.get_boot_mode(node)
Returns the boot mode.

Parameters
node an ironic node object.

Returns
bios or uefi

Raises
InvalidParameterValue, if the node boot mode disagrees with the boot mode set to
node properties/capabilities

ironic.drivers.modules.boot_mode_utils.get_boot_mode_for_deploy(node)
Returns the boot mode that would be used for deploy.

This method returns boot mode to be used for deploy. It returns uefi if secure_boot is
set to true in instance_info/capabilities of node. Otherwise it returns value of boot_mode
in properties/capabilities of node if set. If that is not set, it returns boot mode in inter-
nal_driver_info/deploy_boot_mode for the node. If that is not set, it returns boot mode in in-
stance_info/deploy_boot_mode for the node. It would return None if boot mode is present neither
in capabilities of node properties nor in nodes internal_driver_info nor in nodes instance_info
(which could also be None).

Parameters
node an ironic node object.

Returns
bios, uefi or None

Raises
InvalidParameterValue, if the node boot mode disagrees with the boot mode set to
node properties/capabilities

5.1. Developers Guide 1211

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.boot_mode_utils.is_secure_boot_requested(node)
Returns True if secure_boot is requested for deploy.

This method checks node property for secure_boot and returns True if it is requested.

Parameters
node a single Node.

Raises
InvalidParameterValue if the capabilities string is not a dictionary or is malformed.

Returns
True if secure_boot is requested.

ironic.drivers.modules.boot_mode_utils.sync_boot_mode(task)
Set nodes boot mode from bare metal configuration

Attempt to read currently set boot mode off the bare metal machine. Also read nodes boot mode
configuration:

• If BM driver does not implement getting boot mode, assume BM boot mode is not set and
apply the logic that follows

• If Ironic node boot mode is not set and BM node boot mode is not set - set Ironic boot mode
to [deploy]/default_boot_mode

• If Ironic node boot mode is not set and BM node boot mode is set - set BM node boot mode
on the Ironic node

• If Ironic node boot mode is set and BM node boot mode is not set - set Ironic boot mode to
BM boot mode

• If both Ironic and BM node boot modes are set but they differ - try to set Ironic boot mode to
BM boot mode and fail hard if underlying hardware type does not support setting boot mode

In the end, the new boot mode may be set in driver_internal_info/deploy_boot_mode.

Parameters
task a task object

ironic.drivers.modules.console_utils module

Ironic console utilities.

ironic.drivers.modules.console_utils.acquire_port(host=None)
Returns a free TCP port on current host.

Find and returns a free TCP port in the range of CONF.console.port_range.

ironic.drivers.modules.console_utils.get_shellinabox_console_url(port)
Get a url to access the console via shellinaboxd.

Parameters
port the terminal port for the node.

ironic.drivers.modules.console_utils.get_socat_console_url(port)
Get a URL to access the console via socat.

1212 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
port the terminal port (integer) for the node

Returns
an access URL to the socat console of the node

ironic.drivers.modules.console_utils.make_persistent_password_file(path,
password)

Writes a file containing a password until deleted.

ironic.drivers.modules.console_utils.release_port(port)
Release specified TCP port.

ironic.drivers.modules.console_utils.start_shellinabox_console(node_uuid, port,
console_cmd)

Open the serial console for a node.

Parameters

• node_uuid the uuid for the node.

• port the terminal port for the node.

• console_cmd the shell command that gets the console.

Raises
ConsoleError if the directory for the PID file cannot be created or an old process
cannot be stopped.

Raises
ConsoleSubprocessFailed when invoking the subprocess failed.

ironic.drivers.modules.console_utils.start_socat_console(node_uuid, port,
console_cmd)

Open the serial console for a node.

Parameters

• node_uuid the uuid of the node

• port the terminal port for the node

• console_cmd the shell command that will be executed by socat to establish
console to the node

Raises

• ConsoleError if the directory for the PID file or the PID file cannot be cre-
ated

• ConsoleSubprocessFailed when invoking the subprocess failed

ironic.drivers.modules.console_utils.stop_shellinabox_console(node_uuid)
Close the serial console for a node.

Parameters
node_uuid the UUID of the node

Raises
ConsoleError if unable to stop the console process

5.1. Developers Guide 1213

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.console_utils.stop_socat_console(node_uuid)
Close the serial console for a node.

Parameters
node_uuid the UUID of the node

Raises
ConsoleError if unable to stop the console process

ironic.drivers.modules.deploy_utils module

class ironic.drivers.modules.deploy_utils.InstanceImageCache

Bases: ImageCache

ironic.drivers.modules.deploy_utils.agent_add_clean_params(task)
Add required config parameters to nodes driver_internal_info.

Adds the required conf options to nodes driver_internal_info. It is Required to pass the information
to IPA.

Parameters
task a TaskManager instance.

ironic.drivers.modules.deploy_utils.build_agent_options(node)
Build the options to be passed to the agent ramdisk.

Parameters
node an ironic node object

Returns
a dictionary containing the parameters to be passed to agent ramdisk.

ironic.drivers.modules.deploy_utils.build_instance_info_for_deploy(task)
Build instance_info necessary for deploying to a node.

Parameters
task a TaskManager object containing the node

Returns
a dictionary containing the properties to be updated in instance_info

Raises
exception.ImageRefValidationFailed if image_source is not Glance href and is not
HTTP(S) URL.

ironic.drivers.modules.deploy_utils.cache_instance_image(ctx, node, force_raw=None,
expected_format=None,
expected_checksum=None,
ex-
pected_checksum_algo=None)

Fetch the instances image from Glance

This method pulls the disk image and writes them to the appropriate place on local disk.

Parameters

• ctx context

1214 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• node an ironic node object

• force_raw whether convert image to raw format

• expected_format The expected format of the disk image contents.

• expected_checksum The expected image checksum, to be used if we need
to convert the image to raw prior to deploying.

• expected_checksum_algo The checksum algo in use, if separately set.

Returns
a tuple containing the uuid of the image and the path in the filesystem where image
is cached.

Raises
InvalidImage if the requested image is invalid and cannot be used for deployed
based upon contents of the image or the metadata surrounding the image not match-
ing the configured image.

ironic.drivers.modules.deploy_utils.check_for_missing_params(info_dict, error_msg,
param_prefix=”)

Check for empty params in the provided dictionary.

Parameters

• info_dict The dictionary to inspect.

• error_msg The error message to prefix before printing the information about
missing parameters.

• param_prefix Add this prefix to each parameter for error messages

Raises
MissingParameterValue, if one or more parameters are empty in the provided dic-
tionary.

ironic.drivers.modules.deploy_utils.check_interface_capability(interface,
capability)

Evaluate interface to determine if capability is present.

Parameters

• interface The interface object to check.

• capability The value representing the capability that the caller wishes to
check if present.

Returns
True if capability found, otherwise False.

ironic.drivers.modules.deploy_utils.compute_image_checksum(image_path,
algorithm=’md5’)

Compute checksum by given image path and algorithm.

ironic.drivers.modules.deploy_utils.destroy_http_instance_images(node)
Delete instance image file and symbolic link refers to it.

5.1. Developers Guide 1215

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.deploy_utils.destroy_images(node_uuid)
Delete instances image file.

Parameters
node_uuid the uuid of the ironic node.

ironic.drivers.modules.deploy_utils.direct_deploy_should_convert_raw_image(node)
Whether converts image to raw format for specified node.

Parameters
node ironic node object

Returns
Boolean, whether the direct deploy interface should convert image to raw.

ironic.drivers.modules.deploy_utils.fetch_images(ctx, cache, images_info,
force_raw=True,
expected_format=None,
expected_checksum=None,
expected_checksum_algo=None)

Check for available disk space and fetch images using ImageCache.

Parameters

• ctx context

• cache ImageCache instance to use for fetching

• images_info list of tuples (image href, destination path)

• force_raw boolean value, whether to convert the image to raw format

• expected_format The expected format of the image.

• expected_checksum The expected image checksum, to be used if we need
to convert the image to raw prior to deploying.

• expected_checksum_algo The checksum algo in use, if separately set.

Raises
InstanceDeployFailure if unable to find enough disk space

Raises
InvalidImage if the supplied image metadata or contents are deemed to be invalid,
unsafe, or not matching the expectations asserted by configuration supplied or set.

ironic.drivers.modules.deploy_utils.get_boot_option(node)
Gets the boot option.

Parameters
node A single Node.

Raises
InvalidParameterValue if the capabilities string is not a dict or is malformed.

Returns
A string representing the boot option type. Defaults to configuration setting [de-
ploy]default_boot_mode.

1216 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.deploy_utils.get_disk_label(node)
Return the disk label requested for deploy, if any.

Parameters
node a single Node.

Raises
InvalidParameterValue if the capabilities string is not a dictionary or is malformed.

Returns
the disk label or None if no disk label was specified.

ironic.drivers.modules.deploy_utils.get_image_download_source(node)
Get the effective value of image_download_source for the node.

ironic.drivers.modules.deploy_utils.get_image_instance_info(node)
Gets the image information from the node.

Get image information for the given node instance from its instance_info property.

Parameters
node a single Node.

Returns
A dict with required image properties retrieved from nodes instance_info.

Raises
MissingParameterValue, if image_source is missing in nodes instance_info. Also
raises same exception if kernel/ramdisk is missing in instance_info for non-glance
images.

ironic.drivers.modules.deploy_utils.get_image_properties(ctx, image_href)
Get properties of the image.

Parameters

• ctx security context

• image_href reference to the image

Returns
properties as a dictionary

Raises
InvalidParameterValue if the image cannot be accessed

ironic.drivers.modules.deploy_utils.get_ipxe_boot_file(node)
Return the iPXE boot file name requested for deploy.

This method returns iPXE boot file name to be used for deploy. Architecture specific boot file is
searched first. BIOS/UEFI boot file is used if no valid architecture specific file found.

If no valid value is found, the default reverts to the get_pxe_boot_file method and thus the
[pxe]pxe_bootfile_name and [pxe]uefi_ipxe_bootfile_name settings.

Parameters
node A single Node.

Returns
The iPXE boot file name.

5.1. Developers Guide 1217

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.deploy_utils.get_ipxe_config_template(node)
Return the iPXE config template file name requested of deploy.

This method returns the iPXE configuration template file.

Parameters
node A single Node.

Returns
The iPXE config template file name.

ironic.drivers.modules.deploy_utils.get_ironic_api_url()

Resolve Ironic API endpoint

either from config of from Keystone catalog.

ironic.drivers.modules.deploy_utils.get_pxe_boot_file(node)
Return the PXE boot file name requested for deploy.

This method returns PXE boot file name to be used for deploy. Architecture specific boot file is
searched first. BIOS/UEFI boot file is used if no valid architecture specific file found.

Parameters
node A single Node.

Returns
The PXE boot file name.

ironic.drivers.modules.deploy_utils.get_pxe_config_template(node)
Return the PXE config template file name requested for deploy.

This method returns PXE config template file to be used for deploy. First specific pxe template
is searched in the node. After that architecture specific template file is searched. BIOS/UEFI
template file is used if no valid architecture specific file found.

Parameters
node A single Node.

Returns
The PXE config template file name.

ironic.drivers.modules.deploy_utils.get_remote_boot_volume(task)
Identify a boot volume from any configured volumes.

Returns
None or the volume target representing the volume.

ironic.drivers.modules.deploy_utils.get_root_device_for_deploy(node)
Get a root device requested for deployment or None.

Raises
InvalidParameterValue on invalid hints.

Returns
Parsed root device hints or None if no hints were provided.

ironic.drivers.modules.deploy_utils.get_single_nic_with_vif_port_id(task)
Returns the MAC address of a port which has a VIF port id.

1218 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task a TaskManager instance containing the ports to act on.

Returns
MAC address of the port connected to deployment network. None if it cannot find
any port with vif id.

ironic.drivers.modules.deploy_utils.is_anaconda_deploy(node)
Determine if Anaconda deploy interface is in use for the deployment.

Parameters
node A single Node.

Returns
A boolean value of True when Anaconda deploy interface is in use otherwise False

ironic.drivers.modules.deploy_utils.is_iscsi_boot(task)
Return true if booting from an iscsi volume.

ironic.drivers.modules.deploy_utils.is_ramdisk_deploy(node)

ironic.drivers.modules.deploy_utils.is_software_raid(node)
Determine if software raid is in use for the deployment.

Parameters
node A single Node.

Returns
A boolean value of True when software raid is in use, otherwise False

ironic.drivers.modules.deploy_utils.needs_agent_ramdisk(node, mode=’deploy’)
Checks whether the node requires an agent ramdisk now.

ironic.drivers.modules.deploy_utils.parse_instance_info(node, image_deploy=True)
Gets the instance specific Node deployment info.

This method validates whether the instance_info property of the supplied node contains the re-
quired information for this driver to deploy images to the node.

Parameters

• node a single Node.

• image_deploy If the deployment interface is aware this is an image based
deployment, default True.

Returns
A dict with the instance_info values.

Raises
MissingParameterValue, if any of the required parameters are missing.

Raises
InvalidParameterValue, if any of the parameters have invalid value.

ironic.drivers.modules.deploy_utils.populate_storage_driver_internal_info(task)
Set node driver_internal_info for boot from volume parameters.

Parameters
task a TaskManager object containing the node.

5.1. Developers Guide 1219

Ironic Documentation, Release 26.1.2.dev21

Raises
StorageError when a node has an iSCSI or FibreChannel boot volume defined but
is not capable to support it.

ironic.drivers.modules.deploy_utils.prepare_agent_boot(task)
Prepare booting the agent on the node.

Parameters
task a TaskManager instance.

ironic.drivers.modules.deploy_utils.prepare_inband_cleaning(task,
manage_boot=True)

Prepares the node to boot into agent for in-band cleaning.

This method does the following: 1. Prepares the cleaning ports for the bare metal node and updates
the clean parameters in nodes driver_internal_info. 2. If manage_boot parameter is set to true, it
also calls the prepare_ramdisk method of boot interface to boot the agent ramdisk. 3. Reboots the
bare metal node.

Parameters

• task a TaskManager object containing the node

• manage_boot If this is set to True, this method calls the prepare_ramdisk
method of boot interface to boot the agent ramdisk. If False, it skips preparing
the boot agent ramdisk using boot interface, and assumes that the environment
is setup to automatically boot agent ramdisk every time bare metal node is
rebooted.

Returns
states.CLEANWAIT to signify an asynchronous prepare.

Raises
NetworkError, NodeCleaningFailure if the previous cleaning ports cannot be re-
moved or if new cleaning ports cannot be created.

Raises
InvalidParameterValue if cleaning network UUID config option has an invalid
value.

ironic.drivers.modules.deploy_utils.prepare_inband_service(task)
Boot a service ramdisk on the node.

Parameters
task a TaskManager instance.

Raises
NetworkError if the tenant ports cannot be removed.

Raises
InvalidParameterValue when the wrong power state is specified or the wrong driver
info is specified for power management.

Raises
other exceptions by the nodes power driver if something wrong occurred during
the power action.

Raises
any boot interfaces prepare_ramdisk exceptions.

1220 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
Returns states.SERVICEWAIT

ironic.drivers.modules.deploy_utils.reboot_to_finish_step(task, timeout=None)
Reboot the node into IPA to finish a deploy/clean step.

Parameters

• task a TaskManager instance.

• timeout timeout (in seconds) positive integer (> 0) for any power state. None
indicates to use default timeout.

Returns
states.CLEANWAIT if cleaning operation in progress or states.DEPLOYWAIT if
deploy operation in progress.

ironic.drivers.modules.deploy_utils.remove_http_instance_symlink(node_uuid)

ironic.drivers.modules.deploy_utils.rescue_or_deploy_mode(node)

ironic.drivers.modules.deploy_utils.set_failed_state(task, msg, collect_logs=True)
Sets the deploy status as failed with relevant messages.

This method sets the deployment as fail with the given message. It sets nodes provision_state
to DEPLOYFAIL and updates last_error with the given error message. It also powers off the
baremetal node.

Parameters

• task a TaskManager instance containing the node to act on.

• msg the message to set in logs and last_error of the node.

• collect_logs Boolean indicating whether to attempt to collect logs from
IPA-based ramdisk. Defaults to True. Actual log collection is also affected by
CONF.agent.deploy_logs_collect config option.

ironic.drivers.modules.deploy_utils.step_error_handler(task, logmsg, errmsg=None)
Run the correct handler for the current step.

Parameters

• task a TaskManager instance.

• logmsg Message to be logged.

• errmsg Message for the user. Optional, if not provided logmsg is used.

ironic.drivers.modules.deploy_utils.switch_pxe_config(path, root_uuid_or_disk_id,
boot_mode,
is_whole_disk_image,
iscsi_boot=False,
ramdisk_boot=False,
ipxe_enabled=False,
anaconda_boot=False)

Switch a pxe config from deployment mode to service mode.

Parameters

5.1. Developers Guide 1221

Ironic Documentation, Release 26.1.2.dev21

• path path to the pxe config file in tftpboot.

• root_uuid_or_disk_id root uuid in case of partition image or disk_id in
case of whole disk image.

• boot_mode if boot mode is uefi or bios.

• is_whole_disk_image if the image is a whole disk image or not.

• iscsi_boot if boot is from an iSCSI volume or not.

• ramdisk_boot if the boot is to be to a ramdisk configuration.

• ipxe_enabled A default False boolean value to tell the method if the caller
is using iPXE.

• anaconda_boot if the boot is to be to an anaconda configuration.

ironic.drivers.modules.deploy_utils.tear_down_inband_cleaning(task,
manage_boot=True)

Tears down the environment setup for in-band cleaning.

This method does the following: 1. Powers off the bare metal node (unless the node is fast tracked
or there was a cleaning failure). 2. If manage_boot parameter is set to true, it also calls the
clean_up_ramdisk method of boot interface to clean up the environment that was set for booting
agent ramdisk. 3. Deletes the cleaning ports which were setup as part of cleaning.

Parameters

• task a TaskManager object containing the node

• manage_boot If this is set to True, this method calls the clean_up_ramdisk
method of boot interface to boot the agent ramdisk. If False, it skips this step.

Raises
NetworkError, NodeCleaningFailure if the cleaning ports cannot be removed.

ironic.drivers.modules.deploy_utils.tear_down_inband_service(task)
Tears down the environment setup for in-band service.

This method does the following: 1. Powers off the bare metal node (unless the node is fast
tracked or there was a service failure). 2. If manage_boot parameter is set to true, it also calls
the clean_up_ramdisk method of boot interface to clean up the environment that was set for boot-
ing agent ramdisk. 3. Deletes the cleaning ports which were setup as part of cleaning.

Parameters
task a TaskManager object containing the node

Raises
NetworkError, NodeServiceFailure if the cleaning ports cannot be removed.

ironic.drivers.modules.deploy_utils.tear_down_storage_configuration(task)
Clean up storage configuration.

Remove entries from driver_internal_info for storage and deletes the volume targets from the
database. This is done to ensure a clean state for the next boot of the machine.

ironic.drivers.modules.deploy_utils.try_set_boot_device(task, device,
persistent=True)

Tries to set the boot device on the node.

1222 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

This method tries to set the boot device on the node to the given boot device. Under uefi boot mode,
setting of boot device may differ between different machines. IPMI does not work for setting boot
devices in uefi mode for certain machines. This method ignores the expected IPMI failure for uefi
boot mode and just logs a message. In error cases, it is expected the operator has to manually set
the node to boot from the correct device.

Parameters

• task a TaskManager object containing the node

• device the boot device

• persistent Whether to set the boot device persistently

Raises
Any exception from set_boot_device except IPMIFailure (setting of boot device
using ipmi is expected to fail).

ironic.drivers.modules.deploy_utils.validate_capabilities(node)
Validates that specified supported capabilities have valid value

This method checks if the any of the supported capability is present in Node capabilities. For all
supported capabilities specified for a Node, it validates that it has a valid value. The node can
have capability as part of the properties or instance_info or both. Note that the actual value of a
capability does not need to be the same in the nodes properties and instance_info.

Parameters
node an ironic node object.

Raises
InvalidParameterValue, if the capability is not set to a valid value.

ironic.drivers.modules.deploy_utils.validate_image_properties(task, deploy_info)
Validate the image.

For Glance images it checks that the image exists in Glance and its properties or deployment info
contain the properties passed. If its not a Glance image, it checks that deployment info contains
needed properties.

Parameters

• task TaskManager instance with a valid node

• deploy_info the deploy_info to be validated

Raises
InvalidParameterValue if: * connection to glance failed; * authorization for ac-
cessing image failed; * HEAD request to image URL failed or returned response
code != 200; * HEAD request response does not contain Content-Length header;
* the protocol specified in image URL is not supported.

Raises
MissingParameterValue if the image doesnt contain the mentioned properties.

5.1. Developers Guide 1223

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.fake module

Fake driver interfaces used in testing.

This is also an example of some kinds of things which can be done within drivers. For instance, the Multi-
pleVendorInterface class demonstrates how to load more than one interface and wrap them in some logic
to route incoming vendor_passthru requests appropriately. This can be useful eg. when mixing func-
tionality between a power interface and a deploy interface, when both rely on separate vendor_passthru
methods.

class ironic.drivers.modules.fake.FakeBIOS(*args, **kwargs)
Bases: BIOSInterface

Fake implementation of simple BIOSInterface.

apply_configuration(task, settings)
Validate & apply BIOS settings on the given node.

This method takes the BIOS settings from the settings param and applies BIOS settings on
the given node. It may also validate the given bios settings before applying any settings and
manage failures when setting an invalid BIOS config. In the case of needing password to
update the BIOS config, it will be taken from the driver_info properties. After the BIOS
configuration is done, cache_bios_settings will be called to update the nodes BIOS setting
table with the BIOS configuration applied on the node.

Parameters

• task a TaskManager instance.

• settings Dictionary containing the BIOS configuration.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS config-
uration.

Raises
InvalidParameterValue, if validation of settings fails.

Raises
MissingParameterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if BIOS configuration is in progress asynchronously or
None if it is complete.

cache_bios_settings(task)
Store or update BIOS properties on the given node.

This method stores BIOS properties to the bios_settings table during cleaning operation and
updates bios_settings table when apply_configuration() and factory_reset() are called to set
new BIOS configurations. It will also update the timestamp of each bios setting.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting BIOS
properties from bare metal.

1224 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
None.

factory_reset(task)
Reset BIOS configuration to factory default on the given node.

This method resets BIOS configuration to factory default on the given node. After the BIOS
reset action is done, cache_bios_settings will be called to update the nodes BIOS settings
table with default bios settings.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS reset.

Returns
states.CLEANWAIT if BIOS configuration is in progress asynchronously or
None if it is complete.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeBoot(*args, **kwargs)
Bases: BootInterface

Example implementation of a simple boot interface.

capabilities = ['ipxe_boot', 'pxe_boot']

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance.

Parameters
task A task from TaskManager.

5.1. Developers Guide 1225

Ironic Documentation, Release 26.1.2.dev21

Returns
None

clean_up_ramdisk(task, mode=’deploy’)
Cleans up the boot of ironic ramdisk.

This method cleans up the environment that was setup for booting the deploy or rescue
ramdisk.

Parameters
task A task from TaskManager.

Returns
None

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes database.

Parameters
task A task from TaskManager.

Returns
None

prepare_ramdisk(task, ramdisk_params, mode=’deploy’)
Prepares the boot of Ironic ramdisk.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes database.

Parameters

• task A task from TaskManager.

• ramdisk_params The options to be passed to the ironic ramdisk. Different
implementations might want to boot the ramdisk in different ways by passing
parameters to them. For example,

When Agent ramdisk is booted to deploy a node, it takes the parameters ipa-
api-url, etc.

Other implementations can make use of ramdisk_params to pass such infor-
mation. Different implementations of boot interface will have different ways
of passing parameters to the ramdisk.

Returns
None

validate(task)
Validate the driver-specific Node deployment info.

1226 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeConsole(*args, **kwargs)
Bases: ConsoleInterface

Example implementation of a simple console interface.

get_console(task)
Get connection information about the console.

This method should return the necessary information for the client to access the console.

Parameters
task A TaskManager instance containing the node to act on.

Returns
the console connection information.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

start_console(task)
Start a remote console for the tasks node.

This method should not raise an exception if console already started.

Parameters
task A TaskManager instance containing the node to act on.

stop_console(task)
Stop the remote console session for the tasks node.

Parameters
task A TaskManager instance containing the node to act on.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

5.1. Developers Guide 1227

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeDeploy(*args, **kwargs)
Bases: DeployInterface

Class for a fake deployment driver.

Example implementation of a deploy interface that uses a separate power interface.

clean_up(task)
Clean up the deployment environment for the tasks node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver. It should erase anything cached by the prepare method.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor, and it may be called by multiple conductors in parallel.
Therefore, it must not require an exclusive lock.

This method is called before tear_down.

Parameters
task A TaskManager instance containing the node to act on.

deploy(task)
Perform a deployment to the tasks node.

Perform the necessary work to deploy an image onto the specified node. This method will
be called after prepare(), which may have already performed any preparatory steps, such as
pre-caching some data for the node.

Parameters
task A TaskManager instance containing the node to act on.

Returns
status of the deploy. One of ironic.common.states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare(task)
Prepare the deployment environment for the tasks node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor.

This method is called before deploy.

1228 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

take_over(task)
Take over management of this tasks node from a dead conductor.

If conductors hosts maintain a static relationship to nodes, this method should be imple-
mented by the driver to allow conductors to perform the necessary work during the remapping
of nodes to conductors when a conductor joins or leaves the cluster.

For example, the PXE driver has an external dependency:
Neutron must forward DHCP BOOT requests to a conductor which has prepared the
tftpboot environment for the given node. When a conductor goes offline, another con-
ductor must change this setting in Neutron as part of remapping that nodes control to
itself. This is performed within the takeover method.

Parameters
task A TaskManager instance containing the node to act on.

tear_down(task)
Tear down a previous deployment on the tasks node.

Given a node that has been previously deployed to, do all cleanup and tear down necessary
to un-deploy that node.

Parameters
task A TaskManager instance containing the node to act on.

Returns
status of the deploy. One of ironic.common.states.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeFirmware(*args, **kwargs)
Bases: FirmwareInterface

Example implementation of a simple firmware interface.

cache_firmware_components(task)
Store or update Firmware Components on the given node.

5.1. Developers Guide 1229

Ironic Documentation, Release 26.1.2.dev21

This method stores Firmware Components to the firmware_information table during cleaning
operation. It will also update the timestamp of each Firmware Component.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting
Firmware Components from bare metal.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

update(task, settings)
Update the Firmware on the given using the settings for components.

Parameters

• task a TaskManager instance.

• settings a list of dictionaries, each dictionary contains the component
name and the url that will be used to update the firmware.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support update via the
interface.

Raises
InvalidParameterValue, if validation of the settings fails.

Raises
MissingParamterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if Firmware update with the settings is in progress asyn-
chronously of None if it is complete.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

1230 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.fake.FakeInspect(*args, **kwargs)
Bases: InspectInterface

Example implementation of a simple inspect interface.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

inspect_hardware(task)
Inspect hardware.

Inspect hardware to obtain the essential & additional hardware properties.

Parameters
task A task from TaskManager.

Raises
HardwareInspectionFailure, if unable to get essential hardware properties.

Returns
Resulting state of the inspection i.e. states.MANAGEABLE or None.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeManagement(*args, **kwargs)
Bases: ManagementInterface

Example implementation of a simple management interface.

get_boot_device(task)
Get the current boot device for a node.

Provides the current boot device of the node. Be aware that not all drivers support this.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

5.1. Developers Guide 1231

Ironic Documentation, Release 26.1.2.dev21

Returns

A dictionary containing:

boot_device
Ahe boot device, one of ironic.common.boot_devices or None if
it is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_indicator_state(task, component, indicator)
Get current state of the indicator of the hardware component.

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator ID (as reported by get_supported_indicators).

Raises
InvalidParameterValue if an invalid component or indicator is specified.

Raises
MissingParameterValue if a required parameter is missing

Returns
Current state of the indicator, one of ironic.common.indicator_states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_sensors_data(task)
Get sensors data method.

Parameters
task A TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

Raises
FailedToParseSensorData when parsing sensor data fails.

Returns

Returns a consistent format dict of sensor data grouped by sensor type, which
can be processed by Ceilometer. eg,

{
'Sensor Type 1': {
'Sensor ID 1': {
'Sensor Reading': 'current value',

(continues on next page)

1232 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

'key1': 'value1',
'key2': 'value2'

},
'Sensor ID 2': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

}
},
'Sensor Type 2': {
'Sensor ID 3': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

},
'Sensor ID 4': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

}
}

}

get_supported_boot_devices(task)
Get a list of the supported boot devices.

Parameters
task A task from TaskManager.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

get_supported_indicators(task, component=None)
Get a map of the supported indicators (e.g. LEDs).

Parameters

• task A task from TaskManager.

• component If not None, return indicator information for just this component,
otherwise return indicators for all existing components.

Returns

A dictionary of hardware components (ironic.common.components) as keys
with values being dictionaries having indicator IDs as keys and indicator prop-
erties as values.

{
'chassis': {

'enclosure-0': {
"readonly": true,

(continues on next page)

5.1. Developers Guide 1233

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

"states": [
"off",
"on"

]
}

},
'system':

'blade-A': {
"readonly": true,
"states": [

"pff",
"on"

]
}

},
'drive':

'ssd0': {
"readonly": true,
"states": [

"off",
"on"

]
}

}
}

set_boot_device(task, device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• task A task from TaskManager.

• device The boot device, one of ironic.common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue if an invalid boot device is specified.

Raises
MissingParameterValue if a required parameter is missing

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

1234 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakePower(*args, **kwargs)
Bases: PowerInterface

Example implementation of a simple power interface.

get_power_state(task)
Return the power state of the tasks node.

Parameters
task A TaskManager instance containing the node to act on.

Raises
MissingParameterValue if a required parameter is missing.

Returns
A power state. One of ironic.common.states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_supported_power_states(task)
Get a list of the supported power states.

Parameters
task A TaskManager instance containing the node to act on.

Returns
A list with the supported power states defined in ironic.common.states.

reboot(task, timeout=None)
Perform a hard reboot of the tasks node.

Drivers are expected to properly handle case when node is powered off by powering it on.

Parameters

• task A TaskManager instance containing the node to act on.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

Raises
MissingParameterValue if a required parameter is missing.

set_power_state(task, power_state, timeout=None)
Set the power state of the tasks node.

Parameters

5.1. Developers Guide 1235

Ironic Documentation, Release 26.1.2.dev21

• task A TaskManager instance containing the node to act on.

• power_state Any power state from ironic.common.states.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

Raises
MissingParameterValue if a required parameter is missing.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeRAID(*args, **kwargs)
Bases: RAIDInterface

Example implementation of simple RAIDInterface.

create_configuration(task, create_root_volume=True, create_nonroot_volumes=True)
Creates RAID configuration on the given node.

This method creates a RAID configuration on the given node. It assumes that the target
RAID configuration is already available in node.target_raid_config. Implementations of
this interface are supposed to read the RAID configuration from node.target_raid_config.
After the RAID configuration is done (either in this method OR in a call-back method),
ironic.common.raid.update_raid_info() may be called to sync the nodes RAID-related in-
formation with the RAID configuration applied on the node.

Parameters

• task A TaskManager instance.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in the nodes target_raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in the nodes target_raid_config.
Default value is True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if
RAID configuration is in progress asynchronously, or None if it is complete.

1236 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

delete_configuration(task)
Deletes RAID configuration on the given node.

This method deletes the RAID configuration on the give node. After RAID configuration is
deleted, node.raid_config should be cleared by the implementation.

Parameters
task A TaskManager instance.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if dele-
tion is in progress asynchronously, or None if it is complete.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

class ironic.drivers.modules.fake.FakeRescue(*args, **kwargs)
Bases: RescueInterface

Example implementation of a simple rescue interface.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

rescue(task)
Boot the tasks node into a rescue environment.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InstanceRescueFailure if node validation or rescue operation fails.

Returns
states.RESCUEWAIT if rescue is in progress asynchronously or
states.RESCUE if it is complete.

unrescue(task)
Tear down the rescue environment, and return to normal.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InstanceUnrescueFailure if node validation or unrescue operation fails.

Returns
states.ACTIVE if it is successful.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

5.1. Developers Guide 1237

Ironic Documentation, Release 26.1.2.dev21

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeStorage(*args, **kwargs)
Bases: StorageInterface

Example implementation of simple storage Interface.

attach_volumes(task)
Informs the storage subsystem to attach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

detach_volumes(task)
Informs the storage subsystem to detach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

should_write_image(task)
Determines if deploy should perform the image write-out.

Parameters
task A TaskManager instance.

Returns
Boolean value to indicate if the interface expects the image to be written by
Ironic.

Raises
UnsupportedDriverExtension

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

1238 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.fake.FakeVendorA(*args, **kwargs)
Bases: VendorInterface

Example implementation of a vendor passthru interface.

first_method(task, http_method, bar)

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

validate(task, method, **kwargs)
Validate vendor-specific actions.

If invalid, raises an exception; otherwise returns None.

Parameters

• task A task from TaskManager.

• method Method to be validated

• kwargs Info for action.

Raises
UnsupportedDriverExtension if method can not be mapped to the supported
interfaces.

Raises
InvalidParameterValue if kwargs does not contain method.

Raises
MissingParameterValue

class ironic.drivers.modules.fake.FakeVendorB(*args, **kwargs)
Bases: VendorInterface

Example implementation of a secondary vendor passthru.

fourth_method_shared_lock(task, http_method, bar)

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

5.1. Developers Guide 1239

Ironic Documentation, Release 26.1.2.dev21

log_passthrough(task, **kwargs)

second_method(task, http_method, bar)

third_method_sync(task, http_method, bar)

trigger_servicewait(task, **kwargs)

validate(task, method, **kwargs)
Validate vendor-specific actions.

If invalid, raises an exception; otherwise returns None.

Parameters

• task A task from TaskManager.

• method Method to be validated

• kwargs Info for action.

Raises
UnsupportedDriverExtension if method can not be mapped to the supported
interfaces.

Raises
InvalidParameterValue if kwargs does not contain method.

Raises
MissingParameterValue

ironic.drivers.modules.fake.parse_sleep_range(sleep_range)

ironic.drivers.modules.fake.sleep(sleep_range)

ironic.drivers.modules.image_cache module

Utility for caching master images.

class ironic.drivers.modules.image_cache.ImageCache(master_dir, cache_size, cache_ttl)
Bases: object

Class handling access to cache for master images.

clean_up(amount=None)
Clean up directory with images, keeping cache of the latest images.

Files with link count >1 are never deleted. Protected by global lock, so that no one messes
with master images after we get listing and before we actually delete files.

Parameters
amount if present, amount of space to reclaim in bytes, cleaning will stop, if
this goal was reached, even if it is possible to clean up more files

fetch_image(href , dest_path, ctx=None, force_raw=True, expected_format=None,
expected_checksum=None, expected_checksum_algo=None)

Fetch image by given href to the destination path.

1240 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Does nothing if destination path exists and is up to date with cache and href contents. Only
creates a hard link (dest_path) to cached image if requested image is already in cache and up
to date with href contents. Otherwise downloads an image, stores it in cache and creates a
hard link (dest_path) to it.

Parameters

• href image UUID or href to fetch

• dest_path destination file path

• ctx context

• force_raw boolean value, whether to convert the image to raw format

• expected_format The expected image format.

• expected_checksum The expected image checksum

• expected_checksum_algo The expected image checksum algorithm, if
needed/supplied.

ironic.drivers.modules.image_cache.clean_up_all()

Clean up all entries from all caches.

ironic.drivers.modules.image_cache.clean_up_caches(ctx, directory, images_info)
Explicitly cleanup caches based on their priority (if required).

This cleans up the caches to free up the amount of space required for the images in images_info.
The caches are cleaned up one after the other in the order of their priority. If we still cannot free
up enough space after trying all the caches, this method throws exception.

Parameters

• ctx context

• directory the directory (of the cache) to be freed up.

• images_info a list of tuples of the form (image_uuid,path) for which space
is to be created in cache.

Raises
InsufficientDiskSpace exception, if we cannot free up enough space after trying all
the caches.

ironic.drivers.modules.image_cache.cleanup(priority)
Decorator method for adding cleanup priority to a class.

ironic.drivers.modules.image_utils module

class ironic.drivers.modules.image_utils.ISOImageCache

Bases: ImageCache

class ironic.drivers.modules.image_utils.ImageHandler(driver)
Bases: object

5.1. Developers Guide 1241

Ironic Documentation, Release 26.1.2.dev21

publish_image(image_file, object_name, node_http_url=None)
Make image file downloadable.

Depending on ironic settings, pushes given file into Swift or copies it over to local HTTP
servers document root and returns publicly accessible URL leading to the given file.

Parameters

• image_file path to file to publish

• object_name name of the published file

• node_http_url a url to be used to publish the image. If set, the values
from external_http_url and http_url from CONF.deploy wont be used.

Returns
a URL to download published file

unpublish_image(object_name)
Withdraw the image previously made downloadable.

Depending on ironic settings, removes previously published file from where it has been pub-
lished - Swift or local HTTP servers document root.

Parameters
object_name name of the published file (optional)

classmethod unpublish_image_for_node(node, prefix=”, suffix=”)
Withdraw the image previously made downloadable.

Depending on ironic settings, removes previously published file from where it has been pub-
lished - Swift or local HTTP servers document root.

Parameters

• node the node for which image was published.

• prefix object name prefix.

• suffix object name suffix.

update_driver_config(driver)

ironic.drivers.modules.image_utils.cleanup_disk_image(task, prefix=None)
Deletes the image if it was created for the node.

Parameters

• task an ironic node object.

• prefix Prefix to use for the object name.

ironic.drivers.modules.image_utils.cleanup_floppy_image(task)
Deletes the floppy image if it was created for the node.

Parameters
task an ironic node object.

ironic.drivers.modules.image_utils.cleanup_iso_image(task)
Deletes the ISO if it was created for the instance.

1242 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A task from TaskManager.

ironic.drivers.modules.image_utils.cleanup_remote_image(task, file_name)
Cleanup image created via prepare_remote_image.

ironic.drivers.modules.image_utils.override_api_url(params)

ironic.drivers.modules.image_utils.prepare_boot_iso(task, d_info, root_uuid=None)
Prepare boot ISO image

Build bootable ISO out of [instance_info]/kernel, [instance_info]/ramdisk and
[driver_info]/bootloader if present. Otherwise, read kernel_id and ramdisk_id from [in-
stance_info]/image_source Glance image metadata.

Push produced ISO image up to Glance and return temporary Swift URL to the image.

Parameters

• task a TaskManager instance containing the node to act on.

• d_info Deployment information of the node

• root_uuid Root UUID

Returns
bootable ISO HTTP URL.

Raises
MissingParameterValue, if any of the required parameters are missing.

Raises
InvalidParameterValue, if any of the parameters have invalid value.

Raises
ImageCreationFailed, if creating ISO image failed.

ironic.drivers.modules.image_utils.prepare_configdrive_image(task, content)
Prepare an image with configdrive.

Decodes base64 contents and writes it into a disk image that can be attached e.g. to a virtual USB
device. Images stored in Swift are downloaded first.

Parameters

• task a TaskManager instance containing the node to act on.

• content Config drive as a base64-encoded string.

Raises
ImageCreationFailed, if it failed while creating the image.

Raises
SwiftOperationError, if any operation with Swift fails.

Returns
image URL for the image.

ironic.drivers.modules.image_utils.prepare_deploy_iso(task, params, mode, d_info)
Prepare deploy or rescue ISO image

5.1. Developers Guide 1243

Ironic Documentation, Release 26.1.2.dev21

Build bootable ISO out of [driver_info]/deploy_kernel/[driver_info]/deploy_ramdisk or
[driver_info]/rescue_kernel/[driver_info]/rescue_ramdisk and [driver_info]/bootloader, then
push built image up to Glance and return temporary Swift URL to the image.

If network interface supplies network configuration (network_data), a network_data.json will be
written into an appropriate location on the final ISO.

Parameters

• task a TaskManager instance containing the node to act on.

• params a dictionary containing parameter name->value mapping to be passed
to kernel command line.

• mode either deploy or rescue.

• d_info Deployment information of the node

Returns
bootable ISO HTTP URL.

Raises
MissingParameterValue, if any of the required parameters are missing.

Raises
InvalidParameterValue, if any of the parameters have invalid value.

Raises
ImageCreationFailed, if creating ISO image failed.

ironic.drivers.modules.image_utils.prepare_disk_image(task, content, prefix=None)
Prepare an image with the given content.

If content is already an HTTP URL, return it unchanged.

Parameters

• task a TaskManager instance containing the node to act on.

• content Content as a string with a file name or bytes with contents.

• prefix Prefix to use for the object name.

Raises
ImageCreationFailed, if it failed while creating the image.

Raises
SwiftOperationError, if any operation with Swift fails.

Returns
image URL for the image.

ironic.drivers.modules.image_utils.prepare_floppy_image(task, params=None)
Prepares the floppy image for passing the parameters.

This method prepares a temporary VFAT filesystem image and adds a file into the image which
contains parameters to be passed to the ramdisk. Then this method uploads built image to Swift
[redfish]swift_container, setting it to auto expire after [redfish]swift_object_expiry_timeout sec-
onds. Finally, a temporary Swift URL is returned addressing Swift object just created.

Parameters

1244 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• task a TaskManager instance containing the node to act on.

• params a dictionary containing parameter name->value mapping to be passed
to deploy or rescue image via floppy image.

Raises
ImageCreationFailed, if it failed while creating the floppy image.

Raises
SwiftOperationError, if any operation with Swift fails.

Returns
image URL for the floppy image.

ironic.drivers.modules.image_utils.prepare_remote_image(task, image_url,
file_name=’boot.iso’,
download_source=’local’,
cache=None)

Generic function for publishing remote images.

Given the image provided by the user, generate a URL to pass to the BMC or a remote agent.

Parameters

• task TaskManager instance.

• image_url The original URL or a glance UUID.

• file_name File name to use when publishing.

• download_source How the image will be published: http (via a plain HTTP
link, preverving remote links), local (via the local HTTP server even if the
remote link is HTTP), swift (same as http, but Glance images are published
via Swift temporary URLs).

• cache Image cache to use. Defaults to the ISO image cache.

Returns
The new URL (possibly the same as the old one).

ironic.drivers.modules.inspect_utils module

exception ironic.drivers.modules.inspect_utils.AutoEnrollPossible(message=None,
**kwargs)

Bases: IronicException

Exception to indicate that the node can be enrolled.

The error message and code is the same as for NotFound to make sure we dont disclose any infor-
mation when discovery is disabled.

code = 404

ironic.drivers.modules.inspect_utils.cache_lookup_addresses(node)
Cache lookup addresses for a quick access.

5.1. Developers Guide 1245

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspect_utils.clean_up_swift_entries(task)
Delete swift entries containing inspection data.

Delete swift entries related to the node in task.node containing inspection data. The entries
are inspector_data-<task.node.uuid>-inventory for hardware inventory and similar for
-plugin containing the rest of the inspection data.

Parameters
task A TaskManager instance.

ironic.drivers.modules.inspect_utils.clear_lookup_addresses(node)
Remove lookup addresses cached on the node.

ironic.drivers.modules.inspect_utils.create_ports_if_not_exist(task, macs=None)
Create ironic ports from MAC addresses data dict.

Creates ironic ports from MAC addresses data returned with inspection or as requested by operator.
Helper argument to detect the MAC address get_mac_address defaults to value part of MAC
address dict key-value pair.

Parameters

• task A TaskManager instance.

• macs A sequence of MAC addresses. If None, fetched from the tasks man-
agement interface.

ironic.drivers.modules.inspect_utils.get_inspection_data(node, context)
Get inspection data.

Retrieve the inspection data for a node either from database or the Object Storage API
(swift/radosgw) as configured.

Parameters

• node the Ironic node that the required data is about

• context an admin context

Returns
dictionary with inventory and plugin_data fields

Raises
NodeInventoryNotFound if no inventory has been saved

ironic.drivers.modules.inspect_utils.lookup_node(context, mac_addresses,
bmc_addresses, node_uuid=None)

Do a node lookup by the information from the inventory.

Parameters

• context Request context

• mac_addresses List of MAC addresses.

• bmc_addresses List of BMC (realistically, IPMI) addresses.

• node_uuid Node UUID (if known).

1246 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NotFound with a generic message for all failures to avoid disclosing any informa-
tion.

ironic.drivers.modules.inspect_utils.store_inspection_data(node, inventory,
plugin_data, context)

Store inspection data.

Store the inspection data for a node. The storage is either the database or the Object Storage API
(swift/radosgw) as configured.

Parameters

• node the Ironic node that the inspection data is about

• inventory the inventory to store

• plugin_data the plugin data (if any) to store

• context an admin context

ironic.drivers.modules.ipmitool module

IPMI power manager driver.

Uses the ipmitool command (http://ipmitool.sourceforge.net/) to remotely manage hardware. This in-
cludes setting the boot device, getting a serial-over-LAN console, and controlling the power state of the
machine.

NOTE THAT CERTAIN DISTROS MAY INSTALL openipmi BY DEFAULT, INSTEAD OF ipmi-
tool, WHICH PROVIDES DIFFERENT COMMAND-LINE OPTIONS AND IS NOT SUPPORTED
BY THIS DRIVER.

class ironic.drivers.modules.ipmitool.IPMIConsole(*args, **kwargs)
Bases: ConsoleInterface

A base ConsoleInterface that uses ipmitool.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

validate(task)
Validate the Node console info.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue

Raises
MissingParameterValue when a required parameter is missing

class ironic.drivers.modules.ipmitool.IPMIManagement(*args, **kwargs)
Bases: ManagementInterface

5.1. Developers Guide 1247

http://ipmitool.sourceforge.net/

Ironic Documentation, Release 26.1.2.dev21

detect_vendor(task)
Detects and returns the hardware vendor.

Parameters
task A task from TaskManager.

Raises
InvalidParameterValue if an invalid component, indicator or state is specified.

Raises
MissingParameterValue if a required parameter is missing

Returns
String representing the BMC reported Vendor or Manufacturer, otherwise re-
turns None.

get_boot_device(task)
Get the current boot device for the tasks node.

Returns the current boot device of the node.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue if required IPMI parameters are missing.

Raises
IPMIFailure on an error from ipmitool.

Raises
MissingParameterValue if a required parameter is missing.

Returns

a dictionary containing:

boot_device
the boot device, one of ironic.common.boot_devices or None if it
is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_sensors_data(task)
Get sensors data.

Parameters
task a TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

1248 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
FailedToParseSensorData when parsing sensor data fails.

Raises
InvalidParameterValue if required ipmi parameters are missing

Raises
MissingParameterValue if a required parameter is missing.

Returns
returns a dict of sensor data group by sensor type.

get_supported_boot_devices(task)
Get a list of the supported boot devices.

Parameters
task a task from TaskManager.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

inject_nmi(task)
Inject NMI, Non Maskable Interrupt.

Inject NMI (Non Maskable Interrupt) for a node immediately.

Parameters
task A TaskManager instance containing the node to act on.

Raises
IPMIFailure on an error from ipmitool.

Returns
None

set_boot_device(task, device, persistent=False)
Set the boot device for the tasks node.

Set the boot device to use on next reboot of the node.

Parameters

• task a task from TaskManager.

• device the boot device, one of ironic.common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue if an invalid boot device is specified

Raises
MissingParameterValue if required ipmi parameters are missing.

Raises
IPMIFailure on an error from ipmitool.

5.1. Developers Guide 1249

Ironic Documentation, Release 26.1.2.dev21

validate(task)
Check that driver_info contains IPMI credentials.

Validates whether the driver_info property of the supplied tasks node contains the required
credentials information.

Parameters
task a task from TaskManager.

Raises
InvalidParameterValue if required IPMI parameters are missing.

Raises
MissingParameterValue if a required parameter is missing.

class ironic.drivers.modules.ipmitool.IPMIPower(*args, **kwargs)
Bases: PowerInterface

get_power_state(task)
Get the current power state of the tasks node.

Parameters
task a TaskManager instance containing the node to act on.

Returns
one of ironic.common.states POWER_OFF, POWER_ON or ERROR.

Raises
InvalidParameterValue if required ipmi parameters are missing.

Raises
MissingParameterValue if a required parameter is missing.

Raises
IPMIFailure on an error from ipmitool (from _power_status call).

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_supported_power_states(task)
Get a list of the supported power states.

Parameters
task A TaskManager instance containing the node to act on. currently not
used.

Returns
A list with the supported power states defined in ironic.common.states.

reboot(task, timeout=None)
Cycles the power to the tasks node.

Parameters

• task a TaskManager instance containing the node to act on.

1250 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• timeout timeout (in seconds) positive integer (> 0) for any power state.
The timeout is counted once during power off and once during power on for
reboots. None indicates that the default timeout will be used.

Raises
MissingParameterValue if required ipmi parameters are missing.

Raises
InvalidParameterValue if an invalid power state was specified.

Raises
PowerStateFailure if the final state of the node is not POWER_ON or the inter-
mediate state of the node is not POWER_OFF.

set_power_state(task, power_state, timeout=None)
Turn the power on, off, soft reboot, or soft power off.

Parameters

• task a TaskManager instance containing the node to act on.

• power_state desired power state. one of ironic.common.states,
POWER_ON, POWER_OFF, SOFT_POWER_OFF, or SOFT_REBOOT.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
The timeout is counted once during power off and once during power on for
reboots. None indicates that the default timeout will be used.

Raises
InvalidParameterValue if an invalid power state was specified.

Raises
MissingParameterValue if required ipmi parameters are missing

Raises
PowerStateFailure if the power couldnt be set to pstate.

validate(task)
Validate driver_info for ipmitool driver.

Check that node[driver_info] contains IPMI credentials.

Parameters
task a TaskManager instance containing the node to act on.

Raises
InvalidParameterValue if required ipmi parameters are missing.

Raises
MissingParameterValue if a required parameter is missing.

class ironic.drivers.modules.ipmitool.IPMIShellinaboxConsole(*args, **kwargs)
Bases: IPMIConsole

A ConsoleInterface that uses ipmitool and shellinabox.

get_console(task)
Get the type and connection information about the console.

5.1. Developers Guide 1251

Ironic Documentation, Release 26.1.2.dev21

start_console(task)
Start a remote console for the node.

Parameters
task a task from TaskManager

Raises
InvalidParameterValue if required ipmi parameters are missing

Raises
PasswordFileFailedToCreate if unable to create a file containing the password

Raises
ConsoleError if the directory for the PID file cannot be created

Raises
ConsoleSubprocessFailed when invoking the subprocess failed

stop_console(task)
Stop the remote console session for the node.

Parameters
task a task from TaskManager

Raises
ConsoleError if unable to stop the console

class ironic.drivers.modules.ipmitool.IPMISocatConsole(*args, **kwargs)
Bases: IPMIConsole

A ConsoleInterface that uses ipmitool and socat.

get_console(task)
Get the type and connection information about the console.

Parameters
task a task from TaskManager

start_console(task)
Start a remote console for the node.

Parameters
task a task from TaskManager

Raises
InvalidParameterValue if required ipmi parameters are missing

Raises
PasswordFileFailedToCreate if unable to create a file containing the password

Raises
ConsoleError if the directory for the PID file cannot be created

Raises
ConsoleSubprocessFailed when invoking the subprocess failed

stop_console(task)
Stop the remote console session for the node.

1252 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task a task from TaskManager

Raises
ConsoleError if unable to stop the console

class ironic.drivers.modules.ipmitool.VendorPassthru(*args, **kwargs)
Bases: VendorInterface

bmc_reset(task, http_method, warm=True)
Reset BMC with IPMI command bmc reset (warm|cold).

Parameters

• task a TaskManager instance.

• http_method the HTTP method used on the request.

• warm boolean parameter to decide on warm or cold reset.

Raises
IPMIFailure on an error from ipmitool.

Raises
MissingParameterValue if a required parameter is missing.

Raises
InvalidParameterValue when an invalid value is specified

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

send_raw(task, **kwargs)
Send raw bytes to the BMC. Bytes should be a string of bytes.

Parameters

• task a TaskManager instance.

• raw_bytes a string of raw bytes to send, e.g. 0x00 0x01 supplied as a
kwargument.

Raises
IPMIFailure on an error from ipmitool.

Raises
MissingParameterValue if a required parameter is missing.

Raises
InvalidParameterValue when an invalid value is specified.

validate(task, method, **kwargs)
Validate vendor-specific actions.

If invalid, raises an exception; otherwise returns None.

Valid methods:

• send_raw

5.1. Developers Guide 1253

Ironic Documentation, Release 26.1.2.dev21

• bmc_reset

Parameters

• task a task from TaskManager.

• method method to be validated

• kwargs info for action.

Raises
InvalidParameterValue when an invalid parameter value is specified.

Raises
MissingParameterValue if a required parameter is missing.

ironic.drivers.modules.ipmitool.check_cipher_suite_errors(cmd_stderr)
Checks if the command stderr contains cipher suite errors.

Parameters
cmd_stderr The command stderr.

Returns
True if the cmd_stderr contains a cipher suite error, False otherwise.

ironic.drivers.modules.ipmitool.choose_cipher_suite(actual_cipher_suite)
Gives the possible next available cipher suite version.

Based on CONF.ipmi.cipher_suite_versions and the last cipher suite version used that failed. This
function is only called if the node doesnt have cipher_suite set. Starts using the last element of the
list and decreasing the index.

Parameters
actual_cipher_suite latest cipher suite used in the ipmi call.

Returns
the next possible cipher suite or None in case of empty configuration.

ironic.drivers.modules.ipmitool.dump_sdr(task, file_path)
Dump SDR data to a file.

Parameters

• task a TaskManager instance.

• file_path the path to SDR dump file.

Raises
IPMIFailure on an error from ipmitool.

Raises
MissingParameterValue if a required parameter is missing.

Raises
InvalidParameterValue when an invalid value is specified.

ironic.drivers.modules.ipmitool.is_bridging_enabled(node)
Check if IPMI bridging is enabled.

This call is used in the inspector lookup.

1254 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.ipmitool.send_raw(task, raw_bytes)
Send raw bytes to the BMC. Bytes should be a string of bytes.

Parameters

• task a TaskManager instance.

• raw_bytes a string of raw bytes to send, e.g. 0x00 0x01

Returns
a tuple with stdout and stderr.

Raises
IPMIFailure on an error from ipmitool.

Raises
MissingParameterValue if a required parameter is missing.

Raises
InvalidParameterValue when an invalid value is specified.

ironic.drivers.modules.ipmitool.update_cipher_suite_cmd(actual_cs, args)
Updates variables and the cipher suite cmd.

This function updates the values for all parameters so they can be used in the next retry of
_exec_ipmitool.

Parameters

• actual_cs a string that represents the cipher suite that was used in the com-
mand.

• args a list that contains the ipmitool command that was executed, it will be
modified in-place.

Returns
the next actual_cs

ironic.drivers.modules.ipxe module

iPXE Boot Interface

class ironic.drivers.modules.ipxe.iPXEBoot(*args, **kwargs)
Bases: PXEBaseMixin, BootInterface

capabilities = ['iscsi_volume_boot', 'ramdisk_boot', 'ipxe_boot']

ipxe_enabled = True

class ironic.drivers.modules.ipxe.iPXEHttpBoot(*args, **kwargs)
Bases: PXEBaseMixin, BootInterface

capabilities = ['iscsi_volume_boot', 'ramdisk_boot', 'ipxe_boot']

http_boot_enabled = True

ipxe_enabled = True

5.1. Developers Guide 1255

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.noop module

Dummy interface implementations for use as defaults with optional interfaces.

Note that unlike fake implementations, these do not pass validation and raise exceptions for user-
accessible actions.

class ironic.drivers.modules.noop.FailMixin

Bases: object

Mixin to add to an interface to make it fail validation.

get_properties()

validate(task, *args, **kwargs)

class ironic.drivers.modules.noop.NoBIOS(*args, **kwargs)
Bases: FailMixin, BIOSInterface

BIOS interface implementation that raises errors on all requests.

apply_configuration(task, settings)
Validate & apply BIOS settings on the given node.

This method takes the BIOS settings from the settings param and applies BIOS settings on
the given node. It may also validate the given bios settings before applying any settings and
manage failures when setting an invalid BIOS config. In the case of needing password to
update the BIOS config, it will be taken from the driver_info properties. After the BIOS
configuration is done, cache_bios_settings will be called to update the nodes BIOS setting
table with the BIOS configuration applied on the node.

Parameters

• task a TaskManager instance.

• settings Dictionary containing the BIOS configuration.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS config-
uration.

Raises
InvalidParameterValue, if validation of settings fails.

Raises
MissingParameterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if BIOS configuration is in progress asynchronously or
None if it is complete.

cache_bios_settings(task)
Store or update BIOS properties on the given node.

This method stores BIOS properties to the bios_settings table during cleaning operation and
updates bios_settings table when apply_configuration() and factory_reset() are called to set
new BIOS configurations. It will also update the timestamp of each bios setting.

1256 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting BIOS
properties from bare metal.

Returns
None.

factory_reset(task)
Reset BIOS configuration to factory default on the given node.

This method resets BIOS configuration to factory default on the given node. After the BIOS
reset action is done, cache_bios_settings will be called to update the nodes BIOS settings
table with default bios settings.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS reset.

Returns
states.CLEANWAIT if BIOS configuration is in progress asynchronously or
None if it is complete.

class ironic.drivers.modules.noop.NoConsole(*args, **kwargs)
Bases: FailMixin, ConsoleInterface

Console interface implementation that raises errors on all requests.

get_console(task, *args, **kwargs)
Get connection information about the console.

This method should return the necessary information for the client to access the console.

Parameters
task A TaskManager instance containing the node to act on.

Returns
the console connection information.

start_console(task, *args, **kwargs)
Start a remote console for the tasks node.

This method should not raise an exception if console already started.

Parameters
task A TaskManager instance containing the node to act on.

stop_console(task, *args, **kwargs)
Stop the remote console session for the tasks node.

Parameters
task A TaskManager instance containing the node to act on.

5.1. Developers Guide 1257

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.noop.NoFirmware(*args, **kwargs)
Bases: FailMixin, FirmwareInterface

Firmware interface implementation that raises errors on all requests

cache_firmware_components(task)
Store or update Firmware Components on the given node.

This method stores Firmware Components to the firmware_information table during cleaning
operation. It will also update the timestamp of each Firmware Component.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting
Firmware Components from bare metal.

update(task, settings)
Update the Firmware on the given using the settings for components.

Parameters

• task a TaskManager instance.

• settings a list of dictionaries, each dictionary contains the component
name and the url that will be used to update the firmware.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support update via the
interface.

Raises
InvalidParameterValue, if validation of the settings fails.

Raises
MissingParamterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if Firmware update with the settings is in progress asyn-
chronously of None if it is complete.

class ironic.drivers.modules.noop.NoInspect(*args, **kwargs)
Bases: FailMixin, InspectInterface

Inspect interface implementation that raises errors on all requests.

inspect_hardware(task, *args, **kwargs)
Inspect hardware.

Inspect hardware to obtain the essential & additional hardware properties.

Parameters
task A task from TaskManager.

Raises
HardwareInspectionFailure, if unable to get essential hardware properties.

Returns
Resulting state of the inspection i.e. states.MANAGEABLE or None.

1258 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.noop.NoRAID(*args, **kwargs)
Bases: FailMixin, RAIDInterface

RAID interface implementation that raises errors on all requests.

create_configuration(task, *args, **kwargs)
Creates RAID configuration on the given node.

This method creates a RAID configuration on the given node. It assumes that the target
RAID configuration is already available in node.target_raid_config. Implementations of
this interface are supposed to read the RAID configuration from node.target_raid_config.
After the RAID configuration is done (either in this method OR in a call-back method),
ironic.common.raid.update_raid_info() may be called to sync the nodes RAID-related in-
formation with the RAID configuration applied on the node.

Parameters

• task A TaskManager instance.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in the nodes target_raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in the nodes target_raid_config.
Default value is True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if
RAID configuration is in progress asynchronously, or None if it is complete.

delete_configuration(task, *args, **kwargs)
Deletes RAID configuration on the given node.

This method deletes the RAID configuration on the give node. After RAID configuration is
deleted, node.raid_config should be cleared by the implementation.

Parameters
task A TaskManager instance.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if dele-
tion is in progress asynchronously, or None if it is complete.

validate_raid_config(task, raid_config)
Validates the given RAID configuration.

This method validates the given RAID configuration. Driver implementations of this inter-
face can override this method to support custom parameters for RAID configuration.

Parameters

• task A TaskManager instance.

• raid_config The RAID configuration to validate.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

5.1. Developers Guide 1259

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.noop.NoRescue(*args, **kwargs)
Bases: FailMixin, RescueInterface

Rescue interface implementation that raises errors on all requests.

rescue(task, *args, **kwargs)
Boot the tasks node into a rescue environment.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InstanceRescueFailure if node validation or rescue operation fails.

Returns
states.RESCUEWAIT if rescue is in progress asynchronously or
states.RESCUE if it is complete.

unrescue(task, *args, **kwargs)
Tear down the rescue environment, and return to normal.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InstanceUnrescueFailure if node validation or unrescue operation fails.

Returns
states.ACTIVE if it is successful.

class ironic.drivers.modules.noop.NoVendor(*args, **kwargs)
Bases: FailMixin, VendorInterface

Vendor interface implementation that raises errors on all requests.

driver_validate(method, **kwargs)
Validate driver-vendor-passthru actions.

If invalid, raises an exception; otherwise returns None.

Parameters

• method method to be validated

• kwargs info for action.

Raises
MissingParameterValue if kwargs does not contain certain parameter.

Raises
InvalidParameterValue if parameter does not match.

1260 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.noop_mgmt module

No-op management interface implementation.

class ironic.drivers.modules.noop_mgmt.NoopManagement(*args, **kwargs)
Bases: ManagementInterface

No-op management interface implementation.

Using this implementation requires the boot order to be preconfigured to first try PXE booting,
then fall back to hard drives.

get_boot_device(task)
Get the current boot device for a node.

Provides the current boot device of the node. Be aware that not all drivers support this.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Returns

A dictionary containing:

boot_device
Ahe boot device, one of ironic.common.boot_devices or None if
it is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_sensors_data(task)
Get sensors data method.

Parameters
task A TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

Raises
FailedToParseSensorData when parsing sensor data fails.

Returns

Returns a consistent format dict of sensor data grouped by sensor type, which
can be processed by Ceilometer. eg,

5.1. Developers Guide 1261

Ironic Documentation, Release 26.1.2.dev21

{
'Sensor Type 1': {
'Sensor ID 1': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

},
'Sensor ID 2': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

}
},
'Sensor Type 2': {
'Sensor ID 3': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

},
'Sensor ID 4': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

}
}

}

get_supported_boot_devices(task)
Get a list of the supported boot devices.

Parameters
task A task from TaskManager.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

set_boot_device(task, device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• task A task from TaskManager.

• device The boot device, one of ironic.common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue if an invalid boot device is specified.

1262 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if a required parameter is missing

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.pxe module

PXE Boot Interface

class ironic.drivers.modules.pxe.HttpBoot(*args, **kwargs)
Bases: PXEBaseMixin, BootInterface

capabilities = ['ramdisk_boot', 'pxe_boot']

http_boot_enabled = True

class ironic.drivers.modules.pxe.PXEAnacondaDeploy(*args, **kwargs)
Bases: AgentBaseMixin, HeartbeatMixin, DeployInterface

clean_up(task)
Clean up the deployment environment for the tasks node.

Unlinks TFTP and instance images and triggers image cache cleanup. Removes the TFTP
configuration files for this node.

Parameters
task a TaskManager instance containing the node to act on.

deploy(task)
Perform a deployment to the tasks node.

Perform the necessary work to deploy an image onto the specified node. This method will
be called after prepare(), which may have already performed any preparatory steps, such as
pre-caching some data for the node.

Parameters
task A TaskManager instance containing the node to act on.

Returns
status of the deploy. One of ironic.common.states.

5.1. Developers Guide 1263

Ironic Documentation, Release 26.1.2.dev21

deploy_has_started(task)

deploy_is_done(task)

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare(task)
Prepare the deployment environment for the tasks node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor.

This method is called before deploy.

Parameters
task A TaskManager instance containing the node to act on.

reboot_to_instance(task)
Method invoked after the deployment is completed.

Parameters
task a TaskManager instance

should_manage_boot(task)
Whether agent boot is managed by ironic.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.modules.pxe.PXEBoot(*args, **kwargs)
Bases: PXEBaseMixin, BootInterface

capabilities = ['ramdisk_boot', 'pxe_boot']

1264 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.pxe_base module

Base PXE Interface Methods

class ironic.drivers.modules.pxe_base.PXEBaseMixin

Bases: object

clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance. It unlinks the
instance kernel/ramdisk in nodes directory in tftproot and removes the PXE config.

Parameters
task a task from TaskManager.

Returns
None

clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up the PXE environment that was setup for booting the deploy or rescue
ramdisk. It unlinks the deploy/rescue kernel/ramdisk in the nodes directory in tftproot and
removes its PXE config.

Parameters

• task a task from TaskManager.

• mode Label indicating a deploy or rescue operation was carried out on the
node. Supported values are deploy and rescue. Defaults to deploy, indicating
deploy operation was carried out.

Returns
None

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

http_boot_enabled = False

ipxe_enabled = False

prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes instance_info. In case of netboot, it updates the dhcp entries and switches the PXE
config. In case of localboot, it cleans up the PXE config.

Parameters
task a task from TaskManager.

Returns
None

5.1. Developers Guide 1265

Ironic Documentation, Release 26.1.2.dev21

prepare_ramdisk(task, ramdisk_params)
Prepares the boot of Ironic ramdisk using PXE.

This method prepares the boot of the deploy or rescue kernel/ramdisk after reading relevant
information from the nodes driver_info and instance_info.

Parameters

• task a task from TaskManager.

• ramdisk_params the parameters to be passed to the ramdisk. pxe driver
passes these parameters as kernel command-line arguments.

Returns
None

Raises
MissingParameterValue, if some information is missing in nodes driver_info or
instance_info.

Raises
InvalidParameterValue, if some information provided is invalid.

Raises
IronicException, if some power or set boot boot device operation failed on the
node.

validate(task)
Validate the PXE-specific info for booting deploy/instance images.

This method validates the PXE-specific info for booting the ramdisk and instance on the node.
If invalid, raises an exception; otherwise returns None.

Parameters
task a task from TaskManager.

Returns
None

Raises
InvalidParameterValue, if some parameters are invalid.

Raises
MissingParameterValue, if some required parameters are missing.

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

Raises
UnsupportedDriverExtension

validate_rescue(task)
Validate that the node has required properties for rescue.

Parameters
task a TaskManager instance with the node being checked

1266 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if node is missing one or more required parameters

ironic.drivers.modules.ramdisk module

Ramdisk Deploy Interface

class ironic.drivers.modules.ramdisk.RamdiskDeploy(*args, **kwargs)
Bases: AgentBaseMixin, HeartbeatMixin, DeployInterface

deploy(task)
Perform a deployment to the tasks node.

Perform the necessary work to deploy an image onto the specified node. This method will
be called after prepare(), which may have already performed any preparatory steps, such as
pre-caching some data for the node.

Parameters
task A TaskManager instance containing the node to act on.

Returns
status of the deploy. One of ironic.common.states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

prepare(task)
Prepare the deployment environment for the tasks node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor.

This method is called before deploy.

Parameters
task A TaskManager instance containing the node to act on.

validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

5.1. Developers Guide 1267

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue on missing parameter(s)

ironic.drivers.modules.snmp module

Ironic SNMP power manager.

Provides basic power control using an SNMP-enabled smart power controller. Uses a pluggable driver
model to support devices with different SNMP object models.

class ironic.drivers.modules.snmp.SNMPClient(address, port, version,
read_community=None,
write_community=None, user=None,
auth_proto=None, auth_key=None,
priv_proto=None, priv_key=None,
context_engine_id=None,
context_name=None)

Bases: object

SNMP client object.

Performs low level SNMP get and set operations. Encapsulates all interaction with PySNMP to
simplify dynamic importing and unit testing.

get(oid)
Use PySNMP to perform an SNMP GET operation on a single object.

Parameters
oid The OID of the object to get.

Raises
SNMPFailure if an SNMP request fails.

Returns
The value of the requested object.

get_next(oid)
Use PySNMP to perform an SNMP GET NEXT operation on a table object.

Parameters
oid The OID of the object to get.

Raises
SNMPFailure if an SNMP request fails.

Returns
A list of values of the requested table object.

set(oid, value)
Use PySNMP to perform an SNMP SET operation on a single object.

Parameters

• oid The OID of the object to set.

• value The value of the object to set.

1268 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
SNMPFailure if an SNMP request fails.

class ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitch(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for APC MasterSwitch PDU devices.

SNMP objects for APC SNMPDriverAPCMasterSwitch PDU: 1.3.6.1.4.1.318.1.1.4.4.2.1.3 sPDU-
OutletCtl Values: 1=On, 2=Off, 3=PowerCycle, [more options follow]

oid_device = (318, 1, 1, 4, 4, 2, 1, 3)

system_id = (318, 1, 1, 4)

value_power_off = 2

value_power_on = 1

class ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitchPlus(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for APC MasterSwitchPlus PDU devices.

SNMP objects for APC SNMPDriverAPCMasterSwitchPlus PDU: 1.3.6.1.4.1.318.1.1.6.5.1.1.5
sPDUOutletControlMSPOutletCommand Values: 1=On, 3=Off, [more options follow]

oid_device = (318, 1, 1, 6, 5, 1, 1, 5)

system_id = (318, 1, 1, 6)

value_power_off = 3

value_power_on = 1

class ironic.drivers.modules.snmp.SNMPDriverAPCRackPDU(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for APC RackPDU devices.

SNMP objects for APC SNMPDriverAPCRackPDU PDU: # 1.3.6.1.4.1.318.1.1.12.3.3.1.1.4 rP-
DUOutletControlOutletCommand Values: 1=On, 2=Off, 3=PowerCycle, [more options follow]

oid_device = (318, 1, 1, 12, 3, 3, 1, 1, 4)

system_id = (318, 1, 1, 12)

value_power_off = 2

value_power_on = 1

class ironic.drivers.modules.snmp.SNMPDriverAten(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for Aten PDU devices.

SNMP objects for Aten PDU: 1.3.6.1.4.1.21317.1.3.2.2.2.2 Outlet Power Values: 1=Off, 2=On,
3=Pending, 4=Reset

oid_device = (21317, 1, 3, 2, 2, 2, 2)

5.1. Developers Guide 1269

Ironic Documentation, Release 26.1.2.dev21

system_id = (21317,)

value_power_off = 1

value_power_on = 2

class ironic.drivers.modules.snmp.SNMPDriverAuto(*args, **kwargs)
Bases: SNMPDriverBase

SYS_OBJ_OID = (1, 3, 6, 1, 2, 1, 1, 2)

class ironic.drivers.modules.snmp.SNMPDriverBase(snmp_info)
Bases: object

SNMP power driver base class.

The SNMPDriver class hierarchy implements manufacturer-specific MIB actions over SNMP to
interface with different smart power controller products.

oid_enterprise = (1, 3, 6, 1, 4, 1)

power_off()

Set the power state to this node to OFF.

Raises
SNMPFailure if an SNMP request fails.

Returns
power state. One of ironic.common.states.

power_on()

Set the power state to this node to ON.

Raises
SNMPFailure if an SNMP request fails.

Returns
power state. One of ironic.common.states.

power_reset()

Reset the power to this node.

Raises
SNMPFailure if an SNMP request fails.

Returns
power state. One of ironic.common.states.

power_state()

Returns a nodes current power state.

Raises
SNMPFailure if an SNMP request fails.

Returns
power state. One of ironic.common.states.

retry_interval = 1

1270 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.snmp.SNMPDriverBaytechMRP27(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for Baytech MRP27 PDU devices.

SNMP objects for Baytech MRP27 PDU: 4779, 1, 3, 5, 3, 1, 3, {unit_id} Outlet Power Values:
0=Off, 1=On, 2=Reboot

oid_device = (4779, 1, 3, 5, 3, 1, 3, 1)

unit_id = 1

value_power_off = 0

value_power_on = 1

class ironic.drivers.modules.snmp.SNMPDriverCyberPower(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for CyberPower PDU devices.

SNMP objects for CyberPower PDU: 1.3.6.1.4.1.3808.1.1.3.3.3.1.1.4 ePDUOutletControlOutlet-
Command Values: 1=On, 2=Off, 3=PowerCycle, [more options follow]

oid_device = (3808, 1, 1, 3, 3, 3, 1, 1, 4)

system_id = (3808,)

value_power_off = 2

value_power_on = 1

class ironic.drivers.modules.snmp.SNMPDriverEatonPower(*args, **kwargs)
Bases: SNMPDriverBase

SNMP driver class for Eaton Power PDU.

The Eaton power PDU does not follow the model of SNMPDriverSimple as it uses multiple SNMP
objects.

SNMP objects for Eaton Power PDU 1.3.6.1.4.1.534.6.6.7.6.6.1.2.<outlet ID> outletControlStatus
Read 0=off, 1=on, 2=pending off, 3=pending on 1.3.6.1.4.1.534.6.6.7.6.6.1.3.<outlet ID> outlet-
ControlOffCmd Write 0 for immediate power off 1.3.6.1.4.1.534.6.6.7.6.6.1.4.<outlet ID> outlet-
ControlOnCmd Write 0 for immediate power on

oid_device = (534, 6, 6, 7, 6, 6, 1)

oid_poweroff = (4,)

oid_poweron = (3,)

oid_status = (2,)

status_off = 0

status_on = 1

status_pending_off = 2

5.1. Developers Guide 1271

Ironic Documentation, Release 26.1.2.dev21

status_pending_on = 3

system_id = (534,)

value_power_off = 0

value_power_on = 0

class ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2(*args, **kwargs)
Bases: SNMPDriverBase

SNMP driver class for Raritan PDU2 PDUs.

http://support.raritan.com/px2/version-2.4.1/mibs/pdu2-mib-020400-39592.txt http:
//cdn.raritan.com/download/PX/v1.5.20/PDU-MIB.txt

Command:
snmpset -v2c -c private -m+PDU2-MIB <pdu IP address> PDU2-
MIB::switchingOperation.1.4 = cycle snmpset -v2c -c private <pdu IP address>
.1.3.6.1.4.1.13742.6.4.1.2.1.2.1.4 i 2

Output:
PDU2-MIB::switchingOperation.1.4 = INTEGER: cycle(2)

aboveUpperCritical = 6

aboveUpperWarning = 5

alarmed = 11

belowLowerCritical = 2

belowLowerWarning = 3

detected = 9

fail = 14

inSync = 20

marginal = 13

no = 16

notDetected = 10

oid_device = (13742, 6, 4, 1, 2, 1)

oid_power_action = (2,)

oid_power_status = (3,)

oid_tower_infeed_idx = (1,)

ok = 12

one = 18

outOfSync = 21

1272 Chapter 5. Contributor Guide

http://support.raritan.com/px2/version-2.4.1/mibs/pdu2-mib-020400-39592.txt
http://cdn.raritan.com/download/PX/v1.5.20/PDU-MIB.txt
http://cdn.raritan.com/download/PX/v1.5.20/PDU-MIB.txt

Ironic Documentation, Release 26.1.2.dev21

standby = 17

status_closed = 1

status_normal = 4

status_off = 8

status_on = 7

status_open = 0

two = 19

unavailable = -1

value_power_off = 0

value_power_on = 1

yes = 15

class ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3(*args, **kwargs)
Bases: SNMPDriverBase

SNMP driver class for Server Technology Sentry 3 PDUs.

ftp://ftp.servertech.com/Pub/SNMP/sentry3/Sentry3.mib

SNMP objects for Server Technology Power PDU. 1.3.6.1.4.1.1718.3.2.3.1.5.1.1.<out-
let ID> outletStatus Read 0=off, 1=on, 2=off wait, 3=on wait, [more options follow]
1.3.6.1.4.1.1718.3.2.3.1.11.1.1.<outlet ID> outletControlAction Write 0=no action, 1=on,
2=off, 3=reboot

oid_device = (1718, 3, 2, 3, 1)

oid_power_action = (11,)

oid_power_status = (5,)

oid_tower_infeed_idx = (1, 1)

status_off = 0

status_off_wait = 2

status_on = 1

status_on_wait = 3

value_power_off = 2

value_power_on = 1

5.1. Developers Guide 1273

ftp://ftp.servertech.com/Pub/SNMP/sentry3/Sentry3.mib

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4(*args, **kwargs)
Bases: SNMPDriverBase

SNMP driver class for Server Technology Sentry 4 PDUs.

https://www.servertech.com/support/sentry-mib-oid-tree-downloads

SNMP objects for Server Technology Power PDU. 1.3.6.1.4.1.1718.4.1.8.5.1.1<outlet ID> outlet-
Status notSet (0) fixedOn (1) idleOff (2) idleOn (3) [more options follow] pendOn (8) pendOff (9)
off (10) on (11) [more options follow] eventOff (16) eventOn (17) eventReboot (18) eventShut-
down (19) 1.3.6.1.4.1.1718.4.1.8.5.1.2.<outlet ID> outletControlAction Write 0=no action, 1=on,
2=off, 3=reboot

fixedOn = 1

idleOff = 2

idleOn = 3

lockedOff = 14

lockedOn = 15

notSet = 0

ocpOff = 6

ocpOn = 7

oid_device = (1718, 4, 1, 8, 5, 1)

oid_power_action = (2,)

oid_power_status = (1,)

oid_tower_infeed_idx = (1, 1)

reboot = 12

shutdown = 13

status_off = 10

status_on = 11

status_pendOff = 9

status_pendOn = 8

value_power_off = 2

value_power_on = 1

wakeOff = 4

wakeOn = 5

1274 Chapter 5. Contributor Guide

https://www.servertech.com/support/sentry-mib-oid-tree-downloads

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.modules.snmp.SNMPDriverSimple(*args, **kwargs)
Bases: SNMPDriverBase

SNMP driver base class for simple PDU devices.

Here, simple refers to devices which provide a single SNMP object for controlling the power state
of an outlet.

The default OID of the power state object is of the form <enterprise OID>.<device OID>.<outlet
ID>. A different OID may be specified by overriding the _snmp_oid method in a subclass.

abstract property oid_device

Device dependent portion of the power state object OID.

abstract property value_power_off

Value representing power off state.

abstract property value_power_on

Value representing power on state.

class ironic.drivers.modules.snmp.SNMPDriverTeltronix(*args, **kwargs)
Bases: SNMPDriverSimple

SNMP driver class for Teltronix PDU devices.

SNMP objects for Teltronix PDU: 1.3.6.1.4.1.23620.1.2.2.1.4 Outlet Power Values: 1=Off, 2=On

oid_device = (23620, 1, 2, 2, 1, 4)

system_id = (23620,)

value_power_off = 1

value_power_on = 2

class ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU(*args, **kwargs)
Bases: SNMPDriverBase

SNMP driver class for VertivGeist NU30017L/NU30019L PDU.

https://mibs.observium.org/mib/GEIST-V5-MIB/

off = 2

off2on = 4

oid_device = (21239, 5, 2, 3, 5, 1)

oid_power_action = (6,)

oid_power_status = (4,)

oid_tower_infeed_idx = (1,)

on = 1

on2off = 3

rebootOff = 5

5.1. Developers Guide 1275

https://mibs.observium.org/mib/GEIST-V5-MIB/

Ironic Documentation, Release 26.1.2.dev21

rebootOn = 5

unavailable = 7

value_power_off = 4

value_power_on = 2

class ironic.drivers.modules.snmp.SNMPPower(*args, **kwargs)
Bases: PowerInterface

SNMP Power Interface.

This PowerInterface class provides a mechanism for controlling the power state of a physical device
using an SNMP-enabled smart power controller.

get_power_state(task)
Get the current power state.

Poll the SNMP device for the current power state of the node.

Parameters
task An instance of ironic.manager.task_manager.TaskManager.

Raises
MissingParameterValue if required SNMP parameters are missing.

Raises
InvalidParameterValue if SNMP parameters are invalid.

Raises
SNMPFailure if an SNMP request fails.

Returns
power state. One of ironic.common.states.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

reboot(task, timeout=None)
Cycles the power to a node.

Parameters

• task An instance of ironic.manager.task_manager.TaskManager.

• timeout timeout (in seconds). Unsupported by this interface.

Raises
MissingParameterValue if required SNMP parameters are missing.

Raises
InvalidParameterValue if SNMP parameters are invalid.

Raises
PowerStateFailure if the final power state of the node is not POWER_ON after
the timeout.

1276 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
SNMPFailure if an SNMP request fails.

set_power_state(task, pstate, timeout=None)
Turn the power on or off.

Set the power state of a node.

Parameters

• task An instance of ironic.manager.task_manager.TaskManager.

• pstate Either POWER_ON or POWER_OFF from :class:
ironic.common.states.

• timeout timeout (in seconds). Unsupported by this interface.

Raises
MissingParameterValue if required SNMP parameters are missing.

Raises
InvalidParameterValue if SNMP parameters are invalid or pstate is invalid.

Raises
PowerStateFailure if the final power state of the node is not as requested after
the timeout.

Raises
SNMPFailure if an SNMP request fails.

validate(task)
Check that node.driver_info contains the requisite fields.

Raises
MissingParameterValue if required SNMP parameters are missing.

Raises
InvalidParameterValue if SNMP parameters are invalid.

ironic.drivers.modules.snmp.memoize(f)

ironic.drivers.modules.snmp.retry_on_outdated_cache(f)

Module contents

Submodules

ironic.drivers.base module

Abstract base classes for drivers.

ironic.drivers.base.ALL_INTERFACES = {'bios', 'boot', 'console', 'deploy',
'firmware', 'inspect', 'management', 'network', 'power', 'raid', 'rescue',
'storage', 'vendor'}

Constant holding all known interfaces.

5.1. Developers Guide 1277

Ironic Documentation, Release 26.1.2.dev21

class ironic.drivers.base.BIOSInterface(*args, **kwargs)
Bases: BaseInterface

abstract apply_configuration(task, settings)
Validate & apply BIOS settings on the given node.

This method takes the BIOS settings from the settings param and applies BIOS settings on
the given node. It may also validate the given bios settings before applying any settings and
manage failures when setting an invalid BIOS config. In the case of needing password to
update the BIOS config, it will be taken from the driver_info properties. After the BIOS
configuration is done, cache_bios_settings will be called to update the nodes BIOS setting
table with the BIOS configuration applied on the node.

Parameters

• task a TaskManager instance.

• settings Dictionary containing the BIOS configuration.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS config-
uration.

Raises
InvalidParameterValue, if validation of settings fails.

Raises
MissingParameterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if BIOS configuration is in progress asynchronously or
None if it is complete.

abstract cache_bios_settings(task)
Store or update BIOS properties on the given node.

This method stores BIOS properties to the bios_settings table during cleaning operation and
updates bios_settings table when apply_configuration() and factory_reset() are called to set
new BIOS configurations. It will also update the timestamp of each bios setting.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting BIOS
properties from bare metal.

Returns
None.

abstract factory_reset(task)
Reset BIOS configuration to factory default on the given node.

This method resets BIOS configuration to factory default on the given node. After the BIOS
reset action is done, cache_bios_settings will be called to update the nodes BIOS settings
table with default bios settings.

Parameters
task a TaskManager instance.

1278 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support BIOS reset.

Returns
states.CLEANWAIT if BIOS configuration is in progress asynchronously or
None if it is complete.

interface_type = 'bios'

Interface type, used for clean steps and logging.

class ironic.drivers.base.BareDriver

Bases: object

A bare driver object which will have interfaces attached later.

Any composable interfaces should be added as class attributes of this class, as well as appended
to core_interfaces or standard_interfaces here.

property all_interfaces

bios = None

Standard attribute for BIOS related features.

A reference to an instance of :class:BIOSInterface.

boot = None

Standard attribute for boot related features.

A reference to an instance of :class:BootInterface.

console = None

Standard attribute for managing console access.

A reference to an instance of :class:ConsoleInterface.

property core_interfaces

Interfaces that are required to be implemented.

deploy = None

Core attribute for managing deployments.

A reference to an instance of :class:DeployInterface.

firmware = None

Standard attribute for inspection related features.

A reference to an instance of :class:FirmwareInterface.

get_properties()

Get the properties of the driver.

Returns
dictionary of <property name>:<property description> entries.

inspect = None

Standard attribute for inspection related features.

A reference to an instance of :class:InspectInterface.

5.1. Developers Guide 1279

Ironic Documentation, Release 26.1.2.dev21

management = None

Standard attribute for management related features.

A reference to an instance of :class:ManagementInterface.

network = None

Core attribute for network connectivity.

A reference to an instance of :class:NetworkInterface.

property non_vendor_interfaces

property optional_interfaces

Interfaces that can be no-op.

power = None

Core attribute for managing power state.

A reference to an instance of :class:PowerInterface.

raid = None

Standard attribute for RAID related features.

A reference to an instance of :class:RaidInterface.

rescue = None

Standard attribute for accessing rescue features.

A reference to an instance of :class:RescueInterface.

storage = None

Standard attribute for (remote) storage interface.

A reference to an instance of :class:StorageInterface.

vendor = None

Attribute for accessing any vendor-specific extensions.

A reference to an instance of :class:VendorInterface.

class ironic.drivers.base.BaseInterface(*args, **kwargs)
Bases: object

A base interface implementing common functions for Driver Interfaces.

execute_clean_step(task, step)
Execute the clean step on task.node.

A clean step must take a single positional argument: a TaskManager object. It may take one
or more keyword variable arguments (for use with manual cleaning only.)

A step can be executed synchronously or asynchronously. A step should return None if the
method has completed synchronously or states.CLEANWAIT if the step will continue to
execute asynchronously. If the step executes asynchronously, it should issue a call to the
continue_node_clean RPC, so the conductor can begin the next clean step.

Parameters

• task A TaskManager object

• step The clean step dictionary representing the step to execute

1280 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
None if this method has completed synchronously, or states.CLEANWAIT if
the step will continue to execute asynchronously.

execute_deploy_step(task, step)
Execute the deploy step on task.node.

A deploy step must take a single positional argument: a TaskManager object. It may take
one or more keyword variable arguments (for use in the future, when deploy steps can be
specified via the API).

A step can be executed synchronously or asynchronously. A step should return None if the
method has completed synchronously or states.DEPLOYWAIT if the step will continue to
execute asynchronously. If the step executes asynchronously, it should issue a call to the
continue_node_deploy RPC, so the conductor can begin the next deploy step.

Parameters

• task A TaskManager object

• step The deploy step dictionary representing the step to execute

Returns
None if this method has completed synchronously, or states.DEPLOYWAIT if
the step will continue to execute asynchronously.

execute_service_step(task, step)
Execute the service step on task.node.

A verify step must take a single positional argument: a TaskManager object. It does not take
keyword variable arguments.

Parameters

• task A TaskManager object

• step The deploy step dictionary representing the step to execute

Returns
None if this method has completed synchronously

execute_verify_step(task, step)
Execute the verify step on task.node.

A verify step must take a single positional argument: a TaskManager object. It does not take
keyword variable arguments.

Parameters

• task A TaskManager object

• step The deploy step dictionary representing the step to execute

Returns
None if this method has completed synchronously

get_clean_steps(task)
Get a list of (enabled and disabled) clean steps for the interface.

This function will return all clean steps (both enabled and disabled) for the interface, in an
unordered list.

5.1. Developers Guide 1281

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager object, useful for interfaces overriding this function

Raises
NodeCleaningFailure if there is a problem getting the steps from the driver.
For example, when a node (using an agent driver) has just been enrolled and
the agent isnt alive yet to be queried for the available clean steps.

Returns
A list of clean step dictionaries

get_deploy_steps(task)
Get a list of (enabled and disabled) deploy steps for the interface.

This function will return all deploy steps (both enabled and disabled) for the interface, in an
unordered list.

Parameters
task A TaskManager object, useful for interfaces overriding this function

Raises
InstanceDeployFailure if there is a problem getting the steps from the
driver. For example, when a node (using an agent driver) has just been enrolled
and the agent isnt alive yet to be queried for the available deploy steps.

Returns
A list of deploy step dictionaries

abstract get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

get_service_steps(task)
Get a list of service steps for the interface.

This function will return all service steps (both enabled and disabled) for the interface, in an
unordered list.

Parameters
task A TaskManager object, useful for interfaces overriding this function

Raises
NodeServiceFailure if there is a problem getting the steps from the driver.
For example, when a node (using an agent driver) has just been enrolled and
the agent isnt alive yet to be queried for the available clean steps.

Returns
A list of clean step dictionaries

get_verify_steps(task)
Get a list of (enabled and disabled) verify steps for the interface.

This function will return all verify steps (both enabled and disabled) for the interface, in an
unordered list.

Parameters
task A TaskManager object, useful for interfaces overriding this function

1282 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeVerifyFailure if there is a problem getting the steps from the driver.
For example, when a node (using an agent driver) has just been enrolled and
the agent isnt alive yet to be queried for the available verify steps.

Returns
A list of deploy step dictionaries

interface_type = 'base'

Interface type, used for clean steps and logging.

supported = True

Indicates if an interface is supported.

This will be set to False for interfaces which are untested in first- or third-party CI, or in the
process of being deprecated.

abstract validate(task)
Validate the driver-specific Node deployment info.

This method validates whether the driver_info and/or instance_info properties of the tasks
node contains the required information for this interface to function.

This method is often executed synchronously in API requests, so it should not conduct long-
running checks.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InvalidParameterValue on malformed parameter(s)

Raises
MissingParameterValue on missing parameter(s)

class ironic.drivers.base.BootInterface(*args, **kwargs)
Bases: BaseInterface

Interface for boot-related actions.

capabilities = []

abstract clean_up_instance(task)
Cleans up the boot of instance.

This method cleans up the environment that was setup for booting the instance.

Parameters
task A task from TaskManager.

Returns
None

abstract clean_up_ramdisk(task)
Cleans up the boot of ironic ramdisk.

This method cleans up the environment that was setup for booting the deploy or rescue
ramdisk.

5.1. Developers Guide 1283

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A task from TaskManager.

Returns
None

interface_type = 'boot'

Interface type, used for clean steps and logging.

abstract prepare_instance(task)
Prepares the boot of instance.

This method prepares the boot of the instance after reading relevant information from the
nodes database.

Parameters
task A task from TaskManager.

Returns
None

abstract prepare_ramdisk(task, ramdisk_params)
Prepares the boot of Ironic ramdisk.

This method prepares the boot of the deploy or rescue ramdisk after reading relevant infor-
mation from the nodes database.

Parameters

• task A task from TaskManager.

• ramdisk_params The options to be passed to the ironic ramdisk. Different
implementations might want to boot the ramdisk in different ways by passing
parameters to them. For example,

When Agent ramdisk is booted to deploy a node, it takes the parameters ipa-
api-url, etc.

Other implementations can make use of ramdisk_params to pass such infor-
mation. Different implementations of boot interface will have different ways
of passing parameters to the ramdisk.

Returns
None

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

Raises
UnsupportedDriverExtension

validate_rescue(task)
Validate that the node has required properties for rescue.

1284 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance with the node being checked

Raises
MissingParameterValue if node is missing one or more required parameters

Raises
UnsupportedDriverExtension

class ironic.drivers.base.ConsoleInterface(*args, **kwargs)
Bases: BaseInterface

Interface for console-related actions.

abstract get_console(task)
Get connection information about the console.

This method should return the necessary information for the client to access the console.

Parameters
task A TaskManager instance containing the node to act on.

Returns
the console connection information.

interface_type = 'console'

Interface type, used for clean steps and logging.

abstract start_console(task)
Start a remote console for the tasks node.

This method should not raise an exception if console already started.

Parameters
task A TaskManager instance containing the node to act on.

abstract stop_console(task)
Stop the remote console session for the tasks node.

Parameters
task A TaskManager instance containing the node to act on.

class ironic.drivers.base.DeployInterface(*args, **kwargs)
Bases: BaseInterface

Interface for deploy-related actions.

abstract clean_up(task)
Clean up the deployment environment for the tasks node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver. It should erase anything cached by the prepare method.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor, and it may be called by multiple conductors in parallel.
Therefore, it must not require an exclusive lock.

This method is called before tear_down.

5.1. Developers Guide 1285

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

abstract deploy(task)
Perform a deployment to the tasks node.

Perform the necessary work to deploy an image onto the specified node. This method will
be called after prepare(), which may have already performed any preparatory steps, such as
pre-caching some data for the node.

Parameters
task A TaskManager instance containing the node to act on.

Returns
status of the deploy. One of ironic.common.states.

heartbeat(task, callback_url, agent_version, agent_verify_ca=None, agent_status=None,
agent_status_message=None)

Record a heartbeat for the node.

Parameters

• task A TaskManager instance containing the node to act on.

• callback_url a URL to use to call to the ramdisk.

• agent_version The version of the agent that is heartbeating

• agent_verify_ca TLS certificate for the agent.

• agent_status Status of the heartbeating agent

• agent_status_message Message describing the agent status

Returns
None

interface_type = 'deploy'

Interface type, used for clean steps and logging.

abstract prepare(task)
Prepare the deployment environment for the tasks node.

If preparation of the deployment environment ahead of time is possible, this method should
be implemented by the driver.

If implemented, this method must be idempotent. It may be called multiple times for the
same node on the same conductor.

This method is called before deploy.

Parameters
task A TaskManager instance containing the node to act on.

prepare_cleaning(task)
Prepare the node for cleaning tasks.

For example, nodes that use the Ironic Python Agent will need to boot the ramdisk in order
to do in-band cleaning tasks.

1286 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

If the function is asynchronous, the driver will need to handle settings
node.driver_internal_info[clean_steps] and node.clean_step, as they would be set in
ironic.conductor.manager._do_node_clean, but cannot be set when this is asynchronous.
After, the interface should make an RPC call to continue_node_cleaning to start cleaning.

NOTE(JoshNang) this should be moved to BootInterface when it gets implemented.

Parameters
task A TaskManager instance containing the node to act on.

Returns
If this function is going to be asynchronous, should return states.CLEANWAIT.
Otherwise, should return None. The interface will need to call
_get_cleaning_steps and then RPC to continue_node_cleaning

prepare_service(task)
Prepare the node for servicing tasks.

For example, nodes that use the Ironic Python Agent will need to boot the ramdisk in order
to do in-band service tasks.

If the function is asynchronous, the driver will need to handle settings
node.driver_internal_info[service_steps] and node.service_step, as they would be set
in ironic.conductor.manager._do_node_service, but cannot be set when this is asynchronous.
After, the interface should make an RPC call to continue_node_servicing to start cleaning.

Parameters
task A TaskManager instance containing the node to act on.

Returns
If this function is going to be asynchronous, should return
states.SERVICEWAIT. Otherwise, should return None. The interface
will need to call _get_cleaning_steps and then RPC to continue_node_service.

abstract take_over(task)
Take over management of this tasks node from a dead conductor.

If conductors hosts maintain a static relationship to nodes, this method should be imple-
mented by the driver to allow conductors to perform the necessary work during the remapping
of nodes to conductors when a conductor joins or leaves the cluster.

For example, the PXE driver has an external dependency:
Neutron must forward DHCP BOOT requests to a conductor which has prepared the
tftpboot environment for the given node. When a conductor goes offline, another con-
ductor must change this setting in Neutron as part of remapping that nodes control to
itself. This is performed within the takeover method.

Parameters
task A TaskManager instance containing the node to act on.

abstract tear_down(task)
Tear down a previous deployment on the tasks node.

Given a node that has been previously deployed to, do all cleanup and tear down necessary
to un-deploy that node.

5.1. Developers Guide 1287

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

Returns
status of the deploy. One of ironic.common.states.

tear_down_cleaning(task)
Tear down after cleaning is completed.

Given that cleaning is complete, do all cleanup and tear down necessary to allow the node to
be deployed to again.

NOTE(JoshNang) this should be moved to BootInterface when it gets implemented.

Parameters
task A TaskManager instance containing the node to act on.

tear_down_service(task)
Tear down after servicing is completed.

Given that servicing is complete, do all cleanup and tear down necessary to allow the node
to be returned to an active state.

Parameters
task A TaskManager instance containing the node to act on.

class ironic.drivers.base.FirmwareInterface(*args, **kwargs)
Bases: BaseInterface

Base class for firmware interface

abstract cache_firmware_components(task)
Store or update Firmware Components on the given node.

This method stores Firmware Components to the firmware_information table during cleaning
operation. It will also update the timestamp of each Firmware Component.

Parameters
task a TaskManager instance.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support getting
Firmware Components from bare metal.

interface_type = 'firmware'

Interface type, used for clean steps and logging.

abstract update(task, settings)
Update the Firmware on the given using the settings for components.

Parameters

• task a TaskManager instance.

• settings a list of dictionaries, each dictionary contains the component
name and the url that will be used to update the firmware.

Raises
UnsupportedDriverExtension, if the nodes driver doesnt support update via the
interface.

1288 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue, if validation of the settings fails.

Raises
MissingParamterValue, if some required parameters are missing.

Returns
states.CLEANWAIT if Firmware update with the settings is in progress asyn-
chronously of None if it is complete.

class ironic.drivers.base.InspectInterface(*args, **kwargs)
Bases: BaseInterface

Interface for inspection-related actions.

ESSENTIAL_PROPERTIES = {'cpu_arch', 'local_gb', 'memory_mb'}

The properties required by scheduler/deploy.

abort(task)
Abort asynchronized hardware inspection.

Abort an ongoing hardware introspection, this is only used for asynchronize based inspect
interface.

NOTE: This interface is called with node exclusive lock held, the interface implementation
is expected to be a quick processing.

Parameters
task a task from TaskManager.

Raises
UnsupportedDriverExtension, if the method is not implemented by specific in-
spect interface.

continue_inspection(task, inventory, plugin_data=None)
Continue in-band hardware inspection.

Should not be implemented for purely out-of-band implementations.

Parameters

• task a task from TaskManager.

• inventory hardware inventory from the node.

• plugin_data optional plugin-specific data.

Raises
UnsupportedDriverExtension, if the method is not implemented by specific in-
spect interface.

abstract inspect_hardware(task)
Inspect hardware.

Inspect hardware to obtain the essential & additional hardware properties.

Parameters
task A task from TaskManager.

Raises
HardwareInspectionFailure, if unable to get essential hardware properties.

5.1. Developers Guide 1289

Ironic Documentation, Release 26.1.2.dev21

Returns
Resulting state of the inspection i.e. states.MANAGEABLE or None.

interface_type = 'inspect'

Interface type, used for clean steps and logging.

class ironic.drivers.base.ManagementInterface(*args, **kwargs)
Bases: BaseInterface

Interface for management related actions.

attach_virtual_media(task, device_type, image_url)
Attach a virtual media device to the node.

Parameters

• task A TaskManager instance containing the node to act on.

• device_type Device type, one of ironic.common.boot_devices.
VMEDIA_DEVICES.

• image_url URL of the image to attach, HTTP or HTTPS.

Raises
UnsupportedDriverExtension

detach_virtual_media(task, device_types=None)
Detach some or all virtual media devices from the node.

Parameters

• task A TaskManager instance containing the node to act on.

• device_types A collection of device type, ones from ironic.common.
boot_devices.VMEDIA_DEVICES. If not provided, all devices are de-
tached.

Raises
UnsupportedDriverExtension

detect_vendor(task)
Detects, stores, and returns the hardware vendor.

If the Node object properties field does not already contain a vendor field, then this
method is intended to query Detects the BMC hardware vendor and stores the returned value
with-in the Node object properties field if detected.

Parameters
task A task from TaskManager.

Raises
InvalidParameterValue if an invalid component, indicator or state is specified.

Raises
MissingParameterValue if a required parameter is missing

Returns
String representing the BMC reported Vendor or Manufacturer, otherwise re-
turns None.

1290 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract get_boot_device(task)
Get the current boot device for a node.

Provides the current boot device of the node. Be aware that not all drivers support this.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Returns

A dictionary containing:

boot_device
Ahe boot device, one of ironic.common.boot_devices or None if
it is unknown.

persistent
Whether the boot device will persist to all future boots or not, None if
it is unknown.

get_boot_mode(task)
Get the current boot mode for a node.

Provides the current boot mode of the node.

NOTE: Not all drivers support this method. Older hardware
may not implement that.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Raises
DriverOperationError or its derivative in case of driver runtime error.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

Returns
The boot mode, one of ironic.common.boot_mode or None if it is unknown.

get_indicator_state(task, component, indicator)
Get current state of the indicator of the hardware component.

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator ID (as reported by get_supported_indicators).

5.1. Developers Guide 1291

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if an invalid component or indicator is specified.

Raises
MissingParameterValue if a required parameter is missing

Returns
Current state of the indicator, one of ironic.common.indicator_states.

get_mac_addresses(task)
Get MAC address information for the node.

Parameters
task A TaskManager instance containing the node to act on.

Raises
UnsupportedDriverExtension

Returns
A list of MAC addresses for the node

get_secure_boot_state(task)
Get the current secure boot state for the node.

NOTE: Not all drivers support this method. Older hardware
may not implement that.

Parameters
task A task from TaskManager.

Raises
MissingParameterValue if a required parameter is missing

Raises
DriverOperationError or its derivative in case of driver runtime error.

Raises
UnsupportedDriverExtension if secure boot is not supported by the driver or
the hardware

Returns
Boolean

abstract get_sensors_data(task)
Get sensors data method.

Parameters
task A TaskManager instance.

Raises
FailedToGetSensorData when getting the sensor data fails.

Raises
FailedToParseSensorData when parsing sensor data fails.

Returns

Returns a consistent format dict of sensor data grouped by sensor type, which
can be processed by Ceilometer. eg,

1292 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

{
'Sensor Type 1': {
'Sensor ID 1': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

},
'Sensor ID 2': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

}
},
'Sensor Type 2': {
'Sensor ID 3': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

},
'Sensor ID 4': {
'Sensor Reading': 'current value',
'key1': 'value1',
'key2': 'value2'

}
}

}

abstract get_supported_boot_devices(task)
Get a list of the supported boot devices.

Parameters
task A task from TaskManager.

Returns
A list with the supported boot devices defined in ironic.common.
boot_devices.

get_supported_boot_modes(task)
Get a list of the supported boot modes.

NOTE: Not all drivers support this method. Older hardware
may not implement that.

Parameters
task A task from TaskManager.

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

Raises
DriverOperationError or its derivative in case of driver runtime error.

5.1. Developers Guide 1293

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if a required parameter is missing

Returns
A list with the supported boot modes defined in ironic.common.
boot_modes. If boot mode support cant be determined, empty list is returned.

get_supported_indicators(task, component=None)
Get a map of the supported indicators (e.g. LEDs).

Parameters

• task A task from TaskManager.

• component If not None, return indicator information for just this component,
otherwise return indicators for all existing components.

Returns

A dictionary of hardware components (ironic.common.components) as keys
with values being dictionaries having indicator IDs as keys and indicator prop-
erties as values.

{
'chassis': {

'enclosure-0': {
"readonly": true,
"states": [

"off",
"on"

]
}

},
'system':

'blade-A': {
"readonly": true,
"states": [

"pff",
"on"

]
}

},
'drive':

'ssd0': {
"readonly": true,
"states": [

"off",
"on"

]
}

}
}

get_virtual_media(task)

1294 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Get all virtual media devices from the node.

Parameters
task A TaskManager instance containing the node to act on.

Raises
UnsupportedDriverExtension

inject_nmi(task)
Inject NMI, Non Maskable Interrupt.

Inject NMI (Non Maskable Interrupt) for a node immediately.

Parameters
task A TaskManager instance containing the node to act on.

Raises
UnsupportedDriverExtension

interface_type = 'management'

Interface type, used for clean steps and logging.

abstract set_boot_device(task, device, persistent=False)
Set the boot device for a node.

Set the boot device to use on next reboot of the node.

Parameters

• task A task from TaskManager.

• device The boot device, one of ironic.common.boot_devices.

• persistent Boolean value. True if the boot device will persist to all future
boots, False if not. Default: False.

Raises
InvalidParameterValue if an invalid boot device is specified.

Raises
MissingParameterValue if a required parameter is missing

set_boot_mode(task, mode)
Set the boot mode for a node.

Set the boot mode to use on next reboot of the node.

Drivers implementing this method are required to implement the get_supported_boot_modes
method as well.

NOTE: Not all drivers support this method. Hardware supporting only
one boot mode may not implement that.

Parameters

• task A task from TaskManager.

• mode The boot mode, one of ironic.common.boot_modes.

5.1. Developers Guide 1295

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if an invalid boot mode is specified.

Raises
MissingParameterValue if a required parameter is missing

Raises
UnsupportedDriverExtension if requested operation is not supported by the
driver

Raises
DriverOperationError or its derivative in case of driver runtime error.

set_indicator_state(task, component, indicator, state)
Set indicator on the hardware component to the desired state.

Parameters

• task A task from TaskManager.

• component The hardware component, one of ironic.common.
components.

• indicator Indicator ID (as reported by get_supported_indicators).

State
Desired state of the indicator, one of ironic.common.indicator_states.

Raises
InvalidParameterValue if an invalid component, indicator or state is specified.

Raises
MissingParameterValue if a required parameter is missing

set_secure_boot_state(task, state)
Set the current secure boot state for the node.

NOTE: Not all drivers support this method. Older hardware
may not implement that.

Parameters

• task A task from TaskManager.

• state A new state as a boolean.

Raises
MissingParameterValue if a required parameter is missing

Raises
DriverOperationError or its derivative in case of driver runtime error.

Raises
UnsupportedDriverExtension if secure boot is not supported by the driver or
the hardware

class ironic.drivers.base.NetworkInterface(*args, **kwargs)
Bases: BaseInterface

Base class for network interfaces.

1296 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

abstract add_cleaning_network(task)
Add the cleaning network to a node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError

add_inspection_network(task)
Add the inspection network to the node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

abstract add_provisioning_network(task)
Add the provisioning network to a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

add_rescuing_network(task)
Add the rescuing network to the node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

add_servicing_network(task)
Add the servicing network to the node.

Parameters
task A TaskManager instance.

Returns
a dictionary in the form {port.uuid: neutron_port[id]}

5.1. Developers Guide 1297

Ironic Documentation, Release 26.1.2.dev21

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

abstract configure_tenant_networks(task)
Configure tenant networks for a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

abstract get_current_vif(task, p_obj)
Returns the currently used VIF associated with port or portgroup

We are booting the node only in one network at a time, and presence of clean-
ing_vif_port_id means were doing cleaning, of provisioning_vif_port_id - provisioning, of
rescuing_vif_port_id - rescuing. Otherwise its a tenant network.

Parameters

• task A TaskManager instance.

• p_obj Ironic port or portgroup object.

Returns
VIF ID associated with p_obj or None.

get_node_network_data(task)
Return network configuration for node NICs.

Gather L2 and L3 network settings from ironic port/portgroups objects and underlying net-
work provider, then put together collected data in form of Nova network metadata (net-
work_data.json) dict.

Ironic would eventually pass network configuration to the node being managed out-of-band.

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

Returns
a dict holding network configuration information adhering Nova network meta-
data layout (network_data.json).

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

1298 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

interface_type = 'network'

Interface type, used for clean steps and logging.

need_power_on(task)
Check if node must be powered on before applying network changes

Parameters
task A TaskManager instance.

Returns
Boolean.

abstract port_changed(task, port_obj)
Handle any actions required when a port changes

Parameters

• task A TaskManager instance.

• port_obj a changed Port object.

Raises
Conflict, FailedToUpdateDHCPOptOnPort

abstract portgroup_changed(task, portgroup_obj)
Handle any actions required when a port changes

Parameters

• task A TaskManager instance.

• portgroup_obj a changed Port object.

Raises
Conflict, FailedToUpdateDHCPOptOnPort

abstract remove_cleaning_network(task)
Remove the cleaning network from a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

remove_inspection_network(task)
Removes the inspection network from a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

5.1. Developers Guide 1299

Ironic Documentation, Release 26.1.2.dev21

abstract remove_provisioning_network(task)
Remove the provisioning network from a node.

Parameters
task A TaskManager instance.

remove_rescuing_network(task)
Removes the rescuing network from a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

remove_servicing_network(task)
Removes the servicing network from a node.

Parameters
task A TaskManager instance.

Raises
NetworkError

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

abstract unconfigure_tenant_networks(task)
Unconfigure tenant networks for a node.

Parameters
task A TaskManager instance.

validate(task)
Validates the network interface.

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

validate_inspection(task)
Validate that the node has required properties for inspection.

Parameters
task A TaskManager instance with the node being checked

1300 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
MissingParameterValue if node is missing one or more required parameters

Raises
UnsupportedDriverExtension

validate_rescue(task)
Validates the network interface for rescue operation.

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the network interface configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

abstract vif_attach(task, vif_info)
Attach a virtual network interface to a node

Parameters

• task A TaskManager instance.

• vif_info a dictionary of information about a VIF. It must have an id key,
whose value is a unique identifier for that VIF.

Raises
NetworkError, VifAlreadyAttached, NoFreePhysicalPorts

abstract vif_detach(task, vif_id)
Detach a virtual network interface from a node

Parameters

• task A TaskManager instance.

• vif_id A VIF ID to detach

Raises
NetworkError, VifNotAttached

abstract vif_list(task)
List attached VIF IDs for a node

Parameters
task A TaskManager instance.

Returns
List of VIF dictionaries, each dictionary will have an id entry with the ID of
the VIF.

class ironic.drivers.base.PowerInterface(*args, **kwargs)
Bases: BaseInterface

Interface for power-related actions.

abstract get_power_state(task)
Return the power state of the tasks node.

5.1. Developers Guide 1301

Ironic Documentation, Release 26.1.2.dev21

Parameters
task A TaskManager instance containing the node to act on.

Raises
MissingParameterValue if a required parameter is missing.

Returns
A power state. One of ironic.common.states.

get_supported_power_states(task)
Get a list of the supported power states.

Parameters
task A TaskManager instance containing the node to act on.

Returns
A list with the supported power states defined in ironic.common.states.

interface_type = 'power'

Interface type, used for clean steps and logging.

abstract reboot(task, timeout=None)
Perform a hard reboot of the tasks node.

Drivers are expected to properly handle case when node is powered off by powering it on.

Parameters

• task A TaskManager instance containing the node to act on.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

Raises
MissingParameterValue if a required parameter is missing.

abstract set_power_state(task, power_state, timeout=None)
Set the power state of the tasks node.

Parameters

• task A TaskManager instance containing the node to act on.

• power_state Any power state from ironic.common.states.

• timeout timeout (in seconds) positive integer (> 0) for any power state.
None indicates to use default timeout.

Raises
MissingParameterValue if a required parameter is missing.

supports_power_sync(task)
Check if power sync is supported for the given node.

If False, the conductor will simply store whatever get_power_state returns in the
database instead of trying to force the expected power state.

Parameters
task A TaskManager instance containing the node to act on.

1302 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
boolean, whether power sync is supported.

class ironic.drivers.base.RAIDInterface(*args, **kwargs)
Bases: BaseInterface

apply_configuration(task, raid_config, create_root_volume=True,
create_nonroot_volumes=True, delete_existing=True)

Applies RAID configuration on the given node.

Parameters

• task A TaskManager instance.

• raid_config The RAID configuration to apply.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in raid_config. Default value is
True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

Returns
states.DEPLOYWAIT if RAID configuration is in progress asynchronously or
None if it is complete.

abstract create_configuration(task, create_root_volume=True,
create_nonroot_volumes=True, delete_existing=True)

Creates RAID configuration on the given node.

This method creates a RAID configuration on the given node. It assumes that the target
RAID configuration is already available in node.target_raid_config. Implementations of
this interface are supposed to read the RAID configuration from node.target_raid_config.
After the RAID configuration is done (either in this method OR in a call-back method),
ironic.common.raid.update_raid_info() may be called to sync the nodes RAID-related in-
formation with the RAID configuration applied on the node.

Parameters

• task A TaskManager instance.

• create_root_volume Setting this to False indicates not to create root vol-
ume that is specified in the nodes target_raid_config. Default value is True.

• create_nonroot_volumes Setting this to False indicates not to create non-
root volumes (all except the root volume) in the nodes target_raid_config.
Default value is True.

• delete_existing Setting this to True indicates to delete RAID configu-
ration prior to creating the new configuration.

5.1. Developers Guide 1303

Ironic Documentation, Release 26.1.2.dev21

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if
RAID configuration is in progress asynchronously, or None if it is complete.

abstract delete_configuration(task)
Deletes RAID configuration on the given node.

This method deletes the RAID configuration on the give node. After RAID configuration is
deleted, node.raid_config should be cleared by the implementation.

Parameters
task A TaskManager instance.

Returns
states.CLEANWAIT (cleaning) or states.DEPLOYWAIT (deployment) if dele-
tion is in progress asynchronously, or None if it is complete.

get_logical_disk_properties()

Get the properties that can be specified for logical disks.

This method returns a dictionary containing the properties that can be specified for logical
disks and a textual description for them.

Returns
A dictionary containing properties that can be mentioned for logical disks and
a textual description for them.

get_properties()

Return the properties of the interface.

Returns
dictionary of <property name>:<property description> entries.

interface_type = 'raid'

Interface type, used for clean steps and logging.

validate(task)
Validates the RAID Interface.

This method validates the properties defined by Ironic for RAID configuration. Driver im-
plementations of this interface can override this method for doing more validations (such as
BMCs credentials).

Parameters
task A TaskManager instance.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

Raises
MissingParameterValue, if some parameters are missing.

validate_raid_config(task, raid_config)
Validates the given RAID configuration.

This method validates the given RAID configuration. Driver implementations of this inter-
face can override this method to support custom parameters for RAID configuration.

Parameters

1304 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• task A TaskManager instance.

• raid_config The RAID configuration to validate.

Raises
InvalidParameterValue, if the RAID configuration is invalid.

ironic.drivers.base.RAID_APPLY_CONFIGURATION_ARGSINFO =
{'create_nonroot_volumes': {'description': "Setting this to 'False'
indicates not to create non-root volumes (all except the root volume) in
'raid_config'. Default value is 'True'.", 'required': False},
'create_root_volume': {'description': "Setting this to 'False' indicates not
to create root volume that is specified in 'raid_config'. Default value is
'True'.", 'required': False}, 'delete_existing': {'description': "Setting
this to 'True' indicates to delete existing RAID configuration prior to
creating the new configuration. Default value is 'True'.", 'required':
False}, 'raid_config': {'description': 'The RAID configuration to apply.',
'required': True}}

This may be used as the deploy_step argsinfo argument for RAID interfaces implementing an
apply_configuration deploy step.

class ironic.drivers.base.RescueInterface(*args, **kwargs)
Bases: BaseInterface

Interface for rescue-related actions.

clean_up(task)
Clean up the rescue environment for the tasks node.

This is particularly useful for nodes where rescuing is asynchronous and a timeout occurs.

Parameters
task A TaskManager instance containing the node to act on.

Returns
None

interface_type = 'rescue'

Interface type, used for clean steps and logging.

abstract rescue(task)
Boot the tasks node into a rescue environment.

Parameters
task A TaskManager instance containing the node to act on.

Raises
InstanceRescueFailure if node validation or rescue operation fails.

Returns
states.RESCUEWAIT if rescue is in progress asynchronously or
states.RESCUE if it is complete.

abstract unrescue(task)
Tear down the rescue environment, and return to normal.

Parameters
task A TaskManager instance containing the node to act on.

5.1. Developers Guide 1305

Ironic Documentation, Release 26.1.2.dev21

Raises
InstanceUnrescueFailure if node validation or unrescue operation fails.

Returns
states.ACTIVE if it is successful.

class ironic.drivers.base.StorageInterface(*args, **kwargs)
Bases: BaseInterface

Base class for storage interfaces.

abstract attach_volumes(task)
Informs the storage subsystem to attach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

abstract detach_volumes(task)
Informs the storage subsystem to detach all volumes for the node.

Parameters
task A TaskManager instance.

Raises
UnsupportedDriverExtension

interface_type = 'storage'

Interface type, used for clean steps and logging.

abstract should_write_image(task)
Determines if deploy should perform the image write-out.

Parameters
task A TaskManager instance.

Returns
Boolean value to indicate if the interface expects the image to be written by
Ironic.

Raises
UnsupportedDriverExtension

class ironic.drivers.base.VendorInterface(*args, **kwargs)
Bases: BaseInterface

Interface for all vendor passthru functionality.

Additional vendor- or driver-specific capabilities should be implemented as a method in the class
inheriting from this class and use the @passthru or @driver_passthru decorators.

Methods decorated with @driver_passthru should be short-lived because it is a blocking call.

driver_validate(method, **kwargs)
Validate driver-vendor-passthru actions.

If invalid, raises an exception; otherwise returns None.

1306 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• method method to be validated

• kwargs info for action.

Raises
MissingParameterValue if kwargs does not contain certain parameter.

Raises
InvalidParameterValue if parameter does not match.

interface_type = 'vendor'

Interface type, used for clean steps and logging.

abstract validate(task, method=None, **kwargs)
Validate vendor-specific actions.

If invalid, raises an exception; otherwise returns None.

Parameters

• task A task from TaskManager.

• method Method to be validated

• kwargs Info for action.

Raises
UnsupportedDriverExtension if method can not be mapped to the supported
interfaces.

Raises
InvalidParameterValue if kwargs does not contain method.

Raises
MissingParameterValue

class ironic.drivers.base.VendorMetadata(method, metadata)
Bases: tuple

metadata

Alias for field number 1

method

Alias for field number 0

ironic.drivers.base.cache_bios_settings(func)
A decorator to cache bios settings after running the function.

Parameters
func Function or method to wrap.

ironic.drivers.base.cache_firmware_components(func)
A decorator to cache firmware components after running the function.

Parameters
func Function or method to wrap.

5.1. Developers Guide 1307

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.base.clean_step(priority, abortable=False, argsinfo=None,
requires_ramdisk=True)

Decorator for cleaning steps.

Cleaning steps may be used in manual or automated cleaning.

For automated cleaning, only steps with priorities greater than 0 are used. These steps are or-
dered by priority from highest value to lowest value. For steps with the same priority, they are
ordered by driver interface priority (see conductor.steps.CLEANING_INTERFACE_PRIORITY).
execute_clean_step() will be called on each step.

For manual cleaning, the clean steps will be executed in a similar fashion to automated cleaning,
but the steps and order of execution must be explicitly specified by the user when invoking the
cleaning API.

Decorated clean steps must take as the only positional argument, a TaskManager object. Clean
steps used in manual cleaning may also take keyword variable arguments (as described in argsinfo).

Clean steps can be either synchronous or asynchronous. If the step is synchronous, it should return
None when finished, and the conductor will continue on to the next step. While the clean step is
executing, the node will be in states.CLEANING provision state. If the step is asynchronous, the
step should return states.CLEANWAIT to the conductor before it starts the asynchronous work.
When the step is complete, the step should make an RPC call to continue_node_clean to move
to the next step in cleaning. The node will be in states.CLEANWAIT provision state during the
asynchronous work.

Examples:

class MyInterface(base.BaseInterface):
CONF.example_cleaning_priority should be an int CONF option
@base.clean_step(priority=CONF.example_cleaning_priority)
def example_cleaning(self, task):

do some cleaning

@base.clean_step(priority=0, abortable=True, argsinfo=
{'size': {'description': 'size of widget (MB)',

'required': True}})
def advanced_clean(self, task, **kwargs):

do some advanced cleaning

Parameters

• priority an integer priority, should be a CONF option

• abortable Boolean value. Whether the clean step is abortable or not; de-
faults to False.

• argsinfo a dictionary of keyword arguments where key is the name of the
argument and value is a dictionary as follows:

'description': <description>. Required. This should␣
↪→include

possible values.
'required': Boolean. Optional; default is False. True if␣
↪→this

(continues on next page)

1308 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

(continued from previous page)

argument is required. If so, it must be␣
↪→specified in

the clean request; false if it is optional.

• requires_ramdisk Whether this step requires the ramdisk to be running.
Should be set to False for purely out-of-band steps.

Raises
InvalidParameterValue if any of the arguments are invalid

ironic.drivers.base.deploy_step(priority, argsinfo=None)
Decorator for deployment steps.

Only steps with priorities greater than 0 are used. These steps are ordered by priority from highest
value to lowest value. For steps with the same priority, they are ordered by driver interface prior-
ity (see conductor.steps.DEPLOYING_INTERFACE_PRIORITY). execute_deploy_step() will be
called on each step.

Decorated deploy steps must take as the only positional argument, a TaskManager object.

Deploy steps can be either synchronous or asynchronous. If the step is synchronous, it should return
None when finished, and the conductor will continue on to the next step. While the deploy step is
executing, the node will be in states.DEPLOYING provision state. If the step is asynchronous, the
step should return states.DEPLOYWAIT to the conductor before it starts the asynchronous work.
When the step is complete, the step should make an RPC call to continue_node_deploy to move to
the next step in deployment. The node will be in states.DEPLOYWAIT provision state during the
asynchronous work.

Examples:

class MyInterface(base.BaseInterface):
@base.deploy_step(priority=100)
def example_deploying(self, task):

do some deploying

Parameters

• priority an integer (>=0) priority; used for determining the order in which
the step is run in the deployment process.

• argsinfo a dictionary of keyword arguments where key is the name of the
argument and value is a dictionary as follows:

'description': <description>. Required. This should␣
↪→include

possible values.
'required': Boolean. Optional; default is False. True if␣
↪→this

argument is required. If so, it must be␣
↪→specified in

the deployment request; false if it is␣
↪→optional.

5.1. Developers Guide 1309

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if any of the arguments are invalid

ironic.drivers.base.driver_passthru(http_methods, method=None, async_call=True,
description=None, attach=False)

ironic.drivers.base.passthru(http_methods, method=None, async_call=True,
description=None, attach=False, require_exclusive_lock=True)

ironic.drivers.base.service_step(priority=None, abortable=False, argsinfo=None,
requires_ramdisk=True)

Decorator for service steps.

Service steps may be used in performing service upon a node.

For service, the steps will be executed in a similar fashion to cleaning, but the steps and order of
execution must be explicitly specified by the user when invoking the servicing API.

Decorated service steps must take as the only a single positional argument, a TaskManager object,
in addition to a keyword arguments variable (as described in argsinfo).

Service steps can be either synchronous or asynchronous. If the step is synchronous, it should
return None when finished, and the conductor will continue on to the next step. While the clean step
is executing, the node will be in states.SERVICING provision state. If the step is asynchronous, the
step should return states.SERVICEWAIT to the conductor before it starts the asynchronous work.
When the step is complete, the step should make an RPC call to continue_node_service to move
to the next step in servicing. The node will be in states.SERVICEWAIT provision state during the
asynchronous work.

Examples:

class MyInterface(base.BaseInterface):
@base.service_step()
def example_service(self, task):

do some service actions

@base.service_step(priority=0, abortable=True, argsinfo=
{'size': {'description': 'size of widget (MB)',

'required': True}})
def advanced_service(self, task, **kwargs):

do some advanced magical service

Parameters

• priority an integer priority, defaults to None which maps to 0. Priorities
are not considered, by default but exists should this functionality be adopted
later on to align with the steps framework.

• abortable Boolean value. Whether the clean step is abortable or not; de-
faults to False.

• argsinfo a dictionary of keyword arguments where key is the name of the
argument and value is a dictionary as follows:

1310 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

'description': <description>. Required. This should␣
↪→include

possible values.
'required': Boolean. Optional; default is False. True if␣
↪→this

argument is required. If so, it must be␣
↪→specified in

the service request; false if it is optional.

• requires_ramdisk Whether this step requires the ramdisk to be running.
Should be set to False for purely out-of-band steps.

Raises
InvalidParameterValue if any of the arguments are invalid

ironic.drivers.base.verify_step(priority)
Decorator for verify steps.

Only steps with priorities greater than 0 are used. These steps are ordered by priority from highest
value to lowest value. For steps with the same priority, they are ordered by driver interface priority
(see conductor.steps.VERIFY_INTERFACE_PRIORITY). execute_verify_step() will be called on
each step.

Decorated verify steps must take as the only positional argument, a TaskManager object.

Verify steps are synchronous and should return None when finished, and the conductor will con-
tinue on to the next step. While the verify step is executing, the node will be in states.VERIFYING
provision state.

Examples:

class MyInterface(base.BaseInterface):
@base.verify_step(priority=100)
def example_verifying(self, task):

do some verifying

Parameters
priority an integer (>=0) priority; used for determining the order in which the
step is run in the verification process.

Raises
InvalidParameterValue if any of the arguments are invalid

ironic.drivers.drac module

DRAC Driver for remote system management using Dell Remote Access Card.

class ironic.drivers.drac.IDRACHardware

Bases: RedfishHardware

integrated Dell Remote Access Controller hardware type

5.1. Developers Guide 1311

Ironic Documentation, Release 26.1.2.dev21

property supported_bios_interfaces

List of supported bios interfaces.

property supported_boot_interfaces

List of supported boot interfaces.

property supported_inspect_interfaces

List of supported inspect interfaces.

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

property supported_raid_interfaces

List of supported raid interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

ironic.drivers.fake_hardware module

Fake hardware type.

class ironic.drivers.fake_hardware.FakeHardware

Bases: GenericHardware

Fake hardware type.

This hardware type is special-cased in the driver factory to bypass compatibility verification. Thus,
supported_* methods here are only for calculating the defaults, not for actual check.

All fake implementations are still expected to be enabled in the configuration.

property supported_bios_interfaces

List of classes of supported bios interfaces.

property supported_boot_interfaces

List of classes of supported boot interfaces.

property supported_console_interfaces

List of classes of supported console interfaces.

property supported_deploy_interfaces

List of classes of supported deploy interfaces.

property supported_firmware_interfaces

List of classes of supported bios interfaces.

property supported_inspect_interfaces

List of classes of supported inspect interfaces.

property supported_management_interfaces

List of classes of supported management interfaces.

1312 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property supported_power_interfaces

List of classes of supported power interfaces.

property supported_raid_interfaces

List of classes of supported raid interfaces.

property supported_rescue_interfaces

List of classes of supported rescue interfaces.

property supported_storage_interfaces

List of classes of supported storage interfaces.

property supported_vendor_interfaces

List of classes of supported rescue interfaces.

ironic.drivers.generic module

Generic hardware types.

class ironic.drivers.generic.GenericHardware

Bases: AbstractHardwareType

Abstract base class representing generic hardware.

This class provides reasonable defaults for all of the interfaces.

property supported_boot_interfaces

List of supported boot interfaces.

property supported_deploy_interfaces

List of supported deploy interfaces.

property supported_firmware_interfaces

List of supported firmware interfaces.

property supported_inspect_interfaces

List of supported inspect interfaces.

property supported_network_interfaces

List of supported network interfaces.

property supported_raid_interfaces

List of supported raid interfaces.

property supported_rescue_interfaces

List of supported rescue interfaces.

property supported_storage_interfaces

List of supported storage interfaces.

class ironic.drivers.generic.ManualManagementHardware

Bases: GenericHardware

Hardware type that uses manual power and boot management.

5.1. Developers Guide 1313

Ironic Documentation, Release 26.1.2.dev21

Using this hardware type assumes that an operator manages reboot and setting boot devices man-
ually. This hardware type should only be used when no suitable hardware type exists in ironic, or
the existing hardware type misbehaves for any reason.

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

ironic.drivers.hardware_type module

Abstract base class for all hardware types.

class ironic.drivers.hardware_type.AbstractHardwareType

Bases: object

Abstract base class for all hardware types.

Hardware type is a family of hardware supporting the same set of interfaces from the ironic stand-
point. This can be as wide as all hardware supporting the IPMI protocol or as narrow as several
hardware models supporting some specific interfaces.

A hardware type defines an ordered list of supported implementations for each driver interface
(power, deploy, etc).

get_properties()

Get the properties of the hardware type.

Note that this returns properties for the default interface of each type, for this hardware type.
Since this is not node-aware, interface overrides cant be detected.

Returns
dictionary of <property name>:<property description> entries.

supported = True

Whether hardware is supported by the community.

property supported_bios_interfaces

List of supported bios interfaces.

abstract property supported_boot_interfaces

List of supported boot interfaces.

property supported_console_interfaces

List of supported console interfaces.

abstract property supported_deploy_interfaces

List of supported deploy interfaces.

property supported_firmware_interfaces

List of supported firmware interfaces.

1314 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property supported_inspect_interfaces

List of supported inspect interfaces.

abstract property supported_management_interfaces

List of supported management interfaces.

property supported_network_interfaces

List of supported network interfaces.

abstract property supported_power_interfaces

List of supported power interfaces.

property supported_raid_interfaces

List of supported raid interfaces.

property supported_rescue_interfaces

List of supported rescue interfaces.

property supported_storage_interfaces

List of supported storage interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

ironic.drivers.ilo module

iLO Driver for managing HP Proliant Gen8 and above servers.

class ironic.drivers.ilo.Ilo5Hardware

Bases: IloHardware

iLO5 hardware type.

iLO5 hardware type is targeted for iLO5 based Proliant Gen10 servers.

property supported_boot_interfaces

List of supported boot interfaces.

property supported_management_interfaces

List of supported management interfaces.

property supported_raid_interfaces

List of supported raid interfaces.

class ironic.drivers.ilo.IloHardware

Bases: GenericHardware

iLO hardware type.

iLO hardware type is targeted for iLO 4 based Proliant Gen8 and Gen9 servers.

property supported_bios_interfaces

List of supported bios interfaces.

property supported_boot_interfaces

List of supported boot interfaces.

5.1. Developers Guide 1315

Ironic Documentation, Release 26.1.2.dev21

property supported_console_interfaces

List of supported console interfaces.

property supported_inspect_interfaces

List of supported inspect interfaces.

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

ironic.drivers.intel_ipmi module

class ironic.drivers.intel_ipmi.IntelIPMIHardware

Bases: IPMIHardware

Intel IPMI hardware type.

Uses ipmitool to implement power and management. Provides serial console implementations
via shellinabox or socat. Supports Intel SST-PP feature.

property supported_management_interfaces

List of supported management interfaces.

ironic.drivers.ipmi module

Hardware type for IPMI (using ipmitool).

class ironic.drivers.ipmi.IPMIHardware

Bases: GenericHardware

IPMI hardware type.

Uses ipmitool to implement power and management. Provides serial console implementations
via shellinabox or socat.

property supported_console_interfaces

List of supported console interfaces.

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

1316 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.irmc module

iRMC Driver for managing FUJITSU PRIMERGY BX S4 or RX S8 generation of FUJITSU PRIMERGY
servers, and above servers.

class ironic.drivers.irmc.IRMCHardware

Bases: GenericHardware

iRMC hardware type.

iRMC hardware type is targeted for FUJITSU PRIMERGY servers which have iRMC S4 manage-
ment system.

property supported_bios_interfaces

List of supported bios interfaces.

property supported_boot_interfaces

List of supported boot interfaces.

property supported_console_interfaces

List of supported console interfaces.

property supported_inspect_interfaces

List of supported inspect interfaces.

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

property supported_raid_interfaces

List of supported raid interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

ironic.drivers.redfish module

class ironic.drivers.redfish.RedfishHardware

Bases: GenericHardware

Redfish hardware type.

property supported_bios_interfaces

List of supported bios interfaces.

property supported_boot_interfaces

List of supported boot interfaces.

property supported_firmware_interfaces

List of supported firmware interfaces.

property supported_inspect_interfaces

List of supported power interfaces.

5.1. Developers Guide 1317

Ironic Documentation, Release 26.1.2.dev21

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

property supported_raid_interfaces

List of supported raid interfaces.

property supported_vendor_interfaces

List of supported vendor interfaces.

ironic.drivers.snmp module

SNMP hardware types.

class ironic.drivers.snmp.SNMPHardware

Bases: GenericHardware

SNMP Hardware type

property supported_management_interfaces

List of supported management interfaces.

property supported_power_interfaces

List of supported power interfaces.

ironic.drivers.utils module

class ironic.drivers.utils.MixinVendorInterface(*args, **kwargs)
Bases: VendorInterface

Wrapper around multiple VendorInterfaces.

get_properties()

Return the properties from all the VendorInterfaces.

Returns
a dictionary of <property_name>:<property_description> entries.

validate(task, method, **kwargs)
Call validate on the appropriate interface only.

Raises
UnsupportedDriverExtension if method can not be mapped to the supported
interfaces.

Raises
InvalidParameterValue if method is invalid.

Raises
MissingParameterValue if missing method or parameters in kwargs.

1318 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.utils.add_node_capability(task, capability, value)
Add capability to nodes capabilities property.

If capability is already present, then a duplicate entry will be added.

Parameters

• task Task object.

• capability Capability key.

• value Capability value.

ironic.drivers.utils.capabilities_to_dict(capabilities)
Parse the capabilities string into a dictionary

Parameters
capabilities the capabilities of the node as a formatted string.

Raises
InvalidParameterValue if capabilities is not an string or has a malformed value

ironic.drivers.utils.collect_ramdisk_logs(node, label=None)
Collect and store the system logs from the IPA ramdisk.

Collect and store the system logs from the IPA ramdisk. This method makes a call to the IPA
ramdisk to collect the logs and store it according to the configured storage backend.

Parameters

• node A node object.

• label A string to label the log file such as a clean step name.

ironic.drivers.utils.ensure_next_boot_device(task, driver_info)
Ensure boot from correct device if persistent is True

If ipmi_force_boot_device is True and is_next_boot_persistent, set to boot from correct device,
else unset is_next_boot_persistent field.

Parameters

• task Node object.

• driver_info Node driver_info.

ironic.drivers.utils.force_persistent_boot(task, device, persistent)
Set persistent boot device to driver_internal_info

If persistent is True set persistent_boot_device field to the boot device and reset persistent to False,
else set is_next_boot_persistent to False.

Parameters

• task Task object.

• device Boot device.

• persistent Whether next boot is persistent or not.

ironic.drivers.utils.get_agent_iso(node, mode=’deploy’, deprecated_prefix=None)
Get the agent ISO image.

5.1. Developers Guide 1319

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.utils.get_agent_kernel_ramdisk(node, mode=’deploy’,
deprecated_prefix=None)

Get the agent kernel/ramdisk as a dictionary.

ironic.drivers.utils.get_field(node, name, deprecated_prefix=None, use_conf=False,
collection=’driver_info’)

Get a driver_info field with deprecated prefix.

ironic.drivers.utils.get_kernel_append_params(node, default)
Get the applicable kernel params.

The locations are checked in this order:

1. The nodes instance_info.

2. The nodes driver_info.

3. Configuration.

Parameters

• node Node object.

• default Default value.

ironic.drivers.utils.get_node_capability(node, capability)
Returns capability value from nodes capabilities property.

Parameters

• node Node object.

• capability Capability key.

Returns
Capability value. If capability is not present, then return None

ironic.drivers.utils.get_node_mac_addresses(task)
Get all MAC addresses for the ports belonging to this tasks node.

Parameters
task a TaskManager instance containing the node to act on.

Returns
A list of MAC addresses in the format xx:xx:xx:xx:xx:xx.

ironic.drivers.utils.get_ramdisk_logs_file_name(node, label=None)
Construct the log file name.

Parameters

• node A node object.

• label A string to label the log file such as a clean step name.

Returns
The log file name.

1320 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.utils.need_prepare_ramdisk(node)
Check if node needs preparing ramdisk

Parameters
node Node to check for

Returns
True if need to prepare ramdisk, otherwise False

ironic.drivers.utils.normalize_mac(mac)
Remove - and : characters and lowercase the MAC string.

Parameters
mac MAC address to normalize.

Returns
Normalized MAC address string.

ironic.drivers.utils.store_ramdisk_logs(node, logs, label=None)
Store the ramdisk logs.

This method stores the ramdisk logs according to the configured storage backend.

Parameters

• node A node object.

• logs A gzipped and base64 encoded string containing the logs archive.

• label A string to label the log file such as a clean step name.

Raises
OSError if the directory to save the logs cannot be created.

Raises
IOError when the logs cant be saved to the local file system.

Raises
SwiftOperationError, if any operation with Swift fails.

Module contents

ironic.objects package

Submodules

ironic.objects.allocation module

class ironic.objects.allocation.Allocation(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.1'

property candidate_nodes

property conductor_affinity

5.1. Developers Guide 1321

Ironic Documentation, Release 26.1.2.dev21

create(context=None)
Create a Allocation record in the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Allocation(context)

Raises
AllocationDuplicateName, AllocationAlreadyExists

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the Allocation from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Allocation(context)

Raises
AllocationNotFound

property extra

1322 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'candidate_nodes': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_affinity': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, allocation_ident)
Find an allocation by its ID, UUID or name.

Parameters

• allocation_ident The ID, UUID or name of an allocation.

• context Security context

Returns
An Allocation object.

Raises
InvalidIdentity

classmethod get_by_id(context, allocation_id)
Find an allocation by its integer ID.

Parameters

• cls the Allocation

• context Security context

• allocation_id The ID of an allocation.

Returns
An Allocation object.

5.1. Developers Guide 1323

Ironic Documentation, Release 26.1.2.dev21

Raises
AllocationNotFound

classmethod get_by_name(context, name)
Find an allocation based by its name.

Parameters

• cls the Allocation

• context Security context

• name The name of an allocation.

Returns
An Allocation object.

Raises
AllocationNotFound

classmethod get_by_uuid(context, uuid)
Find an allocation by its UUID.

Parameters

• cls the Allocation

• context Security context

• uuid The UUID of an allocation.

Returns
An Allocation object.

Raises
AllocationNotFound

property id

property last_error

classmethod list(context, filters=None, limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of Allocation objects.

Parameters

• cls the Allocation

• context Security context.

• filters Filters to apply.

• limit Maximum number of resources to return in a single result.

• marker Pagination marker for large data sets.

• sort_key Column to sort results by.

• sort_dir Direction to sort. asc or desc.

Returns
A list of Allocation object.

1324 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue

property name

property node_id

property owner

refresh(context=None)
Loads updates for this Allocation.

Loads an allocation with the same uuid from the database and checks for updated attributes.
Updates are applied from the loaded allocation column by column, if there are any updates.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Allocation(context)

Raises
AllocationNotFound

property resource_class

save(context=None)
Save updates to this Allocation.

Updates will be made column by column based on the result of self.what_changed().

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Allocation(context)

Raises
AllocationNotFound, AllocationDuplicateName

property state

property traits

property updated_at

property uuid

class ironic.objects.allocation.AllocationCRUDNotification(context=None,
**kwargs)

Bases: NotificationBase

Notification when ironic creates, updates or deletes an allocation.

VERSION = '1.0'

property created_at

5.1. Developers Guide 1325

Ironic Documentation, Release 26.1.2.dev21

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.allocation.AllocationCRUDPayload(allocation, node_uuid=None)
Bases: NotificationPayloadBase

SCHEMA = {'candidate_nodes': ('allocation', 'candidate_nodes'),
'created_at': ('allocation', 'created_at'), 'extra': ('allocation',
'extra'), 'last_error': ('allocation', 'last_error'), 'name':
('allocation', 'name'), 'owner': ('allocation', 'owner'),
'resource_class': ('allocation', 'resource_class'), 'state':
('allocation', 'state'), 'traits': ('allocation', 'traits'),
'updated_at': ('allocation', 'updated_at'), 'uuid': ('allocation',
'uuid')}

VERSION = '1.1'

property candidate_nodes

property created_at

property extra

1326 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'candidate_nodes': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property last_error

property name

property node_uuid

property owner

property resource_class

property state

property traits

property updated_at

property uuid

ironic.objects.base module

Ironic common internal object model

class ironic.objects.base.IronicObject(context=None, **kwargs)
Bases: VersionedObject

Base class and object factory.

5.1. Developers Guide 1327

Ironic Documentation, Release 26.1.2.dev21

This forms the base of all objects that can be remoted or instantiated via RPC. Simply defining
a class that inherits from this base class will make it remotely instantiatable. Objects should im-
plement the necessary get classmethod routines as well as save object methods as appropriate.

OBJ_PROJECT_NAMESPACE = 'ironic'

OBJ_SERIAL_NAMESPACE = 'ironic_object'

as_dict()

Return the object represented as a dict.

The returned object is JSON-serialisable.

convert_to_version(target_version, remove_unavailable_fields=True)
Convert this object to the target version.

Convert the object to the target version. The target version may be the same, older, or newer
than the version of the object. This is used for DB interactions as well as for serializa-
tion/deserialization.

The remove_unavailable_fields flag is used to distinguish these two cases:

1) For serialization/deserialization, we need to remove the unavailable fields, because the
service receiving the object may not know about these fields. remove_unavailable_fields
is set to True in this case.

2) For DB interactions, we need to set the unavailable fields to their appropriate values so
that these fields are saved in the DB. (If they are not set, the VersionedObject magic will
not know to save/update them to the DB.) remove_unavailable_fields is set to False in
this case.

_convert_to_version() does the actual work.

Parameters

• target_version the desired version of the object

• remove_unavailable_fields True to remove fields that are unavailable
in the target version; set this to True when (de)serializing. False to set the
unavailable fields to appropriate values; set this to False for DB interactions.

do_version_changes_for_db()

Change the object to the version needed for the database.

If needed, this changes the object (modifies object fields) to be in the correct version for
saving to the database.

The version used to save the object in the DB is determined as follows:

• If the object is pinned, we save the object in the pinned version. Since it is pinned, we
must not save in a newer version, in case a rolling upgrade is happening and some ser-
vices are still using the older version of ironic, with no knowledge of this newer version.

• If the object isnt pinned, we save the object in the latest version.

Because the object may be converted to a different object version, this method must only be
called just before saving the object to the DB.

1328 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
a dictionary of changed fields and their new values (could be an empty dic-
tionary). These are the fields/values of the object that would be saved to the
DB.

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_target_version()

Returns the target version for this object.

This is the version in which the object should be manipulated, e.g. sent over the wire via RPC
or saved in the DB.

Returns
if pinned, returns the version of this object corresponding to the pin. Otherwise,
returns the version of the object.

Raises
ovo_exception.IncompatibleObjectVersion

obj_refresh(loaded_object)
Applies updates for objects that inherit from base.IronicObject.

Checks for updated attributes in an object. Updates are applied from the loaded object column
by column in comparison with the current object.

classmethod supports_version(version)
Return whether this object supports a particular version.

Check the requested version against the objects target version. The target version may not be
the latest version during an upgrade, when object versions are pinned.

Parameters
version A tuple representing the version to check

Returns
Whether the version is supported

Raises
ovo_exception.IncompatibleObjectVersion

class ironic.objects.base.IronicObjectListBase(*args, **kwargs)
Bases: ObjectListBase

as_dict()

Return the object represented as a dict.

The returned object is JSON-serialisable.

class ironic.objects.base.IronicObjectRegistry(*args, **kwargs)
Bases: VersionedObjectRegistry

registration_hook(cls, index)

5.1. Developers Guide 1329

Ironic Documentation, Release 26.1.2.dev21

class ironic.objects.base.IronicObjectSerializer(is_server=False)
Bases: VersionedObjectSerializer

OBJ_BASE_CLASS

alias of IronicObject

serialize_entity(context, entity)
Serialize the entity.

This serializes the entity so that it can be sent over e.g. RPC. A serialized entity for
an IronicObject is a dictionary with keys: ironic_object.namespace, ironic_object.data,
ironic_object.name, ironic_object.version, and ironic_object.changes.

We assume that the client (ironic-API) is always talking to a server (ironic-conductor) that
is running the same or a newer release than the client. The client doesnt need to downgrade
any IronicObjects when sending them over RPC. The server, on the other hand, will need to
do so if the server is pinned and the target version of an IronicObject is older than the latest
version of that Object.

(Internally, the services deal with the latest versions of objects so we know that these objects
are always in the latest versions.)

Parameters

• context security context

• entity the entity to be serialized; may be an IronicObject

Returns
the serialized entity

Raises
ovo_exception.IncompatibleObjectVersion (via .get_target_version())

ironic.objects.base.max_version(versions)
Return the maximum version in the list.

Parameters
versions a list of (string) versions; assumed to have at least one entry

Returns
the maximum version (string)

ironic.objects.bios module

class ironic.objects.bios.BIOSSetting(context=None, **kwargs)
Bases: IronicObject

VERSION = '1.1'

property allowable_values

property attribute_type

create(context=None)
Create a BIOS Setting record in DB.

1330 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: BIOSSetting(context)

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingAlreadyExists if the setting record already exists.

property created_at

dbapi = <oslo_db.api.DBAPI object>

classmethod delete(context, node_id, name)
Delete a BIOS Setting based on its node_id and name.

Parameters

• context Security context.

• node_id The node id.

• name BIOS setting name to be deleted.

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingNotFound if the bios setting name is not found.

5.1. Developers Guide 1331

Ironic Documentation, Release 26.1.2.dev21

fields = {'allowable_values': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'attribute_type': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lower_bound': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'max_length': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'min_length': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'node_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'read_only': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reset_required': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'unique': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'upper_bound': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'value': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, node_id, name)
Get a BIOS Setting based on its node_id and name.

Parameters

• context Security context.

• node_id The node id.

• name BIOS setting name to be retrieved.

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingNotFound if the bios setting name is not found.

Returns
A :class:BIOSSetting object.

property lower_bound

property max_length

property min_length

1332 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property name

property node_id

property read_only

registry_fields = ('attribute_type', 'allowable_values', 'lower_bound',
'max_length', 'min_length', 'read_only', 'reset_required', 'unique',
'upper_bound')

property reset_required

save(context=None)
Save BIOS Setting update in DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: BIOSSetting(context)

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingNotFound if the bios setting name is not found.

property unique

property updated_at

property upper_bound

property value

class ironic.objects.bios.BIOSSettingList(*args, **kwargs)
Bases: IronicObjectListBase, IronicObject

VERSION = '1.0'

classmethod create(context, node_id, settings)
Create a list of BIOS Setting records in DB.

Parameters

• context Security context. NOTE: This should only be used internally by
the indirection_api. Unfortunately, RPC requires context as the first argu-
ment, even though we dont use it. A context should be set when instantiating
the object, e.g.: BIOSSetting(context)

• node_id The node id.

• settings A list of bios settings.

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingAlreadyExists if any of the setting records already exists.

5.1. Developers Guide 1333

Ironic Documentation, Release 26.1.2.dev21

Returns
A list of BIOSSetting objects.

property created_at

dbapi = <oslo_db.api.DBAPI object>

classmethod delete(context, node_id, names)
Delete BIOS Settings based on node_id and names.

Parameters

• context Security context.

• node_id The node id.

• names List of BIOS setting names to be deleted.

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingNotFound if any of BIOS setting fails to delete.

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_node_id(context, node_id)
Get BIOS Setting based on node_id.

Parameters

• context Security context.

• node_id The node id.

Raises
NodeNotFound if the node id is not found.

Returns
A list of BIOSSetting objects.

property objects

classmethod save(context, node_id, settings)
Save a list of BIOS Setting updates in DB.

Parameters

• context Security context. NOTE: This should only be used internally by
the indirection_api. Unfortunately, RPC requires context as the first argu-
ment, even though we dont use it. A context should be set when instantiating
the object, e.g.: BIOSSetting(context)

• node_id The node id.

• settings A list of bios settings.

1334 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node id is not found.

Raises
BIOSSettingNotFound if any of the bios setting names is not found.

Returns
A list of BIOSSetting objects.

classmethod sync_node_setting(context, node_id, settings)
Returns lists of create/update/delete/unchanged settings.

This method sync with bios_settings database table and sorts out four lists of cre-
ate/update/delete/unchanged settings.

Parameters

• context Security context.

• node_id The node id.

• settings BIOS settings to be synced.

Returns
A 4-tuple of lists of BIOS settings to be created, updated, deleted and un-
changed.

property updated_at

ironic.objects.chassis module

class ironic.objects.chassis.Chassis(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.3'

create(context=None)
Create a Chassis record in the DB.

Column-wise updates will be made based on the result of self.what_changed(). If tar-
get_power_state is provided, it will be checked against the in-database copy of the chassis
before updates are made.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Chassis(context)

property created_at

dbapi = <oslo_db.api.DBAPI object>

property description

5.1. Developers Guide 1335

Ironic Documentation, Release 26.1.2.dev21

destroy(context=None)
Delete the Chassis from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Chassis(context)

property extra

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, chassis_id)
Find a chassis based on its id or uuid and return a Chassis object.

Parameters

• context Security context

• chassis_id the id or uuid of a chassis.

Returns
a Chassis object.

classmethod get_by_id(context, chassis_id)
Find a chassis based on its integer ID and return a Chassis object.

Parameters

• cls the Chassis

• context Security context

• chassis_id the ID of a chassis.

Returns
a Chassis object.

classmethod get_by_uuid(context, uuid)
Find a chassis based on UUID and return a Chassis object.

Parameters

• cls the Chassis

• context Security context

1336 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• uuid the UUID of a chassis.

Returns
a Chassis object.

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of Chassis objects.

Parameters

• cls the Chassis

• context Security context.

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

Returns
a list of Chassis object.

refresh(context=None)
Loads and applies updates for this Chassis.

Loads a Chassis with the same uuid from the database and checks for updated attributes.
Updates are applied from the loaded chassis column by column, if there are any updates.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Chassis(context)

save(context=None)
Save updates to this Chassis.

Updates will be made column by column based on the result of self.what_changed().

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Chassis(context)

property updated_at

property uuid

class ironic.objects.chassis.ChassisCRUDNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted when ironic creates, updates, deletes a chassis.

VERSION = '1.0'

5.1. Developers Guide 1337

Ironic Documentation, Release 26.1.2.dev21

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.chassis.ChassisCRUDPayload(chassis, **kwargs)
Bases: NotificationPayloadBase

SCHEMA = {'created_at': ('chassis', 'created_at'), 'description':
('chassis', 'description'), 'extra': ('chassis', 'extra'), 'updated_at':
('chassis', 'updated_at'), 'uuid': ('chassis', 'uuid')}

VERSION = '1.0'

property created_at

property description

property extra

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property updated_at

property uuid

1338 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.objects.conductor module

class ironic.objects.conductor.Conductor(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.4'

property conductor_group

property created_at

dbapi = <oslo_db.api.DBAPI object>

property drivers

fields = {'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'drivers': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'hostname': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'online': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_hostname(context, hostname, online=True)
Get a Conductor record by its hostname.

Parameters

• cls the Conductor

• context Security context

• hostname the hostname on which a Conductor is running

• online Specify the expected online field value for the conductor to be
retrieved. The online field is ignored if this value is set to None.

Returns
a Conductor object.

property hostname

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of Conductor objects.

Parameters

• cls the Conductor

5.1. Developers Guide 1339

Ironic Documentation, Release 26.1.2.dev21

• context Security context.

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

Returns
a list of Conductor object.

property online

refresh(context=None)
Loads and applies updates for this Conductor.

Loads a Conductor with the same uuid from the database and checks for updated attributes.
Updates are applied from the loaded chassis column by column, if there are any updates.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Conductor(context)

classmethod register(context, hostname, drivers, conductor_group,
update_existing=False)

Register an active conductor with the cluster.

Parameters

• cls the Conductor

• context Security context

• hostname the hostname on which the conductor will run

• drivers the list of drivers enabled in the conductor

• conductor_group conductor group to join, used for node:conductor affin-
ity.

• update_existing When false, registration will raise an exception when
a conflicting online record is found. When true, will overwrite the existing
record. Default: False.

Raises
ConductorAlreadyRegistered

Returns
a Conductor object.

register_hardware_interfaces(interfaces)
Register hardware interfaces with the conductor.

Parameters
interfaces List of interface to register, each entry should be a dictionary con-
taining hardware_type, interface_type, interface_name and default, e.g. {hard-

1340 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ware_type: hardware-type, interface_type: deploy, interface_name: direct, de-
fault: True}

save(context)
Save is not supported by Conductor objects.

touch(context=None, online=True)
Touch this conductors DB record, marking it as up-to-date.

unregister(context=None)
Remove this conductor from the service registry.

unregister_all_hardware_interfaces()

Unregister all hardware interfaces for this conductor.

property updated_at

ironic.objects.deploy_template module

class ironic.objects.deploy_template.DeployTemplate(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.1'

create(context=None)
Create a DeployTemplate record in the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: DeployTemplate(context).

Raises
DeployTemplateDuplicateName if a deploy template with the same name ex-
ists.

Raises
DeployTemplateAlreadyExists if a deploy template with the same UUID exists.

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy()

Delete the DeployTemplate from the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: DeployTemplate(context).

Raises
DeployTemplateNotFound if the deploy template no longer appears in the
database.

5.1. Developers Guide 1341

Ironic Documentation, Release 26.1.2.dev21

property extra

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'steps': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_by_id(context, template_id)
Find a deploy template based on its integer ID.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: DeployTemplate(context).

• template_id The ID of a deploy template.

Raises
DeployTemplateNotFound if the deploy template no longer appears in the
database.

Returns
a DeployTemplate object.

classmethod get_by_name(context, name)
Find a deploy template based on its name.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: DeployTemplate(context).

• name The name of a deploy template.

Raises
DeployTemplateNotFound if the deploy template no longer appears in the
database.

Returns
a DeployTemplate object.

classmethod get_by_uuid(context, uuid)
Find a deploy template based on its UUID.

1342 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: DeployTemplate(context).

• uuid The UUID of a deploy template.

Raises
DeployTemplateNotFound if the deploy template no longer appears in the
database.

Returns
a DeployTemplate object.

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of DeployTemplate objects.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: DeployTemplate(context).

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

Returns
a list of DeployTemplate objects.

classmethod list_by_names(context, names)
Return a list of DeployTemplate objects matching a set of names.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: DeployTemplate(context).

• names a list of names to filter by.

Returns
a list of DeployTemplate objects.

property name

refresh(context=None)
Loads updates for this deploy template.

5.1. Developers Guide 1343

Ironic Documentation, Release 26.1.2.dev21

Loads a deploy template with the same uuid from the database and checks for updated at-
tributes. Updates are applied from the loaded template column by column, if there are any
updates.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Port(context)

Raises
DeployTemplateNotFound if the deploy template no longer appears in the
database.

save(context=None)
Save updates to this DeployTemplate.

Column-wise updates will be made based on the result of self.what_changed().

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: DeployTemplate(context)

Raises
DeployTemplateDuplicateName if a deploy template with the same name ex-
ists.

Raises
DeployTemplateNotFound if the deploy template does not exist.

property steps

property updated_at

property uuid

class ironic.objects.deploy_template.DeployTemplateCRUDNotification(context=None,
**kwargs)

Bases: NotificationBase

Notification emitted on deploy template API operations.

VERSION = '1.0'

property created_at

property event_type

1344 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.deploy_template.DeployTemplateCRUDPayload(deploy_template,
**kwargs)

Bases: NotificationPayloadBase

SCHEMA = {'created_at': ('deploy_template', 'created_at'), 'extra':
('deploy_template', 'extra'), 'name': ('deploy_template', 'name'),
'steps': ('deploy_template', 'steps'), 'updated_at': ('deploy_template',
'updated_at'), 'uuid': ('deploy_template', 'uuid')}

VERSION = '1.0'

property created_at

property extra

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'steps': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property name

property steps

property updated_at

5.1. Developers Guide 1345

Ironic Documentation, Release 26.1.2.dev21

property uuid

ironic.objects.deployment module

class ironic.objects.deployment.Deployment(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.0'

create(context=None, node=None)
Create a Deployment.

Updates the corresponding node under the hood.

Parameters

• context Security context. NOTE: This should only be used internally by
the indirection_api. Unfortunately, RPC requires context as the first argu-
ment, even though we dont use it. A context should be set when instantiating
the object, e.g.: Deployment(context)

• node Node object for deployment.

Raises
InstanceAssociated, NodeAssociated, NodeNotFound

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None, node=None)
Delete the Deployment.

Updates the corresponding node under the hood.

Parameters

• context Security context. NOTE: This should only be used internally by
the indirection_api. Unfortunately, RPC requires context as the first argu-
ment, even though we dont use it. A context should be set when instantiating
the object, e.g.: Node(context)

• node Node object for deployment.

1346 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'image_checksum': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'image_ref': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'kernel_ref': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'ramdisk_ref': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'root_device': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'root_gib': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'swap_mib': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_node_uuid(context, node_uuid)
Find a deployment based by its nodes UUID.

Parameters

• cls the Deployment

• context Security context

• node_uuid The UUID of a corresponding node.

Returns
An Deployment object.

Raises
NodeNotFound

classmethod get_by_uuid(context, uuid)
Find a deployment by its UUID.

Parameters

• cls the Deployment

• context Security context

• uuid The UUID of a deployment.

Returns
An Deployment object.

Raises
InstanceNotFound

5.1. Developers Guide 1347

Ironic Documentation, Release 26.1.2.dev21

property image_checksum

property image_ref

instance_info_mapping = {'image_checksum': 'image_checksum',
'image_source': 'image_ref', 'kernel': 'kernel_ref', 'ramdisk':
'ramdisk_ref', 'root_device': 'root_device', 'root_gb': 'root_gib',
'swap_mb': 'swap_mib'}

instance_info_mapping_rev = {'image_checksum': 'image_checksum',
'image_ref': 'image_source', 'kernel_ref': 'kernel', 'ramdisk_ref':
'ramdisk', 'root_device': 'root_device', 'root_gib': 'root_gb',
'swap_mib': 'swap_mb'}

property kernel_ref

classmethod list(context, filters=None, limit=None, marker=None, sort_key=None,
sort_dir=None)

Return a list of Deployment objects.

Parameters

• cls the Deployment

• context Security context.

• filters Filters to apply.

• limit Maximum number of resources to return in a single result.

• marker Pagination marker for large data sets.

• sort_key Column to sort results by.

• sort_dir Direction to sort. asc or desc.

Returns
A list of Deployment object.

Raises
InvalidParameterValue

node_mapping = {'instance_uuid': 'uuid', 'provision_state': 'state',
'uuid': 'node_uuid'}

property node_uuid

property ramdisk_ref

refresh(context=None)
Refresh the object by re-fetching from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Node(context)

property root_device

1348 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property root_gib

property state

property swap_mib

property updated_at

property uuid

ironic.objects.fields module

class ironic.objects.fields.BooleanField(**kwargs)
Bases: BooleanField

class ironic.objects.fields.DateTimeField(tzinfo_aware=True, **kwargs)
Bases: DateTimeField

class ironic.objects.fields.EnumField(valid_values, **kwargs)
Bases: EnumField

class ironic.objects.fields.FlexibleDict

Bases: FieldType

static coerce(obj, attr, value)
This is called to coerce (if possible) a value on assignment.

This method should convert the value given into the designated type, or throw an exception
if this is not possible.

Param:obj
The VersionedObject on which an attribute is being set

Param:attr
The name of the attribute being set

Param:value
The value being set

Returns
A properly-typed value

class ironic.objects.fields.FlexibleDictField(**kwargs)
Bases: AutoTypedField

AUTO_TYPE = <ironic.objects.fields.FlexibleDict object>

class ironic.objects.fields.IntegerField(**kwargs)
Bases: IntegerField

class ironic.objects.fields.ListOfFlexibleDictsField(**kwargs)
Bases: AutoTypedField

AUTO_TYPE = <oslo_versionedobjects.fields.List object>

5.1. Developers Guide 1349

Ironic Documentation, Release 26.1.2.dev21

class ironic.objects.fields.ListOfObjectsField(objtype, subclasses=False, **kwargs)
Bases: ListOfObjectsField

class ironic.objects.fields.ListOfStringsField(**kwargs)
Bases: ListOfStringsField

class ironic.objects.fields.MACAddress

Bases: FieldType

static coerce(obj, attr, value)
This is called to coerce (if possible) a value on assignment.

This method should convert the value given into the designated type, or throw an exception
if this is not possible.

Param:obj
The VersionedObject on which an attribute is being set

Param:attr
The name of the attribute being set

Param:value
The value being set

Returns
A properly-typed value

class ironic.objects.fields.MACAddressField(**kwargs)
Bases: AutoTypedField

AUTO_TYPE = <ironic.objects.fields.MACAddress object>

class ironic.objects.fields.NotificationLevel

Bases: Enum

ALL = ('debug', 'info', 'warning', 'error', 'critical')

CRITICAL = 'critical'

DEBUG = 'debug'

ERROR = 'error'

INFO = 'info'

WARNING = 'warning'

class ironic.objects.fields.NotificationLevelField(**kwargs)
Bases: BaseEnumField

AUTO_TYPE = <ironic.objects.fields.NotificationLevel object>

class ironic.objects.fields.NotificationStatus

Bases: Enum

ALL = ('start', 'end', 'error', 'success')

END = 'end'

1350 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ERROR = 'error'

START = 'start'

SUCCESS = 'success'

class ironic.objects.fields.NotificationStatusField(**kwargs)
Bases: BaseEnumField

AUTO_TYPE = <ironic.objects.fields.NotificationStatus object>

class ironic.objects.fields.ObjectField(objtype, subclasses=False, **kwargs)
Bases: ObjectField

class ironic.objects.fields.StringAcceptsCallable

Bases: String

static coerce(obj, attr, value)
This is called to coerce (if possible) a value on assignment.

This method should convert the value given into the designated type, or throw an exception
if this is not possible.

Param:obj
The VersionedObject on which an attribute is being set

Param:attr
The name of the attribute being set

Param:value
The value being set

Returns
A properly-typed value

class ironic.objects.fields.StringField(**kwargs)
Bases: StringField

class ironic.objects.fields.StringFieldThatAcceptsCallable(**kwargs)
Bases: StringField

Custom StringField object that allows for functions as default

In some cases we need to allow for dynamic defaults based on configuration options, this String-
Field object allows for a function to be passed as a default, and will only process it at the point the
field is coerced

AUTO_TYPE = <ironic.objects.fields.StringAcceptsCallable object>

class ironic.objects.fields.UUIDField(**kwargs)
Bases: UUIDField

5.1. Developers Guide 1351

Ironic Documentation, Release 26.1.2.dev21

ironic.objects.firmware module

class ironic.objects.firmware.FirmwareComponent(context=None, **kwargs)
Bases: IronicObject

VERSION = '1.0'

property component

create(context=None)
Create a Firmware record in the DB.

Parameters
context Security context.

Raises
NodeNotFound if the node is not found.

Raises
FirmwareComponentAlreadyExists if the record already exists.

property created_at

property current_version

dbapi = <oslo_db.api.DBAPI object>

fields = {'component': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'current_version': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'initial_version': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'last_version_flashed': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, node_id, name)
Get a FirmwareComponent based on its node_id and name.

Parameters

• context Security context.

• node_id The node id.

• name The Firmware Component name.

Raises
NodeNotFound if the node id is not found.

1352 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
FirmwareComponentNotFound if the Firmware Component name is not found.

Returns
A :class:FirmwareComponent object.

property id

property initial_version

property last_version_flashed

property node_id

save(context=None)
Save updates to this Firmware Component.

Updates will be made column by column based on the result of self.what_changed()

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: FirmwareComponent(context)

Raises
NodeNotFound if the node id is not found.

Raises
FirmwareComponentNotFound if the component is not found.

property updated_at

class ironic.objects.firmware.FirmwareComponentList(*args, **kwargs)
Bases: IronicObjectListBase, IronicObject

VERSION = '1.0'

property created_at

dbapi = <oslo_db.api.DBAPI object>

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_node_id(context, node_id)
Get FirmwareComponent based on node_id.

Parameters

• context Security context.

• node_id The node id.

5.1. Developers Guide 1353

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node is not found.

Returns
A list of FirmwareComponent objects.

property objects

classmethod sync_firmware_components(context, node_id, components)
Returns a list of create/update components.

This method sync with the firmware_information database table and sorts three lists - create
/ update / unchanged components.

Parameters

• context Security context.

• node_id The node id.

• components List of FirmwareComponents.

Returns
A 3-tuple of lists of Firmware Components to be created, updated and un-
changed.

property updated_at

ironic.objects.indirection module

class ironic.objects.indirection.IronicObjectIndirectionAPI

Bases: VersionedObjectIndirectionAPI

object_action(context, objinst, objmethod, args, kwargs)
Perform an action on a VersionedObject instance.

When indirection_api is set on a VersionedObject (to a class implementing this interface),
method calls on remotable methods will cause this to be executed to actually make the desired
call. This often involves performing RPC.

Parameters

• context The context within which to perform the action

• objinst The object instance on which to perform the action

• objmethod The name of the action method to call

• args The positional arguments to the action method

• kwargs The keyword arguments to the action method

Returns
The result of the action method

object_backport_versions(context, objinst, object_versions)
Perform a backport of an object instance.

This method is basically just like object_backport() but instead of providing a specific target
version for the toplevel object and relying on the service-side mapping to handle sub-objects,

1354 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

this sends a mapping of all the dependent objects and their client-supported versions. The
server will backport objects within the tree starting at objinst to the versions specified in
object_versions, removing objects that have no entry. Use obj_tree_get_versions() to generate
this mapping.

NOTE: This was not in the initial spec for this interface, so the base class raises NotImple-
mentedError if you dont implement it. For backports, this method will be tried first, and if
unimplemented, will fall back to object_backport().

Parameters

• context The context within which to perform the backport

• objinst An instance of a VersionedObject to be backported

• object_versions A dict of {objname: version} mappings

object_class_action(context, objname, objmethod, objver, args, kwargs)
Deprecated since version 0.10.0.

Use object_class_action_versions() instead.

Perform an action on a VersionedObject class.

When indirection_api is set on a VersionedObject (to a class implementing this interface),
classmethod calls on remotable_classmethod methods will cause this to be executed to actu-
ally make the desired call. This usually involves performing RPC.

Parameters

• context The context within which to perform the action

• objname The registry name of the object

• objmethod The name of the action method to call

• objver The (remote) version of the object on which the action is being taken

• args The positional arguments to the action method

• kwargs The keyword arguments to the action method

Returns
The result of the action method, which may (or may not) be an instance of the
implementing VersionedObject class.

object_class_action_versions(context, objname, objmethod, object_versions, args,
kwargs)

Perform an action on a VersionedObject class.

When indirection_api is set on a VersionedObject (to a class implementing this interface),
classmethod calls on remotable_classmethod methods will cause this to be executed to actu-
ally make the desired call. This usually involves performing RPC.

This differs from object_class_action() in that it is provided with object_versions, a manifest
of client-side object versions for easier nested backports. The manifest is the result of calling
obj_tree_get_versions().

NOTE: This was not in the initial spec for this interface, so the base class raises NotImple-
mentedError if you dont implement it. For backports, this method will be tried first, and if

5.1. Developers Guide 1355

Ironic Documentation, Release 26.1.2.dev21

unimplemented, will fall back to object_class_action(). New implementations should provide
this method instead of object_class_action()

Parameters

• context The context within which to perform the action

• objname The registry name of the object

• objmethod The name of the action method to call

• object_versions A dict of {objname: version} mappings

• args The positional arguments to the action method

• kwargs The keyword arguments to the action method

Returns
The result of the action method, which may (or may not) be an instance of the
implementing VersionedObject class.

ironic.objects.node module

class ironic.objects.node.Node(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.40'

property allocation_id

as_dict(secure=False, mask_configdrive=True)
Return the object represented as a dict.

The returned object is JSON-serialisable.

property automated_clean

property bios_interface

property boot_interface

property boot_mode

property chassis_id

property clean_step

property conductor_affinity

property conductor_group

property console_enabled

property console_interface

1356 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

create(context=None)
Create a Node record in the DB.

Column-wise updates will be made based on the result of self.what_changed(). If tar-
get_power_state is provided, it will be checked against the in-database copy of the node before
updates are made.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Node(context)

Raises
InvalidParameterValue if some property values are invalid.

property created_at

dbapi = <oslo_db.api.DBAPI object>

del_driver_internal_info(key, default_value=None)
Pop a value from the driver_internal_info.

Removing a driver_internal_info dict value via this method ensures that this field will be
flagged for saving.

Parameters

• key Key of item to pop off the driver_internal_info dict

• default_value Value to return if the key doesnt exist

Returns
The removed value, or default_value

property deploy_interface

property deploy_step

property description

destroy(context=None)
Delete the Node from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Node(context)

property driver

property driver_info

property driver_internal_info

property extra

5.1. Developers Guide 1357

Ironic Documentation, Release 26.1.2.dev21

property fault

1358 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'allocation_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'automated_clean': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'bios_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'chassis_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'clean_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_affinity': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'console_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver_internal_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fault': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'firmware_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'inspect_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_finished_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_started_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lessee': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'maintenance_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'management_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_data': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'parent_node': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'protected_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_config': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'rescue_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reservation': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'secure_boot': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'shard': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'storage_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_raid_config': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'vendor_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

5.1. Developers Guide 1359

Ironic Documentation, Release 26.1.2.dev21

property firmware_interface

classmethod get(context, node_id)
Find a node based on its id or uuid and return a Node object.

Parameters

• context Security context

• node_id the id or uuid of a node.

Returns
a Node object.

classmethod get_by_id(context, node_id)
Find a node based on its integer ID and return a Node object.

Parameters

• cls the Node

• context Security context

• node_id the ID of a node.

Returns
a Node object.

classmethod get_by_instance_uuid(context, instance_uuid)
Find a node based on the instance UUID and return a Node object.

Parameters

• cls the Node

• context Security context

• uuid the UUID of the instance.

Returns
a Node object.

classmethod get_by_name(context, name)
Find a node based on name and return a Node object.

Parameters

• cls the Node

• context Security context

• name the logical name of a node.

Returns
a Node object.

classmethod get_by_port_addresses(context, addresses)
Get a node by associated port addresses.

Parameters

• cls the Node

1360 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• context Security context.

• addresses A list of port addresses.

Raises
NodeNotFound if the node is not found.

Returns
a Node object.

classmethod get_by_uuid(context, uuid)
Find a node based on UUID and return a Node object.

Parameters

• cls the Node

• context Security context

• uuid the UUID of a node.

Returns
a Node object.

get_interface(iface)

property id

property inspect_interface

property inspection_finished_at

property inspection_started_at

property instance_info

property instance_uuid

property last_error

property lessee

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None,
filters=None, fields=None)

Return a list of Node objects.

Parameters

• cls the Node

• context Security context.

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

• filters Filters to apply.

5.1. Developers Guide 1361

Ironic Documentation, Release 26.1.2.dev21

• fields Requested fields to be returned. Please note, some fields are manda-
tory for the data model and are automatically included. These are: id, ver-
sion, updated_at, created_at, owner, and lessee.

Returns
a list of Node object.

property maintenance

property maintenance_reason

property management_interface

property name

property network_data

property network_interface

property owner

property parent_node

property power_interface

property power_state

property properties

property protected

property protected_reason

property provision_state

property provision_updated_at

property raid_config

property raid_interface

refresh(context=None)
Refresh the object by re-fetching from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Node(context)

classmethod release(context, tag, node_id)
Release the reservation on a node.

Parameters

• context Security context.

• tag A string uniquely identifying the reservation holder.

• node_id A node id or uuid.

1362 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node is not found.

property rescue_interface

property reservation

classmethod reserve(context, tag, node_id)
Get and reserve a node.

To prevent other ManagerServices from manipulating the given Node while a Task is per-
formed, mark it reserved by this host.

Parameters

• cls the Node

• context Security context.

• tag A string uniquely identifying the reservation holder.

• node_id A node ID or UUID.

Raises
NodeNotFound if the node is not found.

Returns
a Node object.

property resource_class

property retired

property retired_reason

save(context=None)
Save updates to this Node.

Column-wise updates will be made based on the result of self.what_changed(). If tar-
get_power_state is provided, it will be checked against the in-database copy of the node before
updates are made.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Node(context)

Raises
InvalidParameterValue if some property values are invalid.

property secure_boot

property service_step

set_driver_internal_info(key, value)
Set a driver_internal_info value.

Setting a driver_internal_info dict value via this method ensures that this field will be flagged
for saving.

5.1. Developers Guide 1363

Ironic Documentation, Release 26.1.2.dev21

Parameters

• key Key of item to set

• value Value of item to set

set_instance_info(key, value)
Set an instance_info value.

Setting a instance_info dict value via this method ensures that this field will be flagged for
saving.

Parameters

• key Key of item to set

• value Value of item to set

set_property(key, value)
Set a properties value.

Setting a properties dict value via this method ensures that this field will be flagged for saving.

Parameters

• key Key of item to set

• value Value of item to set

property shard

property storage_interface

property target_power_state

property target_provision_state

property target_raid_config

timestamp_driver_internal_info(key)
Set a driver_internal_info value with the current timestamp.

Setting a driver_internal_info timestamp value via this method ensures that this field will be
flagged for saving.

Parameters
key Key of item to set the timestamp on

touch_provisioning(context=None)
Touch the database record to mark the provisioning as alive.

property traits

property updated_at

property uuid

property vendor_interface

1364 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.objects.node.NodeCRUDNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted when ironic creates, updates or deletes a node.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.node.NodeCRUDPayload(node, chassis_uuid=None)
Bases: NodePayload

Payload schema for when ironic creates, updates or deletes a node.

5.1. Developers Guide 1365

Ironic Documentation, Release 26.1.2.dev21

SCHEMA = {'bios_interface': ('node', 'bios_interface'), 'boot_interface':
('node', 'boot_interface'), 'boot_mode': ('node', 'boot_mode'),
'clean_step': ('node', 'clean_step'), 'conductor_group': ('node',
'conductor_group'), 'console_enabled': ('node', 'console_enabled'),
'console_interface': ('node', 'console_interface'), 'created_at':
('node', 'created_at'), 'deploy_interface': ('node', 'deploy_interface'),
'deploy_step': ('node', 'deploy_step'), 'description': ('node',
'description'), 'driver': ('node', 'driver'), 'driver_info': ('node',
'driver_info'), 'extra': ('node', 'extra'), 'fault': ('node', 'fault'),
'inspect_interface': ('node', 'inspect_interface'),
'inspection_finished_at': ('node', 'inspection_finished_at'),
'inspection_started_at': ('node', 'inspection_started_at'),
'instance_info': ('node', 'instance_info'), 'instance_uuid': ('node',
'instance_uuid'), 'last_error': ('node', 'last_error'), 'lessee':
('node', 'lessee'), 'maintenance': ('node', 'maintenance'),
'maintenance_reason': ('node', 'maintenance_reason'),
'management_interface': ('node', 'management_interface'), 'name':
('node', 'name'), 'network_interface': ('node', 'network_interface'),
'owner': ('node', 'owner'), 'power_interface': ('node',
'power_interface'), 'power_state': ('node', 'power_state'), 'properties':
('node', 'properties'), 'protected': ('node', 'protected'),
'protected_reason': ('node', 'protected_reason'), 'provision_state':
('node', 'provision_state'), 'provision_updated_at': ('node',
'provision_updated_at'), 'raid_interface': ('node', 'raid_interface'),
'rescue_interface': ('node', 'rescue_interface'), 'resource_class':
('node', 'resource_class'), 'retired': ('node', 'retired'),
'retired_reason': ('node', 'retired_reason'), 'secure_boot': ('node',
'secure_boot'), 'storage_interface': ('node', 'storage_interface'),
'target_power_state': ('node', 'target_power_state'),
'target_provision_state': ('node', 'target_provision_state'),
'updated_at': ('node', 'updated_at'), 'uuid': ('node', 'uuid'),
'vendor_interface': ('node', 'vendor_interface')}

VERSION = '1.14'

property bios_interface

property boot_interface

property boot_mode

property chassis_uuid

property clean_step

property conductor_group

property console_enabled

property console_interface

property created_at

property deploy_interface

1366 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property deploy_step

property description

property driver

property driver_info

property extra

property fault

5.1. Developers Guide 1367

Ironic Documentation, Release 26.1.2.dev21

fields = {'bios_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'chassis_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'clean_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fault': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspect_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_finished_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_started_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lessee': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'management_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'rescue_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'secure_boot': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'storage_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'vendor_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

1368 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property inspect_interface

property inspection_finished_at

property inspection_started_at

property instance_info

property instance_uuid

property last_error

property lessee

property maintenance

property maintenance_reason

property management_interface

property name

property network_interface

property owner

property power_interface

property power_state

property properties

property protected

property protected_reason

property provision_state

property provision_updated_at

property raid_interface

property rescue_interface

property resource_class

property retired

property retired_reason

property secure_boot

property storage_interface

property target_power_state

property target_provision_state

5.1. Developers Guide 1369

Ironic Documentation, Release 26.1.2.dev21

property traits

property updated_at

property uuid

property vendor_interface

class ironic.objects.node.NodeConsoleNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted when node console state changed.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.node.NodeCorrectedPowerStateNotification(context=None,
**kwargs)

Bases: NotificationBase

Notification for when a nodes power state is corrected in the database.

This notification is emitted when ironic detects that the actual power state on a bare metal hardware
is different from the power state on an ironic node (DB). This notification is emitted after the
database is updated to reflect this correction.

VERSION = '1.0'

property created_at

property event_type

1370 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.node.NodeCorrectedPowerStatePayload(node, from_power)
Bases: NodePayload

Notification payload schema for when a nodes power state is corrected.

from_power indicates the previous power state on the ironic node before the node was updated.

VERSION = '1.16'

property bios_interface

property boot_interface

property boot_mode

property clean_step

property conductor_group

property console_enabled

property console_interface

property created_at

property deploy_interface

property deploy_step

property description

property driver

property extra

property fault

5.1. Developers Guide 1371

Ironic Documentation, Release 26.1.2.dev21

fields = {'bios_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'clean_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fault': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'from_power': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspect_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_finished_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_started_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lessee': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'management_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'rescue_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'secure_boot': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'storage_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'vendor_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

1372 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property from_power

property inspect_interface

property inspection_finished_at

property inspection_started_at

property instance_uuid

property last_error

property lessee

property maintenance

property maintenance_reason

property management_interface

property name

property network_interface

property owner

property power_interface

property power_state

property properties

property protected

property protected_reason

property provision_state

property provision_updated_at

property raid_interface

property rescue_interface

property resource_class

property retired

property retired_reason

property secure_boot

property storage_interface

property target_power_state

property target_provision_state

5.1. Developers Guide 1373

Ironic Documentation, Release 26.1.2.dev21

property traits

property updated_at

property uuid

property vendor_interface

class ironic.objects.node.NodeMaintenanceNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted when maintenance state changed via API.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.node.NodePayload(node, **kwargs)
Bases: NotificationPayloadBase

Base class used for all notification payloads about a Node object.

1374 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

SCHEMA = {'bios_interface': ('node', 'bios_interface'), 'boot_interface':
('node', 'boot_interface'), 'boot_mode': ('node', 'boot_mode'),
'clean_step': ('node', 'clean_step'), 'conductor_group': ('node',
'conductor_group'), 'console_enabled': ('node', 'console_enabled'),
'console_interface': ('node', 'console_interface'), 'created_at':
('node', 'created_at'), 'deploy_interface': ('node', 'deploy_interface'),
'deploy_step': ('node', 'deploy_step'), 'description': ('node',
'description'), 'driver': ('node', 'driver'), 'extra': ('node',
'extra'), 'fault': ('node', 'fault'), 'inspect_interface': ('node',
'inspect_interface'), 'inspection_finished_at': ('node',
'inspection_finished_at'), 'inspection_started_at': ('node',
'inspection_started_at'), 'instance_uuid': ('node', 'instance_uuid'),
'last_error': ('node', 'last_error'), 'lessee': ('node', 'lessee'),
'maintenance': ('node', 'maintenance'), 'maintenance_reason': ('node',
'maintenance_reason'), 'management_interface': ('node',
'management_interface'), 'name': ('node', 'name'), 'network_interface':
('node', 'network_interface'), 'owner': ('node', 'owner'),
'power_interface': ('node', 'power_interface'), 'power_state': ('node',
'power_state'), 'properties': ('node', 'properties'), 'protected':
('node', 'protected'), 'protected_reason': ('node', 'protected_reason'),
'provision_state': ('node', 'provision_state'), 'provision_updated_at':
('node', 'provision_updated_at'), 'raid_interface': ('node',
'raid_interface'), 'rescue_interface': ('node', 'rescue_interface'),
'resource_class': ('node', 'resource_class'), 'retired': ('node',
'retired'), 'retired_reason': ('node', 'retired_reason'), 'secure_boot':
('node', 'secure_boot'), 'storage_interface': ('node',
'storage_interface'), 'target_power_state': ('node',
'target_power_state'), 'target_provision_state': ('node',
'target_provision_state'), 'updated_at': ('node', 'updated_at'), 'uuid':
('node', 'uuid'), 'vendor_interface': ('node', 'vendor_interface')}

VERSION = '1.16'

property bios_interface

property boot_interface

property boot_mode

property clean_step

property conductor_group

property console_enabled

property console_interface

property created_at

property deploy_interface

property deploy_step

property description

5.1. Developers Guide 1375

Ironic Documentation, Release 26.1.2.dev21

property driver

property extra

property fault

1376 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'bios_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'clean_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fault': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspect_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_finished_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_started_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lessee': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'management_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'rescue_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'secure_boot': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'storage_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'vendor_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

5.1. Developers Guide 1377

Ironic Documentation, Release 26.1.2.dev21

property inspect_interface

property inspection_finished_at

property inspection_started_at

property instance_uuid

property last_error

property lessee

property maintenance

property maintenance_reason

property management_interface

property name

property network_interface

property owner

property power_interface

property power_state

property properties

property protected

property protected_reason

property provision_state

property provision_updated_at

property raid_interface

property rescue_interface

property resource_class

property retired

property retired_reason

property secure_boot

property storage_interface

property target_power_state

property target_provision_state

property traits

1378 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property updated_at

property uuid

property vendor_interface

class ironic.objects.node.NodeSetPowerStateNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted when ironic changes a nodes power state.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.node.NodeSetPowerStatePayload(node, to_power)
Bases: NodePayload

Payload schema for when ironic changes a nodes power state.

VERSION = '1.16'

property bios_interface

property boot_interface

property boot_mode

property clean_step

property conductor_group

property console_enabled

5.1. Developers Guide 1379

Ironic Documentation, Release 26.1.2.dev21

property console_interface

property created_at

property deploy_interface

property deploy_step

property description

property driver

property extra

property fault

1380 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'bios_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'clean_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fault': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspect_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_finished_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_started_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lessee': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'management_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'rescue_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'secure_boot': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'storage_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'to_power': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'vendor_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

5.1. Developers Guide 1381

Ironic Documentation, Release 26.1.2.dev21

property inspect_interface

property inspection_finished_at

property inspection_started_at

property instance_uuid

property last_error

property lessee

property maintenance

property maintenance_reason

property management_interface

property name

property network_interface

property owner

property power_interface

property power_state

property properties

property protected

property protected_reason

property provision_state

property provision_updated_at

property raid_interface

property rescue_interface

property resource_class

property retired

property retired_reason

property secure_boot

property storage_interface

property target_power_state

property target_provision_state

property to_power

1382 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property traits

property updated_at

property uuid

property vendor_interface

class ironic.objects.node.NodeSetProvisionStateNotification(context=None,
**kwargs)

Bases: NotificationBase

Notification emitted when ironic changes a node provision state.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.node.NodeSetProvisionStatePayload(node, prev_state, prev_target,
event)

Bases: NodePayload

Payload schema for when ironic changes a node provision state.

5.1. Developers Guide 1383

Ironic Documentation, Release 26.1.2.dev21

SCHEMA = {'bios_interface': ('node', 'bios_interface'), 'boot_interface':
('node', 'boot_interface'), 'boot_mode': ('node', 'boot_mode'),
'clean_step': ('node', 'clean_step'), 'conductor_group': ('node',
'conductor_group'), 'console_enabled': ('node', 'console_enabled'),
'console_interface': ('node', 'console_interface'), 'created_at':
('node', 'created_at'), 'deploy_interface': ('node', 'deploy_interface'),
'deploy_step': ('node', 'deploy_step'), 'description': ('node',
'description'), 'driver': ('node', 'driver'), 'driver_internal_info':
('node', 'driver_internal_info'), 'extra': ('node', 'extra'), 'fault':
('node', 'fault'), 'inspect_interface': ('node', 'inspect_interface'),
'inspection_finished_at': ('node', 'inspection_finished_at'),
'inspection_started_at': ('node', 'inspection_started_at'),
'instance_info': ('node', 'instance_info'), 'instance_uuid': ('node',
'instance_uuid'), 'last_error': ('node', 'last_error'), 'lessee':
('node', 'lessee'), 'maintenance': ('node', 'maintenance'),
'maintenance_reason': ('node', 'maintenance_reason'),
'management_interface': ('node', 'management_interface'), 'name':
('node', 'name'), 'network_interface': ('node', 'network_interface'),
'owner': ('node', 'owner'), 'power_interface': ('node',
'power_interface'), 'power_state': ('node', 'power_state'), 'properties':
('node', 'properties'), 'protected': ('node', 'protected'),
'protected_reason': ('node', 'protected_reason'), 'provision_state':
('node', 'provision_state'), 'provision_updated_at': ('node',
'provision_updated_at'), 'raid_interface': ('node', 'raid_interface'),
'rescue_interface': ('node', 'rescue_interface'), 'resource_class':
('node', 'resource_class'), 'retired': ('node', 'retired'),
'retired_reason': ('node', 'retired_reason'), 'secure_boot': ('node',
'secure_boot'), 'storage_interface': ('node', 'storage_interface'),
'target_power_state': ('node', 'target_power_state'),
'target_provision_state': ('node', 'target_provision_state'),
'updated_at': ('node', 'updated_at'), 'uuid': ('node', 'uuid'),
'vendor_interface': ('node', 'vendor_interface')}

VERSION = '1.17'

property bios_interface

property boot_interface

property boot_mode

property clean_step

property conductor_group

property console_enabled

property console_interface

property created_at

property deploy_interface

property deploy_step

1384 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property description

property driver

property driver_internal_info

property event

property extra

property fault

5.1. Developers Guide 1385

Ironic Documentation, Release 26.1.2.dev21

fields = {'bios_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'boot_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'clean_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'conductor_group': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'console_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deploy_step': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'driver_internal_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fault': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspect_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_finished_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'inspection_started_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'last_error': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'lessee': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'maintenance_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'management_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'network_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'previous_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'previous_target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'protected_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provision_updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'raid_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'rescue_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_class': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'retired_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'secure_boot': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'storage_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_power_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'target_provision_state': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'traits': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'vendor_interface': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

1386 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property inspect_interface

property inspection_finished_at

property inspection_started_at

property instance_info

property instance_uuid

property last_error

property lessee

property maintenance

property maintenance_reason

property management_interface

property name

property network_interface

property owner

property power_interface

property power_state

property previous_provision_state

property previous_target_provision_state

property properties

property protected

property protected_reason

property provision_state

property provision_updated_at

property raid_interface

property rescue_interface

property resource_class

property retired

property retired_reason

property secure_boot

property storage_interface

5.1. Developers Guide 1387

Ironic Documentation, Release 26.1.2.dev21

property target_power_state

property target_provision_state

property traits

property updated_at

property uuid

property vendor_interface

ironic.objects.node_history module

class ironic.objects.node_history.NodeHistory(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.0'

property conductor

create(context=None)
Create a NodeHistory record in the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: NodeHistory(context)

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the NodeHistory from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: NodeHistory(context)

Raises
NodeHistoryNotFound

property event

property event_type

1388 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'conductor': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'severity': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'user':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, history_ident)
Get a history based on its id or uuid.

Parameters

• history_ident The id or uuid of a history.

• context Security context

Returns
A NodeHistory object.

Raises
InvalidIdentity

classmethod get_by_id(context, history_id)
Get a NodeHistory object by its integer ID.

Parameters

• cls the NodeHistory

• context Security context

• history_id The ID of a history.

Returns
A NodeHistory object.

Raises
NodeHistoryNotFound

classmethod get_by_uuid(context, uuid)
Get a NodeHistory object by its UUID.

Parameters

5.1. Developers Guide 1389

Ironic Documentation, Release 26.1.2.dev21

• cls the NodeHistory

• context Security context

• uuid The UUID of a NodeHistory.

Returns
A NodeHistory object.

Raises
NodeHistoryNotFound

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None)
Return a list of NodeHistory objects.

Parameters

• cls the NodeHistory

• context Security context.

• limit Maximum number of resources to return in a single result.

• marker Pagination marker for large data sets.

• sort_key Column to sort results by.

• sort_dir Direction to sort. asc or desc.

Returns
A list of NodeHistory object.

Raises
InvalidParameterValue

classmethod list_by_node_id(context, node_id, limit=None, marker=None,
sort_key=None, sort_dir=None)

Return a list of NodeHistory objects belongs to a given node ID.

Parameters

• cls the NodeHistory

• context Security context.

• node_id The ID of the node.

• limit Maximum number of resources to return in a single result.

• marker Pagination marker for large data sets.

• sort_key Column to sort results by.

• sort_dir Direction to sort. asc or desc.

Returns
A list of NodeHistory object.

Raises
InvalidParameterValue

1390 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property node_id

property severity

property updated_at

property user

property uuid

ironic.objects.node_inventory module

class ironic.objects.node_inventory.NodeInventory(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.0'

create(context=None)
Create a NodeInventory record in the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: NodeHistory(context)

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the NodeInventory from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: NodeInventory(context)

Raises
NodeInventoryNotFound

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'inventory_data': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'plugin_data': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

5.1. Developers Guide 1391

Ironic Documentation, Release 26.1.2.dev21

classmethod get_by_node_id(context, node_id)
Get a NodeInventory object by its node ID.

Parameters

• cls the NodeInventory

• context Security context

• uuid The UUID of a NodeInventory.

Returns
A NodeInventory object.

Raises
NodeInventoryNotFound

property id

property inventory_data

property node_id

property plugin_data

property updated_at

ironic.objects.notification module

class ironic.objects.notification.EventType(context=None, **kwargs)
Bases: IronicObject

Defines the event_type to be sent on the wire.

An EventType must specify the object being acted on, a string describing the action being taken
on the notification, and the status of the action.

VERSION = '1.1'

property action

property created_at

fields = {'action': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'object': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'status': NotificationStatus(default=<class 'oslo_versionedobjects.
fields.UnspecifiedDefault'>,nullable=False,valid_values=('start', 'end',
'error', 'success')), 'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property object

1392 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property status

to_event_type_field()

Constructs string for event_type to be sent on the wire.

The string is in the format: baremetal.<object>.<action>.<status>

Raises
ValueError if self.status is not one of fields.NotificationStatusField

Returns
event_type string

property updated_at

class ironic.objects.notification.NotificationBase(context=None, **kwargs)
Bases: IronicObject

Base class for versioned notifications.

Subclasses must define the payload field, which must be a subclass of NotificationPayloadBase.

VERSION = '1.0'

property created_at

emit(context)
Send the notification.

Raises
NotificationPayloadError

Raises
oslo_versionedobjects.exceptions.MessageDeliveryFailure

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property publisher

property updated_at

class ironic.objects.notification.NotificationPayloadBase(*args, **kwargs)
Bases: IronicObject

Base class for the payload of versioned notifications.

5.1. Developers Guide 1393

Ironic Documentation, Release 26.1.2.dev21

SCHEMA = {}

VERSION = '1.0'

property created_at

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

populate_schema(**kwargs)
Populate the object based on the SCHEMA and the source objects

Parameters
kwargs A dict contains the source object and the keys defined in the SCHEMA

Raises
NotificationSchemaObjectError

Raises
NotificationSchemaKeyError

property updated_at

class ironic.objects.notification.NotificationPublisher(context=None, **kwargs)
Bases: IronicObject

VERSION = '1.0'

property created_at

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'service': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property host

property service

property updated_at

ironic.objects.notification.mask_secrets(payload)
Remove secrets from payload object.

1394 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

ironic.objects.port module

class ironic.objects.port.Port(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.11'

property address

create(context=None)
Create a Port record in the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Port(context)

Raises
MACAlreadyExists if address column is not unique

Raises
PortAlreadyExists if uuid column is not unique

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the Port from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Port(context)

Raises
PortNotFound

property extra

5.1. Developers Guide 1395

Ironic Documentation, Release 26.1.2.dev21

fields = {'address': MACAddress(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'internal_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'is_smartnic': Boolean(default=False,nullable=True),
'local_link_connection': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'physical_network': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'portgroup_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'pxe_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, port_id)
Find a port.

Find a port based on its id or uuid or name or MAC address and return a Port object.

Parameters

• context Security context

• port_id the id or uuid or name or MAC address of a port.

Returns
a Port object.

Raises
InvalidIdentity

classmethod get_by_address(context, address, owner=None, project=None)
Find a port based on address and return a Port object.

Parameters

• cls the Port

• context Security context

• address the address of a port.

1396 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• owner DEPRECATED a node owner to match against

• project a node owner or lessee to match against

Returns
a Port object.

Raises
PortNotFound

classmethod get_by_id(context, port_id)
Find a port based on its integer ID and return a Port object.

Parameters

• cls the Port

• context Security context

• port_id the ID of a port.

Returns
a Port object.

Raises
PortNotFound

classmethod get_by_name(context, name)
Find a port based on name and return a Port object.

Parameters

• cls the Port

• context Security context

• name the name of a port.

Returns
a Port object.

Raises
PortNotFound

classmethod get_by_uuid(context, uuid)
Find a port based on UUID and return a Port object.

Parameters

• cls the Port

• context Security context

• uuid the UUID of a port.

Returns
a Port object.

Raises
PortNotFound

property id

5.1. Developers Guide 1397

Ironic Documentation, Release 26.1.2.dev21

property internal_info

property is_smartnic

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None,
owner=None, project=None)

Return a list of Port objects.

Parameters

• context Security context.

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

• owner DEPRECATED a node owner to match against

• project a node owner or lessee to match against

Returns
a list of Port object.

Raises
InvalidParameterValue

classmethod list_by_node_id(context, node_id, limit=None, marker=None,
sort_key=None, sort_dir=None, owner=None,
project=None)

Return a list of Port objects associated with a given node ID.

Parameters

• context Security context.

• node_id the ID of the node.

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

• owner DEPRECATED a node owner to match against

• project a node owner or lessee to match against

Returns
a list of Port object.

classmethod list_by_node_shards(context, shards, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

Return a list of Port objects associated with nodes in shards

Parameters

• context Security context.

1398 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

• shards a list of shards

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

• project a node owner or lessee to match against

Returns
a list of Port object.

classmethod list_by_portgroup_id(context, portgroup_id, limit=None, marker=None,
sort_key=None, sort_dir=None, owner=None,
project=None)

Return a list of Port objects associated with a given portgroup ID.

Parameters

• context Security context.

• portgroup_id the ID of the portgroup.

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

• owner DEPRECATED a node owner to match against

• project a node owner or lessee to match against

Returns
a list of Port object.

property local_link_connection

property name

property node_id

property node_uuid

property physical_network

property portgroup_id

property pxe_enabled

refresh(context=None)
Loads updates for this Port.

Loads a port with the same uuid from the database and checks for updated attributes. Updates
are applied from the loaded port column by column, if there are any updates.

5.1. Developers Guide 1399

Ironic Documentation, Release 26.1.2.dev21

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Port(context)

Raises
PortNotFound

save(context=None)
Save updates to this Port.

Updates will be made column by column based on the result of self.what_changed().

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Port(context)

Raises
PortNotFound

Raises
MACAlreadyExists if address column is not unique

set_local_link_connection(key, value)
Set a local_link_connection value.

Setting a local_link_connection dict value via this method ensures that this field will be
flagged for saving.

Parameters

• key Key of item to set

• value Value of item to set

classmethod supports_is_smartnic()

Return whether is_smartnic field is supported.

Returns
Whether is_smartnic field is supported

Raises
ovo_exception.IncompatibleObjectVersion

classmethod supports_physical_network()

Return whether the physical_network field is supported.

Returns
Whether the physical_network field is supported

Raises
ovo_exception.IncompatibleObjectVersion

property updated_at

property uuid

1400 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

class ironic.objects.port.PortCRUDNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted when ironic creates, updates or deletes a port.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.port.PortCRUDPayload(port, node_uuid, portgroup_uuid)
Bases: NotificationPayloadBase

SCHEMA = {'address': ('port', 'address'), 'created_at': ('port',
'created_at'), 'extra': ('port', 'extra'), 'is_smartnic': ('port',
'is_smartnic'), 'local_link_connection': ('port',
'local_link_connection'), 'name': ('port', 'name'), 'physical_network':
('port', 'physical_network'), 'pxe_enabled': ('port', 'pxe_enabled'),
'updated_at': ('port', 'updated_at'), 'uuid': ('port', 'uuid')}

VERSION = '1.4'

property address

property created_at

property extra

5.1. Developers Guide 1401

Ironic Documentation, Release 26.1.2.dev21

fields = {'address': MACAddress(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'is_smartnic': Boolean(default=False,nullable=True),
'local_link_connection': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'physical_network': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'portgroup_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'pxe_enabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property is_smartnic

property local_link_connection

property name

property node_uuid

property physical_network

property portgroup_uuid

property pxe_enabled

property updated_at

property uuid

ironic.objects.portgroup module

class ironic.objects.portgroup.Portgroup(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.5'

property address

1402 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

create(context=None)
Create a Portgroup record in the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Portgroup(context)

Raises
DuplicateName, MACAlreadyExists, PortgroupAlreadyExists

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the Portgroup from the DB.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Portgroup(context)

Raises
PortgroupNotEmpty, PortgroupNotFound

property extra

fields = {'address': MACAddress(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'internal_info': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'mode':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'standalone_ports_supported': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

5.1. Developers Guide 1403

Ironic Documentation, Release 26.1.2.dev21

classmethod get(context, portgroup_ident)
Find a portgroup based on its id, uuid, name or address.

Parameters

• portgroup_ident The id, uuid, name or address of a portgroup.

• context Security context

Returns
A Portgroup object.

Raises
InvalidIdentity

classmethod get_by_address(context, address, project=None)
Find portgroup by address and return a Portgroup object.

Parameters

• cls the Portgroup

• context Security context

• address The MAC address of a portgroup.

• project a node owner or lessee to match against.

Returns
A Portgroup object.

Raises
PortgroupNotFound

classmethod get_by_id(context, portgroup_id)
Find a portgroup by its integer ID and return a Portgroup object.

Parameters

• cls the Portgroup

• context Security context

• portgroup_id The ID of a portgroup.

Returns
A Portgroup object.

Raises
PortgroupNotFound

classmethod get_by_name(context, name)
Find portgroup based on name and return a Portgroup object.

Parameters

• cls the Portgroup

• context Security context

• name The name of a portgroup.

1404 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
A Portgroup object.

Raises
PortgroupNotFound

classmethod get_by_uuid(context, uuid)
Find a portgroup by UUID and return a Portgroup object.

Parameters

• cls the Portgroup

• context Security context

• uuid The UUID of a portgroup.

Returns
A Portgroup object.

Raises
PortgroupNotFound

property id

property internal_info

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of Portgroup objects.

Parameters

• cls the Portgroup

• context Security context.

• limit Maximum number of resources to return in a single result.

• marker Pagination marker for large data sets.

• sort_key Column to sort results by.

• sort_dir Direction to sort. asc or desc.

• project a node owner or lessee to match against.

Returns
A list of Portgroup object.

Raises
InvalidParameterValue

classmethod list_by_node_id(context, node_id, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

Return a list of Portgroup objects associated with a given node ID.

Parameters

• cls the Portgroup

• context Security context.

5.1. Developers Guide 1405

Ironic Documentation, Release 26.1.2.dev21

• node_id The ID of the node.

• limit Maximum number of resources to return in a single result.

• marker Pagination marker for large data sets.

• sort_key Column to sort results by.

• sort_dir Direction to sort. asc or desc.

• project a node owner or lessee to match against.

Returns
A list of Portgroup object.

Raises
InvalidParameterValue

property mode

property name

property node_id

property node_uuid

property properties

refresh(context=None)
Loads updates for this Portgroup.

Loads a portgroup with the same uuid from the database and checks for updated attributes.
Updates are applied from the loaded portgroup column by column, if there are any updates.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Portgroup(context)

Raises
PortgroupNotFound

save(context=None)
Save updates to this Portgroup.

Updates will be made column by column based on the result of self.what_changed().

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Portgroup(context)

Raises
PortgroupNotFound, DuplicateName, MACAlreadyExists

property standalone_ports_supported

property updated_at

1406 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property uuid

class ironic.objects.portgroup.PortgroupCRUDNotification(context=None, **kwargs)
Bases: NotificationBase

Notification when ironic creates, updates or deletes a portgroup.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.portgroup.PortgroupCRUDPayload(portgroup, node_uuid)
Bases: NotificationPayloadBase

SCHEMA = {'address': ('portgroup', 'address'), 'created_at':
('portgroup', 'created_at'), 'extra': ('portgroup', 'extra'), 'mode':
('portgroup', 'mode'), 'name': ('portgroup', 'name'), 'properties':
('portgroup', 'properties'), 'standalone_ports_supported': ('portgroup',
'standalone_ports_supported'), 'updated_at': ('portgroup', 'updated_at'),
'uuid': ('portgroup', 'uuid')}

VERSION = '1.0'

property address

property created_at

property extra

5.1. Developers Guide 1407

Ironic Documentation, Release 26.1.2.dev21

fields = {'address': MACAddress(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'mode':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'standalone_ports_supported': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property mode

property name

property node_uuid

property properties

property standalone_ports_supported

property updated_at

property uuid

ironic.objects.runbook module

class ironic.objects.runbook.Runbook(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.0'

create(context=None)
Create a Runbook record in the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

Raises
RunbookDuplicateName if a runbook with the same name exists.

1408 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
RunbookAlreadyExists if a runbook with the same UUID exists.

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy()

Delete the Runbook from the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

Raises
RunbookNotFound if the runbook no longer appears in the database.

property disable_ramdisk

property extra

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'disable_ramdisk': Boolean(default=False,nullable=False), 'extra':
FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'public': Boolean(default=False,nullable=False), 'steps':
List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_by_id(context, runbook_id)
Find a runbook based on its integer ID.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

• runbook_id The ID of a runbook.

Raises
RunbookNotFound if the runbook no longer appears in the database.

5.1. Developers Guide 1409

Ironic Documentation, Release 26.1.2.dev21

Returns
a Runbook object.

classmethod get_by_name(context, name)
Find a runbook based on its name.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

• name The name of a runbook.

Raises
RunbookNotFound if the runbook no longer appears in the database.

Returns
a Runbook object.

classmethod get_by_uuid(context, uuid)
Find a runbook based on its UUID.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

• uuid The UUID of a runbook.

Raises
RunbookNotFound if the runbook no longer appears in the database.

Returns
a Runbook object.

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None,
filters=None)

Return a list of Runbook objects.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

• limit maximum number of resources to return in a single result.

• marker pagination marker for large data sets.

• sort_key column to sort results by.

• sort_dir direction to sort. asc or desc.

• filters Filters to apply.

1410 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Returns
a list of Runbook objects.

classmethod list_by_names(context, names)
Return a list of Runbook objects matching a set of names.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context).

• names a list of names to filter by.

Returns
a list of Runbook objects.

property name

property owner

property public

refresh(context=None)
Loads updates for this runbook.

Loads a runbook with the same uuid from the database and checks for updated attributes.
Updates are applied from the loaded template column by column, if there are any updates.

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Port(context)

Raises
RunbookNotFound if the runbook no longer appears in the database.

save(context=None)
Save updates to this Runbook.

Column-wise updates will be made based on the result of self.what_changed().

Parameters
context Security context. NOTE: This should only be used internally by the
indirection_api, but, RPC requires context as the first argument, even though
we dont use it. A context should be set when instantiating the object, e.g.:
Runbook(context)

Raises
RunbookDuplicateName if a runbook with the same name exists.

Raises
RunbookNotFound if the runbook does not exist.

property steps

5.1. Developers Guide 1411

Ironic Documentation, Release 26.1.2.dev21

property updated_at

property uuid

class ironic.objects.runbook.RunbookCRUDNotification(context=None, **kwargs)
Bases: NotificationBase

Notification emitted on runbook API operations.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.runbook.RunbookCRUDPayload(runbook, **kwargs)
Bases: NotificationPayloadBase

SCHEMA = {'created_at': ('runbook', 'created_at'), 'disable_ramdisk':
('runbook', 'disable_ramdisk'), 'extra': ('runbook', 'extra'), 'name':
('runbook', 'name'), 'owner': ('runbook', 'owner'), 'public':
('runbook', 'public'), 'steps': ('runbook', 'steps'), 'updated_at':
('runbook', 'updated_at'), 'uuid': ('runbook', 'uuid')}

VERSION = '1.0'

property created_at

property disable_ramdisk

property extra

1412 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'disable_ramdisk': Boolean(default=False,nullable=False), 'extra':
FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'owner': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'public': Boolean(default=False,nullable=False), 'steps':
List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property name

property owner

property public

property steps

property updated_at

property uuid

ironic.objects.trait module

class ironic.objects.trait.Trait(context=None, **kwargs)
Bases: IronicObject

VERSION = '1.0'

create(context=None)
Create a Trait record in the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: Trait(context).

Raises
InvalidParameterValue if adding the trait would exceed the per-node traits limit.

Raises
NodeNotFound if the node no longer appears in the database.

property created_at

dbapi = <oslo_db.api.DBAPI object>

5.1. Developers Guide 1413

Ironic Documentation, Release 26.1.2.dev21

classmethod destroy(context, node_id, trait)
Delete the Trait from the DB.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: Trait(context).

• node_id The id of a node.

• trait A trait string.

Raises
NodeNotFound if the node no longer appears in the database.

Raises
NodeTraitNotFound if the trait is not found.

classmethod exists(context, node_id, trait)
Check whether a Trait exists in the DB.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: Trait(context).

• node_id The id of a node.

• trait A trait string.

Returns
True if the trait exists otherwise False.

Raises
NodeNotFound if the node no longer appears in the database.

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'trait': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property node_id

property trait

property updated_at

class ironic.objects.trait.TraitList(*args, **kwargs)
Bases: IronicObjectListBase, IronicObject

1414 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

VERSION = '1.0'

classmethod create(context, node_id, traits)
Replace all existing traits with the specified list.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: Trait(context).

• node_id The id of a node.

• traits List of Strings; traits to set.

Raises
InvalidParameterValue if adding the trait would exceed the per-node traits limit.

Raises
NodeNotFound if the node no longer appears in the database.

property created_at

dbapi = <oslo_db.api.DBAPI object>

classmethod destroy(context, node_id)
Delete all traits for the specified node.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: Trait(context).

• node_id The id of a node.

Raises
NodeNotFound if the node no longer appears in the database.

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_node_id(context, node_id)
Return all traits for the specified node.

Parameters

• context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument,
even though we dont use it. A context should be set when instantiating the
object, e.g.: Trait(context).

• node_id The id of a node.

5.1. Developers Guide 1415

Ironic Documentation, Release 26.1.2.dev21

Raises
NodeNotFound if the node no longer appears in the database.

get_trait_names()

Return a list of names of the traits in this list.

property objects

property updated_at

ironic.objects.volume_connector module

class ironic.objects.volume_connector.VolumeConnector(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.0'

property connector_id

create(context=None)
Create a VolumeConnector record in the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeConnector(context).

Raises
VolumeConnectorTypeAndIdAlreadyExists if a volume connector already ex-
ists with the same type and connector_id

Raises
VolumeConnectorAlreadyExists if a volume connector with the same UUID
already exists

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the VolumeConnector from the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeConnector(context).

Raises
VolumeConnectorNotFound if the volume connector cannot be found

property extra

1416 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

fields = {'connector_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'type':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, ident)
Find a volume connector based on its ID or UUID.

Parameters

• context security context

• ident the database primary key ID or the UUID of a volume connector

Returns
a VolumeConnector object

Raises
InvalidIdentity if ident is neither an integer ID nor a UUID

Raises
VolumeConnectorNotFound if no volume connector exists with the specified
ident

classmethod get_by_id(context, db_id)
Find a volume connector based on its integer ID.

Parameters

• cls the VolumeConnector

• context Security context.

• db_id The integer (database primary key) ID of a volume connector.

Returns
A VolumeConnector object.

Raises
VolumeConnectorNotFound if no volume connector exists with the specified
ID.

classmethod get_by_uuid(context, uuid)
Find a volume connector based on its UUID.

Parameters

5.1. Developers Guide 1417

Ironic Documentation, Release 26.1.2.dev21

• cls the VolumeConnector

• context security context

• uuid the UUID of a volume connector

Returns
a VolumeConnector object

Raises
VolumeConnectorNotFound if no volume connector exists with the specified
UUID

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of VolumeConnector objects.

Parameters

• context security context

• limit maximum number of resources to return in a single result

• marker pagination marker for large data sets

• sort_key column to sort results by

• sort_dir direction to sort. asc or desc.

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Raises
InvalidParameterValue if sort_key does not exist

classmethod list_by_node_id(context, node_id, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

Return a list of VolumeConnector objects related to a given node ID.

Parameters

• context security context

• node_id the integer ID of the node

• limit maximum number of resources to return in a single result

• marker pagination marker for large data sets

• sort_key column to sort results by

• sort_dir direction to sort. asc or desc.

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
a list of VolumeConnector objects

1418 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Raises
InvalidParameterValue if sort_key does not exist

property node_id

refresh(context=None)
Load updates for this VolumeConnector.

Load a volume connector with the same UUID from the database and check for updated at-
tributes. If there are any updates, they are applied from the loaded volume connector, column
by column.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeConnector(context).

save(context=None)
Save updates to this VolumeConnector.

Updates will be made column by column based on the result of
self.do_version_changes_for_db().

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeConnector(context).

Raises
VolumeConnectorNotFound if the volume connector cannot be found

Raises
VolumeConnectorTypeAndIdAlreadyExists if another connector already exists
with the same values for type and connector_id fields

Raises
InvalidParameterValue when the UUID is being changed

property type

property updated_at

property uuid

class ironic.objects.volume_connector.VolumeConnectorCRUDNotification(context=None,
**kwargs)

Bases: NotificationBase

Notification emitted at CRUD of a volume connector.

VERSION = '1.0'

property created_at

property event_type

5.1. Developers Guide 1419

Ironic Documentation, Release 26.1.2.dev21

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.volume_connector.VolumeConnectorCRUDPayload(connector,
node_uuid)

Bases: NotificationPayloadBase

Payload schema for CRUD of a volume connector.

SCHEMA = {'connector_id': ('connector', 'connector_id'), 'created_at':
('connector', 'created_at'), 'extra': ('connector', 'extra'), 'type':
('connector', 'type'), 'updated_at': ('connector', 'updated_at'), 'uuid':
('connector', 'uuid')}

VERSION = '1.0'

property connector_id

property created_at

property extra

fields = {'connector_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'type': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

1420 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

property node_uuid

property type

property updated_at

property uuid

ironic.objects.volume_target module

class ironic.objects.volume_target.VolumeTarget(context=None, **kwargs)
Bases: IronicObject, VersionedObjectDictCompat

VERSION = '1.0'

property boot_index

create(context=None)
Create a VolumeTarget record in the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeTarget(context).

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same node ID and boot index

Raises
VolumeTargetAlreadyExists if a volume target with the same UUID exists

property created_at

dbapi = <oslo_db.api.DBAPI object>

destroy(context=None)
Delete the VolumeTarget from the DB.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeTarget(context).

Raises
VolumeTargetNotFound if the volume target cannot be found

property extra

5.1. Developers Guide 1421

Ironic Documentation, Release 26.1.2.dev21

fields = {'boot_index': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'node_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get(context, ident)
Find a volume target based on its ID or UUID.

Parameters

• context security context

• ident the database primary key ID or the UUID of a volume target

Returns
a VolumeTarget object

Raises
InvalidIdentity if ident is neither an integer ID nor a UUID

Raises
VolumeTargetNotFound if no volume target with this ident exists

classmethod get_by_id(context, db_id)
Find a volume target based on its database ID.

Parameters

• cls the VolumeTarget

• context security context

• db_id the database primary key (integer) ID of a volume target

Returns
a VolumeTarget object

Raises
VolumeTargetNotFound if no volume target with this ID exists

classmethod get_by_uuid(context, uuid)
Find a volume target based on its UUID.

1422 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Parameters

• cls the VolumeTarget

• context security context

• uuid the UUID of a volume target

Returns
a VolumeTarget object

Raises
VolumeTargetNotFound if no volume target with this UUID exists

property id

classmethod list(context, limit=None, marker=None, sort_key=None, sort_dir=None,
project=None)

Return a list of VolumeTarget objects.

Parameters

• context security context

• limit maximum number of resources to return in a single result

• marker pagination marker for large data sets

• sort_key column to sort results by

• sort_dir direction to sort. asc or desc.

• project The associated node project to search with.

Returns
a list of VolumeConnector objects

Returns
a list of VolumeTarget objects

Raises
InvalidParameterValue if sort_key does not exist

classmethod list_by_node_id(context, node_id, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

Return a list of VolumeTarget objects related to a given node ID.

Parameters

• context security context

• node_id the integer ID of the node

• limit maximum number of resources to return in a single result

• marker pagination marker for large data sets

• sort_key column to sort results by

• sort_dir direction to sort. asc or desc.

• project The associated node project to search with.

5.1. Developers Guide 1423

Ironic Documentation, Release 26.1.2.dev21

Returns
a list of VolumeConnector objects

Returns
a list of VolumeTarget objects

Raises
InvalidParameterValue if sort_key does not exist

classmethod list_by_volume_id(context, volume_id, limit=None, marker=None,
sort_key=None, sort_dir=None, project=None)

Return a list of VolumeTarget objects related to a given volume ID.

Parameters

• context security context

• volume_id the UUID of the volume

• limit maximum number of volume targets to return in a single result

• marker pagination marker for large data sets

• sort_key column to sort results by

• sort_dir direction to sort. asc or desc.

Returns
a list of VolumeTarget objects

Raises
InvalidParameterValue if sort_key does not exist

property node_id

property properties

refresh(context=None)
Loads updates for this VolumeTarget.

Load a volume target with the same UUID from the database and check for updated attributes.
If there are any updates, they are applied from the loaded volume target, column by column.

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even
though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeTarget(context).

Raises
VolumeTargetNotFound if the volume target cannot be found

save(context=None)
Save updates to this VolumeTarget.

Updates will be made column by column based on the result of
self.do_version_changes_for_db().

Parameters
context security context. NOTE: This should only be used internally by the
indirection_api. Unfortunately, RPC requires context as the first argument, even

1424 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

though we dont use it. A context should be set when instantiating the object,
e.g.: VolumeTarget(context).

Raises
InvalidParameterValue if the UUID is being changed

Raises
VolumeTargetBootIndexAlreadyExists if a volume target already exists with
the same node ID and boot index values

Raises
VolumeTargetNotFound if the volume target cannot be found

property updated_at

property uuid

property volume_id

property volume_type

class ironic.objects.volume_target.VolumeTargetCRUDNotification(context=None,
**kwargs)

Bases: NotificationBase

Notification emitted at CRUD of a volume target.

VERSION = '1.0'

property created_at

property event_type

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'event_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'level': NotificationLevel(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=False,valid_values=('debug', 'info',
'warning', 'error', 'critical')), 'payload': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'publisher': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property payload

property publisher

property updated_at

class ironic.objects.volume_target.VolumeTargetCRUDPayload(target, node_uuid)
Bases: NotificationPayloadBase

5.1. Developers Guide 1425

Ironic Documentation, Release 26.1.2.dev21

SCHEMA = {'boot_index': ('target', 'boot_index'), 'created_at':
('target', 'created_at'), 'extra': ('target', 'extra'), 'properties':
('target', 'properties'), 'updated_at': ('target', 'updated_at'), 'uuid':
('target', 'uuid'), 'volume_id': ('target', 'volume_id'), 'volume_type':
('target', 'volume_type')}

VERSION = '1.0'

property boot_index

property created_at

property extra

fields = {'boot_index': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'node_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'properties': FlexibleDict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'volume_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property node_uuid

property properties

property updated_at

property uuid

property volume_id

property volume_type

1426 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Module contents

ironic.objects.register_all()

ironic.pxe_filter package

Submodules

ironic.pxe_filter.dnsmasq module

ironic.pxe_filter.dnsmasq.sync(allow_macs, deny_macs, allow_unknown)
Conduct a complete sync of the state.

Unlike update, MACs not in either list are handled according to allow_unknown.

Parameters

• allow_macs MACs to allow in dnsmasq.

• deny_macs MACs to disallow in dnsmasq.

• allow_unknown Whether to allow access to dnsmasq to unknown MACs.

ironic.pxe_filter.dnsmasq.update(allow_macs, deny_macs, allow_unknown=None)
Update only the given MACs.

MACs not in either lists are ignored.

Parameters

• allow_macs MACs to allow in dnsmasq.

• deny_macs MACs to disallow in dnsmasq.

• allow_unknown If set to True, unknown MACs are also allowed. Setting it
to False does nothing in this call.

ironic.pxe_filter.service module

class ironic.pxe_filter.service.PXEFilterManager(host)
Bases: object

del_host()

init_host(admin_context)

prepare_host()

topic = 'ironic.pxe_filter'

5.1. Developers Guide 1427

Ironic Documentation, Release 26.1.2.dev21

Module contents

Submodules

ironic.version module

Module contents

5.1.8 Understanding the Ironics CI

Its important to understand the role of each job in the CI, how to add new jobs and how to debug failures
that may arise. To facilitate that, we have created the documentation below.

Jobs description

The description of each jobs that runs in the CI when you submit a patch for openstack/ironic is visible
in Table. OpenStack Ironic CI jobs description.

1428 Chapter 5. Contributor Guide

Ironic Documentation, Release 26.1.2.dev21

Table 3: Table. OpenStack Ironic CI jobs description

Job name Description
ironic-tox-unit-with-driver-libs Runs Ironic unit tests with the driver depen-

dencies installed under Python3
ironic-tempest-functional-python3 Deploys Ironic in standalone mode and runs

tempest functional tests that matches the
regex ironic_tempest_plugin.tests.api under
Python3

ironic-grenade Deploys Ironic in a DevStack and runs upgrade
for all enabled services.

ironic-standalone Deploys Ironic in standalone mode and
runs tempest tests that match the regex
ironic_standalone.

ironic-standalone-redfish Deploys Ironic in standalone mode and
runs tempest tests that match the regex
ironic_standalone using the redfish driver.

ironic-tempest-partition-bios-redfish-pxe Deploys Ironic in DevStack, config-
ured to use dib ramdisk partition im-
age with pxe boot and redfish driver.
Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario, also
deploys 1 virtual baremetal.

ironic-tempest-partition-uefi-redfish-vmedia Deploys Ironic in DevStack, config-
ured to use dib ramdisk partition image
with vmedia boot and redfish driver.
Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario, also
deploys 1 virtual baremetal.

ironic-tempest-wholedisk-bios-snmp-pxe Deploys Ironic in DevStack, configured
to use a pre-built dib ramdisk wholedisk
image that is downloaded from a Swift
temporary url, pxe boot and snmp driver.
Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario and
deploys 1 virtual baremetal.

ironic-tempest-partition-uefi-ipmi-pxe Deploys Ironic in DevStack, configured to
use dib ramdisk, a partition image, pxe
boot in UEFI mode and ipmi hardware type.
Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario, also de-
ploys 1 virtual baremetal.

ironic-tempest-ipa-wholedisk-direct-tinyipa-
multinode

Deploys Ironic in a multinode DevStack,
configured to use a pre-build tinyipa ramdisk
wholedisk image that is downloaded from
a Swift temporary url, pxe boot and ipmi
driver. Runs tempest tests that match the regex
(ironic_tempest_plugin.tests.scenario|test_schedule_to_all_nodes)
and deploys 7 virtual baremetal.

ironic-tempest-bios-ipmi-direct-tinyipa Deploys Ironic in DevStack, configured to
use a pre-build tinyipa ramdisk wholedisk
image that is downloaded from a Swift
temporary url, pxe boot and ipmi driver.
Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario and de-
ploys 1 virtual baremetal.

ironic-tempest-bfv Deploys Ironic in DevStack with cinder en-
abled, so it can deploy baremetal using boot
from volume. Runs tempest tests that match
the regex baremetal_boot_from_volume and
deploys 3 virtual baremetal nodes using boot
from volume.

ironic-tempest-ipa-partition-uefi-pxe-grub2 Deploys Ironic in DevStack, configured to
use pxe with uefi and grub2 and ipmi driver.
Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario and de-
ploys 1 virtual baremetal.

metalsmith-integration-glance-centos8-legacy Tests the integration between Ironic and Met-
alsmith using Glance as image source and a
CentOS 8 image with legacy (BIOS) local
boot.

ironic-tox-bandit Runs bandit security tests in a tox environment
to find known issues in the Ironic code.

ironic-inspector-tempest Deploys Ironic and Ironic Inspector in De-
vStack, configured to use a pre-build tinyipa
ramdisk wholedisk image that is downloaded
from a Swift temporary url, pxe boot and ipmi
driver. Runs tempest tests that match the
regex InspectorBasicTest and deploys 1 virtual
baremetal.

ironic-inspector-tempest-managed-non-standalone Deploys Ironic and Ironic Inspector in De-
vStack, configured to use a pre-build tinyipa
ramdisk wholedisk image that is downloaded
from a Swift temporary url, pxe boot and ipmi
driver. Boot is managed by ironic, ironic-
inspector runs in non-standalone mode. Runs
tempest tests that match the regex Inspector-
BasicTest and deploys 1 virtual baremetal.

ironic-inspector-tempest-partition-bios-redfish-
vmedia

Deploys Ironic and Ironic Inspector in DevS-
tack, configured to use vmedia boot and red-
fish driver. Runs tempest tests that match the
regex InspectorBasicTest and deploys 1 virtual
baremetal.

ironic-tempest-ipa-wholedisk-bios-ipmi-direct-dib Deploys Ironic in DevStack, configured to use
a pre-built dib ramdisk wholedisk image that
is downloaded from http url, pxe boot and ipmi
driver. Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario and de-
ploys 1 virtual baremetal.

bifrost-integration-tinyipa-ubuntu-focal Tests the integration between Ironic and
Bifrost using a tinyipa image.

bifrost-integration-redfish-vmedia-uefi-centos-9 Tests the integration between Ironic and
Bifrost using redfish vmedia and a dib image
based on centos stream 9.

ironic-tempest-pxe_ipmitool-postgres Deploys Ironic in DevStack, configured to
use tinyipa ramdisk partition image with pxe
boot and ipmi driver and postgres instead of
mysql. Runs tempest tests that match the regex
ironic_tempest_plugin.tests.scenario, also de-
ploys 1 virtual baremetal.

5.1. Developers Guide 1429

Ironic Documentation, Release 26.1.2.dev21

Adding a new Job

Are you familiar with Zuul?

Before start trying to figure out how Zuul works, take some time and read about Zuul Config and the
Zuul Best Practices.

Where can I find the existing jobs?

The jobs for the Ironic project are defined under the zuul.d folder in the root directory, that contains three
files, whose function is described below.

• ironic-jobs.yaml: Contains the configuration of each Ironic Job converted to Zuul v3.

• legacy-ironic-jobs.yaml: Contains the configuration of each Ironic Job that havent been converted
to Zuul v3 yet.

• project.yaml: Contains the jobs that will run during check and gate phase.

Create a new Job

Identify among the existing jobs the one that most closely resembles the scenario you want to test, the
existing job will be used as parent in your job definition. Now you will only need to either overwrite or
add variables to your job definition under the vars section to represent the desired scenario.

The code block below shows the minimal structure of a new job definition that you need to add to ironic-
jobs.yaml.

- job:
name: <name of the new job>
description: <what your job does>
parent: <Job that already exists>
vars:
<var1>: <new value>

After having the definition of your new job you just need to add the job name to the project.yaml under
check and gate. Only jobs that are voting should be in the gate section.

- project:
check:
jobs:
- <name of the new job>

gate:
queue: ironic
jobs:
- <name of the new job>

1430 Chapter 5. Contributor Guide

https://zuul-ci.org/docs/zuul/user/config.html
https://docs.openstack.org/infra/manual/creators.html#zuul-best-practices
https://opendev.org/openstack/ironic/src/branch/master/zuul.d
https://opendev.org/openstack/ironic/src/branch/master/zuul.d/ironic-jobs.yaml
https://opendev.org/openstack/ironic/src/branch/master/zuul.d/legacy-ironic-jobs.yaml
https://opendev.org/openstack/ironic/src/branch/master/zuul.d/project.yaml
https://opendev.org/openstack/ironic/src/branch/master/zuul.d/ironic-jobs.yaml
https://opendev.org/openstack/ironic/src/branch/master/zuul.d/ironic-jobs.yaml
https://opendev.org/openstack/ironic/src/branch/master/zuul.d/project.yaml

Ironic Documentation, Release 26.1.2.dev21

Debugging CI failures

If you see FAILURE in one or more jobs for your patch please dont panic. This guide may help you to
find the initial reason for the failure. When clicking in the failed job you will be redirect to the Zuul web
page that contains all the information about the job build.

Zuul Web Page

The page has three tabs: Summary, Logs and Console.

• Summary: Contains overall information about the build of the job, if the job build failed it will
contain a general output of the failure.

• Logs: Contains all configurations and log files about all services that were used in the job. This
will give you an overall idea of the failures and you can identify services that may be involved. The
job-output file can give an overall idea of the failures and what services may be involved.

• Console: Contains all the playbooks that were executed, by clicking in the arrow before each
playbook name you can find the roles and commands that were executed.

5.1. Developers Guide 1431

Ironic Documentation, Release 26.1.2.dev21

1432 Chapter 5. Contributor Guide

PYTHON MODULE INDEX

a
ironic.api, 846
ironic.api.app, 841
ironic.api.config, 842
ironic.api.controllers, 839
ironic.api.controllers.base, 838
ironic.api.controllers.link, 839
ironic.api.controllers.root, 839
ironic.api.controllers.v1, 838
ironic.api.controllers.v1.allocation,

781
ironic.api.controllers.v1.bios, 784
ironic.api.controllers.v1.chassis, 785
ironic.api.controllers.v1.collection,

786
ironic.api.controllers.v1.conductor,

787
ironic.api.controllers.v1.deploy_template,

788
ironic.api.controllers.v1.driver, 789
ironic.api.controllers.v1.event, 791
ironic.api.controllers.v1.firmware, 792
ironic.api.controllers.v1.node, 792
ironic.api.controllers.v1.notification_utils,

805
ironic.api.controllers.v1.port, 806
ironic.api.controllers.v1.portgroup,

809
ironic.api.controllers.v1.ramdisk, 810
ironic.api.controllers.v1.runbook, 812
ironic.api.controllers.v1.shard, 813
ironic.api.controllers.v1.utils, 814
ironic.api.controllers.v1.versions, 832
ironic.api.controllers.v1.volume, 832
ironic.api.controllers.v1.volume_connector,

832
ironic.api.controllers.v1.volume_target,

835
ironic.api.controllers.version, 839
ironic.api.functions, 842
ironic.api.hooks, 843

ironic.api.method, 845
ironic.api.middleware, 840
ironic.api.middleware.auth_public_routes,

839
ironic.api.middleware.json_ext, 840
ironic.api.middleware.parsable_error,

840
ironic.api.wsgi, 845

c
ironic.cmd, 847
ironic.cmd.api, 846
ironic.cmd.conductor, 846
ironic.cmd.dbsync, 846
ironic.cmd.pxe_filter, 847
ironic.cmd.singleprocess, 847
ironic.cmd.status, 847
ironic.common, 926
ironic.common.args, 850
ironic.common.async_steps, 853
ironic.common.boot_devices, 854
ironic.common.boot_modes, 855
ironic.common.checksum_utils, 855
ironic.common.cinder, 856
ironic.common.components, 859
ironic.common.config, 859
ironic.common.context, 859
ironic.common.dhcp_factory, 860
ironic.common.driver_factory, 861
ironic.common.exception, 864
ironic.common.faults, 876
ironic.common.fsm, 876
ironic.common.glance_service, 850
ironic.common.glance_service.image_service,

847
ironic.common.glance_service.service_utils,

849
ironic.common.hash_ring, 877
ironic.common.i18n, 877
ironic.common.image_format_inspector,

877

1433

Ironic Documentation, Release 26.1.2.dev21

ironic.common.image_publisher, 883
ironic.common.image_service, 884
ironic.common.images, 888
ironic.common.indicator_states, 893
ironic.common.keystone, 893
ironic.common.kickstart_utils, 894
ironic.common.lessee_sources, 895
ironic.common.molds, 895
ironic.common.network, 896
ironic.common.neutron, 897
ironic.common.nova, 903
ironic.common.policy, 903
ironic.common.profiler, 904
ironic.common.pxe_utils, 904
ironic.common.qemu_img, 910
ironic.common.raid, 910
ironic.common.release_mappings, 912
ironic.common.rpc, 912
ironic.common.rpc_service, 913
ironic.common.service, 913
ironic.common.states, 914
ironic.common.swift, 918
ironic.common.utils, 920
ironic.common.wsgi_service, 925
ironic.conductor, 984
ironic.conductor.allocations, 926
ironic.conductor.base_manager, 927
ironic.conductor.cleaning, 928
ironic.conductor.deployments, 929
ironic.conductor.inspection, 931
ironic.conductor.manager, 931
ironic.conductor.notification_utils,

937
ironic.conductor.periodics, 938
ironic.conductor.rpc_service, 939
ironic.conductor.rpcapi, 940
ironic.conductor.servicing, 966
ironic.conductor.steps, 967
ironic.conductor.task_manager, 969
ironic.conductor.utils, 972
ironic.conductor.verify, 984
ironic.conf, 989
ironic.conf.agent, 984
ironic.conf.anaconda, 984
ironic.conf.ansible, 984
ironic.conf.api, 984
ironic.conf.audit, 985
ironic.conf.auth, 985
ironic.conf.cinder, 985
ironic.conf.conductor, 985
ironic.conf.console, 985

ironic.conf.database, 985
ironic.conf.default, 985
ironic.conf.deploy, 986
ironic.conf.dhcp, 986
ironic.conf.disk_utils, 986
ironic.conf.dnsmasq, 986
ironic.conf.drac, 986
ironic.conf.fake, 986
ironic.conf.glance, 986
ironic.conf.healthcheck, 986
ironic.conf.ilo, 987
ironic.conf.inspector, 987
ironic.conf.inventory, 987
ironic.conf.ipmi, 987
ironic.conf.irmc, 987
ironic.conf.metrics, 987
ironic.conf.metrics_statsd, 987
ironic.conf.molds, 987
ironic.conf.neutron, 988
ironic.conf.nova, 988
ironic.conf.opts, 988
ironic.conf.pxe, 988
ironic.conf.redfish, 988
ironic.conf.sensor_data, 988
ironic.conf.service_catalog, 989
ironic.conf.snmp, 989
ironic.conf.swift, 989

d
ironic.db, 1071
ironic.db.api, 1038
ironic.db.migration, 1071
ironic.db.sqlalchemy, 1038
ironic.db.sqlalchemy.api, 989
ironic.db.sqlalchemy.migration, 1024
ironic.db.sqlalchemy.models, 1025
ironic.dhcp, 1077
ironic.dhcp.base, 1071
ironic.dhcp.dnsmasq, 1073
ironic.dhcp.neutron, 1074
ironic.dhcp.none, 1075
ironic.drivers, 1321
ironic.drivers.base, 1277
ironic.drivers.drac, 1311
ironic.drivers.fake_hardware, 1312
ironic.drivers.generic, 1313
ironic.drivers.hardware_type, 1314
ironic.drivers.ilo, 1315
ironic.drivers.intel_ipmi, 1316
ironic.drivers.ipmi, 1316
ironic.drivers.irmc, 1317

1434 Python Module Index

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules, 1277
ironic.drivers.modules.agent, 1189
ironic.drivers.modules.agent_base, 1194
ironic.drivers.modules.agent_client,

1202
ironic.drivers.modules.agent_power,

1209
ironic.drivers.modules.ansible, 1079
ironic.drivers.modules.ansible.deploy,

1077
ironic.drivers.modules.boot_mode_utils,

1211
ironic.drivers.modules.console_utils,

1212
ironic.drivers.modules.deploy_utils,

1214
ironic.drivers.modules.drac, 1085
ironic.drivers.modules.drac.bios, 1079
ironic.drivers.modules.drac.boot, 1080
ironic.drivers.modules.drac.inspect,

1080
ironic.drivers.modules.drac.management,

1081
ironic.drivers.modules.drac.power, 1083
ironic.drivers.modules.drac.raid, 1083
ironic.drivers.modules.drac.utils, 1084
ironic.drivers.modules.drac.vendor_passthru,

1085
ironic.drivers.modules.fake, 1224
ironic.drivers.modules.ibmc, 1085
ironic.drivers.modules.ilo, 1115
ironic.drivers.modules.ilo.bios, 1085
ironic.drivers.modules.ilo.boot, 1087
ironic.drivers.modules.ilo.common, 1094
ironic.drivers.modules.ilo.console,

1101
ironic.drivers.modules.ilo.firmware_processor,

1102
ironic.drivers.modules.ilo.inspect,

1103
ironic.drivers.modules.ilo.management,

1104
ironic.drivers.modules.ilo.power, 1111
ironic.drivers.modules.ilo.raid, 1112
ironic.drivers.modules.ilo.vendor, 1114
ironic.drivers.modules.image_cache,

1240
ironic.drivers.modules.image_utils,

1241
ironic.drivers.modules.inspect_utils,

1245

ironic.drivers.modules.inspector, 1128
ironic.drivers.modules.inspector.agent,

1123
ironic.drivers.modules.inspector.client,

1124
ironic.drivers.modules.inspector.hooks,

1123
ironic.drivers.modules.inspector.hooks.accelerators,

1115
ironic.drivers.modules.inspector.hooks.architecture,

1115
ironic.drivers.modules.inspector.hooks.base,

1116
ironic.drivers.modules.inspector.hooks.boot_mode,

1117
ironic.drivers.modules.inspector.hooks.cpu_capabilities,

1117
ironic.drivers.modules.inspector.hooks.extra_hardware,

1118
ironic.drivers.modules.inspector.hooks.local_link_connection,

1118
ironic.drivers.modules.inspector.hooks.memory,

1119
ironic.drivers.modules.inspector.hooks.parse_lldp,

1119
ironic.drivers.modules.inspector.hooks.pci_devices,

1119
ironic.drivers.modules.inspector.hooks.physical_network,

1119
ironic.drivers.modules.inspector.hooks.ports,

1120
ironic.drivers.modules.inspector.hooks.raid_device,

1121
ironic.drivers.modules.inspector.hooks.ramdisk_error,

1121
ironic.drivers.modules.inspector.hooks.root_device,

1122
ironic.drivers.modules.inspector.hooks.validate_interfaces,

1122
ironic.drivers.modules.inspector.interface,

1124
ironic.drivers.modules.inspector.lldp_parsers,

1126
ironic.drivers.modules.inspector.lldp_tlvs,

1128
ironic.drivers.modules.intel_ipmi, 1129
ironic.drivers.modules.intel_ipmi.management,

1129
ironic.drivers.modules.ipmitool, 1247
ironic.drivers.modules.ipxe, 1255
ironic.drivers.modules.irmc, 1147

Python Module Index 1435

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.irmc.bios, 1129
ironic.drivers.modules.irmc.boot, 1131
ironic.drivers.modules.irmc.common,

1134
ironic.drivers.modules.irmc.inspect,

1137
ironic.drivers.modules.irmc.management,

1138
ironic.drivers.modules.irmc.power, 1144
ironic.drivers.modules.irmc.raid, 1146
ironic.drivers.modules.irmc.vendor,

1147
ironic.drivers.modules.network, 1159
ironic.drivers.modules.network.common,

1147
ironic.drivers.modules.network.flat,

1151
ironic.drivers.modules.network.neutron,

1154
ironic.drivers.modules.network.noop,

1157
ironic.drivers.modules.noop, 1256
ironic.drivers.modules.noop_mgmt, 1261
ironic.drivers.modules.pxe, 1263
ironic.drivers.modules.pxe_base, 1265
ironic.drivers.modules.ramdisk, 1267
ironic.drivers.modules.redfish, 1185
ironic.drivers.modules.redfish.bios,

1159
ironic.drivers.modules.redfish.boot,

1160
ironic.drivers.modules.redfish.firmware,

1165
ironic.drivers.modules.redfish.firmware_utils,

1166
ironic.drivers.modules.redfish.inspect,

1168
ironic.drivers.modules.redfish.management,

1169
ironic.drivers.modules.redfish.power,

1176
ironic.drivers.modules.redfish.raid,

1177
ironic.drivers.modules.redfish.utils,

1181
ironic.drivers.modules.redfish.vendor,

1184
ironic.drivers.modules.snmp, 1268
ironic.drivers.modules.storage, 1189
ironic.drivers.modules.storage.cinder,

1185

ironic.drivers.modules.storage.external,
1186

ironic.drivers.modules.storage.noop,
1188

ironic.drivers.modules.xclarity, 1189
ironic.drivers.redfish, 1317
ironic.drivers.snmp, 1318
ironic.drivers.utils, 1318

i
ironic, 1428

o
ironic.objects, 1427
ironic.objects.allocation, 1321
ironic.objects.base, 1327
ironic.objects.bios, 1330
ironic.objects.chassis, 1335
ironic.objects.conductor, 1339
ironic.objects.deploy_template, 1341
ironic.objects.deployment, 1346
ironic.objects.fields, 1349
ironic.objects.firmware, 1352
ironic.objects.indirection, 1354
ironic.objects.node, 1356
ironic.objects.node_history, 1388
ironic.objects.node_inventory, 1391
ironic.objects.notification, 1392
ironic.objects.port, 1395
ironic.objects.portgroup, 1402
ironic.objects.runbook, 1408
ironic.objects.trait, 1413
ironic.objects.volume_connector, 1416
ironic.objects.volume_target, 1421

p
ironic.pxe_filter, 1428
ironic.pxe_filter.dnsmasq, 1427
ironic.pxe_filter.service, 1427

v
ironic.version, 1428

1436 Python Module Index

INDEX

Symbols
__call__() (ironic.api.app.VersionSelectorApplication

method), 841
__call__() (ironic.api.functions.signature

method), 843
__call__() (ironic.api.middleware.AuthPublicRoutes

method), 840
__call__() (ironic.api.middleware.JsonExtensionMiddleware

method), 841
__call__() (ironic.api.middleware.ParsableErrorMiddleware

method), 841
__call__() (ironic.api.middleware.auth_public_routes.AuthPublicRoutes

method), 839
__call__() (ironic.api.middleware.json_ext.JsonExtensionMiddleware

method), 840
__call__() (ironic.api.middleware.parsable_error.ParsableErrorMiddleware

method), 840
__call__() (ironic.conf.api.Octal method), 984
__call__() (ironic.drivers.modules.inspector.hooks.accelerators.AcceleratorsHook

method), 1115
__call__() (ironic.drivers.modules.inspector.hooks.architecture.ArchitectureHook

method), 1115
__call__() (ironic.drivers.modules.inspector.hooks.base.InspectionHook

method), 1116
__call__() (ironic.drivers.modules.inspector.hooks.boot_mode.BootModeHook

method), 1117
__call__() (ironic.drivers.modules.inspector.hooks.cpu_capabilities.CPUCapabilitiesHook

method), 1117
__call__() (ironic.drivers.modules.inspector.hooks.extra_hardware.ExtraHardwareHook

method), 1118
__call__() (ironic.drivers.modules.inspector.hooks.local_link_connection.LocalLinkConnectionHook

method), 1118
__call__() (ironic.drivers.modules.inspector.hooks.memory.MemoryHook

method), 1119
__call__() (ironic.drivers.modules.inspector.hooks.parse_lldp.ParseLLDPHook

method), 1119
__call__() (ironic.drivers.modules.inspector.hooks.pci_devices.PciDevicesHook

method), 1119
__call__() (ironic.drivers.modules.inspector.hooks.physical_network.PhysicalNetworkHook

method), 1119
__call__() (ironic.drivers.modules.inspector.hooks.ports.PortsHook

method), 1120
__call__() (ironic.drivers.modules.inspector.hooks.raid_device.RaidDeviceHook

method), 1121
__call__() (ironic.drivers.modules.inspector.hooks.ramdisk_error.RamdiskErrorHook

method), 1121
__call__() (ironic.drivers.modules.inspector.hooks.root_device.RootDeviceHook

method), 1122
__call__() (ironic.drivers.modules.inspector.hooks.validate_interfaces.ValidateInterfacesHook

method), 1122
--autogenerate

revision command line option, 438
--config-dir

ironic-dbsync command line option,
436

--config-file
ironic-dbsync command line option,

436
--debug

ironic-dbsync command line option,
437

--help
create_schema command line option,

437
ironic-dbsync command line option,

436
online_data_migrations command line

option, 438
revision command line option, 438
stamp command line option, 439
upgrade command line option, 439
version command line option, 440

--max-count
online_data_migrations command line

option, 438
--message

revision command line option, 438
--option

online_data_migrations command line
option, 438

--revision
stamp command line option, 439

1437

Ironic Documentation, Release 26.1.2.dev21

upgrade command line option, 439
--version

ironic-dbsync command line option,
437

-d
ironic-dbsync command line option,

437
-h

create_schema command line option,
437

ironic-dbsync command line option,
436

online_data_migrations command line
option, 438

revision command line option, 438
stamp command line option, 439
upgrade command line option, 439
version command line option, 440

-m
revision command line option, 438

A
abort() (ironic.drivers.base.InspectInterface

method), 1289
abort() (ironic.drivers.modules.inspector.agent.AgentInspect

method), 1123
abort() (ironic.drivers.modules.inspector.AgentInspect

method), 1128
abort() (ironic.drivers.modules.inspector.Inspector

method), 1129
abort() (ironic.drivers.modules.inspector.interface.Inspector

method), 1125
abort_inspection() (in module

ironic.conductor.inspection), 931
abort_on_conductor_take_over() (in module

ironic.conductor.utils), 972
aboveUpperCritical

(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

aboveUpperWarning
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

AbstractHardwareType (class in
ironic.drivers.hardware_type), 1314

AbstractPublisher (class in
ironic.common.image_publisher), 883

AcceleratorsHook (class in
ironic.drivers.modules.inspector.hooks.accelerators),
1115

acquire() (in module
ironic.conductor.task_manager), 972

acquire_port() (in module
ironic.drivers.modules.console_utils),
1212

action (ironic.objects.notification.EventType
property), 1392

activate_license()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1105

ACTIVE (in module ironic.common.states), 914
actual_size (ironic.common.image_format_inspector.FileInspector

property), 878
add_allocation_filter_by_conductor() (in

module ironic.db.sqlalchemy.api), 1022
add_allocation_filter_by_node() (in mod-

ule ironic.db.sqlalchemy.api), 1022
add_auth_opts() (in module ironic.conf.auth),

985
add_capabilities()

(ironic.drivers.modules.inspector.lldp_parsers.LLDPBasicMgmtParser
method), 1126

add_certificates() (in module
ironic.drivers.modules.ilo.common),
1094

add_cleaning_network()
(ironic.drivers.base.NetworkInterface
method), 1296

add_cleaning_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1151

add_cleaning_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1154

add_cleaning_network()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1157

add_command_parsers() (in module
ironic.cmd.dbsync), 846

add_dot1_link_aggregation()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPParser
method), 1126

add_dot1_port_protocol_vlan()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPdot1Parser
method), 1127

add_dot1_protocol_identities()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPdot1Parser
method), 1127

add_dot1_vlans()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPdot1Parser
method), 1127

add_dot3_macphy_config()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPdot3Parser

1438 Index

Ironic Documentation, Release 26.1.2.dev21

method), 1127
add_fieldname()

(ironic.common.exception.UnknownAttribute
method), 874

add_https_certificate()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1105

add_identity_filter() (in module
ironic.db.sqlalchemy.api), 1022

add_identity_where() (in module
ironic.db.sqlalchemy.api), 1023

add_inspection_network()
(ironic.drivers.base.NetworkInterface
method), 1297

add_inspection_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1151

add_inspection_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1154

add_mgmt_address()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPBasicMgmtParser
method), 1126

add_nested_value()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPParser
method), 1126

add_node_capability() (in module
ironic.drivers.utils), 1318

add_node_filter_by_chassis() (in module
ironic.db.sqlalchemy.api), 1023

add_node_tag() (ironic.db.api.Connection
method), 1038

add_node_tag()
(ironic.db.sqlalchemy.api.Connection
method), 989

add_node_trait() (ironic.db.api.Connection
method), 1038

add_node_trait()
(ironic.db.sqlalchemy.api.Connection
method), 989

add_node_traits()
(ironic.conductor.manager.ConductorManager
method), 931

add_node_traits()
(ironic.conductor.rpcapi.ConductorAPI
method), 941

add_port_filter() (in module
ironic.db.sqlalchemy.api), 1023

add_port_filter_by_node() (in module
ironic.db.sqlalchemy.api), 1023

add_port_filter_by_node_owner() (in mod-

ule ironic.db.sqlalchemy.api), 1023
add_port_filter_by_node_project() (in

module ironic.db.sqlalchemy.api), 1023
add_port_filter_by_portgroup() (in module

ironic.db.sqlalchemy.api), 1023
add_portgroup_filter() (in module

ironic.db.sqlalchemy.api), 1023
add_portgroup_filter_by_node() (in module

ironic.db.sqlalchemy.api), 1024
add_portgroup_filter_by_node_project()

(in module ironic.db.sqlalchemy.api),
1024

add_ports() (in module
ironic.drivers.modules.inspector.hooks.ports),
1120

add_ports_to_network() (in module
ironic.common.neutron), 897

add_provisioning_network()
(ironic.drivers.base.NetworkInterface
method), 1297

add_provisioning_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1151

add_provisioning_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1154

add_provisioning_network()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1157

add_rescuing_network()
(ironic.drivers.base.NetworkInterface
method), 1297

add_rescuing_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1151

add_rescuing_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1154

add_secret_token() (in module
ironic.conductor.utils), 972

add_servicing_network()
(ironic.drivers.base.NetworkInterface
method), 1297

add_servicing_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1152

add_servicing_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1154

add_single_value()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPParser

Index 1439

Ironic Documentation, Release 26.1.2.dev21

method), 1126
add_state() (ironic.common.fsm.FSM method),

876
add_transition() (ironic.common.fsm.FSM

method), 876
add_version_attributes()

(ironic.api.controllers.v1.Controller
method), 838

add_volume_conn_filter_by_node_project()
(in module ironic.db.sqlalchemy.api),
1024

add_volume_target_filter_by_node_project()
(in module ironic.db.sqlalchemy.api),
1024

address (ironic.db.sqlalchemy.models.Port
attribute), 1034

address (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

address (ironic.objects.port.Port property), 1395
address (ironic.objects.port.PortCRUDPayload

property), 1401
address (ironic.objects.portgroup.Portgroup

property), 1402
address (ironic.objects.portgroup.PortgroupCRUDPayload

property), 1407
ADOPTFAIL (in module ironic.common.states), 914
ADOPTING (in module ironic.common.states), 914
advanced_net_fields

(ironic.api.controllers.v1.port.PortsController
attribute), 806

after() (ironic.api.hooks.ContextHook method),
844

after() (ironic.api.hooks.DBHook method), 844
after() (ironic.api.hooks.NoExceptionTracebackHook

method), 844
agent_add_clean_params() (in module

ironic.drivers.modules.deploy_utils),
1214

agent_is_alive() (in module
ironic.conductor.utils), 972

AgentAPIError, 864
AgentBaseMixin (class in

ironic.drivers.modules.agent_base),
1194

AgentClient (class in
ironic.drivers.modules.agent_client),
1202

AgentCommandTimeout, 864
AgentConnectionFailed, 864
AgentDeploy (class in

ironic.drivers.modules.agent), 1189

AgentDeployMixin (class in
ironic.drivers.modules.agent_base),
1197

AgentInProgress, 864
AgentInspect (class in

ironic.drivers.modules.inspector), 1128
AgentInspect (class in

ironic.drivers.modules.inspector.agent),
1123

AgentOobStepsMixin (class in
ironic.drivers.modules.agent_base),
1199

AgentPower (class in
ironic.drivers.modules.agent_power),
1209

AgentRAID (class in
ironic.drivers.modules.agent), 1189

AgentRescue (class in
ironic.drivers.modules.agent), 1191

alarmed (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

ALL (ironic.objects.fields.NotificationLevel at-
tribute), 1350

ALL (ironic.objects.fields.NotificationStatus at-
tribute), 1350

ALL_INTERFACES (in module ironic.drivers.base),
1277

all_interfaces (ironic.drivers.base.BareDriver
property), 1279

all_interfaces() (in module
ironic.common.driver_factory), 861

all_versions() (in module
ironic.api.controllers.version), 839

Allocation (class in
ironic.db.sqlalchemy.models), 1025

Allocation (class in ironic.objects.allocation),
1321

allocation_id (ironic.db.sqlalchemy.models.Node
attribute), 1029

allocation_id (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

allocation_id (ironic.objects.node.Node prop-
erty), 1356

allocation_sanitize() (in module
ironic.api.controllers.v1.allocation),
784

AllocationAlreadyExists, 864
AllocationCRUDNotification (class in

ironic.objects.allocation), 1325
AllocationCRUDPayload (class in

ironic.objects.allocation), 1326

1440 Index

Ironic Documentation, Release 26.1.2.dev21

AllocationDuplicateName, 864
AllocationFailed, 864
AllocationNotFound, 864
AllocationsController (class in

ironic.api.controllers.v1.allocation),
781

allow_agent_token() (in module
ironic.api.controllers.v1.utils), 814

allow_agent_version_in_heartbeat() (in
module ironic.api.controllers.v1.utils),
814

allow_allocation_backfill() (in module
ironic.api.controllers.v1.utils), 814

allow_allocation_owner() (in module
ironic.api.controllers.v1.utils), 814

allow_allocation_update() (in module
ironic.api.controllers.v1.utils), 814

allow_allocations() (in module
ironic.api.controllers.v1.utils), 814

allow_attach_detach_vmedia() (in module
ironic.api.controllers.v1.utils), 814

allow_bios_interface() (in module
ironic.api.controllers.v1.utils), 814

allow_build_configdrive() (in module
ironic.api.controllers.v1.utils), 814

allow_configdrive_vendor_data() (in mod-
ule ironic.api.controllers.v1.utils), 814

allow_continue_inspection_endpoint() (in
module ironic.api.controllers.v1.utils),
814

allow_deploy_steps() (in module
ironic.api.controllers.v1.utils), 815

allow_deploy_templates() (in module
ironic.api.controllers.v1.utils), 815

allow_detail_query() (in module
ironic.api.controllers.v1.utils), 815

allow_dynamic_drivers() (in module
ironic.api.controllers.v1.utils), 815

allow_dynamic_interfaces() (in module
ironic.api.controllers.v1.utils), 815

allow_expose_conductors() (in module
ironic.api.controllers.v1.utils), 815

allow_expose_events() (in module
ironic.api.controllers.v1.utils), 815

allow_field() (in module
ironic.api.controllers.v1.utils), 815

allow_firmware_interface() (in module
ironic.api.controllers.v1.utils), 815

allow_get_vmedia() (in module
ironic.api.controllers.v1.utils), 815

allow_inject_nmi() (in module

ironic.api.controllers.v1.utils), 815
allow_inspect_abort() (in module

ironic.api.controllers.v1.utils), 815
allow_inspect_wait_state() (in module

ironic.api.controllers.v1.utils), 816
allow_links_node_states_and_driver_properties()

(in module
ironic.api.controllers.v1.utils), 816

allow_local_link_connection_network_type()
(in module
ironic.api.controllers.v1.utils), 816

allow_node_history() (in module
ironic.api.controllers.v1.utils), 816

allow_node_inventory() (in module
ironic.api.controllers.v1.utils), 816

allow_node_logical_names() (in module
ironic.api.controllers.v1.utils), 816

allow_node_rebuild_with_configdrive()
(in module
ironic.api.controllers.v1.utils), 816

allow_ovn_vtep_version() (in module
ironic.api.controllers.v1.utils), 816

allow_port_advanced_net_fields() (in
module ironic.api.controllers.v1.utils),
816

allow_port_internal_info() (in module
ironic.api.controllers.v1.utils), 816

allow_port_is_smartnic() (in module
ironic.api.controllers.v1.utils), 816

allow_port_name() (in module
ironic.api.controllers.v1.utils), 816

allow_port_physical_network() (in module
ironic.api.controllers.v1.utils), 816

allow_portgroup_mode_properties() (in
module ironic.api.controllers.v1.utils),
817

allow_portgroups() (in module
ironic.api.controllers.v1.utils), 817

allow_portgroups_subcontrollers() (in
module ironic.api.controllers.v1.utils),
817

allow_query_bios() (in module
ironic.api.controllers.v1.utils), 817

allow_raid_config() (in module
ironic.api.controllers.v1.utils), 817

allow_ramdisk_endpoints() (in module
ironic.api.controllers.v1.utils), 817

allow_remove_chassis_uuid() (in module
ironic.api.controllers.v1.utils), 817

allow_rescue_interface() (in module
ironic.api.controllers.v1.utils), 817

Index 1441

Ironic Documentation, Release 26.1.2.dev21

allow_reset_interfaces() (in module
ironic.api.controllers.v1.utils), 817

allow_runbooks() (in module
ironic.api.controllers.v1.utils), 817

allow_service_verb() (in module
ironic.api.controllers.v1.utils), 817

allow_shards_endpoint() (in module
ironic.api.controllers.v1.utils), 817

allow_soft_power_off() (in module
ironic.api.controllers.v1.utils), 817

allow_status_in_heartbeat() (in module
ironic.api.controllers.v1.utils), 818

allow_storage_interface() (in module
ironic.api.controllers.v1.utils), 818

allow_traits() (in module
ironic.api.controllers.v1.utils), 818

allow_unhold_verb() (in module
ironic.api.controllers.v1.utils), 818

allow_verify_ca_in_heartbeat() (in module
ironic.api.controllers.v1.utils), 818

allow_vifs_subcontroller() (in module
ironic.api.controllers.v1.utils), 818

allow_volume() (in module
ironic.api.controllers.v1.utils), 818

allowable_values
(ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

allowable_values
(ironic.objects.bios.BIOSSetting prop-
erty), 1330

and_valid() (in module ironic.common.args),
850

AnsibleDeploy (class in
ironic.drivers.modules.ansible.deploy),
1077

append_value()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPParser
method), 1126

apply_automatic_lessee() (in module
ironic.conductor.deployments), 929

apply_configuration()
(ironic.drivers.base.BIOSInterface
method), 1278

apply_configuration()
(ironic.drivers.base.RAIDInterface
method), 1303

apply_configuration()
(ironic.drivers.modules.agent.AgentRAID
method), 1189

apply_configuration()
(ironic.drivers.modules.fake.FakeBIOS

method), 1224
apply_configuration()

(ironic.drivers.modules.ilo.bios.IloBIOS
method), 1085

apply_configuration()
(ironic.drivers.modules.ilo.raid.Ilo5RAID
method), 1112

apply_configuration()
(ironic.drivers.modules.irmc.bios.IRMCBIOS
method), 1130

apply_configuration()
(ironic.drivers.modules.noop.NoBIOS
method), 1256

apply_configuration()
(ironic.drivers.modules.redfish.bios.RedfishBIOS
method), 1159

apply_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1177

apply_jsonpatch() (in module
ironic.api.controllers.v1.utils), 818

ArchitectureHook (class in
ironic.drivers.modules.inspector.hooks.architecture),
1115

args (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

args (ironic.db.sqlalchemy.models.RunbookStep
attribute), 1036

arguments (ironic.api.functions.FunctionDefinition
attribute), 842

as_dict() (ironic.db.sqlalchemy.models.IronicBase
method), 1028

as_dict() (ironic.objects.base.IronicObject
method), 1328

as_dict() (ironic.objects.base.IronicObjectListBase
method), 1329

as_dict() (ironic.objects.node.Node method),
1356

attach_boot_iso_if_needed() (in module
ironic.drivers.modules.irmc.boot), 1133

attach_virtual_media()
(ironic.conductor.manager.ConductorManager
method), 931

attach_virtual_media()
(ironic.conductor.rpcapi.ConductorAPI
method), 942

attach_virtual_media()
(ironic.drivers.base.ManagementInterface
method), 1290

attach_virtual_media()
(ironic.drivers.modules.redfish.management.RedfishManagement

1442 Index

Ironic Documentation, Release 26.1.2.dev21

method), 1169
attach_vmedia() (in module

ironic.drivers.modules.ilo.common),
1095

attach_volumes() (in module
ironic.common.cinder), 856

attach_volumes()
(ironic.drivers.base.StorageInterface
method), 1306

attach_volumes()
(ironic.drivers.modules.fake.FakeStorage
method), 1238

attach_volumes()
(ironic.drivers.modules.storage.cinder.CinderStorage
method), 1185

attach_volumes()
(ironic.drivers.modules.storage.external.ExternalStorage
method), 1186

attach_volumes()
(ironic.drivers.modules.storage.noop.NoopStorage
method), 1188

attribute_type
(ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

attribute_type
(ironic.objects.bios.BIOSSetting prop-
erty), 1330

AUTH_CLASSES (ironic.drivers.modules.redfish.utils.SessionCache
attribute), 1181

authorize() (in module ironic.common.policy),
903

AuthPublicRoutes (class in
ironic.api.middleware), 840

AuthPublicRoutes (class in
ironic.api.middleware.auth_public_routes),
839

AUTO_TYPE (ironic.objects.fields.FlexibleDictField
attribute), 1349

AUTO_TYPE (ironic.objects.fields.ListOfFlexibleDictsField
attribute), 1349

AUTO_TYPE (ironic.objects.fields.MACAddressField
attribute), 1350

AUTO_TYPE (ironic.objects.fields.NotificationLevelField
attribute), 1350

AUTO_TYPE (ironic.objects.fields.NotificationStatusField
attribute), 1351

AUTO_TYPE (ironic.objects.fields.StringFieldThatAcceptsCallable
attribute), 1351

AutoEnrollPossible, 1245
automated_clean

(ironic.db.sqlalchemy.models.Node

attribute), 1029
automated_clean

(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

automated_clean (ironic.objects.node.Node
property), 1356

AVAILABLE (in module ironic.common.states), 914

B
backfill_allocation() (in module

ironic.conductor.allocations), 926
backup_bios_config() (in module

ironic.drivers.modules.irmc.management),
1144

BadRequest (in module
ironic.common.exception), 864

BareDriver (class in ironic.drivers.base), 1279
BaseConductorManager (class in

ironic.conductor.base_manager), 927
BaseDHCP (class in ironic.dhcp.base), 1071
BaseDriverFactory (class in

ironic.common.driver_factory), 861
BaseImageService (class in

ironic.common.image_service), 884
BaseInterface (class in ironic.drivers.base),

1280
BaseRPCService (class in

ironic.common.rpc_service), 913
before() (ironic.api.hooks.ConfigHook method),

843
before() (ironic.api.hooks.ContextHook

method), 844
before() (ironic.api.hooks.DBHook method),

844
before() (ironic.api.hooks.PublicUrlHook

method), 845
before() (ironic.api.hooks.RPCHook method),

845
belowLowerCritical

(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

belowLowerWarning
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

BF_OFFSET (ironic.common.image_format_inspector.QcowInspector
attribute), 880

BF_OFFSET_LEN (ironic.common.image_format_inspector.QcowInspector
attribute), 880

BIOS (in module ironic.common.boot_devices),
854

BIOS (in module

Index 1443

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.redfish.utils),
1181

bios (ironic.drivers.base.BareDriver attribute),
1279

bios_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1029

bios_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

bios_interface (ironic.objects.node.Node prop-
erty), 1356

bios_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

bios_interface
(ironic.objects.node.NodeCRUDPayload
property), 1366

bios_interface
(ironic.objects.node.NodePayload prop-
erty), 1375

bios_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1379

bios_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

BIOSInterface (class in ironic.drivers.base),
1277

BIOSSetting (class in
ironic.db.sqlalchemy.models), 1025

BIOSSetting (class in ironic.objects.bios), 1330
BIOSSettingAlreadyExists, 864
BIOSSettingList (class in ironic.objects.bios),

1333
BIOSSettingListNotFound, 864
BIOSSettingNotFound, 864
BLINKING (in module

ironic.common.indicator_states), 893
BMC (in module ironic.drivers.modules.redfish.utils),

1181
bmc_reset() (ironic.drivers.modules.ipmitool.VendorPassthru

method), 1253
body() (in module ironic.api.method), 845
body_type (ironic.api.functions.FunctionDefinition

attribute), 842
boolean() (in module ironic.common.args), 850
BooleanField (class in ironic.objects.fields),

1349
boot (ironic.drivers.base.BareDriver attribute),

1279

boot_device (ironic.api.controllers.v1.node.NodeManagementController
attribute), 795

boot_index (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

boot_index (ironic.objects.volume_target.VolumeTarget
property), 1421

boot_index (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

boot_instance()
(ironic.drivers.modules.agent_base.AgentOobStepsMixin
method), 1199

boot_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1029

boot_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

boot_interface (ironic.objects.node.Node prop-
erty), 1356

boot_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

boot_interface
(ironic.objects.node.NodeCRUDPayload
property), 1366

boot_interface
(ironic.objects.node.NodePayload prop-
erty), 1375

boot_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1379

boot_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

boot_into_iso()
(ironic.drivers.modules.ilo.vendor.VendorPassthru
method), 1114

boot_mode (ironic.db.sqlalchemy.models.Node
attribute), 1029

boot_mode (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

boot_mode (ironic.objects.node.Node property),
1356

boot_mode (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

boot_mode (ironic.objects.node.NodeCRUDPayload
property), 1366

boot_mode (ironic.objects.node.NodePayload
property), 1375

boot_mode (ironic.objects.node.NodeSetPowerStatePayload
property), 1379

1444 Index

Ironic Documentation, Release 26.1.2.dev21

boot_mode (ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

boot_mode() (ironic.api.controllers.v1.node.NodeStatesController
method), 795

BootDeviceController (class in
ironic.api.controllers.v1.node), 792

BootInterface (class in ironic.drivers.base),
1283

BootModeHook (class in
ironic.drivers.modules.inspector.hooks.boot_mode),
1117

BootModeNotAllowed, 865
build_agent_options() (in module

ironic.drivers.modules.deploy_utils),
1214

build_configdrive() (in module
ironic.conductor.utils), 972

build_deploy_pxe_options() (in module
ironic.common.pxe_utils), 904

build_driver_for_task() (in module
ironic.common.driver_factory), 861

build_extra_pxe_options() (in module
ironic.common.pxe_utils), 904

build_instance_info_for_deploy()
(in module
ironic.drivers.modules.deploy_utils),
1214

build_instance_pxe_options() (in module
ironic.common.pxe_utils), 904

build_kickstart_config_options() (in
module ironic.common.pxe_utils), 904

build_pxe_config_options() (in module
ironic.common.pxe_utils), 905

build_service_pxe_config() (in module
ironic.common.pxe_utils), 905

build_url() (in module
ironic.api.controllers.link), 839

bulk_delete_node_history_records()
(ironic.db.api.Connection method), 1038

bulk_delete_node_history_records()
(ironic.db.sqlalchemy.api.Connection
method), 990

bytes_to_int() (in module
ironic.drivers.modules.inspector.lldp_tlvs),
1128

C
cache_bios_settings() (in module

ironic.drivers.base), 1307
cache_bios_settings()

(ironic.drivers.base.BIOSInterface

method), 1278
cache_bios_settings()

(ironic.drivers.modules.fake.FakeBIOS
method), 1224

cache_bios_settings()
(ironic.drivers.modules.ilo.bios.IloBIOS
method), 1086

cache_bios_settings()
(ironic.drivers.modules.irmc.bios.IRMCBIOS
method), 1130

cache_bios_settings()
(ironic.drivers.modules.noop.NoBIOS
method), 1256

cache_bios_settings()
(ironic.drivers.modules.redfish.bios.RedfishBIOS
method), 1159

cache_firmware_components() (in module
ironic.drivers.base), 1307

cache_firmware_components()
(ironic.drivers.base.FirmwareInterface
method), 1288

cache_firmware_components()
(ironic.drivers.modules.fake.FakeFirmware
method), 1229

cache_firmware_components()
(ironic.drivers.modules.noop.NoFirmware
method), 1258

cache_firmware_components()
(ironic.drivers.modules.redfish.firmware.RedfishFirmware
method), 1165

cache_instance_image() (in module
ironic.drivers.modules.deploy_utils),
1214

cache_irmc_firmware_version()
(ironic.drivers.modules.irmc.vendor.IRMCVendorPassthru
method), 1147

cache_lookup_addresses() (in module
ironic.drivers.modules.inspect_utils),
1245

cache_ramdisk_kernel() (in module
ironic.common.pxe_utils), 905

call() (ironic.common.glance_service.image_service.GlanceImageService
method), 848

call() (ironic.conductor.rpcapi.LocalContext
method), 966

can_send_create_port()
(ironic.conductor.rpcapi.ConductorAPI
method), 942

can_send_rescue()
(ironic.conductor.rpcapi.ConductorAPI
method), 942

Index 1445

Ironic Documentation, Release 26.1.2.dev21

candidate_nodes
(ironic.db.sqlalchemy.models.Allocation
attribute), 1025

candidate_nodes
(ironic.objects.allocation.Allocation
property), 1321

candidate_nodes
(ironic.objects.allocation.AllocationCRUDPayload
property), 1326

capabilities (ironic.drivers.base.BootInterface
attribute), 1283

capabilities (ironic.drivers.modules.fake.FakeBoot
attribute), 1225

capabilities (ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
attribute), 1088

capabilities (ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
attribute), 1090

capabilities (ironic.drivers.modules.ipxe.iPXEBoot
attribute), 1255

capabilities (ironic.drivers.modules.ipxe.iPXEHttpBoot
attribute), 1255

capabilities (ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
attribute), 1131

capabilities (ironic.drivers.modules.pxe.HttpBoot
attribute), 1263

capabilities (ironic.drivers.modules.pxe.PXEBoot
attribute), 1264

capabilities (ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
attribute), 1160

capabilities (ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
attribute), 1163

capabilities_to_dict() (in module
ironic.drivers.utils), 1319

capture() (ironic.common.image_format_inspector.CaptureRegion
method), 878

CaptureRegion (class in
ironic.common.image_format_inspector),
877

cast() (ironic.conductor.rpcapi.LocalContext
method), 966

CatalogNotFound, 865
CDROM (in module ironic.common.boot_devices),

854
change_node_boot_mode()

(ironic.conductor.manager.ConductorManager
method), 931

change_node_boot_mode()
(ironic.conductor.rpcapi.ConductorAPI
method), 942

change_node_power_state()
(ironic.conductor.manager.ConductorManager

method), 931
change_node_power_state()

(ironic.conductor.rpcapi.ConductorAPI
method), 943

change_node_secure_boot()
(ironic.conductor.manager.ConductorManager
method), 932

change_node_secure_boot()
(ironic.conductor.rpcapi.ConductorAPI
method), 943

Chassis (class in ironic.db.sqlalchemy.models),
1026

Chassis (class in ironic.objects.chassis), 1335
CHASSIS (in module ironic.common.components),

859
chassis_id (ironic.db.sqlalchemy.models.Node

attribute), 1029
chassis_id (ironic.db.sqlalchemy.models.NodeBase

attribute), 1031
chassis_id (ironic.objects.node.Node property),

1356
chassis_uuid (ironic.objects.node.NodeCRUDPayload

property), 1366
ChassisAlreadyExists, 865
ChassisController (class in

ironic.api.controllers.v1.chassis), 785
ChassisCRUDNotification (class in

ironic.objects.chassis), 1337
ChassisCRUDPayload (class in

ironic.objects.chassis), 1338
ChassisNotEmpty, 865
ChassisNotFound, 865
check() (in module ironic.common.policy), 903
check_allocation_policy_and_retrieve()

(in module
ironic.api.controllers.v1.utils), 818

check_allow_boot_mode() (in module
ironic.api.controllers.v1.utils), 819

check_allow_child_node_params() (in mod-
ule ironic.api.controllers.v1.utils), 819

check_allow_clean_disable_ramdisk() (in
module ironic.api.controllers.v1.utils),
819

check_allow_configdrive() (in module
ironic.api.controllers.v1.utils), 819

check_allow_deploy_steps() (in module
ironic.api.controllers.v1.utils), 819

check_allow_driver_detail() (in module
ironic.api.controllers.v1.utils), 819

check_allow_filter_by_conductor() (in
module ironic.api.controllers.v1.utils),

1446 Index

Ironic Documentation, Release 26.1.2.dev21

819
check_allow_filter_by_conductor_group()

(in module
ironic.api.controllers.v1.utils), 819

check_allow_filter_by_fault() (in module
ironic.api.controllers.v1.utils), 819

check_allow_filter_by_lessee() (in module
ironic.api.controllers.v1.utils), 819

check_allow_filter_by_owner() (in module
ironic.api.controllers.v1.utils), 819

check_allow_filter_by_shard() (in module
ironic.api.controllers.v1.utils), 819

check_allow_filter_driver_type() (in
module ironic.api.controllers.v1.utils),
820

check_allow_management_verbs() (in module
ironic.api.controllers.v1.utils), 820

check_allow_specify_driver() (in module
ironic.api.controllers.v1.utils), 820

check_allow_specify_fields() (in module
ironic.api.controllers.v1.utils), 820

check_allow_specify_resource_class() (in
module ironic.api.controllers.v1.utils),
820

check_allowed_fields() (in module
ironic.api.controllers.v1.utils), 820

check_allowed_portgroup_fields() (in
module ironic.api.controllers.v1.utils),
820

check_and_retrieve_public_runbook() (in
module ironic.api.controllers.v1.utils),
820

check_and_update_node_interfaces() (in
module ironic.common.driver_factory),
862

check_cipher_suite_errors() (in module
ironic.drivers.modules.ipmitool), 1254

check_dir() (in module ironic.common.utils),
920

check_elcm_license() (in module
ironic.drivers.modules.irmc.common),
1134

check_for_invalid_fields() (in module
ironic.api.controllers.v1.utils), 820

check_for_invalid_state_and_allow_filter()
(in module
ironic.api.controllers.v1.utils), 821

check_for_missing_params() (in module
ironic.drivers.modules.deploy_utils),
1215

check_if_image_format_is_permitted() (in

module ironic.common.images), 888
check_image_service() (in module

ironic.common.glance_service.image_service),
849

check_image_size() (in module
ironic.drivers.modules.agent), 1194

check_interface_capability() (in module
ironic.drivers.modules.deploy_utils),
1215

check_list_policy() (in module
ironic.api.controllers.v1.utils), 821

check_multiple_node_policies_and_retrieve()
(in module
ironic.api.controllers.v1.utils), 821

check_multiple_runbook_policies_and_retrieve()
(in module
ironic.api.controllers.v1.utils), 821

check_node_list() (ironic.db.api.Connection
method), 1038

check_node_list()
(ironic.db.sqlalchemy.api.Connection
method), 990

check_node_policy_and_retrieve() (in
module ironic.api.controllers.v1.utils),
822

check_obj_versions()
(ironic.cmd.dbsync.DBCommand
method), 846

check_owner_policy() (in module
ironic.api.controllers.v1.utils), 822

check_policy() (in module
ironic.api.controllers.v1.utils), 822

check_policy() (in module
ironic.common.policy), 903

check_policy_true() (in module
ironic.api.controllers.v1.utils), 823

check_port_list_policy() (in module
ironic.api.controllers.v1.utils), 823

check_port_policy_and_retrieve() (in
module ironic.api.controllers.v1.utils),
823

check_runbook_policy_and_retrieve() (in
module ironic.api.controllers.v1.utils),
823

check_share_fs_mounted() (in module
ironic.drivers.modules.irmc.boot), 1133

check_versions() (ironic.db.api.Connection
method), 1039

check_versions()
(ironic.db.sqlalchemy.api.Connection
method), 990

Index 1447

Ironic Documentation, Release 26.1.2.dev21

check_volume_list_policy() (in module
ironic.api.controllers.v1.utils), 824

check_volume_policy_and_retrieve() (in
module ironic.api.controllers.v1.utils),
824

Checks (class in ironic.cmd.status), 847
choose_cipher_suite() (in module

ironic.drivers.modules.ipmitool), 1254
chunked_reader() (in module

ironic.common.image_format_inspector),
882

CinderStorage (class in
ironic.drivers.modules.storage.cinder),
1185

clean_dhcp() (ironic.common.dhcp_factory.DHCPFactory
method), 860

clean_dhcp_opts()
(ironic.dhcp.base.BaseDHCP method),
1071

clean_dhcp_opts()
(ironic.dhcp.dnsmasq.DnsmasqDHCPApi
method), 1073

CLEAN_FAILURE (in module
ironic.common.faults), 876

clean_step (ironic.db.sqlalchemy.models.Node
attribute), 1029

clean_step (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

clean_step (ironic.objects.node.Node property),
1356

clean_step (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

clean_step (ironic.objects.node.NodeCRUDPayload
property), 1366

clean_step (ironic.objects.node.NodePayload
property), 1375

clean_step (ironic.objects.node.NodeSetPowerStatePayload
property), 1379

clean_step (ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

clean_step() (in module ironic.drivers.base),
1307

clean_up() (in module
ironic.drivers.modules.inspector.interface),
1125

clean_up() (ironic.drivers.base.DeployInterface
method), 1285

clean_up() (ironic.drivers.base.RescueInterface
method), 1305

clean_up() (ironic.drivers.modules.agent.AgentRescue
method), 1191

clean_up() (ironic.drivers.modules.agent.CustomAgentDeploy
method), 1192

clean_up() (ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1194

clean_up() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1077

clean_up() (ironic.drivers.modules.fake.FakeDeploy
method), 1228

clean_up() (ironic.drivers.modules.image_cache.ImageCache
method), 1240

clean_up() (ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1263

clean_up_all() (in module
ironic.drivers.modules.image_cache),
1241

clean_up_caches() (in module
ironic.drivers.modules.image_cache),
1241

clean_up_instance()
(ironic.drivers.base.BootInterface
method), 1283

clean_up_instance()
(ironic.drivers.modules.fake.FakeBoot
method), 1225

clean_up_instance()
(ironic.drivers.modules.ilo.boot.IloiPXEBoot
method), 1092

clean_up_instance()
(ironic.drivers.modules.ilo.boot.IloPXEBoot
method), 1087

clean_up_instance()
(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1088

clean_up_instance()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1090

clean_up_instance()
(ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1131

clean_up_instance()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1265

clean_up_instance()
(ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
method), 1160

clean_up_instance()
(ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
method), 1163

clean_up_pxe_config() (in module
ironic.common.pxe_utils), 905

clean_up_pxe_env() (in module

1448 Index

Ironic Documentation, Release 26.1.2.dev21

ironic.common.pxe_utils), 905
clean_up_ramdisk()

(ironic.drivers.base.BootInterface
method), 1283

clean_up_ramdisk()
(ironic.drivers.modules.fake.FakeBoot
method), 1226

clean_up_ramdisk()
(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1088

clean_up_ramdisk()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1090

clean_up_ramdisk()
(ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1132

clean_up_ramdisk()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1265

clean_up_ramdisk()
(ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
method), 1161

clean_up_ramdisk()
(ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
method), 1163

clean_up_swift_entries() (in module
ironic.drivers.modules.inspect_utils),
1245

CLEANFAIL (in module ironic.common.states), 914
CLEANHOLD (in module ironic.common.states), 914
CLEANING (in module ironic.common.states), 914
cleaning_error_handler() (in module

ironic.conductor.utils), 973
cleanup() (in module ironic.common.rpc), 913
cleanup() (in module

ironic.drivers.modules.image_cache),
1241

cleanup() (in module
ironic.drivers.modules.redfish.firmware_utils),
1166

cleanup_after_timeout() (in module
ironic.conductor.utils), 973

cleanup_cleanwait_timeout() (in module
ironic.conductor.utils), 973

cleanup_disk_image() (in module
ironic.drivers.modules.image_utils),
1242

cleanup_floppy_image() (in module
ironic.drivers.modules.image_utils),
1242

cleanup_iso_image() (in module

ironic.drivers.modules.image_utils),
1242

cleanup_remote_image() (in module
ironic.drivers.modules.image_utils),
1243

cleanup_rescuewait_timeout() (in module
ironic.conductor.utils), 973

cleanup_servicewait_timeout() (in module
ironic.conductor.utils), 973

cleanup_vmedia_boot() (in module
ironic.drivers.modules.ilo.common),
1095

CLEANWAIT (in module ironic.common.states), 914
clear_ca_certificates()

(ironic.drivers.modules.ilo.management.Ilo5Management
method), 1104

clear_certificates() (in module
ironic.drivers.modules.ilo.common),
1095

clear_iscsi_boot_target()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1105

clear_job_queue()
(ironic.drivers.modules.drac.management.DracRedfishManagement
method), 1081

clear_lookup_addresses() (in module
ironic.drivers.modules.inspect_utils),
1246

clear_node_reservations_for_conductor()
(ironic.db.sqlalchemy.api.Connection
method), 990

clear_node_target_power_state()
(ironic.db.sqlalchemy.api.Connection
method), 991

clear_secure_boot_keys()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1105

clear_secure_boot_keys()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1169

ClientSideError, 865
close() (ironic.common.image_format_inspector.InfoWrapper

method), 880
code (ironic.common.exception.Conflict at-

tribute), 865
code (ironic.common.exception.ImageChecksumFileReadFailure

attribute), 868
code (ironic.common.exception.Invalid attribute),

869
code (ironic.common.exception.NoFreeConductorWorker

attribute), 871

Index 1449

Ironic Documentation, Release 26.1.2.dev21

code (ironic.common.exception.NotAcceptable at-
tribute), 872

code (ironic.common.exception.NotAuthorized at-
tribute), 872

code (ironic.common.exception.NotFound at-
tribute), 873

code (ironic.common.exception.TemporaryFailure
attribute), 874

code (ironic.drivers.modules.inspect_utils.AutoEnrollPossible
attribute), 1245

coerce() (ironic.objects.fields.FlexibleDict static
method), 1349

coerce() (ironic.objects.fields.MACAddress
static method), 1350

coerce() (ironic.objects.fields.StringAcceptsCallable
static method), 1351

collect_deploy_logs
(ironic.drivers.modules.agent_base.HeartbeatMixin
attribute), 1199

collect_deploy_logs
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
attribute), 1077

collect_ramdisk_logs() (in module
ironic.drivers.utils), 1319

collect_system_logs()
(ironic.drivers.modules.agent_client.AgentClient
method), 1202

collection_from_list() (in module
ironic.api.controllers.v1.bios), 784

collection_from_list() (in module
ironic.api.controllers.v1.firmware),
792

Common (class in
ironic.drivers.modules.inspector.interface),
1124

CommunicationError, 865
complete (ironic.common.image_format_inspector.CaptureRegion

property), 878
complete (ironic.common.image_format_inspector.FileInspector

property), 878
component (ironic.db.sqlalchemy.models.FirmwareComponent

attribute), 1028
component (ironic.objects.firmware.FirmwareComponent

property), 1352
compute_image_checksum() (in module

ironic.common.checksum_utils), 855
compute_image_checksum() (in module

ironic.drivers.modules.deploy_utils),
1215

ConcurrentActionLimit, 865
Conductor (class in

ironic.db.sqlalchemy.models), 1026
Conductor (class in ironic.objects.conductor),

1339
conductor (ironic.db.sqlalchemy.models.NodeHistory

attribute), 1033
conductor (ironic.objects.node_history.NodeHistory

property), 1388
conductor_affinity

(ironic.db.sqlalchemy.models.Allocation
attribute), 1025

conductor_affinity
(ironic.db.sqlalchemy.models.Node
attribute), 1029

conductor_affinity
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

conductor_affinity
(ironic.objects.allocation.Allocation
property), 1321

conductor_affinity (ironic.objects.node.Node
property), 1356

conductor_group
(ironic.db.sqlalchemy.models.Conductor
attribute), 1026

conductor_group
(ironic.db.sqlalchemy.models.Node
attribute), 1029

conductor_group
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

conductor_group
(ironic.objects.conductor.Conductor
property), 1339

conductor_group (ironic.objects.node.Node
property), 1356

conductor_group
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

conductor_group
(ironic.objects.node.NodeCRUDPayload
property), 1366

conductor_group
(ironic.objects.node.NodePayload prop-
erty), 1375

conductor_group
(ironic.objects.node.NodeSetPowerStatePayload
property), 1379

conductor_group
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

conductor_id (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces

1450 Index

Ironic Documentation, Release 26.1.2.dev21

attribute), 1027
ConductorAlreadyRegistered, 865
ConductorAPI (class in ironic.conductor.rpcapi),

940
ConductorHardwareInterfaces (class in

ironic.db.sqlalchemy.models), 1027
ConductorHardwareInterfacesAlreadyRegistered,

865
ConductorManager (class in

ironic.conductor.manager), 931
ConductorNotFound, 865
ConductorsController (class in

ironic.api.controllers.v1.conductor),
787

config() (in module
ironic.api.controllers.v1.ramdisk),
812

ConfigHook (class in ironic.api.hooks), 843
ConfigInvalid, 865
ConfigNotFound, 865
configure_intel_speedselect()

(ironic.drivers.modules.intel_ipmi.management.IntelIPMIManagement
method), 1129

configure_local_boot()
(ironic.drivers.modules.agent_base.AgentDeployMixin
method), 1197

configure_secure_boot_if_needed()
(in module
ironic.drivers.modules.boot_mode_utils),
1211

configure_tenant_networks()
(ironic.drivers.base.NetworkInterface
method), 1298

configure_tenant_networks()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1152

configure_tenant_networks()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

configure_tenant_networks()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1157

Conflict, 865
Connection (class in ironic.db.api), 1038
Connection (class in ironic.db.sqlalchemy.api),

989
connector_id (ironic.db.sqlalchemy.models.VolumeConnector

attribute), 1036
connector_id (ironic.objects.volume_connector.VolumeConnector

property), 1416
connector_id (ironic.objects.volume_connector.VolumeConnectorCRUDPayload

property), 1420
console (ironic.api.controllers.v1.node.NodeStatesController

attribute), 796
console (ironic.drivers.base.BareDriver at-

tribute), 1279
console_enabled

(ironic.db.sqlalchemy.models.Node
attribute), 1029

console_enabled
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

console_enabled (ironic.objects.node.Node
property), 1356

console_enabled
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

console_enabled
(ironic.objects.node.NodeCRUDPayload
property), 1366

console_enabled
(ironic.objects.node.NodePayload prop-
erty), 1375

console_enabled
(ironic.objects.node.NodeSetPowerStatePayload
property), 1379

console_enabled
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

console_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1029

console_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

console_interface (ironic.objects.node.Node
property), 1356

console_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

console_interface
(ironic.objects.node.NodeCRUDPayload
property), 1366

console_interface
(ironic.objects.node.NodePayload prop-
erty), 1375

console_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1379

console_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

Index 1451

Ironic Documentation, Release 26.1.2.dev21

ConsoleError, 865
ConsoleInterface (class in ironic.drivers.base),

1285
ConsoleSubprocessFailed, 865
context_info (ironic.common.image_format_inspector.FileInspector

property), 878
ContextHook (class in ironic.api.hooks), 844
continue_cleaning()

(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1199

continue_inspection() (in module
ironic.conductor.inspection), 931

continue_inspection()
(ironic.conductor.manager.ConductorManager
method), 932

continue_inspection()
(ironic.conductor.rpcapi.ConductorAPI
method), 943

continue_inspection()
(ironic.drivers.base.InspectInterface
method), 1289

continue_inspection()
(ironic.drivers.modules.inspector.agent.AgentInspect
method), 1124

continue_inspection()
(ironic.drivers.modules.inspector.AgentInspect
method), 1128

continue_inspection()
(ironic.drivers.modules.inspector.Inspector
method), 1129

continue_inspection()
(ironic.drivers.modules.inspector.interface.Inspector
method), 1125

continue_node_clean() (in module
ironic.conductor.cleaning), 928

continue_node_clean()
(ironic.conductor.manager.ConductorManager
method), 932

continue_node_clean()
(ironic.conductor.rpcapi.ConductorAPI
method), 944

continue_node_deploy() (in module
ironic.conductor.deployments), 929

continue_node_deploy()
(ironic.conductor.manager.ConductorManager
method), 932

continue_node_deploy()
(ironic.conductor.rpcapi.ConductorAPI
method), 944

continue_node_service() (in module
ironic.conductor.servicing), 966

continue_node_service()
(ironic.conductor.manager.ConductorManager
method), 932

continue_node_service()
(ironic.conductor.rpcapi.ConductorAPI
method), 944

continue_servicing()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1199

ContinueInspectionController (class in
ironic.api.controllers.v1.ramdisk), 810

Controller (class in ironic.api.controllers.v1),
838

convert() (in module
ironic.api.controllers.v1.volume), 832

convert_drive_units() (in module
ironic.drivers.modules.redfish.raid),
1180

convert_image() (in module
ironic.common.qemu_img), 910

convert_steps() (in module
ironic.api.controllers.v1.utils), 824

convert_to_version()
(ironic.objects.base.IronicObject
method), 1328

convert_with_links() (in module
ironic.api.controllers.v1.allocation),
784

convert_with_links() (in module
ironic.api.controllers.v1.bios), 784

convert_with_links() (in module
ironic.api.controllers.v1.chassis), 786

convert_with_links() (in module
ironic.api.controllers.v1.conductor),
787

convert_with_links() (in module
ironic.api.controllers.v1.deploy_template),
789

convert_with_links() (in module
ironic.api.controllers.v1.driver), 790

convert_with_links() (in module
ironic.api.controllers.v1.firmware),
792

convert_with_links() (in module
ironic.api.controllers.v1.port), 808

convert_with_links() (in module
ironic.api.controllers.v1.portgroup),
810

convert_with_links() (in module
ironic.api.controllers.v1.ramdisk),
812

1452 Index

Ironic Documentation, Release 26.1.2.dev21

convert_with_links() (in module
ironic.api.controllers.v1.runbook),
813

convert_with_links() (in module
ironic.api.controllers.v1.volume_connector),
835

convert_with_links() (in module
ironic.api.controllers.v1.volume_target),
837

converted_size() (in module
ironic.common.images), 888

copy_image_to_swift() (in module
ironic.drivers.modules.ilo.common),
1095

copy_image_to_web_server() (in module
ironic.drivers.modules.ilo.common),
1096

core_interfaces
(ironic.drivers.base.BareDriver prop-
erty), 1279

count_nodes_in_provision_state()
(ironic.db.api.Connection method),
1039

count_nodes_in_provision_state()
(ironic.db.sqlalchemy.api.Connection
method), 991

CPUCapabilitiesHook (class in
ironic.drivers.modules.inspector.hooks.cpu_capabilities),
1117

create() (ironic.objects.allocation.Allocation
method), 1321

create() (ironic.objects.bios.BIOSSetting
method), 1330

create() (ironic.objects.bios.BIOSSettingList
class method), 1333

create() (ironic.objects.chassis.Chassis
method), 1335

create() (ironic.objects.deploy_template.DeployTemplate
method), 1341

create() (ironic.objects.deployment.Deployment
method), 1346

create() (ironic.objects.firmware.FirmwareComponent
method), 1352

create() (ironic.objects.node.Node method),
1356

create() (ironic.objects.node_history.NodeHistory
method), 1388

create() (ironic.objects.node_inventory.NodeInventory
method), 1391

create() (ironic.objects.port.Port method), 1395
create() (ironic.objects.portgroup.Portgroup

method), 1402
create() (ironic.objects.runbook.Runbook

method), 1408
create() (ironic.objects.trait.Trait method), 1413
create() (ironic.objects.trait.TraitList class

method), 1415
create() (ironic.objects.volume_connector.VolumeConnector

method), 1416
create() (ironic.objects.volume_target.VolumeTarget

method), 1421
create_allocation()

(ironic.conductor.manager.ConductorManager
method), 933

create_allocation()
(ironic.conductor.rpcapi.ConductorAPI
method), 944

create_allocation()
(ironic.db.api.Connection method),
1039

create_allocation()
(ironic.db.sqlalchemy.api.Connection
method), 991

create_bios_setting_list()
(ironic.db.api.Connection method),
1039

create_bios_setting_list()
(ironic.db.sqlalchemy.api.Connection
method), 991

create_boot_iso() (in module
ironic.common.images), 888

create_chassis() (ironic.db.api.Connection
method), 1040

create_chassis()
(ironic.db.sqlalchemy.api.Connection
method), 992

create_configuration()
(ironic.drivers.base.RAIDInterface
method), 1303

create_configuration()
(ironic.drivers.modules.agent.AgentRAID
method), 1190

create_configuration()
(ironic.drivers.modules.drac.raid.DracRedfishRAID
method), 1083

create_configuration()
(ironic.drivers.modules.fake.FakeRAID
method), 1236

create_configuration()
(ironic.drivers.modules.ilo.raid.Ilo5RAID
method), 1113

create_configuration()

Index 1453

Ironic Documentation, Release 26.1.2.dev21

(ironic.drivers.modules.irmc.raid.IRMCRAID
method), 1146

create_configuration()
(ironic.drivers.modules.noop.NoRAID
method), 1259

create_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1178

create_csr() (ironic.drivers.modules.ilo.management.IloManagement
method), 1105

create_deploy_template()
(ironic.db.api.Connection method),
1040

create_deploy_template()
(ironic.db.sqlalchemy.api.Connection
method), 992

create_esp_image_for_uefi() (in module
ironic.common.images), 889

create_firmware_component()
(ironic.db.api.Connection class method),
1040

create_firmware_component()
(ironic.db.sqlalchemy.api.Connection
method), 992

create_ipxe_boot_script() (in module
ironic.common.pxe_utils), 905

create_isolinux_image_for_bios() (in
module ironic.common.images), 890

create_link_without_raise() (in module
ironic.common.utils), 920

create_node() (ironic.conductor.manager.ConductorManager
method), 933

create_node() (ironic.conductor.rpcapi.ConductorAPI
method), 944

create_node() (ironic.db.api.Connection
method), 1041

create_node() (ironic.db.sqlalchemy.api.Connection
method), 992

create_node_history()
(ironic.db.api.Connection method),
1041

create_node_history()
(ironic.db.sqlalchemy.api.Connection
method), 993

create_node_inventory()
(ironic.db.api.Connection method),
1041

create_node_inventory()
(ironic.db.sqlalchemy.api.Connection
method), 993

create_object()

(ironic.common.swift.SwiftAPI method),
918

create_object_from_data()
(ironic.common.swift.SwiftAPI method),
918

create_port() (ironic.conductor.manager.ConductorManager
method), 933

create_port() (ironic.conductor.rpcapi.ConductorAPI
method), 945

create_port() (ironic.db.api.Connection
method), 1041

create_port() (ironic.db.sqlalchemy.api.Connection
method), 993

create_portgroup() (ironic.db.api.Connection
method), 1042

create_portgroup()
(ironic.db.sqlalchemy.api.Connection
method), 993

create_ports_if_not_exist() (in module
ironic.drivers.modules.inspect_utils),
1246

create_pxe_config() (in module
ironic.common.pxe_utils), 906

create_runbook() (ironic.db.api.Connection
method), 1042

create_runbook()
(ironic.db.sqlalchemy.api.Connection
method), 993

create_schema command line option
--help, 437
-h, 437

create_schema() (in module
ironic.db.migration), 1071

create_schema() (in module
ironic.db.sqlalchemy.migration), 1024

create_schema()
(ironic.cmd.dbsync.DBCommand
method), 846

create_schema,
ironic-dbsync command line option,

437
create_subscription()

(ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru
method), 1184

create_vfat_image() (in module
ironic.common.images), 890

create_virtual_disk() (in module
ironic.drivers.modules.redfish.raid),
1180

create_volume_connector()
(ironic.db.api.Connection method),

1454 Index

Ironic Documentation, Release 26.1.2.dev21

1042
create_volume_connector()

(ironic.db.sqlalchemy.api.Connection
method), 994

create_volume_target()
(ironic.db.api.Connection method),
1043

create_volume_target()
(ironic.db.sqlalchemy.api.Connection
method), 994

created_at (ironic.db.sqlalchemy.models.Allocation
attribute), 1025

created_at (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

created_at (ironic.db.sqlalchemy.models.Chassis
attribute), 1026

created_at (ironic.db.sqlalchemy.models.Conductor
attribute), 1027

created_at (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

created_at (ironic.db.sqlalchemy.models.DeployTemplate
attribute), 1027

created_at (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

created_at (ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

created_at (ironic.db.sqlalchemy.models.Node
attribute), 1029

created_at (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

created_at (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

created_at (ironic.db.sqlalchemy.models.NodeInventory
attribute), 1033

created_at (ironic.db.sqlalchemy.models.NodeTag
attribute), 1034

created_at (ironic.db.sqlalchemy.models.NodeTrait
attribute), 1034

created_at (ironic.db.sqlalchemy.models.Port
attribute), 1034

created_at (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

created_at (ironic.db.sqlalchemy.models.Runbook
attribute), 1036

created_at (ironic.db.sqlalchemy.models.RunbookStep
attribute), 1036

created_at (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1036

created_at (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

created_at (ironic.objects.allocation.Allocation

property), 1322
created_at (ironic.objects.allocation.AllocationCRUDNotification

property), 1325
created_at (ironic.objects.allocation.AllocationCRUDPayload

property), 1326
created_at (ironic.objects.bios.BIOSSetting

property), 1331
created_at (ironic.objects.bios.BIOSSettingList

property), 1334
created_at (ironic.objects.chassis.Chassis prop-

erty), 1335
created_at (ironic.objects.chassis.ChassisCRUDNotification

property), 1337
created_at (ironic.objects.chassis.ChassisCRUDPayload

property), 1338
created_at (ironic.objects.conductor.Conductor

property), 1339
created_at (ironic.objects.deploy_template.DeployTemplate

property), 1341
created_at (ironic.objects.deploy_template.DeployTemplateCRUDNotification

property), 1344
created_at (ironic.objects.deploy_template.DeployTemplateCRUDPayload

property), 1345
created_at (ironic.objects.deployment.Deployment

property), 1346
created_at (ironic.objects.firmware.FirmwareComponent

property), 1352
created_at (ironic.objects.firmware.FirmwareComponentList

property), 1353
created_at (ironic.objects.node.Node property),

1357
created_at (ironic.objects.node.NodeConsoleNotification

property), 1370
created_at (ironic.objects.node.NodeCorrectedPowerStateNotification

property), 1370
created_at (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1371
created_at (ironic.objects.node.NodeCRUDNotification

property), 1365
created_at (ironic.objects.node.NodeCRUDPayload

property), 1366
created_at (ironic.objects.node.NodeMaintenanceNotification

property), 1374
created_at (ironic.objects.node.NodePayload

property), 1375
created_at (ironic.objects.node.NodeSetPowerStateNotification

property), 1379
created_at (ironic.objects.node.NodeSetPowerStatePayload

property), 1380
created_at (ironic.objects.node.NodeSetProvisionStateNotification

property), 1383

Index 1455

Ironic Documentation, Release 26.1.2.dev21

created_at (ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

created_at (ironic.objects.node_history.NodeHistory
property), 1388

created_at (ironic.objects.node_inventory.NodeInventory
property), 1391

created_at (ironic.objects.notification.EventType
property), 1392

created_at (ironic.objects.notification.NotificationBase
property), 1393

created_at (ironic.objects.notification.NotificationPayloadBase
property), 1394

created_at (ironic.objects.notification.NotificationPublisher
property), 1394

created_at (ironic.objects.port.Port property),
1395

created_at (ironic.objects.port.PortCRUDNotification
property), 1401

created_at (ironic.objects.port.PortCRUDPayload
property), 1401

created_at (ironic.objects.portgroup.Portgroup
property), 1403

created_at (ironic.objects.portgroup.PortgroupCRUDNotification
property), 1407

created_at (ironic.objects.portgroup.PortgroupCRUDPayload
property), 1407

created_at (ironic.objects.runbook.Runbook
property), 1409

created_at (ironic.objects.runbook.RunbookCRUDNotification
property), 1412

created_at (ironic.objects.runbook.RunbookCRUDPayload
property), 1412

created_at (ironic.objects.trait.Trait property),
1413

created_at (ironic.objects.trait.TraitList prop-
erty), 1415

created_at (ironic.objects.volume_connector.VolumeConnector
property), 1416

created_at (ironic.objects.volume_connector.VolumeConnectorCRUDNotification
property), 1419

created_at (ironic.objects.volume_connector.VolumeConnectorCRUDPayload
property), 1420

created_at (ironic.objects.volume_target.VolumeTarget
property), 1421

created_at (ironic.objects.volume_target.VolumeTargetCRUDNotification
property), 1425

created_at (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

CRITICAL (ironic.objects.fields.NotificationLevel
attribute), 1350

current_version

(ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

current_version
(ironic.objects.firmware.FirmwareComponent
property), 1352

CustomAgentDeploy (class in
ironic.drivers.modules.agent), 1192

D
DatabaseVersionTooOld, 866
datatype (ironic.api.functions.FunctionArgument

attribute), 842
DateTimeField (class in ironic.objects.fields),

1349
dbapi (ironic.objects.allocation.Allocation

attribute), 1322
dbapi (ironic.objects.bios.BIOSSetting attribute),

1331
dbapi (ironic.objects.bios.BIOSSettingList at-

tribute), 1334
dbapi (ironic.objects.chassis.Chassis attribute),

1335
dbapi (ironic.objects.conductor.Conductor

attribute), 1339
dbapi (ironic.objects.deploy_template.DeployTemplate

attribute), 1341
dbapi (ironic.objects.deployment.Deployment at-

tribute), 1346
dbapi (ironic.objects.firmware.FirmwareComponent

attribute), 1352
dbapi (ironic.objects.firmware.FirmwareComponentList

attribute), 1353
dbapi (ironic.objects.node.Node attribute), 1357
dbapi (ironic.objects.node_history.NodeHistory

attribute), 1388
dbapi (ironic.objects.node_inventory.NodeInventory

attribute), 1391
dbapi (ironic.objects.port.Port attribute), 1395
dbapi (ironic.objects.portgroup.Portgroup at-

tribute), 1403
dbapi (ironic.objects.runbook.Runbook attribute),

1409
dbapi (ironic.objects.trait.Trait attribute), 1413
dbapi (ironic.objects.trait.TraitList attribute),

1415
dbapi (ironic.objects.volume_connector.VolumeConnector

attribute), 1416
dbapi (ironic.objects.volume_target.VolumeTarget

attribute), 1421
DBCommand (class in ironic.cmd.dbsync), 846
DBHook (class in ironic.api.hooks), 844

1456 Index

Ironic Documentation, Release 26.1.2.dev21

DEBUG (ironic.objects.fields.NotificationLevel at-
tribute), 1350

debug() (ironic.common.image_format_inspector.TraceDisabled
method), 881

decode_and_extract_config_drive_iso()
(in module
ironic.common.kickstart_utils), 894

deconfigure_secure_boot_if_needed()
(in module
ironic.drivers.modules.boot_mode_utils),
1211

default (ironic.api.functions.FunctionArgument
attribute), 842

default (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

default_interface() (in module
ironic.common.driver_factory), 862

default_require_managed_boot
(ironic.drivers.modules.inspector.agent.AgentInspect
attribute), 1124

default_require_managed_boot
(ironic.drivers.modules.inspector.AgentInspect
attribute), 1128

default_require_managed_boot
(ironic.drivers.modules.inspector.interface.Common
attribute), 1124

default_version() (in module
ironic.api.controllers.version), 839

del_driver_internal_info()
(ironic.objects.node.Node method),
1357

del_host() (ironic.conductor.base_manager.BaseConductorManager
method), 927

del_host() (ironic.pxe_filter.service.PXEFilterManager
method), 1427

delete() (ironic.api.controllers.v1.allocation.AllocationsController
method), 781

delete() (ironic.api.controllers.v1.allocation.NodeAllocationController
method), 783

delete() (ironic.api.controllers.v1.chassis.ChassisController
method), 785

delete() (ironic.api.controllers.v1.deploy_template.DeployTemplatesController
method), 788

delete() (ironic.api.controllers.v1.node.NodeMaintenanceController
method), 795

delete() (ironic.api.controllers.v1.node.NodesController
method), 800

delete() (ironic.api.controllers.v1.node.NodeTraitsController
method), 799

delete() (ironic.api.controllers.v1.node.NodeVIFController
method), 799

delete() (ironic.api.controllers.v1.node.NodeVmediaController
method), 800

delete() (ironic.api.controllers.v1.port.PortsController
method), 806

delete() (ironic.api.controllers.v1.portgroup.PortgroupsController
method), 809

delete() (ironic.api.controllers.v1.runbook.RunbooksController
method), 812

delete() (ironic.api.controllers.v1.volume_connector.VolumeConnectorsController
method), 832

delete() (ironic.api.controllers.v1.volume_target.VolumeTargetsController
method), 835

delete() (ironic.objects.bios.BIOSSetting class
method), 1331

delete() (ironic.objects.bios.BIOSSettingList
class method), 1334

DELETE_ALLOWED_STATES (in module
ironic.common.states), 914

delete_bios_setting_list()
(ironic.db.api.Connection method),
1043

delete_bios_setting_list()
(ironic.db.sqlalchemy.api.Connection
method), 995

delete_configuration()
(ironic.drivers.base.RAIDInterface
method), 1304

delete_configuration()
(ironic.drivers.modules.agent.AgentRAID
method), 1190

delete_configuration()
(ironic.drivers.modules.drac.raid.DracRedfishRAID
method), 1084

delete_configuration()
(ironic.drivers.modules.fake.FakeRAID
method), 1236

delete_configuration()
(ironic.drivers.modules.ilo.raid.Ilo5RAID
method), 1113

delete_configuration()
(ironic.drivers.modules.irmc.raid.IRMCRAID
method), 1146

delete_configuration()
(ironic.drivers.modules.noop.NoRAID
method), 1259

delete_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1178

delete_node_tag() (ironic.db.api.Connection
method), 1043

delete_node_tag()

Index 1457

Ironic Documentation, Release 26.1.2.dev21

(ironic.db.sqlalchemy.api.Connection
method), 995

delete_node_trait()
(ironic.db.api.Connection method),
1044

delete_node_trait()
(ironic.db.sqlalchemy.api.Connection
method), 995

delete_object()
(ironic.common.swift.SwiftAPI method),
919

delete_subscription()
(ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru
method), 1184

DELETED (in module ironic.common.states), 914
DELETING (in module ironic.common.states), 915
dependencies (ironic.drivers.modules.inspector.hooks.base.InspectionHook

attribute), 1116
dependencies (ironic.drivers.modules.inspector.hooks.local_link_connection.LocalLinkConnectionHook

attribute), 1118
dependencies (ironic.drivers.modules.inspector.hooks.physical_network.PhysicalNetworkHook

attribute), 1120
dependencies (ironic.drivers.modules.inspector.hooks.ports.PortsHook

attribute), 1120
DEPLOY (in module ironic.common.states), 915
deploy (ironic.drivers.base.BareDriver attribute),

1279
deploy() (ironic.drivers.base.DeployInterface

method), 1286
deploy() (ironic.drivers.modules.agent.CustomAgentDeploy

method), 1192
deploy() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy

method), 1077
deploy() (ironic.drivers.modules.fake.FakeDeploy

method), 1228
deploy() (ironic.drivers.modules.pxe.PXEAnacondaDeploy

method), 1263
deploy() (ironic.drivers.modules.ramdisk.RamdiskDeploy

method), 1267
deploy_has_started()

(ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1263

deploy_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1029

deploy_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

deploy_interface (ironic.objects.node.Node
property), 1357

deploy_interface

(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

deploy_interface
(ironic.objects.node.NodeCRUDPayload
property), 1366

deploy_interface
(ironic.objects.node.NodePayload prop-
erty), 1375

deploy_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1380

deploy_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

deploy_is_done()
(ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1264

deploy_step (ironic.db.sqlalchemy.models.Node
attribute), 1029

deploy_step (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

deploy_step (ironic.objects.node.Node prop-
erty), 1357

deploy_step (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

deploy_step (ironic.objects.node.NodeCRUDPayload
property), 1366

deploy_step (ironic.objects.node.NodePayload
property), 1375

deploy_step (ironic.objects.node.NodeSetPowerStatePayload
property), 1380

deploy_step (ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

deploy_step() (in module ironic.drivers.base),
1309

deploy_template
(ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

deploy_template_id
(ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

DEPLOYDONE (in module ironic.common.states),
915

DEPLOYFAIL (in module ironic.common.states),
915

DEPLOYHOLD (in module ironic.common.states),
915

DEPLOYING (in module ironic.common.states), 915
deploying_error_handler() (in module

ironic.conductor.utils), 973
DeployInterface (class in ironic.drivers.base),

1458 Index

Ironic Documentation, Release 26.1.2.dev21

1285
Deployment (class in ironic.objects.deployment),

1346
DeployTemplate (class in

ironic.db.sqlalchemy.models), 1027
DeployTemplate (class in

ironic.objects.deploy_template), 1341
DeployTemplateAlreadyExists, 866
DeployTemplateCRUDNotification (class in

ironic.objects.deploy_template), 1344
DeployTemplateCRUDPayload (class in

ironic.objects.deploy_template), 1345
DeployTemplateDuplicateName, 866
DeployTemplateNotFound, 866
DeployTemplatesController (class in

ironic.api.controllers.v1.deploy_template),
788

DeployTemplateStep (class in
ironic.db.sqlalchemy.models), 1027

DEPLOYWAIT (in module ironic.common.states),
915

DESC_MAX_SIZE (ironic.common.image_format_inspector.VMDKInspector
attribute), 882

DESC_OFFSET (ironic.common.image_format_inspector.VMDKInspector
attribute), 882

description (ironic.db.sqlalchemy.models.Chassis
attribute), 1026

description (ironic.db.sqlalchemy.models.Node
attribute), 1029

description (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

description (ironic.objects.chassis.Chassis
property), 1335

description (ironic.objects.chassis.ChassisCRUDPayload
property), 1338

description (ironic.objects.node.Node prop-
erty), 1357

description (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1371

description (ironic.objects.node.NodeCRUDPayload
property), 1367

description (ironic.objects.node.NodePayload
property), 1375

description (ironic.objects.node.NodeSetPowerStatePayload
property), 1380

description (ironic.objects.node.NodeSetProvisionStatePayload
property), 1384

deserialize_context()
(ironic.common.rpc.RequestContextSerializer
method), 912

deserialize_entity()

(ironic.common.rpc.RequestContextSerializer
method), 912

destroy() (ironic.objects.allocation.Allocation
method), 1322

destroy() (ironic.objects.chassis.Chassis
method), 1335

destroy() (ironic.objects.deploy_template.DeployTemplate
method), 1341

destroy() (ironic.objects.deployment.Deployment
method), 1346

destroy() (ironic.objects.node.Node method),
1357

destroy() (ironic.objects.node_history.NodeHistory
method), 1388

destroy() (ironic.objects.node_inventory.NodeInventory
method), 1391

destroy() (ironic.objects.port.Port method),
1395

destroy() (ironic.objects.portgroup.Portgroup
method), 1403

destroy() (ironic.objects.runbook.Runbook
method), 1409

destroy() (ironic.objects.trait.Trait class
method), 1413

destroy() (ironic.objects.trait.TraitList class
method), 1415

destroy() (ironic.objects.volume_connector.VolumeConnector
method), 1416

destroy() (ironic.objects.volume_target.VolumeTarget
method), 1421

destroy_allocation()
(ironic.conductor.manager.ConductorManager
method), 933

destroy_allocation()
(ironic.conductor.rpcapi.ConductorAPI
method), 945

destroy_allocation()
(ironic.db.api.Connection method),
1044

destroy_allocation()
(ironic.db.sqlalchemy.api.Connection
method), 995

destroy_chassis() (ironic.db.api.Connection
method), 1044

destroy_chassis()
(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_deploy_template()
(ironic.db.api.Connection method),
1044

destroy_deploy_template()

Index 1459

Ironic Documentation, Release 26.1.2.dev21

(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_floppy_image_from_web_server()
(in module
ironic.drivers.modules.ilo.common),
1096

destroy_http_instance_images() (in mod-
ule ironic.drivers.modules.deploy_utils),
1215

destroy_images() (in module
ironic.drivers.modules.deploy_utils),
1215

destroy_node()
(ironic.conductor.manager.ConductorManager
method), 933

destroy_node()
(ironic.conductor.rpcapi.ConductorAPI
method), 945

destroy_node() (ironic.db.api.Connection
method), 1044

destroy_node()
(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_node_history_by_uuid()
(ironic.db.api.Connection method),
1044

destroy_node_history_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_node_inventory_by_node_id()
(ironic.db.api.Connection method), 1045

destroy_node_inventory_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_port()
(ironic.conductor.manager.ConductorManager
method), 933

destroy_port()
(ironic.conductor.rpcapi.ConductorAPI
method), 946

destroy_port() (ironic.db.api.Connection
method), 1045

destroy_port()
(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_portgroup()
(ironic.conductor.manager.ConductorManager
method), 933

destroy_portgroup()
(ironic.conductor.rpcapi.ConductorAPI
method), 946

destroy_portgroup()
(ironic.db.api.Connection method),
1045

destroy_portgroup()
(ironic.db.sqlalchemy.api.Connection
method), 996

destroy_runbook() (ironic.db.api.Connection
method), 1045

destroy_runbook()
(ironic.db.sqlalchemy.api.Connection
method), 997

destroy_volume_connector()
(ironic.conductor.manager.ConductorManager
method), 933

destroy_volume_connector()
(ironic.conductor.rpcapi.ConductorAPI
method), 946

destroy_volume_connector()
(ironic.db.api.Connection method),
1045

destroy_volume_connector()
(ironic.db.sqlalchemy.api.Connection
method), 997

destroy_volume_target()
(ironic.conductor.manager.ConductorManager
method), 933

destroy_volume_target()
(ironic.conductor.rpcapi.ConductorAPI
method), 947

destroy_volume_target()
(ironic.db.api.Connection method),
1045

destroy_volume_target()
(ironic.db.sqlalchemy.api.Connection
method), 997

detach_virtual_media()
(ironic.conductor.manager.ConductorManager
method), 933

detach_virtual_media()
(ironic.conductor.rpcapi.ConductorAPI
method), 947

detach_virtual_media()
(ironic.drivers.base.ManagementInterface
method), 1290

detach_virtual_media()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1169

detach_volumes() (in module
ironic.common.cinder), 858

detach_volumes()
(ironic.drivers.base.StorageInterface

1460 Index

Ironic Documentation, Release 26.1.2.dev21

method), 1306
detach_volumes()

(ironic.drivers.modules.fake.FakeStorage
method), 1238

detach_volumes()
(ironic.drivers.modules.storage.cinder.CinderStorage
method), 1185

detach_volumes()
(ironic.drivers.modules.storage.external.ExternalStorage
method), 1187

detach_volumes()
(ironic.drivers.modules.storage.noop.NoopStorage
method), 1188

detail() (ironic.api.controllers.v1.chassis.ChassisController
method), 785

detail() (ironic.api.controllers.v1.node.NodesController
method), 800

detail() (ironic.api.controllers.v1.port.PortsController
method), 806

detail() (ironic.api.controllers.v1.portgroup.PortgroupsController
method), 809

detail_fields (ironic.api.controllers.v1.node.NodeHistoryController
attribute), 794

detect_file_format() (in module
ironic.common.image_format_inspector),
882

detect_vendor()
(ironic.drivers.base.ManagementInterface
method), 1290

detect_vendor()
(ironic.drivers.modules.ipmitool.IPMIManagement
method), 1247

detect_vendor()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1138

detect_vendor()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1169

detected (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

dhcp_options_for_instance() (in module
ironic.common.pxe_utils), 906

DHCPFactory (class in
ironic.common.dhcp_factory), 860

DHCPLoadError, 866
dict_valid() (in module ironic.common.args),

850
direct_deploy_should_convert_raw_image()

(in module
ironic.drivers.modules.deploy_utils),
1216

DirectoryNotWritable, 866
disable_ramdisk

(ironic.db.sqlalchemy.models.Runbook
attribute), 1036

disable_ramdisk
(ironic.objects.runbook.Runbook prop-
erty), 1409

disable_ramdisk
(ironic.objects.runbook.RunbookCRUDPayload
property), 1412

disallowed_fields() (in module
ironic.api.controllers.v1.utils), 825

DISK (in module ironic.common.boot_devices),
854

DISK (in module ironic.common.components), 859
DnsmasqDHCPApi (class in ironic.dhcp.dnsmasq),

1073
do_allocate() (in module

ironic.conductor.allocations), 926
do_attach_virtual_media() (in module

ironic.conductor.manager), 936
do_detach_virtual_media() (in module

ironic.conductor.manager), 936
do_next_clean_step() (in module

ironic.conductor.cleaning), 928
do_next_deploy_step() (in module

ironic.conductor.deployments), 929
do_next_service_step() (in module

ironic.conductor.servicing), 966
do_node_clean() (in module

ironic.conductor.cleaning), 928
do_node_clean()

(ironic.conductor.manager.ConductorManager
method), 934

do_node_clean()
(ironic.conductor.rpcapi.ConductorAPI
method), 947

do_node_clean_abort() (in module
ironic.conductor.cleaning), 928

do_node_deploy() (in module
ironic.conductor.deployments), 929

do_node_deploy()
(ironic.conductor.manager.ConductorManager
method), 934

do_node_deploy()
(ironic.conductor.rpcapi.ConductorAPI
method), 948

do_node_rescue()
(ironic.conductor.manager.ConductorManager
method), 934

do_node_rescue()

Index 1461

Ironic Documentation, Release 26.1.2.dev21

(ironic.conductor.rpcapi.ConductorAPI
method), 948

do_node_service() (in module
ironic.conductor.servicing), 966

do_node_service()
(ironic.conductor.manager.ConductorManager
method), 934

do_node_service()
(ironic.conductor.rpcapi.ConductorAPI
method), 949

do_node_service_abort() (in module
ironic.conductor.servicing), 966

do_node_tear_down()
(ironic.conductor.manager.ConductorManager
method), 934

do_node_tear_down()
(ironic.conductor.rpcapi.ConductorAPI
method), 949

do_node_unrescue()
(ironic.conductor.manager.ConductorManager
method), 934

do_node_unrescue()
(ironic.conductor.rpcapi.ConductorAPI
method), 950

do_node_verify() (in module
ironic.conductor.verify), 984

do_provisioning_action()
(ironic.conductor.manager.ConductorManager
method), 934

do_provisioning_action()
(ironic.conductor.rpcapi.ConductorAPI
method), 950

do_sync_power_state() (in module
ironic.conductor.manager), 936

do_version_changes_for_db()
(ironic.objects.base.IronicObject
method), 1328

doc (ironic.api.functions.FunctionDefinition
attribute), 842

downgrade() (in module
ironic.db.sqlalchemy.migration), 1024

downgrade_lock()
(ironic.conductor.task_manager.TaskManager
method), 970

download() (in module
ironic.drivers.modules.ilo.common),
1096

download() (ironic.common.glance_service.image_service.GlanceImageService
method), 848

download() (ironic.common.image_service.BaseImageService
method), 884

download() (ironic.common.image_service.FileImageService
method), 885

download() (ironic.common.image_service.HttpImageService
method), 886

download_size() (in module
ironic.common.images), 891

download_to_temp() (in module
ironic.drivers.modules.redfish.firmware_utils),
1166

DracOperationError, 866
DracRedfishBIOS (class in

ironic.drivers.modules.drac.bios), 1079
DracRedfishInspect (class in

ironic.drivers.modules.drac.inspect),
1080

DracRedfishManagement (class in
ironic.drivers.modules.drac.management),
1081

DracRedfishPower (class in
ironic.drivers.modules.drac.power),
1083

DracRedfishRAID (class in
ironic.drivers.modules.drac.raid), 1083

DracRedfishVendorPassthru (class in
ironic.drivers.modules.drac.vendor_passthru),
1085

DracRedfishVirtualMediaBoot (class in
ironic.drivers.modules.drac.boot), 1080

driver (ironic.db.sqlalchemy.models.Node
attribute), 1029

driver (ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

driver (ironic.objects.node.Node property), 1357
driver (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1371
driver (ironic.objects.node.NodeCRUDPayload

property), 1367
driver (ironic.objects.node.NodePayload prop-

erty), 1375
driver (ironic.objects.node.NodeSetPowerStatePayload

property), 1380
driver (ironic.objects.node.NodeSetProvisionStatePayload

property), 1385
driver_info (ironic.db.sqlalchemy.models.Node

attribute), 1029
driver_info (ironic.db.sqlalchemy.models.NodeBase

attribute), 1031
driver_info (ironic.objects.node.Node prop-

erty), 1357
driver_info (ironic.objects.node.NodeCRUDPayload

property), 1367

1462 Index

Ironic Documentation, Release 26.1.2.dev21

driver_internal_info
(ironic.db.sqlalchemy.models.Node
attribute), 1029

driver_internal_info
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

driver_internal_info
(ironic.objects.node.Node property),
1357

driver_internal_info
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1385

driver_passthru() (in module
ironic.drivers.base), 1310

driver_sanitize() (in module
ironic.api.controllers.v1.driver), 791

driver_validate()
(ironic.drivers.base.VendorInterface
method), 1306

driver_validate()
(ironic.drivers.modules.noop.NoVendor
method), 1260

driver_vendor_passthru()
(ironic.conductor.manager.ConductorManager
method), 934

driver_vendor_passthru()
(ironic.conductor.rpcapi.ConductorAPI
method), 950

DriverLoadError, 866
DriverNotFound, 866
DriverNotFoundInEntrypoint, 866
DriverOperationError, 866
DriverPassthruController (class in

ironic.api.controllers.v1.driver), 789
DriverRaidController (class in

ironic.api.controllers.v1.driver), 789
drivers (ironic.db.sqlalchemy.models.Conductor

attribute), 1027
drivers (ironic.objects.conductor.Conductor

property), 1339
DriversController (class in

ironic.api.controllers.v1.driver), 790
dump_sdr() (in module

ironic.drivers.modules.ipmitool), 1254
Duplicate, 866
duplicate_steps() (in module

ironic.api.controllers.v1.utils), 825
DuplicateName, 866
DuplicateNodeOnLookup, 866

E
eat_chunk() (ironic.common.image_format_inspector.FileInspector

method), 878
eject_vmedia() (in module

ironic.drivers.modules.redfish.boot),
1165

eject_vmedia()
(ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru
method), 1184

eject_vmedia_devices() (in module
ironic.drivers.modules.ilo.common),
1096

emit() (ironic.objects.notification.NotificationBase
method), 1393

emit_console_notification() (in module
ironic.conductor.notification_utils), 937

emit_end_notification() (in module
ironic.api.controllers.v1.notification_utils),
805

emit_power_set_notification() (in module
ironic.conductor.notification_utils), 937

emit_power_state_corrected_notification()
(in module
ironic.conductor.notification_utils),
937

emit_provision_set_notification()
(in module
ironic.conductor.notification_utils),
937

emit_start_notification() (in module
ironic.api.controllers.v1.notification_utils),
806

enabled_supported_interfaces() (in module
ironic.common.driver_factory), 863

END (ironic.objects.fields.NotificationStatus at-
tribute), 1350

ENROLL (in module ironic.common.states), 915
ensure_next_boot_device() (in module

ironic.drivers.utils), 1319
ensure_rpc_transport() (in module

ironic.common.service), 913
ensure_thread_contain_context()

(ironic.common.context.RequestContext
method), 859

ensure_tree() (in module
ironic.common.pxe_utils), 906

EnumField (class in ironic.objects.fields), 1349
erase_devices()

(ironic.drivers.modules.ilo.management.Ilo5Management
method), 1104

ERROR (in module ironic.common.states), 915

Index 1463

Ironic Documentation, Release 26.1.2.dev21

ERROR (ironic.objects.fields.NotificationLevel at-
tribute), 1350

ERROR (ironic.objects.fields.NotificationStatus at-
tribute), 1350

error() (ironic.common.image_format_inspector.TraceDisabled
method), 881

ESSENTIAL_PROPERTIES
(ironic.drivers.base.InspectInterface
attribute), 1289

event (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

event (ironic.objects.node.NodeSetProvisionStatePayload
property), 1385

event (ironic.objects.node_history.NodeHistory
property), 1388

event_type (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

event_type (ironic.objects.allocation.AllocationCRUDNotification
property), 1325

event_type (ironic.objects.chassis.ChassisCRUDNotification
property), 1338

event_type (ironic.objects.deploy_template.DeployTemplateCRUDNotification
property), 1344

event_type (ironic.objects.node.NodeConsoleNotification
property), 1370

event_type (ironic.objects.node.NodeCorrectedPowerStateNotification
property), 1370

event_type (ironic.objects.node.NodeCRUDNotification
property), 1365

event_type (ironic.objects.node.NodeMaintenanceNotification
property), 1374

event_type (ironic.objects.node.NodeSetPowerStateNotification
property), 1379

event_type (ironic.objects.node.NodeSetProvisionStateNotification
property), 1383

event_type (ironic.objects.node_history.NodeHistory
property), 1388

event_type (ironic.objects.notification.NotificationBase
property), 1393

event_type (ironic.objects.port.PortCRUDNotification
property), 1401

event_type (ironic.objects.portgroup.PortgroupCRUDNotification
property), 1407

event_type (ironic.objects.runbook.RunbookCRUDNotification
property), 1412

event_type (ironic.objects.volume_connector.VolumeConnectorCRUDNotification
property), 1419

event_type (ironic.objects.volume_target.VolumeTargetCRUDNotification
property), 1425

events_valid() (in module
ironic.api.controllers.v1.event), 791

EventsController (class in
ironic.api.controllers.v1.event), 791

EventType (class in ironic.objects.notification),
1392

exclude_current_conductor() (in module
ironic.conductor.utils), 974

ExclusiveLockRequired, 866
execute() (in module ironic.common.utils), 920
execute_clean_step() (in module

ironic.drivers.modules.agent_base),
1200

execute_clean_step()
(ironic.drivers.base.BaseInterface
method), 1280

execute_clean_step()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1194

execute_clean_step()
(ironic.drivers.modules.agent_client.AgentClient
method), 1202

execute_clean_step()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1077

execute_deploy_step()
(ironic.drivers.base.BaseInterface
method), 1281

execute_deploy_step()
(ironic.drivers.modules.agent_base.AgentDeployMixin
method), 1198

execute_deploy_step()
(ironic.drivers.modules.agent_client.AgentClient
method), 1203

execute_oem_manager_method() (in module
ironic.drivers.modules.drac.utils), 1084

execute_service_step()
(ironic.drivers.base.BaseInterface
method), 1281

execute_service_step()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1195

execute_service_step()
(ironic.drivers.modules.agent_client.AgentClient
method), 1204

execute_step() (in module
ironic.drivers.modules.agent_base),
1200

execute_step_on_child_nodes() (in module
ironic.conductor.cleaning), 928

execute_step_on_child_nodes() (in module
ironic.conductor.deployments), 930

execute_step_on_child_nodes() (in module

1464 Index

Ironic Documentation, Release 26.1.2.dev21

ironic.conductor.servicing), 966
execute_verify_step()

(ironic.drivers.base.BaseInterface
method), 1281

exists() (ironic.objects.trait.Trait class method),
1414

export_configuration()
(ironic.drivers.modules.drac.management.DracRedfishManagement
method), 1081

EXPORT_CONFIGURATION_ARGSINFO
(ironic.drivers.modules.drac.management.DracRedfishManagement
attribute), 1081

expose() (in module ironic.api.method), 845
ExternalStorage (class in

ironic.drivers.modules.storage.external),
1186

extra (ironic.db.sqlalchemy.models.Allocation at-
tribute), 1025

extra (ironic.db.sqlalchemy.models.Chassis at-
tribute), 1026

extra (ironic.db.sqlalchemy.models.DeployTemplate
attribute), 1027

extra (ironic.db.sqlalchemy.models.Node at-
tribute), 1029

extra (ironic.db.sqlalchemy.models.NodeBase at-
tribute), 1031

extra (ironic.db.sqlalchemy.models.Port at-
tribute), 1034

extra (ironic.db.sqlalchemy.models.Portgroup at-
tribute), 1035

extra (ironic.db.sqlalchemy.models.Runbook at-
tribute), 1036

extra (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1037

extra (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

extra (ironic.objects.allocation.Allocation prop-
erty), 1322

extra (ironic.objects.allocation.AllocationCRUDPayload
property), 1326

extra (ironic.objects.chassis.Chassis property),
1336

extra (ironic.objects.chassis.ChassisCRUDPayload
property), 1338

extra (ironic.objects.deploy_template.DeployTemplate
property), 1341

extra (ironic.objects.deploy_template.DeployTemplateCRUDPayload
property), 1345

extra (ironic.objects.node.Node property), 1357
extra (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1371

extra (ironic.objects.node.NodeCRUDPayload
property), 1367

extra (ironic.objects.node.NodePayload prop-
erty), 1376

extra (ironic.objects.node.NodeSetPowerStatePayload
property), 1380

extra (ironic.objects.node.NodeSetProvisionStatePayload
property), 1385

extra (ironic.objects.port.Port property), 1395
extra (ironic.objects.port.PortCRUDPayload

property), 1401
extra (ironic.objects.portgroup.Portgroup prop-

erty), 1403
extra (ironic.objects.portgroup.PortgroupCRUDPayload

property), 1407
extra (ironic.objects.runbook.Runbook property),

1409
extra (ironic.objects.runbook.RunbookCRUDPayload

property), 1412
extra (ironic.objects.volume_connector.VolumeConnector

property), 1416
extra (ironic.objects.volume_connector.VolumeConnectorCRUDPayload

property), 1420
extra (ironic.objects.volume_target.VolumeTarget

property), 1421
extra (ironic.objects.volume_target.VolumeTargetCRUDPayload

property), 1426
extra_options (ironic.api.functions.FunctionDefinition

attribute), 842
ExtraHardwareHook (class in

ironic.drivers.modules.inspector.hooks.extra_hardware),
1118

F
factory_reset()

(ironic.drivers.base.BIOSInterface
method), 1278

factory_reset()
(ironic.drivers.modules.fake.FakeBIOS
method), 1225

factory_reset()
(ironic.drivers.modules.ilo.bios.IloBIOS
method), 1086

factory_reset()
(ironic.drivers.modules.irmc.bios.IRMCBIOS
method), 1130

factory_reset()
(ironic.drivers.modules.noop.NoBIOS
method), 1257

factory_reset()
(ironic.drivers.modules.redfish.bios.RedfishBIOS

Index 1465

Ironic Documentation, Release 26.1.2.dev21

method), 1159
fail (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
fail_on_error() (in module

ironic.conductor.utils), 974
FailedToCleanDHCPOpts, 866
FailedToGetIPAddressOnPort, 866
FailedToGetSensorData, 867
FailedToParseSensorData, 867
FailedToUpdateDHCPOptOnPort, 867
FailedToUpdateMacOnPort, 867
FailMixin (class in ironic.drivers.modules.noop),

1256
FakeBIOS (class in ironic.drivers.modules.fake),

1224
FakeBoot (class in ironic.drivers.modules.fake),

1225
FakeConsole (class in

ironic.drivers.modules.fake), 1227
FakeDeploy (class in

ironic.drivers.modules.fake), 1228
FakeFirmware (class in

ironic.drivers.modules.fake), 1229
FakeHardware (class in

ironic.drivers.fake_hardware), 1312
FakeInspect (class in

ironic.drivers.modules.fake), 1230
FakeManagement (class in

ironic.drivers.modules.fake), 1231
FakePower (class in ironic.drivers.modules.fake),

1235
FakeRAID (class in ironic.drivers.modules.fake),

1236
FakeRescue (class in

ironic.drivers.modules.fake), 1237
FakeStorage (class in

ironic.drivers.modules.fake), 1238
FakeVendorA (class in

ironic.drivers.modules.fake), 1239
FakeVendorB (class in

ironic.drivers.modules.fake), 1239
fast_track_able() (in module

ironic.conductor.utils), 974
fast_track_enabled() (in module

ironic.common.utils), 920
FASTTRACK_LOOKUP_ALLOWED_STATES (in mod-

ule ironic.common.states), 915
fault (ironic.db.sqlalchemy.models.Node at-

tribute), 1029
fault (ironic.db.sqlalchemy.models.NodeBase at-

tribute), 1031

fault (ironic.objects.node.Node property), 1357
fault (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1371
fault (ironic.objects.node.NodeCRUDPayload

property), 1367
fault (ironic.objects.node.NodePayload prop-

erty), 1376
fault (ironic.objects.node.NodeSetPowerStatePayload

property), 1380
fault (ironic.objects.node.NodeSetProvisionStatePayload

property), 1385
faultstring (ironic.common.exception.ClientSideError

property), 865
faultstring (ironic.common.exception.InvalidInput

property), 870
faultstring (ironic.common.exception.UnknownArgument

property), 874
faultstring (ironic.common.exception.UnknownAttribute

property), 875
fetch() (in module ironic.common.images), 891
fetch_image() (ironic.drivers.modules.image_cache.ImageCache

method), 1240
fetch_images() (in module

ironic.drivers.modules.deploy_utils),
1216

fetch_into() (in module
ironic.common.images), 891

fields (ironic.objects.allocation.Allocation at-
tribute), 1322

fields (ironic.objects.allocation.AllocationCRUDNotification
attribute), 1326

fields (ironic.objects.allocation.AllocationCRUDPayload
attribute), 1326

fields (ironic.objects.base.IronicObject at-
tribute), 1329

fields (ironic.objects.bios.BIOSSetting at-
tribute), 1331

fields (ironic.objects.bios.BIOSSettingList
attribute), 1334

fields (ironic.objects.chassis.Chassis attribute),
1336

fields (ironic.objects.chassis.ChassisCRUDNotification
attribute), 1338

fields (ironic.objects.chassis.ChassisCRUDPayload
attribute), 1338

fields (ironic.objects.conductor.Conductor at-
tribute), 1339

fields (ironic.objects.deploy_template.DeployTemplate
attribute), 1342

fields (ironic.objects.deploy_template.DeployTemplateCRUDNotification
attribute), 1344

1466 Index

Ironic Documentation, Release 26.1.2.dev21

fields (ironic.objects.deploy_template.DeployTemplateCRUDPayload
attribute), 1345

fields (ironic.objects.deployment.Deployment
attribute), 1346

fields (ironic.objects.firmware.FirmwareComponent
attribute), 1352

fields (ironic.objects.firmware.FirmwareComponentList
attribute), 1353

fields (ironic.objects.node.Node attribute), 1358
fields (ironic.objects.node.NodeConsoleNotification

attribute), 1370
fields (ironic.objects.node.NodeCorrectedPowerStateNotification

attribute), 1370
fields (ironic.objects.node.NodeCorrectedPowerStatePayload

attribute), 1371
fields (ironic.objects.node.NodeCRUDNotification

attribute), 1365
fields (ironic.objects.node.NodeCRUDPayload

attribute), 1367
fields (ironic.objects.node.NodeMaintenanceNotification

attribute), 1374
fields (ironic.objects.node.NodePayload at-

tribute), 1376
fields (ironic.objects.node.NodeSetPowerStateNotification

attribute), 1379
fields (ironic.objects.node.NodeSetPowerStatePayload

attribute), 1380
fields (ironic.objects.node.NodeSetProvisionStateNotification

attribute), 1383
fields (ironic.objects.node.NodeSetProvisionStatePayload

attribute), 1385
fields (ironic.objects.node_history.NodeHistory

attribute), 1388
fields (ironic.objects.node_inventory.NodeInventory

attribute), 1391
fields (ironic.objects.notification.EventType at-

tribute), 1392
fields (ironic.objects.notification.NotificationBase

attribute), 1393
fields (ironic.objects.notification.NotificationPayloadBase

attribute), 1394
fields (ironic.objects.notification.NotificationPublisher

attribute), 1394
fields (ironic.objects.port.Port attribute), 1395
fields (ironic.objects.port.PortCRUDNotification

attribute), 1401
fields (ironic.objects.port.PortCRUDPayload at-

tribute), 1401
fields (ironic.objects.portgroup.Portgroup

attribute), 1403
fields (ironic.objects.portgroup.PortgroupCRUDNotification

attribute), 1407
fields (ironic.objects.portgroup.PortgroupCRUDPayload

attribute), 1407
fields (ironic.objects.runbook.Runbook at-

tribute), 1409
fields (ironic.objects.runbook.RunbookCRUDNotification

attribute), 1412
fields (ironic.objects.runbook.RunbookCRUDPayload

attribute), 1412
fields (ironic.objects.trait.Trait attribute), 1414
fields (ironic.objects.trait.TraitList attribute),

1415
fields (ironic.objects.volume_connector.VolumeConnector

attribute), 1416
fields (ironic.objects.volume_connector.VolumeConnectorCRUDNotification

attribute), 1419
fields (ironic.objects.volume_connector.VolumeConnectorCRUDPayload

attribute), 1420
fields (ironic.objects.volume_target.VolumeTarget

attribute), 1421
fields (ironic.objects.volume_target.VolumeTargetCRUDNotification

attribute), 1425
fields (ironic.objects.volume_target.VolumeTargetCRUDPayload

attribute), 1426
file_has_content() (in module

ironic.common.utils), 920
file_mime_type() (in module

ironic.common.utils), 921
FileImageService (class in

ironic.common.image_service), 885
FileInspector (class in

ironic.common.image_format_inspector),
878

FileSystemNotSupported, 867
filter_target_raid_config() (in module

ironic.common.raid), 910
finalize_rescue()

(ironic.drivers.modules.agent_client.AgentClient
method), 1204

find_step() (in module ironic.conductor.steps),
967

find_step() (in module
ironic.drivers.modules.agent_base),
1200

firmware (ironic.drivers.base.BareDriver at-
tribute), 1279

FIRMWARE_COMPONENTS (in module
ironic.drivers.modules.redfish.utils),
1181

firmware_interface
(ironic.db.sqlalchemy.models.Node

Index 1467

Ironic Documentation, Release 26.1.2.dev21

attribute), 1029
firmware_interface

(ironic.db.sqlalchemy.models.NodeBase
attribute), 1031

firmware_interface (ironic.objects.node.Node
property), 1360

FirmwareComponent (class in
ironic.db.sqlalchemy.models), 1028

FirmwareComponent (class in
ironic.objects.firmware), 1352

FirmwareComponentAlreadyExists, 867
FirmwareComponentList (class in

ironic.objects.firmware), 1353
FirmwareComponentNotFound, 867
FirmwareImageLocation (class in

ironic.drivers.modules.ilo.firmware_processor),
1102

FirmwareInterface (class in
ironic.drivers.base), 1288

FirmwareProcessor (class in
ironic.drivers.modules.ilo.firmware_processor),
1102

first_method()
(ironic.drivers.modules.fake.FakeVendorA
method), 1239

fixedOn (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

flash_firmware_sum()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1105

FlatNetwork (class in
ironic.drivers.modules.network.flat),
1151

FlexibleDict (class in ironic.objects.fields),
1349

FlexibleDictField (class in
ironic.objects.fields), 1349

FLOPPY (in module ironic.common.boot_devices),
854

Forbidden, 867
force_persistent_boot() (in module

ironic.drivers.utils), 1319
force_raw_will_convert() (in module

ironic.common.images), 891
format_exception() (in module

ironic.api.method), 845
format_match (ironic.common.image_format_inspector.FileInspector

property), 878
format_match (ironic.common.image_format_inspector.ISOInspector

property), 879
format_match (ironic.common.image_format_inspector.QcowInspector

property), 880
format_match (ironic.common.image_format_inspector.QEDInspector

property), 880
format_match (ironic.common.image_format_inspector.VDIInspector

property), 881
format_match (ironic.common.image_format_inspector.VHDInspector

property), 881
format_match (ironic.common.image_format_inspector.VHDXInspector

property), 881
format_match (ironic.common.image_format_inspector.VMDKInspector

property), 882
fourth_method_shared_lock()

(ironic.drivers.modules.fake.FakeVendorB
method), 1239

from_chassis (ironic.api.controllers.v1.node.NodesController
attribute), 801

FROM_DICT_EXTRA_KEYS
(ironic.common.context.RequestContext
attribute), 859

from_environ()
(ironic.common.context.RequestContext
class method), 860

from_file() (ironic.common.image_format_inspector.FileInspector
class method), 878

from_power (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

FSM (class in ironic.common.fsm), 876
FunctionArgument (class in

ironic.api.functions), 842
FunctionDefinition (class in

ironic.api.functions), 842

G
GD_AT_END (ironic.common.image_format_inspector.VMDKInspector

attribute), 882
gen_auth_from_conf_user_pass()

(ironic.common.image_service.HttpImageService
static method), 886

generate_temp_url()
(ironic.common.swift.SwiftAPI method),
919

GenericHardware (class in
ironic.drivers.generic), 1313

get() (ironic.api.controllers.v1.node.BootDeviceController
method), 792

get() (ironic.api.controllers.v1.node.NodeConsoleController
method), 794

get() (ironic.api.controllers.v1.node.NodeInventoryController
method), 795

get() (ironic.api.controllers.v1.node.NodeStatesController
method), 796

1468 Index

Ironic Documentation, Release 26.1.2.dev21

get() (ironic.api.controllers.v1.node.NodeVmediaController
method), 800

get() (ironic.api.controllers.v1.volume.VolumeController
method), 832

get() (ironic.api.functions.FunctionDefinition
static method), 842

get() (ironic.common.image_service.HttpImageService
static method), 886

get() (ironic.drivers.modules.snmp.SNMPClient
method), 1268

get() (ironic.objects.allocation.Allocation class
method), 1323

get() (ironic.objects.bios.BIOSSetting class
method), 1332

get() (ironic.objects.chassis.Chassis class
method), 1336

get() (ironic.objects.firmware.FirmwareComponent
class method), 1352

get() (ironic.objects.node.Node class method),
1360

get() (ironic.objects.node_history.NodeHistory
class method), 1389

get() (ironic.objects.port.Port class method),
1396

get() (ironic.objects.portgroup.Portgroup class
method), 1404

get() (ironic.objects.volume_connector.VolumeConnector
class method), 1417

get() (ironic.objects.volume_target.VolumeTarget
class method), 1422

get_active_hardware_type_dict()
(ironic.db.api.Connection method),
1045

get_active_hardware_type_dict()
(ironic.db.sqlalchemy.api.Connection
method), 997

get_adapter() (in module
ironic.common.keystone), 893

get_admin_context() (in module
ironic.common.context), 860

get_agent_iso() (in module
ironic.drivers.utils), 1319

get_agent_kernel_ramdisk() (in module
ironic.drivers.utils), 1319

get_all() (ironic.api.controllers.v1.allocation.AllocationsController
method), 781

get_all() (ironic.api.controllers.v1.allocation.NodeAllocationController
method), 783

get_all() (ironic.api.controllers.v1.bios.NodeBiosController
method), 784

get_all() (ironic.api.controllers.v1.chassis.ChassisController

method), 785
get_all() (ironic.api.controllers.v1.conductor.ConductorsController

method), 787
get_all() (ironic.api.controllers.v1.deploy_template.DeployTemplatesController

method), 788
get_all() (ironic.api.controllers.v1.driver.DriversController

method), 790
get_all() (ironic.api.controllers.v1.firmware.NodeFirmwareController

method), 792
get_all() (ironic.api.controllers.v1.node.IndicatorController

method), 793
get_all() (ironic.api.controllers.v1.node.NodeChildrenController

method), 794
get_all() (ironic.api.controllers.v1.node.NodeHistoryController

method), 794
get_all() (ironic.api.controllers.v1.node.NodesController

method), 801
get_all() (ironic.api.controllers.v1.node.NodeTraitsController

method), 799
get_all() (ironic.api.controllers.v1.node.NodeVIFController

method), 799
get_all() (ironic.api.controllers.v1.port.PortsController

method), 807
get_all() (ironic.api.controllers.v1.portgroup.PortgroupsController

method), 809
get_all() (ironic.api.controllers.v1.ramdisk.LookupController

method), 811
get_all() (ironic.api.controllers.v1.runbook.RunbooksController

method), 812
get_all() (ironic.api.controllers.v1.shard.ShardController

method), 813
get_all() (ironic.api.controllers.v1.volume_connector.VolumeConnectorsController

method), 833
get_all() (ironic.api.controllers.v1.volume_target.VolumeTargetsController

method), 835
get_all_subscriptions()

(ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru
method), 1184

get_allocation_by_id()
(ironic.db.api.Connection method),
1046

get_allocation_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 997

get_allocation_by_name()
(ironic.db.api.Connection method),
1046

get_allocation_by_name()
(ironic.db.sqlalchemy.api.Connection
method), 997

get_allocation_by_uuid()

Index 1469

Ironic Documentation, Release 26.1.2.dev21

(ironic.db.api.Connection method),
1046

get_allocation_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 998

get_allocation_list()
(ironic.db.api.Connection method),
1046

get_allocation_list()
(ironic.db.sqlalchemy.api.Connection
method), 998

get_allowed_exmods() (in module
ironic.common.rpc), 913

get_and_validate_firmware_image_info()
(in module
ironic.drivers.modules.ilo.firmware_processor),
1102

get_arg() (ironic.api.functions.FunctionDefinition
method), 842

get_attached_vif() (in module
ironic.conductor.utils), 974

get_auth() (in module ironic.common.keystone),
893

get_autoneg_cap() (in module
ironic.drivers.modules.inspector.lldp_tlvs),
1128

get_backend() (in module ironic.db.migration),
1071

get_backend() (in module
ironic.db.sqlalchemy.api), 1024

get_bios_setting() (ironic.db.api.Connection
method), 1047

get_bios_setting()
(ironic.db.sqlalchemy.api.Connection
method), 998

get_bios_setting_list()
(ironic.db.api.Connection method),
1047

get_bios_setting_list()
(ironic.db.sqlalchemy.api.Connection
method), 999

get_boot_device()
(ironic.conductor.manager.ConductorManager
method), 934

get_boot_device()
(ironic.conductor.rpcapi.ConductorAPI
method), 951

get_boot_device()
(ironic.drivers.base.ManagementInterface
method), 1290

get_boot_device()

(ironic.drivers.modules.fake.FakeManagement
method), 1231

get_boot_device()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1106

get_boot_device()
(ironic.drivers.modules.ipmitool.IPMIManagement
method), 1248

get_boot_device()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1138

get_boot_device()
(ironic.drivers.modules.noop_mgmt.NoopManagement
method), 1261

get_boot_device()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1170

get_boot_mode() (in module
ironic.drivers.modules.boot_mode_utils),
1211

get_boot_mode()
(ironic.drivers.base.ManagementInterface
method), 1291

get_boot_mode()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1106

get_boot_mode()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1139

get_boot_mode()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1170

get_boot_mode_for_deploy() (in module
ironic.drivers.modules.boot_mode_utils),
1211

get_boot_option() (in module
ironic.drivers.modules.deploy_utils),
1216

get_by_address() (ironic.objects.port.Port
class method), 1396

get_by_address()
(ironic.objects.portgroup.Portgroup
class method), 1404

get_by_hostname()
(ironic.objects.conductor.Conductor
class method), 1339

get_by_id() (ironic.objects.allocation.Allocation
class method), 1323

get_by_id() (ironic.objects.chassis.Chassis
class method), 1336

get_by_id() (ironic.objects.deploy_template.DeployTemplate

1470 Index

Ironic Documentation, Release 26.1.2.dev21

class method), 1342
get_by_id() (ironic.objects.node.Node class

method), 1360
get_by_id() (ironic.objects.node_history.NodeHistory

class method), 1389
get_by_id() (ironic.objects.port.Port class

method), 1397
get_by_id() (ironic.objects.portgroup.Portgroup

class method), 1404
get_by_id() (ironic.objects.runbook.Runbook

class method), 1409
get_by_id() (ironic.objects.volume_connector.VolumeConnector

class method), 1417
get_by_id() (ironic.objects.volume_target.VolumeTarget

class method), 1422
get_by_instance_uuid()

(ironic.objects.node.Node class method),
1360

get_by_name() (ironic.objects.allocation.Allocation
class method), 1324

get_by_name() (ironic.objects.deploy_template.DeployTemplate
class method), 1342

get_by_name() (ironic.objects.node.Node class
method), 1360

get_by_name() (ironic.objects.port.Port class
method), 1397

get_by_name() (ironic.objects.portgroup.Portgroup
class method), 1404

get_by_name() (ironic.objects.runbook.Runbook
class method), 1410

get_by_node_id()
(ironic.objects.bios.BIOSSettingList
class method), 1334

get_by_node_id()
(ironic.objects.firmware.FirmwareComponentList
class method), 1353

get_by_node_id()
(ironic.objects.node_inventory.NodeInventory
class method), 1391

get_by_node_id() (ironic.objects.trait.TraitList
class method), 1415

get_by_node_uuid()
(ironic.objects.deployment.Deployment
class method), 1347

get_by_port_addresses()
(ironic.objects.node.Node class method),
1360

get_by_uuid() (ironic.objects.allocation.Allocation
class method), 1324

get_by_uuid() (ironic.objects.chassis.Chassis
class method), 1336

get_by_uuid() (ironic.objects.deploy_template.DeployTemplate
class method), 1342

get_by_uuid() (ironic.objects.deployment.Deployment
class method), 1347

get_by_uuid() (ironic.objects.node.Node class
method), 1361

get_by_uuid() (ironic.objects.node_history.NodeHistory
class method), 1389

get_by_uuid() (ironic.objects.port.Port class
method), 1397

get_by_uuid() (ironic.objects.portgroup.Portgroup
class method), 1405

get_by_uuid() (ironic.objects.runbook.Runbook
class method), 1410

get_by_uuid() (ironic.objects.volume_connector.VolumeConnector
class method), 1417

get_by_uuid() (ironic.objects.volume_target.VolumeTarget
class method), 1422

get_chassis_by_id()
(ironic.db.api.Connection method),
1047

get_chassis_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 999

get_chassis_by_uuid()
(ironic.db.api.Connection method),
1047

get_chassis_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 999

get_chassis_list() (ironic.db.api.Connection
method), 1048

get_chassis_list()
(ironic.db.sqlalchemy.api.Connection
method), 999

get_checksum_and_algo() (in module
ironic.common.checksum_utils), 855

get_checksum_from_url() (in module
ironic.common.checksum_utils), 855

get_class() (in module
ironic.db.sqlalchemy.models), 1037

get_clean_steps()
(ironic.drivers.base.BaseInterface
method), 1281

get_clean_steps()
(ironic.drivers.modules.agent.AgentRAID
method), 1190

get_clean_steps()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1195

get_clean_steps()

Index 1471

Ironic Documentation, Release 26.1.2.dev21

(ironic.drivers.modules.agent_client.AgentClient
method), 1205

get_clean_steps()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1077

get_cleaning_network_uuid()
(ironic.common.neutron.NeutronNetworkInterfaceMixin
method), 897

get_client() (in module
ironic.common.cinder), 858

get_client() (in module
ironic.common.neutron), 898

get_client() (in module ironic.common.rpc),
913

get_client() (in module
ironic.drivers.modules.agent_client),
1209

get_client() (in module
ironic.drivers.modules.inspector.client),
1124

get_command_error() (in module
ironic.drivers.modules.agent_client),
1209

get_commands_status()
(ironic.drivers.modules.agent_client.AgentClient
method), 1205

get_conductor() (ironic.db.api.Connection
method), 1048

get_conductor()
(ironic.db.sqlalchemy.api.Connection
method), 999

get_conductor_for()
(ironic.conductor.rpcapi.ConductorAPI
method), 952

get_conductor_list()
(ironic.db.api.Connection method),
1048

get_conductor_list()
(ironic.db.sqlalchemy.api.Connection
method), 1000

get_configdrive_image() (in module
ironic.conductor.utils), 975

get_configuration() (in module
ironic.common.molds), 895

get_console() (ironic.drivers.base.ConsoleInterface
method), 1285

get_console() (ironic.drivers.modules.fake.FakeConsole
method), 1227

get_console() (ironic.drivers.modules.ipmitool.IPMIShellinaboxConsole
method), 1251

get_console() (ironic.drivers.modules.ipmitool.IPMISocatConsole

method), 1252
get_console() (ironic.drivers.modules.noop.NoConsole

method), 1257
get_console_information()

(ironic.conductor.manager.ConductorManager
method), 934

get_console_information()
(ironic.conductor.rpcapi.ConductorAPI
method), 952

get_controller_reserved_names() (in mod-
ule ironic.api.controllers.v1.utils), 825

get_current_boot_mode() (in module
ironic.drivers.modules.ilo.common),
1096

get_current_topic()
(ironic.conductor.rpcapi.ConductorAPI
method), 952

get_current_vif()
(ironic.drivers.base.NetworkInterface
method), 1298

get_current_vif()
(ironic.drivers.modules.network.common.VIFPortIDMixin
method), 1149

get_current_vif()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1157

get_deploy_steps()
(ironic.drivers.base.BaseInterface
method), 1282

get_deploy_steps()
(ironic.drivers.modules.agent.AgentRAID
method), 1190

get_deploy_steps()
(ironic.drivers.modules.agent_base.AgentDeployMixin
method), 1198

get_deploy_steps()
(ironic.drivers.modules.agent_client.AgentClient
method), 1206

get_deploy_template_by_id()
(ironic.db.api.Connection method),
1048

get_deploy_template_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1000

get_deploy_template_by_name()
(ironic.db.api.Connection method),
1048

get_deploy_template_by_name()
(ironic.db.sqlalchemy.api.Connection
method), 1000

get_deploy_template_by_uuid()

1472 Index

Ironic Documentation, Release 26.1.2.dev21

(ironic.db.api.Connection method),
1049

get_deploy_template_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1000

get_deploy_template_list()
(ironic.db.api.Connection method),
1049

get_deploy_template_list()
(ironic.db.sqlalchemy.api.Connection
method), 1000

get_deploy_template_list_by_names()
(ironic.db.api.Connection method), 1049

get_deploy_template_list_by_names()
(ironic.db.sqlalchemy.api.Connection
method), 1001

get_disk_label() (in module
ironic.drivers.modules.deploy_utils),
1216

get_driver() (ironic.common.driver_factory.BaseDriverFactory
method), 861

get_driver_properties()
(ironic.conductor.manager.ConductorManager
method), 934

get_driver_properties()
(ironic.conductor.rpcapi.ConductorAPI
method), 952

get_driver_vendor_passthru_methods()
(ironic.conductor.manager.ConductorManager
method), 934

get_driver_vendor_passthru_methods()
(ironic.conductor.rpcapi.ConductorAPI
method), 953

get_enabled_macs() (in module
ironic.drivers.modules.redfish.utils),
1181

get_endpoint() (in module
ironic.common.keystone), 893

get_enforcer() (in module
ironic.common.policy), 903

get_event_service() (in module
ironic.drivers.modules.redfish.utils),
1181

get_field() (in module ironic.drivers.utils),
1320

get_file_path_from_label() (in module
ironic.common.pxe_utils), 906

get_firmware_component()
(ironic.db.api.Connection method),
1049

get_firmware_component()

(ironic.db.sqlalchemy.api.Connection
method), 1001

get_firmware_component_list()
(ironic.db.api.Connection class method),
1050

get_firmware_component_list()
(ironic.db.sqlalchemy.api.Connection
method), 1001

get_first_controller() (in module
ironic.drivers.modules.redfish.utils),
1182

get_free_port_like_object() (in module
ironic.drivers.modules.network.common),
1150

get_hardware_type() (in module
ironic.common.driver_factory), 863

get_http_url_path_from_label() (in module
ironic.common.pxe_utils), 907

get_ilo_object() (in module
ironic.drivers.modules.ilo.common),
1097

get_image_download_source() (in module
ironic.drivers.modules.deploy_utils),
1217

get_image_info() (in module
ironic.common.pxe_utils), 907

get_image_instance_info() (in module
ironic.drivers.modules.deploy_utils),
1217

get_image_properties() (in module
ironic.common.images), 891

get_image_properties() (in module
ironic.drivers.modules.deploy_utils),
1217

get_image_service() (in module
ironic.common.image_service), 887

get_indicator_state()
(ironic.conductor.manager.ConductorManager
method), 934

get_indicator_state()
(ironic.conductor.rpcapi.ConductorAPI
method), 953

get_indicator_state()
(ironic.drivers.base.ManagementInterface
method), 1291

get_indicator_state()
(ironic.drivers.modules.fake.FakeManagement
method), 1232

get_indicator_state()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1139

Index 1473

Ironic Documentation, Release 26.1.2.dev21

get_indicator_state()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1170

get_inspection_data() (in module
ironic.drivers.modules.inspect_utils),
1246

get_inspection_network_uuid()
(ironic.common.neutron.NeutronNetworkInterfaceMixin
method), 897

get_inspector() (in module
ironic.common.image_format_inspector),
883

get_instance() (in module ironic.db.api), 1070
get_instance_image_info() (in module

ironic.common.pxe_utils), 907
get_interface() (in module

ironic.common.driver_factory), 863
get_interface() (ironic.objects.node.Node

method), 1361
get_interfaces() (in module

ironic.drivers.modules.inspector.hooks.validate_interfaces),
1123

get_ip_addresses()
(ironic.dhcp.base.BaseDHCP method),
1071

get_ip_addresses()
(ironic.dhcp.dnsmasq.DnsmasqDHCPApi
method), 1073

get_ip_addresses()
(ironic.dhcp.neutron.NeutronDHCPApi
method), 1074

get_ip_addresses()
(ironic.dhcp.none.NoneDHCPApi
method), 1075

get_ipxe_boot_file() (in module
ironic.drivers.modules.deploy_utils),
1217

get_ipxe_config_template() (in module
ironic.drivers.modules.deploy_utils),
1217

get_irmc_client() (in module
ironic.drivers.modules.irmc.common),
1134

get_irmc_report() (in module
ironic.drivers.modules.irmc.common),
1134

get_ironic_api_url() (in module
ironic.drivers.modules.deploy_utils),
1218

get_kernel_append_params() (in module
ironic.drivers.utils), 1320

get_kernel_ramdisk_info() (in module
ironic.common.pxe_utils), 908

get_last_command_status()
(ironic.drivers.modules.agent_client.AgentClient
method), 1206

get_last_error() (in module
ironic.conductor.cleaning), 929

get_last_error() (in module
ironic.conductor.servicing), 967

get_local_group_information() (in module
ironic.common.neutron), 898

get_logical_disk_properties() (in module
ironic.common.raid), 911

get_logical_disk_properties()
(ironic.drivers.base.RAIDInterface
method), 1304

get_mac_addresses()
(ironic.drivers.base.ManagementInterface
method), 1292

get_mac_addresses()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1139

get_mac_addresses()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1171

get_manager() (in module
ironic.drivers.modules.redfish.utils),
1182

get_neutron_port_data() (in module
ironic.common.neutron), 898

get_next() (in module
ironic.api.controllers.v1.collection),
786

get_next() (ironic.drivers.modules.snmp.SNMPClient
method), 1268

get_node_by_id() (ironic.db.api.Connection
method), 1050

get_node_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1001

get_node_by_instance()
(ironic.db.api.Connection method),
1050

get_node_by_instance()
(ironic.db.sqlalchemy.api.Connection
method), 1001

get_node_by_name() (ironic.db.api.Connection
method), 1050

get_node_by_name()
(ironic.db.sqlalchemy.api.Connection
method), 1002

1474 Index

Ironic Documentation, Release 26.1.2.dev21

get_node_by_port_addresses()
(ironic.db.api.Connection method),
1050

get_node_by_port_addresses()
(ironic.db.sqlalchemy.api.Connection
method), 1002

get_node_by_uuid() (ironic.db.api.Connection
method), 1050

get_node_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1002

get_node_capability() (in module
ironic.drivers.utils), 1320

get_node_history_by_id()
(ironic.db.api.Connection method),
1051

get_node_history_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1002

get_node_history_by_node_id()
(ironic.db.api.Connection method),
1051

get_node_history_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1002

get_node_history_by_uuid()
(ironic.db.api.Connection method),
1051

get_node_history_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1003

get_node_history_list()
(ironic.db.api.Connection method),
1051

get_node_history_list()
(ironic.db.sqlalchemy.api.Connection
method), 1003

get_node_inventory_by_node_id()
(ironic.db.api.Connection method),
1051

get_node_inventory_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1003

get_node_list() (ironic.db.api.Connection
method), 1052

get_node_list()
(ironic.db.sqlalchemy.api.Connection
method), 1003

get_node_list_columns()
(ironic.db.sqlalchemy.api.Connection
method), 1004

get_node_mac_addresses() (in module
ironic.drivers.utils), 1320

get_node_network_data()
(ironic.drivers.base.NetworkInterface
method), 1298

get_node_network_data()
(ironic.drivers.modules.network.common.NeutronVIFPortIDMixin
method), 1148

get_node_next_clean_steps() (in module
ironic.conductor.utils), 975

get_node_next_deploy_steps() (in module
ironic.conductor.utils), 975

get_node_portmap() (in module
ironic.common.neutron), 899

get_node_tags_by_node_id()
(ironic.db.api.Connection method),
1052

get_node_tags_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1004

get_node_traits_by_node_id()
(ironic.db.api.Connection method),
1053

get_node_traits_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1004

get_node_vendor_passthru_methods()
(ironic.conductor.manager.ConductorManager
method), 934

get_node_vendor_passthru_methods()
(ironic.conductor.rpcapi.ConductorAPI
method), 954

get_node_vif_ids() (in module
ironic.common.network), 896

get_node_with_token()
(ironic.conductor.manager.ConductorManager
method), 934

get_node_with_token()
(ironic.conductor.rpcapi.ConductorAPI
method), 954

get_nodeinfo_list()
(ironic.db.api.Connection method),
1053

get_nodeinfo_list()
(ironic.db.sqlalchemy.api.Connection
method), 1005

get_nodes_controller_reserved_names()
(in module
ironic.api.controllers.v1.node), 804

get_object() (ironic.common.swift.SwiftAPI
method), 919

Index 1475

Ironic Documentation, Release 26.1.2.dev21

get_object_versions() (in module
ironic.common.release_mappings),
912

get_offline_conductors()
(ironic.db.api.Connection method),
1054

get_offline_conductors()
(ironic.db.sqlalchemy.api.Connection
method), 1006

get_one() (ironic.api.controllers.v1.allocation.AllocationsController
method), 782

get_one() (ironic.api.controllers.v1.bios.NodeBiosController
method), 784

get_one() (ironic.api.controllers.v1.chassis.ChassisController
method), 785

get_one() (ironic.api.controllers.v1.conductor.ConductorsController
method), 787

get_one() (ironic.api.controllers.v1.deploy_template.DeployTemplatesController
method), 788

get_one() (ironic.api.controllers.v1.driver.DriversController
method), 790

get_one() (ironic.api.controllers.v1.node.IndicatorController
method), 793

get_one() (ironic.api.controllers.v1.node.NodeHistoryController
method), 794

get_one() (ironic.api.controllers.v1.node.NodesController
method), 803

get_one() (ironic.api.controllers.v1.port.PortsController
method), 807

get_one() (ironic.api.controllers.v1.portgroup.PortgroupsController
method), 809

get_one() (ironic.api.controllers.v1.runbook.RunbooksController
method), 812

get_one() (ironic.api.controllers.v1.shard.ShardController
method), 813

get_one() (ironic.api.controllers.v1.volume_connector.VolumeConnectorsController
method), 833

get_one() (ironic.api.controllers.v1.volume_target.VolumeTargetsController
method), 836

get_online_conductor_count()
(ironic.conductor.base_manager.BaseConductorManager
method), 927

get_online_conductors()
(ironic.db.api.Connection method),
1054

get_online_conductors()
(ironic.db.sqlalchemy.api.Connection
method), 1006

get_oslo_policy_enforcer() (in module
ironic.common.policy), 903

get_partition_uuids()

(ironic.drivers.modules.agent_client.AgentClient
method), 1207

get_patch_values() (in module
ironic.api.controllers.v1.utils), 825

get_pecan_config() (in module
ironic.api.app), 841

get_physical_disks() (in module
ironic.drivers.modules.redfish.raid),
1181

get_physical_network()
(ironic.drivers.modules.inspector.hooks.physical_network.PhysicalNetworkHook
method), 1120

get_physnets_by_port_uuid() (in module
ironic.common.neutron), 899

get_physnets_by_portgroup_id() (in module
ironic.common.network), 896

get_physnets_for_node() (in module
ironic.common.network), 896

get_port_by_address()
(ironic.db.api.Connection method),
1055

get_port_by_address()
(ironic.db.sqlalchemy.api.Connection
method), 1006

get_port_by_id() (ironic.db.api.Connection
method), 1055

get_port_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1007

get_port_by_name() (ironic.db.api.Connection
method), 1055

get_port_by_name()
(ironic.db.sqlalchemy.api.Connection
method), 1007

get_port_by_uuid() (ironic.db.api.Connection
method), 1055

get_port_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1007

get_port_list() (ironic.db.api.Connection
method), 1055

get_port_list()
(ironic.db.sqlalchemy.api.Connection
method), 1007

get_portgroup_by_address()
(ironic.db.api.Connection method),
1055

get_portgroup_by_address()
(ironic.db.sqlalchemy.api.Connection
method), 1007

get_portgroup_by_id() (in module

1476 Index

Ironic Documentation, Release 26.1.2.dev21

ironic.common.network), 896
get_portgroup_by_id()

(ironic.db.api.Connection method),
1056

get_portgroup_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1007

get_portgroup_by_name()
(ironic.db.api.Connection method),
1056

get_portgroup_by_name()
(ironic.db.sqlalchemy.api.Connection
method), 1008

get_portgroup_by_uuid()
(ironic.db.api.Connection method),
1056

get_portgroup_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1008

get_portgroup_list()
(ironic.db.api.Connection method),
1056

get_portgroup_list()
(ironic.db.sqlalchemy.api.Connection
method), 1008

get_portgroups_by_node_id()
(ironic.db.api.Connection method),
1057

get_portgroups_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1008

get_ports_by_node_id()
(ironic.db.api.Connection method),
1057

get_ports_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1009

get_ports_by_portgroup_id() (in module
ironic.common.network), 897

get_ports_by_portgroup_id()
(ironic.db.api.Connection method),
1057

get_ports_by_portgroup_id()
(ironic.db.sqlalchemy.api.Connection
method), 1009

get_ports_by_shards()
(ironic.db.api.Connection method),
1057

get_ports_by_shards()
(ironic.db.sqlalchemy.api.Connection
method), 1009

get_power_state()
(ironic.drivers.base.PowerInterface
method), 1301

get_power_state()
(ironic.drivers.modules.agent_power.AgentPower
method), 1209

get_power_state()
(ironic.drivers.modules.fake.FakePower
method), 1235

get_power_state()
(ironic.drivers.modules.ilo.power.IloPower
method), 1111

get_power_state()
(ironic.drivers.modules.ipmitool.IPMIPower
method), 1250

get_power_state()
(ironic.drivers.modules.irmc.power.IRMCPower
method), 1144

get_power_state()
(ironic.drivers.modules.redfish.power.RedfishPower
method), 1176

get_power_state()
(ironic.drivers.modules.snmp.SNMPPower
method), 1276

get_properties()
(ironic.drivers.base.BareDriver method),
1279

get_properties()
(ironic.drivers.base.BaseInterface
method), 1282

get_properties()
(ironic.drivers.base.NetworkInterface
method), 1298

get_properties()
(ironic.drivers.base.RAIDInterface
method), 1304

get_properties()
(ironic.drivers.hardware_type.AbstractHardwareType
method), 1314

get_properties()
(ironic.drivers.modules.agent.AgentRAID
method), 1191

get_properties()
(ironic.drivers.modules.agent.AgentRescue
method), 1191

get_properties()
(ironic.drivers.modules.agent.CustomAgentDeploy
method), 1193

get_properties()
(ironic.drivers.modules.agent_power.AgentPower
method), 1210

Index 1477

Ironic Documentation, Release 26.1.2.dev21

get_properties()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1077

get_properties()
(ironic.drivers.modules.fake.FakeBIOS
method), 1225

get_properties()
(ironic.drivers.modules.fake.FakeBoot
method), 1226

get_properties()
(ironic.drivers.modules.fake.FakeConsole
method), 1227

get_properties()
(ironic.drivers.modules.fake.FakeDeploy
method), 1228

get_properties()
(ironic.drivers.modules.fake.FakeFirmware
method), 1230

get_properties()
(ironic.drivers.modules.fake.FakeInspect
method), 1231

get_properties()
(ironic.drivers.modules.fake.FakeManagement
method), 1232

get_properties()
(ironic.drivers.modules.fake.FakePower
method), 1235

get_properties()
(ironic.drivers.modules.fake.FakeRAID
method), 1237

get_properties()
(ironic.drivers.modules.fake.FakeRescue
method), 1237

get_properties()
(ironic.drivers.modules.fake.FakeStorage
method), 1238

get_properties()
(ironic.drivers.modules.fake.FakeVendorA
method), 1239

get_properties()
(ironic.drivers.modules.fake.FakeVendorB
method), 1239

get_properties()
(ironic.drivers.modules.ilo.bios.IloBIOS
method), 1086

get_properties()
(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1088

get_properties()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1090

get_properties()
(ironic.drivers.modules.ilo.console.IloConsoleInterface
method), 1101

get_properties()
(ironic.drivers.modules.ilo.inspect.IloInspect
method), 1103

get_properties()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1106

get_properties()
(ironic.drivers.modules.ilo.power.IloPower
method), 1111

get_properties()
(ironic.drivers.modules.ilo.raid.Ilo5RAID
method), 1113

get_properties()
(ironic.drivers.modules.inspector.interface.Common
method), 1124

get_properties()
(ironic.drivers.modules.ipmitool.IPMIConsole
method), 1247

get_properties()
(ironic.drivers.modules.ipmitool.IPMIManagement
method), 1248

get_properties()
(ironic.drivers.modules.ipmitool.IPMIPower
method), 1250

get_properties()
(ironic.drivers.modules.ipmitool.VendorPassthru
method), 1253

get_properties()
(ironic.drivers.modules.irmc.bios.IRMCBIOS
method), 1130

get_properties()
(ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1132

get_properties()
(ironic.drivers.modules.irmc.inspect.IRMCInspect
method), 1137

get_properties()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1140

get_properties()
(ironic.drivers.modules.irmc.power.IRMCPower
method), 1145

get_properties()
(ironic.drivers.modules.irmc.raid.IRMCRAID
method), 1146

get_properties()
(ironic.drivers.modules.irmc.vendor.IRMCVendorPassthru
method), 1147

1478 Index

Ironic Documentation, Release 26.1.2.dev21

get_properties()
(ironic.drivers.modules.noop.FailMixin
method), 1256

get_properties()
(ironic.drivers.modules.noop_mgmt.NoopManagement
method), 1261

get_properties()
(ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1264

get_properties()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1265

get_properties()
(ironic.drivers.modules.ramdisk.RamdiskDeploy
method), 1267

get_properties()
(ironic.drivers.modules.redfish.bios.RedfishBIOS
method), 1159

get_properties()
(ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
method), 1161

get_properties()
(ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
method), 1163

get_properties()
(ironic.drivers.modules.redfish.firmware.RedfishFirmware
method), 1166

get_properties()
(ironic.drivers.modules.redfish.inspect.RedfishInspect
method), 1168

get_properties()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1171

get_properties()
(ironic.drivers.modules.redfish.power.RedfishPower
method), 1176

get_properties()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1178

get_properties()
(ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru
method), 1184

get_properties()
(ironic.drivers.modules.snmp.SNMPPower
method), 1276

get_properties()
(ironic.drivers.modules.storage.cinder.CinderStorage
method), 1186

get_properties()
(ironic.drivers.modules.storage.external.ExternalStorage
method), 1187

get_properties()
(ironic.drivers.modules.storage.noop.NoopStorage
method), 1188

get_properties()
(ironic.drivers.utils.MixinVendorInterface
method), 1318

get_provisioning_network_uuid()
(ironic.common.neutron.NeutronNetworkInterfaceMixin
method), 897

get_pxe_boot_file() (in module
ironic.drivers.modules.deploy_utils),
1218

get_pxe_config_file_path() (in module
ironic.common.pxe_utils), 908

get_pxe_config_template() (in module
ironic.drivers.modules.deploy_utils),
1218

get_pxe_mac() (in module
ironic.drivers.modules.inspector.hooks.validate_interfaces),
1123

get_raid_logical_disk_properties()
(ironic.conductor.manager.ConductorManager
method), 934

get_raid_logical_disk_properties()
(ironic.conductor.rpcapi.ConductorAPI
method), 954

get_ramdisk_logs_file_name() (in module
ironic.drivers.utils), 1320

get_random_topic()
(ironic.conductor.rpcapi.ConductorAPI
method), 955

get_remote_boot_volume() (in module
ironic.drivers.modules.deploy_utils),
1218

get_request_return_fields() (in module
ironic.api.controllers.v1.utils), 825

get_rescuing_network_uuid()
(ironic.common.neutron.NeutronNetworkInterfaceMixin
method), 897

get_return_state() (in module
ironic.common.async_steps), 853

get_ring() (ironic.common.hash_ring.HashRingManager
method), 877

get_root_device_for_deploy() (in module
ironic.drivers.modules.deploy_utils),
1218

get_rpc_allocation() (in module
ironic.api.controllers.v1.utils), 826

get_rpc_allocation_with_suffix() (in
module ironic.api.controllers.v1.utils),
826

Index 1479

Ironic Documentation, Release 26.1.2.dev21

get_rpc_deploy_template() (in module
ironic.api.controllers.v1.utils), 826

get_rpc_deploy_template_with_suffix()
(in module
ironic.api.controllers.v1.utils), 826

get_rpc_node() (in module
ironic.api.controllers.v1.utils), 827

get_rpc_node_with_suffix() (in module
ironic.api.controllers.v1.utils), 827

get_rpc_portgroup() (in module
ironic.api.controllers.v1.utils), 827

get_rpc_portgroup_with_suffix() (in mod-
ule ironic.api.controllers.v1.utils), 828

get_rpc_runbook() (in module
ironic.api.controllers.v1.utils), 828

get_runbook_by_id()
(ironic.db.api.Connection method),
1058

get_runbook_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1009

get_runbook_by_name()
(ironic.db.api.Connection method),
1058

get_runbook_by_name()
(ironic.db.sqlalchemy.api.Connection
method), 1010

get_runbook_by_uuid()
(ironic.db.api.Connection method),
1058

get_runbook_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1010

get_runbook_list() (ironic.db.api.Connection
method), 1058

get_runbook_list()
(ironic.db.sqlalchemy.api.Connection
method), 1010

get_runbook_list_by_names()
(ironic.db.api.Connection method),
1058

get_runbook_list_by_names()
(ironic.db.sqlalchemy.api.Connection
method), 1010

get_secure_boot_mode() (in module
ironic.drivers.modules.ilo.common),
1097

get_secure_boot_mode() (in module
ironic.drivers.modules.irmc.common),
1135

get_secure_boot_state()

(ironic.drivers.base.ManagementInterface
method), 1292

get_secure_boot_state()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1106

get_secure_boot_state()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1140

get_secure_boot_state()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1171

get_sensors_data()
(ironic.drivers.base.ManagementInterface
method), 1292

get_sensors_data()
(ironic.drivers.modules.fake.FakeManagement
method), 1232

get_sensors_data()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1107

get_sensors_data()
(ironic.drivers.modules.ipmitool.IPMIManagement
method), 1248

get_sensors_data()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1140

get_sensors_data()
(ironic.drivers.modules.noop_mgmt.NoopManagement
method), 1261

get_sensors_data()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1171

get_sensors_notifier() (in module
ironic.common.rpc), 913

get_server() (in module ironic.common.rpc),
913

get_server_post_state() (in module
ironic.drivers.modules.ilo.common),
1097

get_service_auth() (in module
ironic.common.keystone), 893

get_service_steps()
(ironic.drivers.base.BaseInterface
method), 1282

get_service_steps()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1195

get_service_steps()
(ironic.drivers.modules.agent_client.AgentClient
method), 1207

get_servicing_network_uuid()

1480 Index

Ironic Documentation, Release 26.1.2.dev21

(ironic.common.neutron.NeutronNetworkInterfaceMixin
method), 897

get_session() (in module
ironic.common.keystone), 894

get_shard_list() (ironic.db.api.Connection
method), 1059

get_shard_list()
(ironic.db.sqlalchemy.api.Connection
method), 1010

get_shellinabox_console_url() (in module
ironic.drivers.modules.console_utils),
1212

get_single_nic_with_vif_port_id()
(in module
ironic.drivers.modules.deploy_utils),
1218

get_socat_console_url() (in module
ironic.drivers.modules.console_utils),
1212

get_source_format() (in module
ironic.common.images), 891

get_steps() (in module
ironic.drivers.modules.agent_base),
1201

get_subscription()
(ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru
method), 1185

get_supported_boot_devices()
(ironic.conductor.manager.ConductorManager
method), 934

get_supported_boot_devices()
(ironic.conductor.rpcapi.ConductorAPI
method), 955

get_supported_boot_devices()
(ironic.drivers.base.ManagementInterface
method), 1293

get_supported_boot_devices()
(ironic.drivers.modules.fake.FakeManagement
method), 1233

get_supported_boot_devices()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1107

get_supported_boot_devices()
(ironic.drivers.modules.ipmitool.IPMIManagement
method), 1249

get_supported_boot_devices()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1141

get_supported_boot_devices()
(ironic.drivers.modules.noop_mgmt.NoopManagement
method), 1262

get_supported_boot_devices()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1172

get_supported_boot_modes()
(ironic.drivers.base.ManagementInterface
method), 1293

get_supported_boot_modes()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1107

get_supported_boot_modes()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1141

get_supported_boot_modes()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1172

get_supported_indicators()
(ironic.conductor.manager.ConductorManager
method), 934

get_supported_indicators()
(ironic.conductor.rpcapi.ConductorAPI
method), 955

get_supported_indicators()
(ironic.drivers.base.ManagementInterface
method), 1294

get_supported_indicators()
(ironic.drivers.modules.fake.FakeManagement
method), 1233

get_supported_indicators()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1141

get_supported_indicators()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1172

get_supported_power_states()
(ironic.drivers.base.PowerInterface
method), 1302

get_supported_power_states()
(ironic.drivers.modules.agent_power.AgentPower
method), 1210

get_supported_power_states()
(ironic.drivers.modules.fake.FakePower
method), 1235

get_supported_power_states()
(ironic.drivers.modules.ilo.power.IloPower
method), 1111

get_supported_power_states()
(ironic.drivers.modules.ipmitool.IPMIPower
method), 1250

get_supported_power_states()
(ironic.drivers.modules.irmc.power.IRMCPower
method), 1145

Index 1481

Ironic Documentation, Release 26.1.2.dev21

get_supported_power_states()
(ironic.drivers.modules.redfish.power.RedfishPower
method), 1176

get_swift_session() (in module
ironic.common.swift), 920

get_swift_temp_url() (in module
ironic.drivers.modules.redfish.firmware_utils),
1167

get_swift_url() (in module
ironic.drivers.modules.ilo.firmware_processor),
1102

get_system() (in module
ironic.drivers.modules.redfish.utils),
1182

get_system_collection() (in module
ironic.drivers.modules.redfish.utils),
1182

get_target_version()
(ironic.objects.base.IronicObject class
method), 1329

get_task_monitor() (in module
ironic.drivers.modules.redfish.utils),
1182

get_temp_url() (ironic.common.swift.SwiftAPI
method), 919

get_temp_url_for_glance_image() (in mod-
ule ironic.common.images), 891

get_temp_url_key()
(ironic.common.swift.SwiftAPI method),
919

get_token_project_from_request() (in
module ironic.conductor.utils), 975

get_topic_for()
(ironic.conductor.rpcapi.ConductorAPI
method), 956

get_topic_for_driver()
(ironic.conductor.rpcapi.ConductorAPI
method), 956

get_trait_names()
(ironic.objects.trait.TraitList method),
1416

get_transport_url() (in module
ironic.common.rpc), 913

get_update_service() (in module
ironic.drivers.modules.redfish.utils),
1183

get_updated_capabilities() (in module
ironic.common.utils), 921

get_valid_mac_addresses() (in module
ironic.api.controllers.v1.ramdisk), 812

get_vendor_passthru_metadata() (in module

ironic.conductor.manager), 936
get_verify_steps()

(ironic.drivers.base.BaseInterface
method), 1282

get_versioned_notifier() (in module
ironic.common.rpc), 913

get_virtual_media()
(ironic.conductor.manager.ConductorManager
method), 934

get_virtual_media()
(ironic.conductor.rpcapi.ConductorAPI
method), 956

get_virtual_media()
(ironic.drivers.base.ManagementInterface
method), 1294

get_virtual_media()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1173

get_vmedia() (in module
ironic.drivers.modules.redfish.boot),
1165

get_volume_connector_by_id()
(ironic.db.api.Connection method),
1059

get_volume_connector_by_id()
(ironic.db.sqlalchemy.api.Connection
method), 1011

get_volume_connector_by_uuid()
(ironic.db.api.Connection method),
1059

get_volume_connector_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1011

get_volume_connector_list()
(ironic.db.api.Connection method),
1059

get_volume_connector_list()
(ironic.db.sqlalchemy.api.Connection
method), 1011

get_volume_connectors_by_node_id()
(ironic.db.api.Connection method), 1060

get_volume_connectors_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1011

get_volume_pxe_options() (in module
ironic.common.pxe_utils), 908

get_volume_target_by_id()
(ironic.db.api.Connection method),
1060

get_volume_target_by_id()
(ironic.db.sqlalchemy.api.Connection

1482 Index

Ironic Documentation, Release 26.1.2.dev21

method), 1012
get_volume_target_by_uuid()

(ironic.db.api.Connection method),
1060

get_volume_target_by_uuid()
(ironic.db.sqlalchemy.api.Connection
method), 1012

get_volume_target_list()
(ironic.db.api.Connection method),
1060

get_volume_target_list()
(ironic.db.sqlalchemy.api.Connection
method), 1012

get_volume_targets_by_node_id()
(ironic.db.api.Connection method),
1061

get_volume_targets_by_node_id()
(ironic.db.sqlalchemy.api.Connection
method), 1013

get_volume_targets_by_volume_id()
(ironic.db.api.Connection method), 1061

get_volume_targets_by_volume_id()
(ironic.db.sqlalchemy.api.Connection
method), 1013

getargspec() (in module ironic.api.functions),
843

GetNodeAndTopicMixin (class in
ironic.api.controllers.v1.node), 793

GlanceConnectionFailed, 867
GlanceImageService (class in

ironic.common.glance_service.image_service),
847

H
handle_error_notification() (in module

ironic.api.controllers.v1.notification_utils),
806

handle_org_specific_tlv()
(ironic.drivers.modules.inspector.lldp_parsers.LLDPBasicMgmtParser
method), 1126

handle_signal()
(ironic.common.rpc_service.BaseRPCService
method), 913

handle_signal()
(ironic.conductor.rpc_service.RPCService
method), 939

handle_sync_power_state_max_retries_exceeded()
(in module ironic.conductor.manager),
936

hardware_type (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

hardware_types() (in module
ironic.common.driver_factory), 863

HardwareInspectionFailure, 867
HardwareTypesFactory (class in

ironic.common.driver_factory), 861
has_backing_file

(ironic.common.image_format_inspector.QcowInspector
property), 880

has_data_file (ironic.common.image_format_inspector.QcowInspector
property), 880

has_header (ironic.common.image_format_inspector.QcowInspector
property), 880

has_next() (in module
ironic.api.controllers.v1.collection),
786

has_region() (ironic.common.image_format_inspector.FileInspector
method), 878

has_reserved()
(ironic.conductor.base_manager.BaseConductorManager
method), 927

has_unknown_features
(ironic.common.image_format_inspector.QcowInspector
property), 880

hash_password() (in module
ironic.conductor.utils), 975

HashRingManager (class in
ironic.common.hash_ring), 877

heartbeat() (ironic.conductor.manager.ConductorManager
method), 934

heartbeat() (ironic.conductor.rpcapi.ConductorAPI
method), 956

heartbeat() (ironic.drivers.base.DeployInterface
method), 1286

heartbeat() (ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1199

heartbeat_allowed()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1199

HeartbeatController (class in
ironic.api.controllers.v1.ramdisk),
810

HeartbeatMixin (class in
ironic.drivers.modules.agent_base),
1199

hide_fields_in_newer_versions() (in mod-
ule ironic.api.controllers.v1.allocation),
784

hide_fields_in_newer_versions() (in mod-
ule ironic.api.controllers.v1.driver), 791

hide_fields_in_newer_versions() (in mod-
ule ironic.api.controllers.v1.node), 804

Index 1483

Ironic Documentation, Release 26.1.2.dev21

hide_fields_in_newer_versions() (in mod-
ule ironic.api.controllers.v1.port), 808

host (ironic.objects.notification.NotificationPublisher
property), 1394

host_port() (in module ironic.common.args),
850

hostname (ironic.db.sqlalchemy.models.Conductor
attribute), 1027

hostname (ironic.objects.conductor.Conductor
property), 1339

http_boot_enabled
(ironic.drivers.modules.ipxe.iPXEHttpBoot
attribute), 1255

http_boot_enabled
(ironic.drivers.modules.pxe.HttpBoot
attribute), 1263

http_boot_enabled
(ironic.drivers.modules.pxe_base.PXEBaseMixin
attribute), 1265

HttpBoot (class in ironic.drivers.modules.pxe),
1263

HTTPForbidden, 867
HttpImageService (class in

ironic.common.image_service), 886
HTTPNotFound (in module

ironic.common.exception), 867

I
I_FEATURES (ironic.common.image_format_inspector.QcowInspector

attribute), 880
I_FEATURES_DATAFILE_BIT

(ironic.common.image_format_inspector.QcowInspector
attribute), 880

I_FEATURES_LEN
(ironic.common.image_format_inspector.QcowInspector
attribute), 880

I_FEATURES_MAX_BIT
(ironic.common.image_format_inspector.QcowInspector
attribute), 880

id (ironic.db.sqlalchemy.models.Allocation
attribute), 1025

id (ironic.db.sqlalchemy.models.Chassis at-
tribute), 1026

id (ironic.db.sqlalchemy.models.Conductor
attribute), 1027

id (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

id (ironic.db.sqlalchemy.models.DeployTemplate
attribute), 1027

id (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

id (ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

id (ironic.db.sqlalchemy.models.Node attribute),
1029

id (ironic.db.sqlalchemy.models.NodeBase at-
tribute), 1032

id (ironic.db.sqlalchemy.models.NodeHistory at-
tribute), 1033

id (ironic.db.sqlalchemy.models.NodeInventory
attribute), 1033

id (ironic.db.sqlalchemy.models.Port attribute),
1034

id (ironic.db.sqlalchemy.models.Portgroup at-
tribute), 1035

id (ironic.db.sqlalchemy.models.Runbook at-
tribute), 1036

id (ironic.db.sqlalchemy.models.RunbookStep at-
tribute), 1036

id (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1037

id (ironic.db.sqlalchemy.models.VolumeTarget at-
tribute), 1037

id (ironic.objects.allocation.Allocation property),
1324

id (ironic.objects.chassis.Chassis property), 1337
id (ironic.objects.conductor.Conductor property),

1339
id (ironic.objects.deploy_template.DeployTemplate

property), 1343
id (ironic.objects.firmware.FirmwareComponent

property), 1353
id (ironic.objects.node.Node property), 1361
id (ironic.objects.node_history.NodeHistory prop-

erty), 1390
id (ironic.objects.node_inventory.NodeInventory

property), 1392
id (ironic.objects.port.Port property), 1397
id (ironic.objects.portgroup.Portgroup property),

1405
id (ironic.objects.runbook.Runbook property),

1410
id (ironic.objects.volume_connector.VolumeConnector

property), 1418
id (ironic.objects.volume_target.VolumeTarget

property), 1423
idleOff (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4

attribute), 1274
idleOn (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4

attribute), 1274
IDRACHardware (class in ironic.drivers.drac),

1311

1484 Index

Ironic Documentation, Release 26.1.2.dev21

ignore_extra_args
(ironic.api.functions.FunctionDefinition
attribute), 842

Ilo5Hardware (class in ironic.drivers.ilo), 1315
Ilo5Management (class in

ironic.drivers.modules.ilo.management),
1104

Ilo5RAID (class in
ironic.drivers.modules.ilo.raid), 1112

IloBIOS (class in ironic.drivers.modules.ilo.bios),
1085

IloConsoleInterface (class in
ironic.drivers.modules.ilo.console),
1101

IloHardware (class in ironic.drivers.ilo), 1315
IloInspect (class in

ironic.drivers.modules.ilo.inspect),
1103

IloiPXEBoot (class in
ironic.drivers.modules.ilo.boot), 1092

IloManagement (class in
ironic.drivers.modules.ilo.management),
1104

IloOperationError, 867
IloOperationNotSupported, 868
IloPower (class in

ironic.drivers.modules.ilo.power), 1111
IloPXEBoot (class in

ironic.drivers.modules.ilo.boot), 1087
IloUefiHttpsBoot (class in

ironic.drivers.modules.ilo.boot), 1088
IloVirtualMediaBoot (class in

ironic.drivers.modules.ilo.boot), 1090
image_checksum

(ironic.objects.deployment.Deployment
property), 1347

image_ref (ironic.objects.deployment.Deployment
property), 1348

image_show() (in module
ironic.common.images), 891

image_to_raw() (in module
ironic.common.images), 891

ImageCache (class in
ironic.drivers.modules.image_cache),
1240

ImageChecksumAlgorithmFailure, 868
ImageChecksumError, 868
ImageChecksumFileReadFailure, 868
ImageChecksumURLNotSupported, 868
ImageConvertFailed, 868
ImageCreationFailed, 868

ImageDownloadFailed, 868
ImageFormatError, 879
ImageHandler (class in

ironic.drivers.modules.image_utils),
1241

ImageNotAuthorized, 868
ImageNotFound, 868
ImageRefIsARedirect, 868
ImageRefValidationFailed, 868
ImageUnacceptable, 868
ImageUploadFailed, 869
import_configuration()

(ironic.drivers.modules.drac.management.DracRedfishManagement
method), 1082

IMPORT_CONFIGURATION_ARGSINFO
(ironic.drivers.modules.drac.management.DracRedfishManagement
attribute), 1081

import_export_configuration()
(ironic.drivers.modules.drac.management.DracRedfishManagement
method), 1082

IMPORT_EXPORT_CONFIGURATION_ARGSINFO
(ironic.drivers.modules.drac.management.DracRedfishManagement
attribute), 1081

in_core_deploy_step()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1077

IncompatibleInterface, 869
IncompleteLookup, 869
IncorrectConfiguration, 869
index() (ironic.api.controllers.root.RootController

method), 839
index() (ironic.api.controllers.v1.Controller

method), 838
indicator_convert_with_links() (in module

ironic.api.controllers.v1.node), 804
indicator_list_from_dict() (in module

ironic.api.controllers.v1.node), 804
IndicatorAtComponent (class in

ironic.api.controllers.v1.node), 793
IndicatorController (class in

ironic.api.controllers.v1.node), 793
indicators (ironic.api.controllers.v1.node.NodeManagementController

attribute), 795
INFO (ironic.objects.fields.NotificationLevel

attribute), 1350
info() (ironic.common.image_format_inspector.TraceDisabled

method), 881
InfoWrapper (class in

ironic.common.image_format_inspector),
879

init() (in module ironic.common.rpc), 913

Index 1485

Ironic Documentation, Release 26.1.2.dev21

init_enforcer() (in module
ironic.common.policy), 903

init_host() (ironic.conductor.base_manager.BaseConductorManager
method), 927

init_host() (ironic.pxe_filter.service.PXEFilterManager
method), 1427

initial_node_provision_state() (in module
ironic.api.controllers.v1.utils), 828

initial_version
(ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

initial_version
(ironic.objects.firmware.FirmwareComponent
property), 1353

initialize() (ironic.common.fsm.FSM
method), 876

initialize_wsgi_app() (in module
ironic.api.wsgi), 845

inject_nmi (ironic.api.controllers.v1.node.NodeManagementController
attribute), 795

inject_nmi() (ironic.conductor.manager.ConductorManager
method), 934

inject_nmi() (ironic.conductor.rpcapi.ConductorAPI
method), 957

inject_nmi() (ironic.drivers.base.ManagementInterface
method), 1295

inject_nmi() (ironic.drivers.modules.ilo.management.IloManagement
method), 1107

inject_nmi() (ironic.drivers.modules.ipmitool.IPMIManagement
method), 1249

inject_nmi() (ironic.drivers.modules.irmc.management.IRMCManagement
method), 1142

inject_nmi() (ironic.drivers.modules.redfish.management.RedfishManagement
method), 1173

InjectNmiController (class in
ironic.api.controllers.v1.node), 793

InputFileError, 869
insert_vmedia() (in module

ironic.drivers.modules.redfish.boot),
1165

inspect (ironic.drivers.base.BareDriver at-
tribute), 1279

inspect_hardware() (in module
ironic.conductor.inspection), 931

inspect_hardware()
(ironic.conductor.manager.ConductorManager
method), 934

inspect_hardware()
(ironic.conductor.rpcapi.ConductorAPI
method), 957

inspect_hardware()

(ironic.drivers.base.InspectInterface
method), 1289

inspect_hardware()
(ironic.drivers.modules.drac.inspect.DracRedfishInspect
method), 1080

inspect_hardware()
(ironic.drivers.modules.fake.FakeInspect
method), 1231

inspect_hardware()
(ironic.drivers.modules.ilo.inspect.IloInspect
method), 1103

inspect_hardware()
(ironic.drivers.modules.inspector.interface.Common
method), 1124

inspect_hardware()
(ironic.drivers.modules.irmc.inspect.IRMCInspect
method), 1137

inspect_hardware()
(ironic.drivers.modules.noop.NoInspect
method), 1258

inspect_hardware()
(ironic.drivers.modules.redfish.inspect.RedfishInspect
method), 1168

inspect_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1029

inspect_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

inspect_interface (ironic.objects.node.Node
property), 1361

inspect_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

inspect_interface
(ironic.objects.node.NodeCRUDPayload
property), 1369

inspect_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

inspect_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

inspect_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

INSPECTFAIL (in module ironic.common.states),
915

INSPECTING (in module ironic.common.states),
915

InspectInterface (class in ironic.drivers.base),

1486 Index

Ironic Documentation, Release 26.1.2.dev21

1289
inspection_error_handler() (in module

ironic.drivers.modules.inspector.interface),
1125

inspection_finished_at
(ironic.db.sqlalchemy.models.Node
attribute), 1029

inspection_finished_at
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

inspection_finished_at
(ironic.objects.node.Node property),
1361

inspection_finished_at
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

inspection_finished_at
(ironic.objects.node.NodeCRUDPayload
property), 1369

inspection_finished_at
(ironic.objects.node.NodePayload prop-
erty), 1378

inspection_finished_at
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

inspection_finished_at
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

inspection_hooks_manager() (in module
ironic.drivers.modules.inspector.hooks.base),
1116

inspection_started_at
(ironic.db.sqlalchemy.models.Node
attribute), 1029

inspection_started_at
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

inspection_started_at
(ironic.objects.node.Node property),
1361

inspection_started_at
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

inspection_started_at
(ironic.objects.node.NodeCRUDPayload
property), 1369

inspection_started_at
(ironic.objects.node.NodePayload prop-
erty), 1378

inspection_started_at
(ironic.objects.node.NodeSetPowerStatePayload

property), 1382
inspection_started_at

(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

InspectionHook (class in
ironic.drivers.modules.inspector.hooks.base),
1116

Inspector (class in
ironic.drivers.modules.inspector), 1129

Inspector (class in
ironic.drivers.modules.inspector.interface),
1125

INSPECTWAIT (in module ironic.common.states),
916

install_bootloader()
(ironic.drivers.modules.agent_client.AgentClient
method), 1207

INSTANCE (in module
ironic.common.lessee_sources), 895

instance_info (ironic.db.sqlalchemy.models.Node
attribute), 1029

instance_info (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

instance_info (ironic.objects.node.Node prop-
erty), 1361

instance_info (ironic.objects.node.NodeCRUDPayload
property), 1369

instance_info (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

instance_info_mapping
(ironic.objects.deployment.Deployment
attribute), 1348

instance_info_mapping_rev
(ironic.objects.deployment.Deployment
attribute), 1348

instance_uuid (ironic.db.sqlalchemy.models.Node
attribute), 1029

instance_uuid (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

instance_uuid (ironic.objects.node.Node prop-
erty), 1361

instance_uuid (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

instance_uuid (ironic.objects.node.NodeCRUDPayload
property), 1369

instance_uuid (ironic.objects.node.NodePayload
property), 1378

instance_uuid (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

instance_uuid (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

Index 1487

Ironic Documentation, Release 26.1.2.dev21

InstanceAssociated, 869
InstanceDeployFailure, 869
InstanceImageCache (class in

ironic.drivers.modules.deploy_utils),
1214

InstanceNotFound, 869
InstanceRescueFailure, 869
InstanceUnrescueFailure, 869
InsufficientDiskSpace, 869
InsufficientMemory, 869
inSync (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
integer() (in module ironic.common.args), 850
IntegerField (class in ironic.objects.fields),

1349
IntelIPMIHardware (class in

ironic.drivers.intel_ipmi), 1316
IntelIPMIManagement (class in

ironic.drivers.modules.intel_ipmi.management),
1129

interface (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

interface (ironic.db.sqlalchemy.models.RunbookStep
attribute), 1036

interface_name
(ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

interface_type
(ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

interface_type
(ironic.drivers.base.BaseInterface at-
tribute), 1283

interface_type
(ironic.drivers.base.BIOSInterface
attribute), 1279

interface_type
(ironic.drivers.base.BootInterface at-
tribute), 1284

interface_type
(ironic.drivers.base.ConsoleInterface
attribute), 1285

interface_type
(ironic.drivers.base.DeployInterface
attribute), 1286

interface_type
(ironic.drivers.base.FirmwareInterface
attribute), 1288

interface_type
(ironic.drivers.base.InspectInterface
attribute), 1290

interface_type
(ironic.drivers.base.ManagementInterface
attribute), 1295

interface_type
(ironic.drivers.base.NetworkInterface
attribute), 1298

interface_type
(ironic.drivers.base.PowerInterface
attribute), 1302

interface_type
(ironic.drivers.base.RAIDInterface
attribute), 1304

interface_type
(ironic.drivers.base.RescueInterface
attribute), 1305

interface_type
(ironic.drivers.base.StorageInterface
attribute), 1306

interface_type
(ironic.drivers.base.VendorInterface
attribute), 1307

InterfaceFactory (class in
ironic.common.driver_factory), 861

InterfaceNotFoundInEntrypoint, 869
interfaces() (in module

ironic.common.driver_factory), 864
internal_info (ironic.db.sqlalchemy.models.Port

attribute), 1034
internal_info (ironic.db.sqlalchemy.models.Portgroup

attribute), 1035
internal_info (ironic.objects.port.Port prop-

erty), 1397
internal_info (ironic.objects.portgroup.Portgroup

property), 1405
Invalid, 869
invalid_sort_key_list

(ironic.api.controllers.v1.allocation.AllocationsController
attribute), 783

invalid_sort_key_list
(ironic.api.controllers.v1.allocation.NodeAllocationController
attribute), 784

invalid_sort_key_list
(ironic.api.controllers.v1.chassis.ChassisController
attribute), 785

invalid_sort_key_list
(ironic.api.controllers.v1.conductor.ConductorsController
attribute), 787

invalid_sort_key_list
(ironic.api.controllers.v1.deploy_template.DeployTemplatesController
attribute), 788

invalid_sort_key_list

1488 Index

Ironic Documentation, Release 26.1.2.dev21

(ironic.api.controllers.v1.node.NodesController
attribute), 803

invalid_sort_key_list
(ironic.api.controllers.v1.port.PortsController
attribute), 808

invalid_sort_key_list
(ironic.api.controllers.v1.portgroup.PortgroupsController
attribute), 810

invalid_sort_key_list
(ironic.api.controllers.v1.runbook.RunbooksController
attribute), 813

invalid_sort_key_list
(ironic.api.controllers.v1.volume_connector.VolumeConnectorsController
attribute), 834

invalid_sort_key_list
(ironic.api.controllers.v1.volume_target.VolumeTargetsController
attribute), 836

InvalidConductorGroup, 869
InvalidDatapathID, 869
InvalidDeployTemplate, 869
InvalidEndpoint, 870
InvalidIdentity, 870
InvalidImage, 870
InvalidImageRef, 870
InvalidInput, 870
InvalidIPAddress, 870
InvalidIPv4Address, 870
InvalidKickstartFile, 870
InvalidKickstartTemplate, 870
InvalidMAC, 870
InvalidName, 870
InvalidNodeInventory, 870
InvalidParameterValue, 870
InvalidRunbook, 870
InvalidState, 870
InvalidStateRequested, 870
InvalidSwitchID, 870
InvalidUUID, 870
InvalidUuidOrName, 871
inventory_data

(ironic.db.sqlalchemy.models.NodeInventory
attribute), 1033

inventory_data
(ironic.objects.node_inventory.NodeInventory
property), 1392

IPMIConsole (class in
ironic.drivers.modules.ipmitool), 1247

IPMIFailure, 867
IPMIHardware (class in ironic.drivers.ipmi), 1316
IPMIManagement (class in

ironic.drivers.modules.ipmitool), 1247

IPMIPower (class in
ironic.drivers.modules.ipmitool), 1250

IPMIShellinaboxConsole (class in
ironic.drivers.modules.ipmitool), 1251

IPMISocatConsole (class in
ironic.drivers.modules.ipmitool), 1252

ipxe_enabled (ironic.drivers.modules.ipxe.iPXEBoot
attribute), 1255

ipxe_enabled (ironic.drivers.modules.ipxe.iPXEHttpBoot
attribute), 1255

ipxe_enabled (ironic.drivers.modules.pxe_base.PXEBaseMixin
attribute), 1265

iPXEBoot (class in ironic.drivers.modules.ipxe),
1255

iPXEHttpBoot (class in
ironic.drivers.modules.ipxe), 1255

IRMCBIOS (class in
ironic.drivers.modules.irmc.bios), 1129

IRMCHardware (class in ironic.drivers.irmc), 1317
IRMCInspect (class in

ironic.drivers.modules.irmc.inspect),
1137

IRMCManagement (class in
ironic.drivers.modules.irmc.management),
1138

IRMCOperationError, 867
IRMCPower (class in

ironic.drivers.modules.irmc.power),
1144

IRMCPXEBoot (class in
ironic.drivers.modules.irmc.boot),
1131

IRMCRAID (class in
ironic.drivers.modules.irmc.raid), 1146

IRMCSharedFileSystemNotMounted, 867
IRMCVendorPassthru (class in

ironic.drivers.modules.irmc.vendor),
1147

IRMCVirtualMediaBoot (class in
ironic.drivers.modules.irmc.boot),
1131

IRMCVolumeBootMixIn (class in
ironic.drivers.modules.irmc.boot),
1133

ironic
module, 1428

ironic.api
module, 846

ironic.api.app
module, 841

ironic.api.config

Index 1489

Ironic Documentation, Release 26.1.2.dev21

module, 842
ironic.api.controllers

module, 839
ironic.api.controllers.base

module, 838
ironic.api.controllers.link

module, 839
ironic.api.controllers.root

module, 839
ironic.api.controllers.v1

module, 838
ironic.api.controllers.v1.allocation

module, 781
ironic.api.controllers.v1.bios

module, 784
ironic.api.controllers.v1.chassis

module, 785
ironic.api.controllers.v1.collection

module, 786
ironic.api.controllers.v1.conductor

module, 787
ironic.api.controllers.v1.deploy_template

module, 788
ironic.api.controllers.v1.driver

module, 789
ironic.api.controllers.v1.event

module, 791
ironic.api.controllers.v1.firmware

module, 792
ironic.api.controllers.v1.node

module, 792
ironic.api.controllers.v1.notification_utils

module, 805
ironic.api.controllers.v1.port

module, 806
ironic.api.controllers.v1.portgroup

module, 809
ironic.api.controllers.v1.ramdisk

module, 810
ironic.api.controllers.v1.runbook

module, 812
ironic.api.controllers.v1.shard

module, 813
ironic.api.controllers.v1.utils

module, 814
ironic.api.controllers.v1.versions

module, 832
ironic.api.controllers.v1.volume

module, 832
ironic.api.controllers.v1.volume_connector

module, 832

ironic.api.controllers.v1.volume_target
module, 835

ironic.api.controllers.version
module, 839

ironic.api.functions
module, 842

ironic.api.hooks
module, 843

ironic.api.method
module, 845

ironic.api.middleware
module, 840

ironic.api.middleware.auth_public_routes
module, 839

ironic.api.middleware.json_ext
module, 840

ironic.api.middleware.parsable_error
module, 840

ironic.api.wsgi
module, 845

ironic.cmd
module, 847

ironic.cmd.api
module, 846

ironic.cmd.conductor
module, 846

ironic.cmd.dbsync
module, 846

ironic.cmd.pxe_filter
module, 847

ironic.cmd.singleprocess
module, 847

ironic.cmd.status
module, 847

ironic.common
module, 926

ironic.common.args
module, 850

ironic.common.async_steps
module, 853

ironic.common.boot_devices
module, 854

ironic.common.boot_modes
module, 855

ironic.common.checksum_utils
module, 855

ironic.common.cinder
module, 856

ironic.common.components
module, 859

ironic.common.config

1490 Index

Ironic Documentation, Release 26.1.2.dev21

module, 859
ironic.common.context

module, 859
ironic.common.dhcp_factory

module, 860
ironic.common.driver_factory

module, 861
ironic.common.exception

module, 864
ironic.common.faults

module, 876
ironic.common.fsm

module, 876
ironic.common.glance_service

module, 850
ironic.common.glance_service.image_service

module, 847
ironic.common.glance_service.service_utils

module, 849
ironic.common.hash_ring

module, 877
ironic.common.i18n

module, 877
ironic.common.image_format_inspector

module, 877
ironic.common.image_publisher

module, 883
ironic.common.image_service

module, 884
ironic.common.images

module, 888
ironic.common.indicator_states

module, 893
ironic.common.keystone

module, 893
ironic.common.kickstart_utils

module, 894
ironic.common.lessee_sources

module, 895
ironic.common.molds

module, 895
ironic.common.network

module, 896
ironic.common.neutron

module, 897
ironic.common.nova

module, 903
ironic.common.policy

module, 903
ironic.common.profiler

module, 904

ironic.common.pxe_utils
module, 904

ironic.common.qemu_img
module, 910

ironic.common.raid
module, 910

ironic.common.release_mappings
module, 912

ironic.common.rpc
module, 912

ironic.common.rpc_service
module, 913

ironic.common.service
module, 913

ironic.common.states
module, 914

ironic.common.swift
module, 918

ironic.common.utils
module, 920

ironic.common.wsgi_service
module, 925

ironic.conductor
module, 984

ironic.conductor.allocations
module, 926

ironic.conductor.base_manager
module, 927

ironic.conductor.cleaning
module, 928

ironic.conductor.deployments
module, 929

ironic.conductor.inspection
module, 931

ironic.conductor.manager
module, 931

ironic.conductor.notification_utils
module, 937

ironic.conductor.periodics
module, 938

ironic.conductor.rpc_service
module, 939

ironic.conductor.rpcapi
module, 940

ironic.conductor.servicing
module, 966

ironic.conductor.steps
module, 967

ironic.conductor.task_manager
module, 969

ironic.conductor.utils

Index 1491

Ironic Documentation, Release 26.1.2.dev21

module, 972
ironic.conductor.verify

module, 984
ironic.conf

module, 989
ironic.conf.agent

module, 984
ironic.conf.anaconda

module, 984
ironic.conf.ansible

module, 984
ironic.conf.api

module, 984
ironic.conf.audit

module, 985
ironic.conf.auth

module, 985
ironic.conf.cinder

module, 985
ironic.conf.conductor

module, 985
ironic.conf.console

module, 985
ironic.conf.database

module, 985
ironic.conf.default

module, 985
ironic.conf.deploy

module, 986
ironic.conf.dhcp

module, 986
ironic.conf.disk_utils

module, 986
ironic.conf.dnsmasq

module, 986
ironic.conf.drac

module, 986
ironic.conf.fake

module, 986
ironic.conf.glance

module, 986
ironic.conf.healthcheck

module, 986
ironic.conf.ilo

module, 987
ironic.conf.inspector

module, 987
ironic.conf.inventory

module, 987
ironic.conf.ipmi

module, 987

ironic.conf.irmc
module, 987

ironic.conf.metrics
module, 987

ironic.conf.metrics_statsd
module, 987

ironic.conf.molds
module, 987

ironic.conf.neutron
module, 988

ironic.conf.nova
module, 988

ironic.conf.opts
module, 988

ironic.conf.pxe
module, 988

ironic.conf.redfish
module, 988

ironic.conf.sensor_data
module, 988

ironic.conf.service_catalog
module, 989

ironic.conf.snmp
module, 989

ironic.conf.swift
module, 989

ironic.db
module, 1071

ironic.db.api
module, 1038

ironic.db.migration
module, 1071

ironic.db.sqlalchemy
module, 1038

ironic.db.sqlalchemy.api
module, 989

ironic.db.sqlalchemy.migration
module, 1024

ironic.db.sqlalchemy.models
module, 1025

ironic.dhcp
module, 1077

ironic.dhcp.base
module, 1071

ironic.dhcp.dnsmasq
module, 1073

ironic.dhcp.neutron
module, 1074

ironic.dhcp.none
module, 1075

ironic.drivers

1492 Index

Ironic Documentation, Release 26.1.2.dev21

module, 1321
ironic.drivers.base

module, 1277
ironic.drivers.drac

module, 1311
ironic.drivers.fake_hardware

module, 1312
ironic.drivers.generic

module, 1313
ironic.drivers.hardware_type

module, 1314
ironic.drivers.ilo

module, 1315
ironic.drivers.intel_ipmi

module, 1316
ironic.drivers.ipmi

module, 1316
ironic.drivers.irmc

module, 1317
ironic.drivers.modules

module, 1277
ironic.drivers.modules.agent

module, 1189
ironic.drivers.modules.agent_base

module, 1194
ironic.drivers.modules.agent_client

module, 1202
ironic.drivers.modules.agent_power

module, 1209
ironic.drivers.modules.ansible

module, 1079
ironic.drivers.modules.ansible.deploy

module, 1077
ironic.drivers.modules.boot_mode_utils

module, 1211
ironic.drivers.modules.console_utils

module, 1212
ironic.drivers.modules.deploy_utils

module, 1214
ironic.drivers.modules.drac

module, 1085
ironic.drivers.modules.drac.bios

module, 1079
ironic.drivers.modules.drac.boot

module, 1080
ironic.drivers.modules.drac.inspect

module, 1080
ironic.drivers.modules.drac.management

module, 1081
ironic.drivers.modules.drac.power

module, 1083

ironic.drivers.modules.drac.raid
module, 1083

ironic.drivers.modules.drac.utils
module, 1084

ironic.drivers.modules.drac.vendor_passthru
module, 1085

ironic.drivers.modules.fake
module, 1224

ironic.drivers.modules.ibmc
module, 1085

ironic.drivers.modules.ilo
module, 1115

ironic.drivers.modules.ilo.bios
module, 1085

ironic.drivers.modules.ilo.boot
module, 1087

ironic.drivers.modules.ilo.common
module, 1094

ironic.drivers.modules.ilo.console
module, 1101

ironic.drivers.modules.ilo.firmware_processor
module, 1102

ironic.drivers.modules.ilo.inspect
module, 1103

ironic.drivers.modules.ilo.management
module, 1104

ironic.drivers.modules.ilo.power
module, 1111

ironic.drivers.modules.ilo.raid
module, 1112

ironic.drivers.modules.ilo.vendor
module, 1114

ironic.drivers.modules.image_cache
module, 1240

ironic.drivers.modules.image_utils
module, 1241

ironic.drivers.modules.inspect_utils
module, 1245

ironic.drivers.modules.inspector
module, 1128

ironic.drivers.modules.inspector.agent
module, 1123

ironic.drivers.modules.inspector.client
module, 1124

ironic.drivers.modules.inspector.hooks
module, 1123

ironic.drivers.modules.inspector.hooks.accelerators
module, 1115

ironic.drivers.modules.inspector.hooks.architecture
module, 1115

ironic.drivers.modules.inspector.hooks.base

Index 1493

Ironic Documentation, Release 26.1.2.dev21

module, 1116
ironic.drivers.modules.inspector.hooks.boot_mode

module, 1117
ironic.drivers.modules.inspector.hooks.cpu_capabilities

module, 1117
ironic.drivers.modules.inspector.hooks.extra_hardware

module, 1118
ironic.drivers.modules.inspector.hooks.local_link_connection

module, 1118
ironic.drivers.modules.inspector.hooks.memory

module, 1119
ironic.drivers.modules.inspector.hooks.parse_lldp

module, 1119
ironic.drivers.modules.inspector.hooks.pci_devices

module, 1119
ironic.drivers.modules.inspector.hooks.physical_network

module, 1119
ironic.drivers.modules.inspector.hooks.ports

module, 1120
ironic.drivers.modules.inspector.hooks.raid_device

module, 1121
ironic.drivers.modules.inspector.hooks.ramdisk_error

module, 1121
ironic.drivers.modules.inspector.hooks.root_device

module, 1122
ironic.drivers.modules.inspector.hooks.validate_interfaces

module, 1122
ironic.drivers.modules.inspector.interface

module, 1124
ironic.drivers.modules.inspector.lldp_parsers

module, 1126
ironic.drivers.modules.inspector.lldp_tlvs

module, 1128
ironic.drivers.modules.intel_ipmi

module, 1129
ironic.drivers.modules.intel_ipmi.management

module, 1129
ironic.drivers.modules.ipmitool

module, 1247
ironic.drivers.modules.ipxe

module, 1255
ironic.drivers.modules.irmc

module, 1147
ironic.drivers.modules.irmc.bios

module, 1129
ironic.drivers.modules.irmc.boot

module, 1131
ironic.drivers.modules.irmc.common

module, 1134
ironic.drivers.modules.irmc.inspect

module, 1137

ironic.drivers.modules.irmc.management
module, 1138

ironic.drivers.modules.irmc.power
module, 1144

ironic.drivers.modules.irmc.raid
module, 1146

ironic.drivers.modules.irmc.vendor
module, 1147

ironic.drivers.modules.network
module, 1159

ironic.drivers.modules.network.common
module, 1147

ironic.drivers.modules.network.flat
module, 1151

ironic.drivers.modules.network.neutron
module, 1154

ironic.drivers.modules.network.noop
module, 1157

ironic.drivers.modules.noop
module, 1256

ironic.drivers.modules.noop_mgmt
module, 1261

ironic.drivers.modules.pxe
module, 1263

ironic.drivers.modules.pxe_base
module, 1265

ironic.drivers.modules.ramdisk
module, 1267

ironic.drivers.modules.redfish
module, 1185

ironic.drivers.modules.redfish.bios
module, 1159

ironic.drivers.modules.redfish.boot
module, 1160

ironic.drivers.modules.redfish.firmware
module, 1165

ironic.drivers.modules.redfish.firmware_utils
module, 1166

ironic.drivers.modules.redfish.inspect
module, 1168

ironic.drivers.modules.redfish.management
module, 1169

ironic.drivers.modules.redfish.power
module, 1176

ironic.drivers.modules.redfish.raid
module, 1177

ironic.drivers.modules.redfish.utils
module, 1181

ironic.drivers.modules.redfish.vendor
module, 1184

ironic.drivers.modules.snmp

1494 Index

Ironic Documentation, Release 26.1.2.dev21

module, 1268
ironic.drivers.modules.storage

module, 1189
ironic.drivers.modules.storage.cinder

module, 1185
ironic.drivers.modules.storage.external

module, 1186
ironic.drivers.modules.storage.noop

module, 1188
ironic.drivers.modules.xclarity

module, 1189
ironic.drivers.redfish

module, 1317
ironic.drivers.snmp

module, 1318
ironic.drivers.utils

module, 1318
ironic.objects

module, 1427
ironic.objects.allocation

module, 1321
ironic.objects.base

module, 1327
ironic.objects.bios

module, 1330
ironic.objects.chassis

module, 1335
ironic.objects.conductor

module, 1339
ironic.objects.deploy_template

module, 1341
ironic.objects.deployment

module, 1346
ironic.objects.fields

module, 1349
ironic.objects.firmware

module, 1352
ironic.objects.indirection

module, 1354
ironic.objects.node

module, 1356
ironic.objects.node_history

module, 1388
ironic.objects.node_inventory

module, 1391
ironic.objects.notification

module, 1392
ironic.objects.port

module, 1395
ironic.objects.portgroup

module, 1402

ironic.objects.runbook
module, 1408

ironic.objects.trait
module, 1413

ironic.objects.volume_connector
module, 1416

ironic.objects.volume_target
module, 1421

ironic.pxe_filter
module, 1428

ironic.pxe_filter.dnsmasq
module, 1427

ironic.pxe_filter.service
module, 1427

ironic.version
module, 1428

ironic_manages_boot() (in module
ironic.drivers.modules.inspector.interface),
1125

ironic-dbsync command line option
--config-dir, 436
--config-file, 436
--debug, 437
--help, 436
--version, 437
-d, 437
-h, 436
create_schema,, 437
online_data_migrations, 437
revision, 437
stamp, 437
upgrade, 437
version, 437

IronicBase (class in
ironic.db.sqlalchemy.models), 1028

IronicCORS (class in ironic.api.app), 841
IronicObject (class in ironic.objects.base), 1327
IronicObjectIndirectionAPI (class in

ironic.objects.indirection), 1354
IronicObjectListBase (class in

ironic.objects.base), 1329
IronicObjectRegistry (class in

ironic.objects.base), 1329
IronicObjectSerializer (class in

ironic.objects.base), 1329
is_agent_token_pregenerated() (in module

ironic.conductor.utils), 975
is_agent_token_present() (in module

ironic.conductor.utils), 975
is_agent_token_valid() (in module

ironic.conductor.utils), 976

Index 1495

Ironic Documentation, Release 26.1.2.dev21

is_anaconda_deploy() (in module
ironic.drivers.modules.deploy_utils),
1219

is_bridging_enabled() (in module
ironic.drivers.modules.ipmitool), 1254

is_checksum_url() (in module
ironic.common.checksum_utils), 856

is_equivalent() (in module
ironic.conductor.steps), 967

is_fast_track() (in module
ironic.conductor.utils), 976

is_fips_enabled() (in module
ironic.common.utils), 921

is_glance_image() (in module
ironic.common.glance_service.service_utils),
849

is_hostname_safe() (in module
ironic.common.utils), 921

is_image_active() (in module
ironic.common.glance_service.service_utils),
849

is_image_available() (in module
ironic.common.glance_service.service_utils),
849

is_ipxe_enabled() (in module
ironic.common.pxe_utils), 908

is_ironic_using_sqlite() (in module
ironic.common.utils), 921

is_iscsi_boot() (in module
ironic.drivers.modules.deploy_utils),
1219

is_loopback() (in module ironic.common.utils),
921

is_memory_insufficient() (in module
ironic.common.utils), 922

is_ovn_vtep_port() (in module
ironic.common.neutron), 899

is_path_removed() (in module
ironic.api.controllers.v1.utils), 828

is_path_updated() (in module
ironic.api.controllers.v1.utils), 828

is_ramdisk_deploy() (in module
ironic.drivers.modules.deploy_utils),
1219

is_regex_string_in_file() (in module
ironic.common.utils), 922

is_secure_boot_requested() (in module
ironic.drivers.modules.boot_mode_utils),
1211

is_smartnic (ironic.db.sqlalchemy.models.Port
attribute), 1034

is_smartnic (ironic.objects.port.Port property),
1398

is_smartnic (ironic.objects.port.PortCRUDPayload
property), 1402

is_smartnic_port() (in module
ironic.common.neutron), 900

is_software_raid() (in module
ironic.drivers.modules.deploy_utils),
1219

is_source_a_path() (in module
ironic.common.images), 891

is_stable() (ironic.common.fsm.FSM method),
877

is_valid_datapath_id() (in module
ironic.common.utils), 922

is_valid_logical_name() (in module
ironic.api.controllers.v1.utils), 829

is_valid_logical_name() (in module
ironic.common.utils), 922

is_valid_no_proxy() (in module
ironic.common.utils), 922

is_valid_node_name() (in module
ironic.api.controllers.v1.utils), 829

is_volume_attached() (in module
ironic.common.cinder), 858

is_volume_available() (in module
ironic.common.cinder), 859

is_whole_disk_image() (in module
ironic.common.images), 892

ISCSIBOOT (in module
ironic.common.boot_devices), 854

ISOImageCache (class in
ironic.drivers.modules.image_utils),
1241

ISOInspector (class in
ironic.common.image_format_inspector),
879

issue_startup_warnings() (in module
ironic.cmd.conductor), 846

iswsmefunction() (in module
ironic.api.functions), 843

items() (ironic.common.driver_factory.BaseDriverFactory
method), 861

iter_nodes() (ironic.conductor.base_manager.BaseConductorManager
method), 927

J
JsonExtensionMiddleware (class in

ironic.api.middleware), 840
JsonExtensionMiddleware (class in

ironic.api.middleware.json_ext), 840

1496 Index

Ironic Documentation, Release 26.1.2.dev21

K
keepalive_halt()

(ironic.conductor.base_manager.BaseConductorManager
method), 928

kernel_ref (ironic.objects.deployment.Deployment
property), 1348

KeystoneFailure, 871
KeystoneUnauthorized, 871
known_good_state()

(ironic.drivers.modules.drac.management.DracRedfishManagement
method), 1082

ks_exceptions() (in module
ironic.common.keystone), 894

L
last_error (ironic.db.sqlalchemy.models.Allocation

attribute), 1025
last_error (ironic.db.sqlalchemy.models.Node

attribute), 1029
last_error (ironic.db.sqlalchemy.models.NodeBase

attribute), 1032
last_error (ironic.objects.allocation.Allocation

property), 1324
last_error (ironic.objects.allocation.AllocationCRUDPayload

property), 1327
last_error (ironic.objects.node.Node property),

1361
last_error (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
last_error (ironic.objects.node.NodeCRUDPayload

property), 1369
last_error (ironic.objects.node.NodePayload

property), 1378
last_error (ironic.objects.node.NodeSetPowerStatePayload

property), 1382
last_error (ironic.objects.node.NodeSetProvisionStatePayload

property), 1387
last_version_flashed

(ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

last_version_flashed
(ironic.objects.firmware.FirmwareComponent
property), 1353

LEGACY_BIOS (in module
ironic.common.boot_modes), 855

lessee (ironic.db.sqlalchemy.models.Node
attribute), 1030

lessee (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

lessee (ironic.objects.node.Node property), 1361
lessee (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
lessee (ironic.objects.node.NodeCRUDPayload

property), 1369
lessee (ironic.objects.node.NodePayload prop-

erty), 1378
lessee (ironic.objects.node.NodeSetPowerStatePayload

property), 1382
lessee (ironic.objects.node.NodeSetProvisionStatePayload

property), 1387
level (ironic.objects.allocation.AllocationCRUDNotification

property), 1326
level (ironic.objects.chassis.ChassisCRUDNotification

property), 1338
level (ironic.objects.deploy_template.DeployTemplateCRUDNotification

property), 1345
level (ironic.objects.node.NodeConsoleNotification

property), 1370
level (ironic.objects.node.NodeCorrectedPowerStateNotification

property), 1371
level (ironic.objects.node.NodeCRUDNotification

property), 1365
level (ironic.objects.node.NodeMaintenanceNotification

property), 1374
level (ironic.objects.node.NodeSetPowerStateNotification

property), 1379
level (ironic.objects.node.NodeSetProvisionStateNotification

property), 1383
level (ironic.objects.notification.NotificationBase

property), 1393
level (ironic.objects.port.PortCRUDNotification

property), 1401
level (ironic.objects.portgroup.PortgroupCRUDNotification

property), 1407
level (ironic.objects.runbook.RunbookCRUDNotification

property), 1412
level (ironic.objects.volume_connector.VolumeConnectorCRUDNotification

property), 1420
level (ironic.objects.volume_target.VolumeTargetCRUDNotification

property), 1425
list() (ironic.objects.allocation.Allocation class

method), 1324
list() (ironic.objects.chassis.Chassis class

method), 1337
list() (ironic.objects.conductor.Conductor class

method), 1339
list() (ironic.objects.deploy_template.DeployTemplate

class method), 1343
list() (ironic.objects.deployment.Deployment

class method), 1348
list() (ironic.objects.node.Node class method),

1361

Index 1497

Ironic Documentation, Release 26.1.2.dev21

list() (ironic.objects.node_history.NodeHistory
class method), 1390

list() (ironic.objects.port.Port class method),
1398

list() (ironic.objects.portgroup.Portgroup class
method), 1405

list() (ironic.objects.runbook.Runbook class
method), 1410

list() (ironic.objects.volume_connector.VolumeConnector
class method), 1418

list() (ironic.objects.volume_target.VolumeTarget
class method), 1423

list_by_names()
(ironic.objects.deploy_template.DeployTemplate
class method), 1343

list_by_names()
(ironic.objects.runbook.Runbook class
method), 1411

list_by_node_id()
(ironic.objects.node_history.NodeHistory
class method), 1390

list_by_node_id() (ironic.objects.port.Port
class method), 1398

list_by_node_id()
(ironic.objects.portgroup.Portgroup
class method), 1405

list_by_node_id()
(ironic.objects.volume_connector.VolumeConnector
class method), 1418

list_by_node_id()
(ironic.objects.volume_target.VolumeTarget
class method), 1423

list_by_node_shards()
(ironic.objects.port.Port class method),
1398

list_by_portgroup_id()
(ironic.objects.port.Port class method),
1399

list_by_volume_id()
(ironic.objects.volume_target.VolumeTarget
class method), 1424

list_conductor_hardware_interfaces()
(ironic.db.api.Connection method), 1062

list_conductor_hardware_interfaces()
(ironic.db.sqlalchemy.api.Connection
method), 1013

list_convert_with_links() (in module
ironic.api.controllers.v1.allocation), 784

list_convert_with_links() (in module
ironic.api.controllers.v1.chassis), 786

list_convert_with_links() (in module

ironic.api.controllers.v1.collection), 786
list_convert_with_links() (in module

ironic.api.controllers.v1.conductor), 787
list_convert_with_links() (in module

ironic.api.controllers.v1.deploy_template),
789

list_convert_with_links() (in module
ironic.api.controllers.v1.driver), 791

list_convert_with_links() (in module
ironic.api.controllers.v1.port), 808

list_convert_with_links() (in module
ironic.api.controllers.v1.portgroup), 810

list_convert_with_links() (in module
ironic.api.controllers.v1.runbook), 813

list_convert_with_links() (in module
ironic.api.controllers.v1.volume_connector),
835

list_convert_with_links() (in module
ironic.api.controllers.v1.volume_target),
837

list_hardware_type_interfaces()
(ironic.db.api.Connection method),
1062

list_hardware_type_interfaces()
(ironic.db.sqlalchemy.api.Connection
method), 1014

list_opts() (in module ironic.conf.cinder), 985
list_opts() (in module ironic.conf.default), 985
list_opts() (in module ironic.conf.glance), 986
list_opts() (in module ironic.conf.inspector),

987
list_opts() (in module ironic.conf.neutron),

988
list_opts() (in module ironic.conf.nova), 988
list_opts() (in module ironic.conf.opts), 988
list_opts() (in module

ironic.conf.service_catalog), 989
list_opts() (in module ironic.conf.swift), 989
list_policies() (in module

ironic.common.policy), 904
ListOfFlexibleDictsField (class in

ironic.objects.fields), 1349
ListOfObjectsField (class in

ironic.objects.fields), 1349
ListOfStringsField (class in

ironic.objects.fields), 1350
LLDPBasicMgmtParser (class in

ironic.drivers.modules.inspector.lldp_parsers),
1126

LLDPdot1Parser (class in
ironic.drivers.modules.inspector.lldp_parsers),

1498 Index

Ironic Documentation, Release 26.1.2.dev21

1127
LLDPdot3Parser (class in

ironic.drivers.modules.inspector.lldp_parsers),
1127

LLDPParser (class in
ironic.drivers.modules.inspector.lldp_parsers),
1126

load_driver() (ironic.conductor.task_manager.TaskManager
method), 970

local_link_connection
(ironic.db.sqlalchemy.models.Port
attribute), 1035

local_link_connection
(ironic.objects.port.Port property),
1399

local_link_connection
(ironic.objects.port.PortCRUDPayload
property), 1402

local_link_normalize() (in module
ironic.api.controllers.v1.utils), 829

LocalContext (class in ironic.conductor.rpcapi),
965

LocalLinkConnectionHook (class in
ironic.drivers.modules.inspector.hooks.local_link_connection),
1118

LocalPublisher (class in
ironic.common.image_publisher), 883

lockedOff (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

lockedOn (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

log_and_raise_deployment_error()
(in module
ironic.drivers.modules.agent_base),
1201

log_passthrough()
(ironic.drivers.modules.fake.FakeVendorB
method), 1239

logical_disk_properties()
(ironic.api.controllers.v1.driver.DriverRaidController
method), 789

lookup_allowed()
(ironic.api.controllers.v1.ramdisk.LookupController
method), 812

LOOKUP_ALLOWED_STATES (in module
ironic.common.states), 916

lookup_node() (in module
ironic.drivers.modules.inspect_utils),
1246

LookupController (class in
ironic.api.controllers.v1.ramdisk),

811
lower_bound (ironic.db.sqlalchemy.models.BIOSSetting

attribute), 1026
lower_bound (ironic.objects.bios.BIOSSetting

property), 1332

M
mac_address() (in module ironic.common.args),

851
MACAddress (class in ironic.objects.fields), 1350
MACAddressField (class in ironic.objects.fields),

1350
MACAlreadyExists, 871
main() (in module ironic.cmd.api), 846
main() (in module ironic.cmd.conductor), 846
main() (in module ironic.cmd.dbsync), 847
main() (in module ironic.cmd.pxe_filter), 847
main() (in module ironic.cmd.singleprocess), 847
main() (in module ironic.cmd.status), 847
maintenance (ironic.api.controllers.v1.node.NodesController

attribute), 803
maintenance (ironic.db.sqlalchemy.models.Node

attribute), 1030
maintenance (ironic.db.sqlalchemy.models.NodeBase

attribute), 1032
maintenance (ironic.objects.node.Node prop-

erty), 1362
maintenance (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
maintenance (ironic.objects.node.NodeCRUDPayload

property), 1369
maintenance (ironic.objects.node.NodePayload

property), 1378
maintenance (ironic.objects.node.NodeSetPowerStatePayload

property), 1382
maintenance (ironic.objects.node.NodeSetProvisionStatePayload

property), 1387
maintenance_reason

(ironic.db.sqlalchemy.models.Node
attribute), 1030

maintenance_reason
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

maintenance_reason (ironic.objects.node.Node
property), 1362

maintenance_reason
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

maintenance_reason
(ironic.objects.node.NodeCRUDPayload
property), 1369

Index 1499

Ironic Documentation, Release 26.1.2.dev21

maintenance_reason
(ironic.objects.node.NodePayload prop-
erty), 1378

maintenance_reason
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

maintenance_reason
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

make_link() (in module
ironic.api.controllers.link), 839

make_persistent_password_file() (in mod-
ule ironic.drivers.modules.console_utils),
1213

make_salt() (in module ironic.conductor.utils),
976

manage_node_history()
(ironic.conductor.manager.ConductorManager
method), 934

MANAGEABLE (in module ironic.common.states),
916

management (ironic.api.controllers.v1.node.NodesController
attribute), 803

management (ironic.drivers.base.BareDriver at-
tribute), 1279

management_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1030

management_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

management_interface
(ironic.objects.node.Node property),
1362

management_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

management_interface
(ironic.objects.node.NodeCRUDPayload
property), 1369

management_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

management_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

management_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

ManagementInterface (class in
ironic.drivers.base), 1290

mandatory (ironic.api.functions.FunctionArgument
attribute), 842

ManualManagementHardware (class in
ironic.drivers.generic), 1313

mapping_for_enum() (in module
ironic.drivers.modules.inspector.lldp_tlvs),
1128

mapping_for_switch() (in module
ironic.drivers.modules.inspector.lldp_tlvs),
1128

marginal (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

mask_secrets() (in module
ironic.objects.notification), 1394

max_length (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

max_length (ironic.objects.bios.BIOSSetting
property), 1332

max_string (ironic.api.controllers.base.Version
attribute), 838

max_version() (in module ironic.objects.base),
1330

max_version_string() (in module
ironic.api.controllers.v1.versions),
832

memoize() (in module
ironic.drivers.modules.snmp), 1277

MemoryHook (class in
ironic.drivers.modules.inspector.hooks.memory),
1119

metadata (ironic.db.sqlalchemy.models.IronicBase
attribute), 1028

metadata (ironic.drivers.base.VendorMetadata
attribute), 1307

METAREGION (ironic.common.image_format_inspector.VHDXInspector
attribute), 881

method (ironic.drivers.base.VendorMetadata at-
tribute), 1307

methods() (ironic.api.controllers.v1.driver.DriverPassthruController
method), 789

methods() (ironic.api.controllers.v1.node.NodeVendorPassthruController
method), 800

METRICS (in module
ironic.drivers.modules.irmc.inspect),
1137

METRICS (in module
ironic.drivers.modules.irmc.power),
1146

migrate_to_builtin_inspection()
(ironic.db.sqlalchemy.api.Connection
method), 1014

1500 Index

Ironic Documentation, Release 26.1.2.dev21

min_length (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

min_length (ironic.objects.bios.BIOSSetting
property), 1332

min_string (ironic.api.controllers.base.Version
attribute), 838

min_version_string() (in module
ironic.api.controllers.v1.versions),
832

missing_entrypoints_callback() (in module
ironic.drivers.modules.inspector.hooks.base),
1116

MissingParameterValue, 871
MixinVendorInterface (class in

ironic.drivers.utils), 1318
mode (ironic.db.sqlalchemy.models.Portgroup at-

tribute), 1035
mode (ironic.objects.portgroup.Portgroup prop-

erty), 1406
mode (ironic.objects.portgroup.PortgroupCRUDPayload

property), 1408
model_query() (in module

ironic.db.sqlalchemy.api), 1024
module

ironic, 1428
ironic.api, 846
ironic.api.app, 841
ironic.api.config, 842
ironic.api.controllers, 839
ironic.api.controllers.base, 838
ironic.api.controllers.link, 839
ironic.api.controllers.root, 839
ironic.api.controllers.v1, 838
ironic.api.controllers.v1.allocation,

781
ironic.api.controllers.v1.bios, 784
ironic.api.controllers.v1.chassis,

785
ironic.api.controllers.v1.collection,

786
ironic.api.controllers.v1.conductor,

787
ironic.api.controllers.v1.deploy_template,

788
ironic.api.controllers.v1.driver,

789
ironic.api.controllers.v1.event, 791
ironic.api.controllers.v1.firmware,

792
ironic.api.controllers.v1.node, 792
ironic.api.controllers.v1.notification_utils,

805
ironic.api.controllers.v1.port, 806
ironic.api.controllers.v1.portgroup,

809
ironic.api.controllers.v1.ramdisk,

810
ironic.api.controllers.v1.runbook,

812
ironic.api.controllers.v1.shard, 813
ironic.api.controllers.v1.utils, 814
ironic.api.controllers.v1.versions,

832
ironic.api.controllers.v1.volume,

832
ironic.api.controllers.v1.volume_connector,

832
ironic.api.controllers.v1.volume_target,

835
ironic.api.controllers.version, 839
ironic.api.functions, 842
ironic.api.hooks, 843
ironic.api.method, 845
ironic.api.middleware, 840
ironic.api.middleware.auth_public_routes,

839
ironic.api.middleware.json_ext, 840
ironic.api.middleware.parsable_error,

840
ironic.api.wsgi, 845
ironic.cmd, 847
ironic.cmd.api, 846
ironic.cmd.conductor, 846
ironic.cmd.dbsync, 846
ironic.cmd.pxe_filter, 847
ironic.cmd.singleprocess, 847
ironic.cmd.status, 847
ironic.common, 926
ironic.common.args, 850
ironic.common.async_steps, 853
ironic.common.boot_devices, 854
ironic.common.boot_modes, 855
ironic.common.checksum_utils, 855
ironic.common.cinder, 856
ironic.common.components, 859
ironic.common.config, 859
ironic.common.context, 859
ironic.common.dhcp_factory, 860
ironic.common.driver_factory, 861
ironic.common.exception, 864
ironic.common.faults, 876
ironic.common.fsm, 876

Index 1501

Ironic Documentation, Release 26.1.2.dev21

ironic.common.glance_service, 850
ironic.common.glance_service.image_service,

847
ironic.common.glance_service.service_utils,

849
ironic.common.hash_ring, 877
ironic.common.i18n, 877
ironic.common.image_format_inspector,

877
ironic.common.image_publisher, 883
ironic.common.image_service, 884
ironic.common.images, 888
ironic.common.indicator_states, 893
ironic.common.keystone, 893
ironic.common.kickstart_utils, 894
ironic.common.lessee_sources, 895
ironic.common.molds, 895
ironic.common.network, 896
ironic.common.neutron, 897
ironic.common.nova, 903
ironic.common.policy, 903
ironic.common.profiler, 904
ironic.common.pxe_utils, 904
ironic.common.qemu_img, 910
ironic.common.raid, 910
ironic.common.release_mappings, 912
ironic.common.rpc, 912
ironic.common.rpc_service, 913
ironic.common.service, 913
ironic.common.states, 914
ironic.common.swift, 918
ironic.common.utils, 920
ironic.common.wsgi_service, 925
ironic.conductor, 984
ironic.conductor.allocations, 926
ironic.conductor.base_manager, 927
ironic.conductor.cleaning, 928
ironic.conductor.deployments, 929
ironic.conductor.inspection, 931
ironic.conductor.manager, 931
ironic.conductor.notification_utils,

937
ironic.conductor.periodics, 938
ironic.conductor.rpc_service, 939
ironic.conductor.rpcapi, 940
ironic.conductor.servicing, 966
ironic.conductor.steps, 967
ironic.conductor.task_manager, 969
ironic.conductor.utils, 972
ironic.conductor.verify, 984
ironic.conf, 989

ironic.conf.agent, 984
ironic.conf.anaconda, 984
ironic.conf.ansible, 984
ironic.conf.api, 984
ironic.conf.audit, 985
ironic.conf.auth, 985
ironic.conf.cinder, 985
ironic.conf.conductor, 985
ironic.conf.console, 985
ironic.conf.database, 985
ironic.conf.default, 985
ironic.conf.deploy, 986
ironic.conf.dhcp, 986
ironic.conf.disk_utils, 986
ironic.conf.dnsmasq, 986
ironic.conf.drac, 986
ironic.conf.fake, 986
ironic.conf.glance, 986
ironic.conf.healthcheck, 986
ironic.conf.ilo, 987
ironic.conf.inspector, 987
ironic.conf.inventory, 987
ironic.conf.ipmi, 987
ironic.conf.irmc, 987
ironic.conf.metrics, 987
ironic.conf.metrics_statsd, 987
ironic.conf.molds, 987
ironic.conf.neutron, 988
ironic.conf.nova, 988
ironic.conf.opts, 988
ironic.conf.pxe, 988
ironic.conf.redfish, 988
ironic.conf.sensor_data, 988
ironic.conf.service_catalog, 989
ironic.conf.snmp, 989
ironic.conf.swift, 989
ironic.db, 1071
ironic.db.api, 1038
ironic.db.migration, 1071
ironic.db.sqlalchemy, 1038
ironic.db.sqlalchemy.api, 989
ironic.db.sqlalchemy.migration, 1024
ironic.db.sqlalchemy.models, 1025
ironic.dhcp, 1077
ironic.dhcp.base, 1071
ironic.dhcp.dnsmasq, 1073
ironic.dhcp.neutron, 1074
ironic.dhcp.none, 1075
ironic.drivers, 1321
ironic.drivers.base, 1277
ironic.drivers.drac, 1311

1502 Index

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.fake_hardware, 1312
ironic.drivers.generic, 1313
ironic.drivers.hardware_type, 1314
ironic.drivers.ilo, 1315
ironic.drivers.intel_ipmi, 1316
ironic.drivers.ipmi, 1316
ironic.drivers.irmc, 1317
ironic.drivers.modules, 1277
ironic.drivers.modules.agent, 1189
ironic.drivers.modules.agent_base,

1194
ironic.drivers.modules.agent_client,

1202
ironic.drivers.modules.agent_power,

1209
ironic.drivers.modules.ansible, 1079
ironic.drivers.modules.ansible.deploy,

1077
ironic.drivers.modules.boot_mode_utils,

1211
ironic.drivers.modules.console_utils,

1212
ironic.drivers.modules.deploy_utils,

1214
ironic.drivers.modules.drac, 1085
ironic.drivers.modules.drac.bios,

1079
ironic.drivers.modules.drac.boot,

1080
ironic.drivers.modules.drac.inspect,

1080
ironic.drivers.modules.drac.management,

1081
ironic.drivers.modules.drac.power,

1083
ironic.drivers.modules.drac.raid,

1083
ironic.drivers.modules.drac.utils,

1084
ironic.drivers.modules.drac.vendor_passthru,

1085
ironic.drivers.modules.fake, 1224
ironic.drivers.modules.ibmc, 1085
ironic.drivers.modules.ilo, 1115
ironic.drivers.modules.ilo.bios,

1085
ironic.drivers.modules.ilo.boot,

1087
ironic.drivers.modules.ilo.common,

1094
ironic.drivers.modules.ilo.console,

1101
ironic.drivers.modules.ilo.firmware_processor,

1102
ironic.drivers.modules.ilo.inspect,

1103
ironic.drivers.modules.ilo.management,

1104
ironic.drivers.modules.ilo.power,

1111
ironic.drivers.modules.ilo.raid,

1112
ironic.drivers.modules.ilo.vendor,

1114
ironic.drivers.modules.image_cache,

1240
ironic.drivers.modules.image_utils,

1241
ironic.drivers.modules.inspect_utils,

1245
ironic.drivers.modules.inspector,

1128
ironic.drivers.modules.inspector.agent,

1123
ironic.drivers.modules.inspector.client,

1124
ironic.drivers.modules.inspector.hooks,

1123
ironic.drivers.modules.inspector.hooks.accelerators,

1115
ironic.drivers.modules.inspector.hooks.architecture,

1115
ironic.drivers.modules.inspector.hooks.base,

1116
ironic.drivers.modules.inspector.hooks.boot_mode,

1117
ironic.drivers.modules.inspector.hooks.cpu_capabilities,

1117
ironic.drivers.modules.inspector.hooks.extra_hardware,

1118
ironic.drivers.modules.inspector.hooks.local_link_connection,

1118
ironic.drivers.modules.inspector.hooks.memory,

1119
ironic.drivers.modules.inspector.hooks.parse_lldp,

1119
ironic.drivers.modules.inspector.hooks.pci_devices,

1119
ironic.drivers.modules.inspector.hooks.physical_network,

1119
ironic.drivers.modules.inspector.hooks.ports,

1120

Index 1503

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.inspector.hooks.raid_device,
1121

ironic.drivers.modules.inspector.hooks.ramdisk_error,
1121

ironic.drivers.modules.inspector.hooks.root_device,
1122

ironic.drivers.modules.inspector.hooks.validate_interfaces,
1122

ironic.drivers.modules.inspector.interface,
1124

ironic.drivers.modules.inspector.lldp_parsers,
1126

ironic.drivers.modules.inspector.lldp_tlvs,
1128

ironic.drivers.modules.intel_ipmi,
1129

ironic.drivers.modules.intel_ipmi.management,
1129

ironic.drivers.modules.ipmitool,
1247

ironic.drivers.modules.ipxe, 1255
ironic.drivers.modules.irmc, 1147
ironic.drivers.modules.irmc.bios,

1129
ironic.drivers.modules.irmc.boot,

1131
ironic.drivers.modules.irmc.common,

1134
ironic.drivers.modules.irmc.inspect,

1137
ironic.drivers.modules.irmc.management,

1138
ironic.drivers.modules.irmc.power,

1144
ironic.drivers.modules.irmc.raid,

1146
ironic.drivers.modules.irmc.vendor,

1147
ironic.drivers.modules.network, 1159
ironic.drivers.modules.network.common,

1147
ironic.drivers.modules.network.flat,

1151
ironic.drivers.modules.network.neutron,

1154
ironic.drivers.modules.network.noop,

1157
ironic.drivers.modules.noop, 1256
ironic.drivers.modules.noop_mgmt,

1261
ironic.drivers.modules.pxe, 1263

ironic.drivers.modules.pxe_base,
1265

ironic.drivers.modules.ramdisk, 1267
ironic.drivers.modules.redfish, 1185
ironic.drivers.modules.redfish.bios,

1159
ironic.drivers.modules.redfish.boot,

1160
ironic.drivers.modules.redfish.firmware,

1165
ironic.drivers.modules.redfish.firmware_utils,

1166
ironic.drivers.modules.redfish.inspect,

1168
ironic.drivers.modules.redfish.management,

1169
ironic.drivers.modules.redfish.power,

1176
ironic.drivers.modules.redfish.raid,

1177
ironic.drivers.modules.redfish.utils,

1181
ironic.drivers.modules.redfish.vendor,

1184
ironic.drivers.modules.snmp, 1268
ironic.drivers.modules.storage, 1189
ironic.drivers.modules.storage.cinder,

1185
ironic.drivers.modules.storage.external,

1186
ironic.drivers.modules.storage.noop,

1188
ironic.drivers.modules.xclarity,

1189
ironic.drivers.redfish, 1317
ironic.drivers.snmp, 1318
ironic.drivers.utils, 1318
ironic.objects, 1427
ironic.objects.allocation, 1321
ironic.objects.base, 1327
ironic.objects.bios, 1330
ironic.objects.chassis, 1335
ironic.objects.conductor, 1339
ironic.objects.deploy_template, 1341
ironic.objects.deployment, 1346
ironic.objects.fields, 1349
ironic.objects.firmware, 1352
ironic.objects.indirection, 1354
ironic.objects.node, 1356
ironic.objects.node_history, 1388
ironic.objects.node_inventory, 1391

1504 Index

Ironic Documentation, Release 26.1.2.dev21

ironic.objects.notification, 1392
ironic.objects.port, 1395
ironic.objects.portgroup, 1402
ironic.objects.runbook, 1408
ironic.objects.trait, 1413
ironic.objects.volume_connector,

1416
ironic.objects.volume_target, 1421
ironic.pxe_filter, 1428
ironic.pxe_filter.dnsmasq, 1427
ironic.pxe_filter.service, 1427
ironic.version, 1428

N
name (ironic.api.functions.FunctionArgument at-

tribute), 842
name (ironic.api.functions.FunctionDefinition at-

tribute), 842
name (ironic.db.sqlalchemy.models.Allocation at-

tribute), 1025
name (ironic.db.sqlalchemy.models.BIOSSetting

attribute), 1026
name (ironic.db.sqlalchemy.models.DeployTemplate

attribute), 1027
name (ironic.db.sqlalchemy.models.Node at-

tribute), 1030
name (ironic.db.sqlalchemy.models.NodeBase at-

tribute), 1032
name (ironic.db.sqlalchemy.models.Port attribute),

1035
name (ironic.db.sqlalchemy.models.Portgroup at-

tribute), 1035
name (ironic.db.sqlalchemy.models.Runbook at-

tribute), 1036
name (ironic.objects.allocation.Allocation prop-

erty), 1325
name (ironic.objects.allocation.AllocationCRUDPayload

property), 1327
name (ironic.objects.bios.BIOSSetting property),

1332
name (ironic.objects.deploy_template.DeployTemplate

property), 1343
name (ironic.objects.deploy_template.DeployTemplateCRUDPayload

property), 1345
name (ironic.objects.node.Node property), 1362
name (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
name (ironic.objects.node.NodeCRUDPayload

property), 1369
name (ironic.objects.node.NodePayload property),

1378

name (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

name (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

name (ironic.objects.port.Port property), 1399
name (ironic.objects.port.PortCRUDPayload

property), 1402
name (ironic.objects.portgroup.Portgroup prop-

erty), 1406
name (ironic.objects.portgroup.PortgroupCRUDPayload

property), 1408
name (ironic.objects.runbook.Runbook property),

1411
name (ironic.objects.runbook.RunbookCRUDPayload

property), 1413
name() (in module ironic.common.args), 851
names (ironic.common.driver_factory.BaseDriverFactory

property), 861
need_power_on()

(ironic.drivers.base.NetworkInterface
method), 1299

need_power_on()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

need_prepare_ramdisk() (in module
ironic.drivers.utils), 1320

needs_agent_ramdisk() (in module
ironic.drivers.modules.deploy_utils),
1219

network (ironic.drivers.base.BareDriver at-
tribute), 1280

network_data (ironic.db.sqlalchemy.models.Node
attribute), 1030

network_data (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

network_data (ironic.objects.node.Node prop-
erty), 1362

network_data_schema() (in module
ironic.api.controllers.v1.node), 804

network_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1030

network_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

network_interface (ironic.objects.node.Node
property), 1362

network_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

network_interface

Index 1505

Ironic Documentation, Release 26.1.2.dev21

(ironic.objects.node.NodeCRUDPayload
property), 1369

network_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

network_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

network_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

NetworkError, 871
NetworkInterface (class in ironic.drivers.base),

1296
NetworkInterfaceFactory (class in

ironic.common.driver_factory), 861
NeutronDHCPApi (class in ironic.dhcp.neutron),

1074
NeutronNetwork (class in

ironic.drivers.modules.network.neutron),
1154

NeutronNetworkInterfaceMixin (class in
ironic.common.neutron), 897

NeutronVIFPortIDMixin (class in
ironic.drivers.modules.network.common),
1147

new_continue_inspection_endpoint() (in
module ironic.api.controllers.v1.utils),
829

new_region() (ironic.common.image_format_inspector.FileInspector
method), 879

NIC (in module ironic.common.components), 859
no (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
NoBIOS (class in ironic.drivers.modules.noop),

1256
NoConsole (class in ironic.drivers.modules.noop),

1257
NoConsolePid, 871
Node (class in ironic.db.sqlalchemy.models), 1028
Node (class in ironic.objects.node), 1356
node (ironic.conductor.task_manager.TaskManager

property), 970
node (ironic.db.sqlalchemy.models.NodeTag at-

tribute), 1034
node (ironic.db.sqlalchemy.models.NodeTrait at-

tribute), 1034
node_cache_bios_settings() (in module

ironic.conductor.utils), 976
node_cache_boot_mode() (in module

ironic.conductor.utils), 976

node_cache_firmware_components() (in
module ironic.conductor.utils), 976

node_cache_vendor() (in module
ironic.conductor.utils), 976

node_change_boot_mode() (in module
ironic.conductor.utils), 976

node_change_secure_boot() (in module
ironic.conductor.utils), 977

NODE_CLASS_OID (in module
ironic.drivers.modules.irmc.inspect),
1138

node_convert_with_links() (in module
ironic.api.controllers.v1.node), 804

node_get_boot_mode() (in module
ironic.conductor.utils), 977

node_history_record() (in module
ironic.conductor.utils), 977

node_id (ironic.db.sqlalchemy.models.Allocation
attribute), 1025

node_id (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

node_id (ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

node_id (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

node_id (ironic.db.sqlalchemy.models.NodeInventory
attribute), 1034

node_id (ironic.db.sqlalchemy.models.NodeTag
attribute), 1034

node_id (ironic.db.sqlalchemy.models.NodeTrait
attribute), 1034

node_id (ironic.db.sqlalchemy.models.Port
attribute), 1035

node_id (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

node_id (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1037

node_id (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

node_id (ironic.objects.allocation.Allocation
property), 1325

node_id (ironic.objects.bios.BIOSSetting prop-
erty), 1333

node_id (ironic.objects.firmware.FirmwareComponent
property), 1353

node_id (ironic.objects.node_history.NodeHistory
property), 1390

node_id (ironic.objects.node_inventory.NodeInventory
property), 1392

node_id (ironic.objects.port.Port property), 1399
node_id (ironic.objects.portgroup.Portgroup

1506 Index

Ironic Documentation, Release 26.1.2.dev21

property), 1406
node_id (ironic.objects.trait.Trait property), 1414
node_id (ironic.objects.volume_connector.VolumeConnector

property), 1419
node_id (ironic.objects.volume_target.VolumeTarget

property), 1424
node_list_convert_with_links() (in module

ironic.api.controllers.v1.node), 804
node_mapping (ironic.objects.deployment.Deployment

attribute), 1348
node_patch_schema() (in module

ironic.api.controllers.v1.node), 804
node_patch_validator() (in module

ironic.api.controllers.v1.node), 804
node_periodic() (in module

ironic.conductor.periodics), 938
node_power_action() (in module

ironic.conductor.utils), 978
node_sanitize() (in module

ironic.api.controllers.v1.node), 804
node_schema() (in module

ironic.api.controllers.v1.node), 805
node_set_boot_device() (in module

ironic.conductor.utils), 978
node_set_boot_mode() (in module

ironic.conductor.utils), 978
node_states_convert() (in module

ironic.api.controllers.v1.node), 805
node_tag_exists() (ironic.db.api.Connection

method), 1062
node_tag_exists()

(ironic.db.sqlalchemy.api.Connection
method), 1014

node_trait_exists()
(ironic.db.api.Connection method),
1062

node_trait_exists()
(ironic.db.sqlalchemy.api.Connection
method), 1014

node_update_cache() (in module
ironic.conductor.utils), 979

node_uuid (ironic.db.sqlalchemy.models.Port at-
tribute), 1035

node_uuid (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

node_uuid (ironic.objects.allocation.AllocationCRUDPayload
property), 1327

node_uuid (ironic.objects.deployment.Deployment
property), 1348

node_uuid (ironic.objects.port.Port property),
1399

node_uuid (ironic.objects.port.PortCRUDPayload
property), 1402

node_uuid (ironic.objects.portgroup.Portgroup
property), 1406

node_uuid (ironic.objects.portgroup.PortgroupCRUDPayload
property), 1408

node_uuid (ironic.objects.volume_connector.VolumeConnectorCRUDPayload
property), 1420

node_uuid (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

node_validator() (in module
ironic.api.controllers.v1.node), 805

node_wait_for_power_state() (in module
ironic.conductor.utils), 979

NodeAllocationController (class in
ironic.api.controllers.v1.allocation),
783

NodeAlreadyExists, 871
NodeAssociated, 871
NodeBase (class in ironic.db.sqlalchemy.models),

1031
NodeBiosController (class in

ironic.api.controllers.v1.bios), 784
NodeChildrenController (class in

ironic.api.controllers.v1.node), 794
NodeCleaningFailure, 871
NodeConsoleController (class in

ironic.api.controllers.v1.node), 794
NodeConsoleNotEnabled, 871
NodeConsoleNotification (class in

ironic.objects.node), 1370
NodeCorrectedPowerStateNotification

(class in ironic.objects.node), 1370
NodeCorrectedPowerStatePayload (class in

ironic.objects.node), 1371
NodeCRUDNotification (class in

ironic.objects.node), 1364
NodeCRUDPayload (class in ironic.objects.node),

1365
NodeFirmwareController (class in

ironic.api.controllers.v1.firmware),
792

NodeHistory (class in
ironic.db.sqlalchemy.models), 1033

NodeHistory (class in
ironic.objects.node_history), 1388

NodeHistoryController (class in
ironic.api.controllers.v1.node), 794

NodeHistoryNotFound, 872
NodeInMaintenance, 872
NodeInventory (class in

Index 1507

Ironic Documentation, Release 26.1.2.dev21

ironic.db.sqlalchemy.models), 1033
NodeInventory (class in

ironic.objects.node_inventory), 1391
NodeInventoryAlreadyExists, 872
NodeInventoryController (class in

ironic.api.controllers.v1.node), 795
NodeInventoryNotFound, 872
NodeIsRetired, 872
NodeLocked, 872
NodeMaintenanceController (class in

ironic.api.controllers.v1.node), 795
NodeMaintenanceFailure, 872
NodeMaintenanceNotification (class in

ironic.objects.node), 1374
NodeManagementController (class in

ironic.api.controllers.v1.node), 795
NodeNotFound, 872
NodeNotLocked, 872
NodePayload (class in ironic.objects.node), 1374
NodeProtected, 872
nodes (ironic.api.controllers.v1.chassis.ChassisController

attribute), 785
NodesController (class in

ironic.api.controllers.v1.node), 800
NodeServicingFailure, 872
NodeSetPowerStateNotification (class in

ironic.objects.node), 1379
NodeSetPowerStatePayload (class in

ironic.objects.node), 1379
NodeSetProvisionStateNotification (class

in ironic.objects.node), 1383
NodeSetProvisionStatePayload (class in

ironic.objects.node), 1383
NodeStatesController (class in

ironic.api.controllers.v1.node), 795
NodeTag (class in ironic.db.sqlalchemy.models),

1034
NodeTagNotFound, 872
NodeTrait (class in

ironic.db.sqlalchemy.models), 1034
NodeTraitNotFound, 872
NodeTraitsController (class in

ironic.api.controllers.v1.node), 799
NodeVendorPassthruController (class in

ironic.api.controllers.v1.node), 799
NodeVerifyFailure, 872
NodeVIFController (class in

ironic.api.controllers.v1.node), 799
NodeVmediaController (class in

ironic.api.controllers.v1.node), 800
NoDriversLoaded, 871

NoExceptionTracebackHook (class in
ironic.api.hooks), 844

NoFirmware (class in
ironic.drivers.modules.noop), 1257

NoFreeConductorWorker, 871
NoFreeIPMITerminalPorts, 871
NoFreePhysicalPorts, 871
NoInspect (class in ironic.drivers.modules.noop),

1258
non_vendor_interfaces

(ironic.drivers.base.BareDriver prop-
erty), 1280

NONE (in module ironic.common.lessee_sources),
895

NoneDHCPApi (class in ironic.dhcp.none), 1075
NoopManagement (class in

ironic.drivers.modules.noop_mgmt),
1261

NoopNetwork (class in
ironic.drivers.modules.network.noop),
1157

NoopStorage (class in
ironic.drivers.modules.storage.noop),
1188

NoRAID (class in ironic.drivers.modules.noop),
1258

NoRescue (class in ironic.drivers.modules.noop),
1259

normalize_mac() (in module
ironic.drivers.utils), 1321

NOSTATE (in module ironic.common.states), 916
NotAcceptable, 872
NotAuthorized, 872
notDetected (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
NotFound, 872
NotificationBase (class in

ironic.objects.notification), 1393
NotificationLevel (class in

ironic.objects.fields), 1350
NotificationLevelField (class in

ironic.objects.fields), 1350
NotificationPayloadBase (class in

ironic.objects.notification), 1393
NotificationPayloadError, 873
NotificationPublisher (class in

ironic.objects.notification), 1394
NotificationSchemaKeyError, 873
NotificationSchemaObjectError, 873
NotificationStatus (class in

ironic.objects.fields), 1350

1508 Index

Ironic Documentation, Release 26.1.2.dev21

NotificationStatusField (class in
ironic.objects.fields), 1351

notify_conductor_resume_clean() (in mod-
ule ironic.conductor.utils), 979

notify_conductor_resume_deploy() (in
module ironic.conductor.utils), 979

notify_conductor_resume_operation() (in
module ironic.conductor.utils), 979

notify_conductor_resume_service() (in
module ironic.conductor.utils), 979

notSet (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

NoValidDefaultForInterface, 871
NoValidHost, 871
NoVendor (class in ironic.drivers.modules.noop),

1260

O
obj (ironic.api.controllers.v1.utils.PassthruResponse

attribute), 814
OBJ_BASE_CLASS

(ironic.objects.base.IronicObjectSerializer
attribute), 1330

OBJ_PROJECT_NAMESPACE
(ironic.objects.base.IronicObject at-
tribute), 1328

obj_refresh() (ironic.objects.base.IronicObject
method), 1329

OBJ_SERIAL_NAMESPACE
(ironic.objects.base.IronicObject at-
tribute), 1328

object (ironic.objects.notification.EventType
property), 1392

object_action()
(ironic.conductor.manager.ConductorManager
method), 934

object_action()
(ironic.conductor.rpcapi.ConductorAPI
method), 958

object_action()
(ironic.objects.indirection.IronicObjectIndirectionAPI
method), 1354

object_backport_versions()
(ironic.conductor.manager.ConductorManager
method), 935

object_backport_versions()
(ironic.conductor.rpcapi.ConductorAPI
method), 958

object_backport_versions()
(ironic.objects.indirection.IronicObjectIndirectionAPI
method), 1354

object_class_action()
(ironic.objects.indirection.IronicObjectIndirectionAPI
method), 1355

object_class_action_versions()
(ironic.conductor.manager.ConductorManager
method), 935

object_class_action_versions()
(ironic.conductor.rpcapi.ConductorAPI
method), 959

object_class_action_versions()
(ironic.objects.indirection.IronicObjectIndirectionAPI
method), 1355

object_to_dict() (in module
ironic.api.controllers.v1.utils), 829

ObjectField (class in ironic.objects.fields), 1351
objects (ironic.objects.bios.BIOSSettingList

property), 1334
objects (ironic.objects.firmware.FirmwareComponentList

property), 1354
objects (ironic.objects.trait.TraitList property),

1416
ocpOff (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4

attribute), 1274
ocpOn (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4

attribute), 1274
Octal (class in ironic.conf.api), 984
OFF (in module ironic.common.indicator_states),

893
off (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU

attribute), 1275
off2on (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU

attribute), 1275
oid_device (ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitch

attribute), 1269
oid_device (ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitchPlus

attribute), 1269
oid_device (ironic.drivers.modules.snmp.SNMPDriverAPCRackPDU

attribute), 1269
oid_device (ironic.drivers.modules.snmp.SNMPDriverAten

attribute), 1269
oid_device (ironic.drivers.modules.snmp.SNMPDriverBaytechMRP27

attribute), 1271
oid_device (ironic.drivers.modules.snmp.SNMPDriverCyberPower

attribute), 1271
oid_device (ironic.drivers.modules.snmp.SNMPDriverEatonPower

attribute), 1271
oid_device (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
oid_device (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3

attribute), 1273
oid_device (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4

Index 1509

Ironic Documentation, Release 26.1.2.dev21

attribute), 1274
oid_device (ironic.drivers.modules.snmp.SNMPDriverSimple

property), 1275
oid_device (ironic.drivers.modules.snmp.SNMPDriverTeltronix

attribute), 1275
oid_device (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU

attribute), 1275
oid_enterprise

(ironic.drivers.modules.snmp.SNMPDriverBase
attribute), 1270

oid_power_action
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

oid_power_action
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

oid_power_action
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

oid_power_action
(ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1275

oid_power_status
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

oid_power_status
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

oid_power_status
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

oid_power_status
(ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1275

oid_poweroff (ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

oid_poweron (ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

oid_status (ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

oid_tower_infeed_idx
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

oid_tower_infeed_idx
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

oid_tower_infeed_idx
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

oid_tower_infeed_idx
(ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU

attribute), 1275
ok (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
ON (in module ironic.common.indicator_states),

893
on (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU

attribute), 1275
on2off (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU

attribute), 1275
on_enter() (in module ironic.common.states),

918
on_exit() (in module ironic.common.states), 918
one (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
one_button_secure_erase()

(ironic.drivers.modules.ilo.management.Ilo5Management
method), 1104

online (ironic.db.sqlalchemy.models.Conductor
attribute), 1027

online (ironic.objects.conductor.Conductor prop-
erty), 1340

online_data_migrations
ironic-dbsync command line option,

437
online_data_migrations command line

option
--help, 438
--max-count, 438
--option, 438
-h, 438

online_data_migrations()
(ironic.cmd.dbsync.DBCommand
method), 846

OperationNotPermitted, 873
optional_interfaces

(ironic.drivers.base.BareDriver prop-
erty), 1280

or_valid() (in module ironic.common.args), 851
order (ironic.db.sqlalchemy.models.RunbookStep

attribute), 1036
outOfSync (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

attribute), 1272
override_api_url() (in module

ironic.drivers.modules.image_utils),
1243

owner (ironic.db.sqlalchemy.models.Allocation at-
tribute), 1025

owner (ironic.db.sqlalchemy.models.Node at-
tribute), 1030

owner (ironic.db.sqlalchemy.models.NodeBase at-
tribute), 1032

1510 Index

Ironic Documentation, Release 26.1.2.dev21

owner (ironic.db.sqlalchemy.models.Runbook at-
tribute), 1036

owner (ironic.objects.allocation.Allocation prop-
erty), 1325

owner (ironic.objects.allocation.AllocationCRUDPayload
property), 1327

owner (ironic.objects.node.Node property), 1362
owner (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
owner (ironic.objects.node.NodeCRUDPayload

property), 1369
owner (ironic.objects.node.NodePayload prop-

erty), 1378
owner (ironic.objects.node.NodeSetPowerStatePayload

property), 1382
owner (ironic.objects.node.NodeSetProvisionStatePayload

property), 1387
owner (ironic.objects.runbook.Runbook property),

1411
owner (ironic.objects.runbook.RunbookCRUDPayload

property), 1413

P
parent_node (ironic.api.controllers.v1.node.NodesController

attribute), 803
parent_node (ironic.db.sqlalchemy.models.Node

attribute), 1030
parent_node (ironic.db.sqlalchemy.models.NodeBase

attribute), 1032
parent_node (ironic.objects.node.Node prop-

erty), 1362
ParsableErrorMiddleware (class in

ironic.api.middleware), 841
ParsableErrorMiddleware (class in

ironic.api.middleware.parsable_error),
840

parse_args() (in module ironic.common.config),
859

parse_driver_info() (in module
ironic.common.pxe_utils), 908

parse_driver_info() (in module
ironic.drivers.modules.ilo.boot), 1093

parse_driver_info() (in module
ironic.drivers.modules.ilo.common),
1097

parse_driver_info() (in module
ironic.drivers.modules.irmc.common),
1135

parse_driver_info() (in module
ironic.drivers.modules.redfish.utils),
1183

parse_headers()
(ironic.api.controllers.base.Version
static method), 838

parse_image_id() (in module
ironic.common.glance_service.service_utils),
849

parse_instance_info() (in module
ironic.drivers.modules.deploy_utils),
1219

parse_instance_info_capabilities() (in
module ironic.common.utils), 922

parse_kernel_params() (in module
ironic.common.utils), 923

parse_sleep_range() (in module
ironic.drivers.modules.fake), 1240

parse_tlv() (ironic.drivers.modules.inspector.lldp_parsers.LLDPParser
method), 1127

ParseLLDPHook (class in
ironic.drivers.modules.inspector.hooks.parse_lldp),
1119

passthru() (in module ironic.drivers.base), 1310
PassthruResponse (class in

ironic.api.controllers.v1.utils), 814
PasswordFileFailedToCreate, 873
patch() (in module ironic.common.args), 851
patch() (ironic.api.controllers.v1.allocation.AllocationsController

method), 783
patch() (ironic.api.controllers.v1.chassis.ChassisController

method), 785
patch() (ironic.api.controllers.v1.deploy_template.DeployTemplatesController

method), 788
patch() (ironic.api.controllers.v1.node.NodesController

method), 803
patch() (ironic.api.controllers.v1.port.PortsController

method), 808
patch() (ironic.api.controllers.v1.portgroup.PortgroupsController

method), 810
patch() (ironic.api.controllers.v1.runbook.RunbooksController

method), 813
patch() (ironic.api.controllers.v1.volume_connector.VolumeConnectorsController

method), 834
patch() (ironic.api.controllers.v1.volume_target.VolumeTargetsController

method), 836
patch_update_changed_fields() (in module

ironic.api.controllers.v1.utils), 829
patch_validate_allowed_fields() (in mod-

ule ironic.api.controllers.v1.utils), 830
patched_validate_with_schema() (in module

ironic.api.controllers.v1.utils), 830
PatchError, 873
PathNotFound, 873

Index 1511

Ironic Documentation, Release 26.1.2.dev21

payload (ironic.objects.allocation.AllocationCRUDNotification
property), 1326

payload (ironic.objects.chassis.ChassisCRUDNotification
property), 1338

payload (ironic.objects.deploy_template.DeployTemplateCRUDNotification
property), 1345

payload (ironic.objects.node.NodeConsoleNotification
property), 1370

payload (ironic.objects.node.NodeCorrectedPowerStateNotification
property), 1371

payload (ironic.objects.node.NodeCRUDNotification
property), 1365

payload (ironic.objects.node.NodeMaintenanceNotification
property), 1374

payload (ironic.objects.node.NodeSetPowerStateNotification
property), 1379

payload (ironic.objects.node.NodeSetProvisionStateNotification
property), 1383

payload (ironic.objects.port.PortCRUDNotification
property), 1401

payload (ironic.objects.portgroup.PortgroupCRUDNotification
property), 1407

payload (ironic.objects.runbook.RunbookCRUDNotification
property), 1412

payload (ironic.objects.volume_connector.VolumeConnectorCRUDNotification
property), 1420

payload (ironic.objects.volume_target.VolumeTargetCRUDNotification
property), 1425

PciDevicesHook (class in
ironic.drivers.modules.inspector.hooks.pci_devices),
1119

periodic() (in module
ironic.conductor.periodics), 939

physical_network
(ironic.db.sqlalchemy.models.Port
attribute), 1035

physical_network (ironic.objects.port.Port
property), 1399

physical_network
(ironic.objects.port.PortCRUDPayload
property), 1402

PhysicalNetworkHook (class in
ironic.drivers.modules.inspector.hooks.physical_network),
1119

PHYSNET_PARAM_NAME (in module
ironic.common.neutron), 897

place_common_config() (in module
ironic.common.pxe_utils), 909

place_loaders_for_boot() (in module
ironic.common.pxe_utils), 909

PlaybookNotFound, 1079

plug_port_to_tenant_network() (in module
ironic.drivers.modules.network.common),
1150

plugin_data (ironic.db.sqlalchemy.models.NodeInventory
attribute), 1034

plugin_data (ironic.objects.node_inventory.NodeInventory
property), 1392

policy_deprecation_check() (in module
ironic.api.hooks), 845

pop_node_nested_field() (in module
ironic.common.utils), 923

populate_node_uuid() (in module
ironic.api.controllers.v1.utils), 830

populate_schema()
(ironic.objects.notification.NotificationPayloadBase
method), 1394

populate_storage_driver_internal_info()
(in module
ironic.drivers.modules.deploy_utils),
1219

Port (class in ironic.db.sqlalchemy.models), 1034
Port (class in ironic.objects.port), 1395
port_changed()

(ironic.drivers.base.NetworkInterface
method), 1299

port_changed()
(ironic.drivers.modules.network.common.NeutronVIFPortIDMixin
method), 1148

port_changed()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1157

port_sanitize() (in module
ironic.api.controllers.v1.port), 808

PortAlreadyExists, 873
PortCRUDNotification (class in

ironic.objects.port), 1400
PortCRUDPayload (class in ironic.objects.port),

1401
PortDuplicateName, 873
Portgroup (class in

ironic.db.sqlalchemy.models), 1035
Portgroup (class in ironic.objects.portgroup),

1402
portgroup_changed()

(ironic.drivers.base.NetworkInterface
method), 1299

portgroup_changed()
(ironic.drivers.modules.network.common.NeutronVIFPortIDMixin
method), 1148

portgroup_changed()
(ironic.drivers.modules.network.noop.NoopNetwork

1512 Index

Ironic Documentation, Release 26.1.2.dev21

method), 1157
portgroup_id (ironic.db.sqlalchemy.models.Port

attribute), 1035
portgroup_id (ironic.objects.port.Port prop-

erty), 1399
portgroup_uuid

(ironic.objects.port.PortCRUDPayload
property), 1402

PortgroupAlreadyExists, 873
PortgroupCRUDNotification (class in

ironic.objects.portgroup), 1407
PortgroupCRUDPayload (class in

ironic.objects.portgroup), 1407
PortgroupDuplicateName, 873
PortgroupMACAlreadyExists, 873
PortgroupNotEmpty, 873
PortgroupNotFound, 873
PortgroupPhysnetInconsistent, 873
portgroups (ironic.conductor.task_manager.TaskManager

property), 970
PortgroupsController (class in

ironic.api.controllers.v1.portgroup),
809

PortNotFound, 873
ports (ironic.conductor.task_manager.TaskManager

property), 970
PortsController (class in

ironic.api.controllers.v1.port), 806
PortsHook (class in

ironic.drivers.modules.inspector.hooks.ports),
1120

post() (ironic.api.controllers.v1.allocation.AllocationsController
method), 783

post() (ironic.api.controllers.v1.chassis.ChassisController
method), 786

post() (ironic.api.controllers.v1.deploy_template.DeployTemplatesController
method), 788

post() (ironic.api.controllers.v1.event.EventsController
method), 791

post() (ironic.api.controllers.v1.node.NodesController
method), 803

post() (ironic.api.controllers.v1.node.NodeVIFController
method), 799

post() (ironic.api.controllers.v1.node.NodeVmediaController
method), 800

post() (ironic.api.controllers.v1.port.PortsController
method), 808

post() (ironic.api.controllers.v1.portgroup.PortgroupsController
method), 810

post() (ironic.api.controllers.v1.ramdisk.ContinueInspectionController
method), 810

post() (ironic.api.controllers.v1.ramdisk.HeartbeatController
method), 811

post() (ironic.api.controllers.v1.runbook.RunbooksController
method), 813

post() (ironic.api.controllers.v1.volume_connector.VolumeConnectorsController
method), 834

post() (ironic.api.controllers.v1.volume_target.VolumeTargetsController
method), 837

post_clean_step_hook() (in module
ironic.drivers.modules.agent_base),
1201

post_configuration()
(ironic.drivers.modules.redfish.bios.RedfishBIOS
method), 1160

post_create_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1178

post_delete_configuration()
(ironic.drivers.modules.drac.raid.DracRedfishRAID
method), 1084

post_delete_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1179

post_deploy_step_hook() (in module
ironic.drivers.modules.agent_base),
1202

POST_FINISHEDPOST_STATE (in module
ironic.drivers.modules.ilo.common),
1094

POST_INPOST_STATE (in module
ironic.drivers.modules.ilo.common),
1094

POST_INPOSTDISCOVERY_STATE (in module
ironic.drivers.modules.ilo.common),
1094

POST_NULL_STATE (in module
ironic.drivers.modules.ilo.common),
1094

POST_POWEROFF_STATE (in module
ironic.drivers.modules.ilo.common),
1094

post_process()
(ironic.common.image_format_inspector.FileInspector
method), 879

post_process()
(ironic.common.image_format_inspector.VHDXInspector
method), 882

post_process()
(ironic.common.image_format_inspector.VMDKInspector
method), 882

post_reset() (ironic.drivers.modules.redfish.bios.RedfishBIOS

Index 1513

Ironic Documentation, Release 26.1.2.dev21

method), 1160
POST_RESET_STATE (in module

ironic.drivers.modules.ilo.common),
1094

POST_UNKNOWN_STATE (in module
ironic.drivers.modules.ilo.common),
1094

POWER (in module ironic.common.components),
859

power (ironic.drivers.base.BareDriver attribute),
1280

power() (ironic.api.controllers.v1.node.NodeStatesController
method), 796

POWER_FAILURE (in module
ironic.common.faults), 876

power_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1030

power_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

power_interface (ironic.objects.node.Node
property), 1362

power_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

power_interface
(ironic.objects.node.NodeCRUDPayload
property), 1369

power_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

power_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

power_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

POWER_OFF (in module ironic.common.states), 916
power_off() (ironic.drivers.modules.agent_client.AgentClient

method), 1208
power_off() (ironic.drivers.modules.snmp.SNMPDriverBase

method), 1270
POWER_ON (in module ironic.common.states), 916
power_on() (ironic.drivers.modules.snmp.SNMPDriverBase

method), 1270
power_on_node_if_needed() (in module

ironic.conductor.utils), 979
power_reset() (ironic.drivers.modules.snmp.SNMPDriverBase

method), 1270
power_state (ironic.db.sqlalchemy.models.Node

attribute), 1030
power_state (ironic.db.sqlalchemy.models.NodeBase

attribute), 1032
power_state (ironic.objects.node.Node prop-

erty), 1362
power_state (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
power_state (ironic.objects.node.NodeCRUDPayload

property), 1369
power_state (ironic.objects.node.NodePayload

property), 1378
power_state (ironic.objects.node.NodeSetPowerStatePayload

property), 1382
power_state (ironic.objects.node.NodeSetProvisionStatePayload

property), 1387
power_state() (ironic.drivers.modules.snmp.SNMPDriverBase

method), 1270
power_state_error_handler() (in module

ironic.conductor.utils), 980
power_state_for_network_configuration()

(in module ironic.conductor.utils), 980
power_update() (in module

ironic.common.nova), 903
PowerInterface (class in ironic.drivers.base),

1301
PowerStateFailure, 874
pre_create_configuration()

(ironic.drivers.modules.drac.raid.DracRedfishRAID
method), 1084

pre_create_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1179

pre_delete_configuration()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1179

prepare() (ironic.drivers.base.DeployInterface
method), 1286

prepare() (ironic.drivers.modules.agent.CustomAgentDeploy
method), 1193

prepare() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1078

prepare() (ironic.drivers.modules.fake.FakeDeploy
method), 1228

prepare() (ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1264

prepare() (ironic.drivers.modules.ramdisk.RamdiskDeploy
method), 1267

prepare_agent_boot() (in module
ironic.drivers.modules.deploy_utils),
1220

prepare_boot_iso() (in module

1514 Index

Ironic Documentation, Release 26.1.2.dev21

ironic.drivers.modules.image_utils),
1243

prepare_cleaning()
(ironic.drivers.base.DeployInterface
method), 1286

prepare_cleaning()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1195

prepare_cleaning()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1078

prepare_command() (in module
ironic.common.service), 913

prepare_config_drive() (in module
ironic.common.kickstart_utils), 894

prepare_configdrive_image() (in module
ironic.drivers.modules.image_utils),
1243

prepare_deploy_iso() (in module
ironic.drivers.modules.image_utils),
1243

prepare_disk_image() (in module
ironic.drivers.modules.image_utils),
1244

prepare_floppy_image() (in module
ironic.drivers.modules.image_utils),
1244

prepare_host()
(ironic.conductor.base_manager.BaseConductorManager
method), 928

prepare_host()
(ironic.pxe_filter.service.PXEFilterManager
method), 1427

prepare_inband_cleaning() (in module
ironic.drivers.modules.deploy_utils),
1220

prepare_inband_service() (in module
ironic.drivers.modules.deploy_utils),
1220

prepare_instance()
(ironic.drivers.base.BootInterface
method), 1284

prepare_instance()
(ironic.drivers.modules.fake.FakeBoot
method), 1226

prepare_instance()
(ironic.drivers.modules.ilo.boot.IloiPXEBoot
method), 1092

prepare_instance()
(ironic.drivers.modules.ilo.boot.IloPXEBoot
method), 1087

prepare_instance()
(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1088

prepare_instance()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1090

prepare_instance()
(ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1132

prepare_instance()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1265

prepare_instance()
(ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
method), 1161

prepare_instance()
(ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
method), 1163

prepare_instance_boot()
(ironic.drivers.modules.agent.AgentDeploy
method), 1189

prepare_instance_boot()
(ironic.drivers.modules.agent.CustomAgentDeploy
method), 1193

prepare_instance_kickstart_config() (in
module ironic.common.pxe_utils), 909

prepare_instance_pxe_config() (in module
ironic.common.pxe_utils), 909

prepare_instance_to_boot()
(ironic.drivers.modules.agent_base.AgentDeployMixin
method), 1198

prepare_managed_inspection() (in module
ironic.drivers.modules.inspector.interface),
1125

prepare_node_for_deploy() (in module
ironic.drivers.modules.ilo.boot), 1093

prepare_node_for_next_step() (in module
ironic.common.async_steps), 853

prepare_ramdisk()
(ironic.drivers.base.BootInterface
method), 1284

prepare_ramdisk()
(ironic.drivers.modules.fake.FakeBoot
method), 1226

prepare_ramdisk()
(ironic.drivers.modules.ilo.boot.IloiPXEBoot
method), 1093

prepare_ramdisk()
(ironic.drivers.modules.ilo.boot.IloPXEBoot
method), 1087

prepare_ramdisk()

Index 1515

Ironic Documentation, Release 26.1.2.dev21

(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1089

prepare_ramdisk()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1091

prepare_ramdisk()
(ironic.drivers.modules.irmc.boot.IRMCPXEBoot
method), 1131

prepare_ramdisk()
(ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1132

prepare_ramdisk()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1265

prepare_ramdisk()
(ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
method), 1161

prepare_ramdisk()
(ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
method), 1164

prepare_remote_image() (in module
ironic.drivers.modules.image_utils),
1245

prepare_service() (in module
ironic.common.service), 913

prepare_service()
(ironic.drivers.base.DeployInterface
method), 1287

prepare_service()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1195

preprocess() (ironic.drivers.modules.inspector.hooks.base.InspectionHook
method), 1116

preprocess() (ironic.drivers.modules.inspector.hooks.ramdisk_error.RamdiskErrorHook
method), 1122

preprocess() (ironic.drivers.modules.inspector.hooks.validate_interfaces.ValidateInterfacesHook
method), 1123

previous_provision_state
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

previous_target_provision_state
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

priority (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

process_event() (ironic.common.fsm.FSM
method), 877

process_event()
(ironic.conductor.task_manager.TaskManager
method), 970

process_fw_on()

(ironic.drivers.modules.ilo.firmware_processor.FirmwareProcessor
method), 1102

process_launcher() (in module
ironic.common.service), 913

process_next_step()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1196

process_next_step()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1200

process_next_step()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1078

properties (ironic.db.sqlalchemy.models.Node
attribute), 1030

properties (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

properties (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

properties (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

properties (ironic.objects.node.Node property),
1362

properties (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

properties (ironic.objects.node.NodeCRUDPayload
property), 1369

properties (ironic.objects.node.NodePayload
property), 1378

properties (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

properties (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

properties (ironic.objects.portgroup.Portgroup
property), 1406

properties (ironic.objects.portgroup.PortgroupCRUDPayload
property), 1408

properties (ironic.objects.volume_target.VolumeTarget
property), 1424

properties (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

properties() (ironic.api.controllers.v1.driver.DriversController
method), 790

protected (ironic.db.sqlalchemy.models.Node
attribute), 1030

protected (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

protected (ironic.objects.node.Node property),
1362

protected (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

1516 Index

Ironic Documentation, Release 26.1.2.dev21

protected (ironic.objects.node.NodeCRUDPayload
property), 1369

protected (ironic.objects.node.NodePayload
property), 1378

protected (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

protected (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

protected_reason
(ironic.db.sqlalchemy.models.Node
attribute), 1030

protected_reason
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

protected_reason (ironic.objects.node.Node
property), 1362

protected_reason
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

protected_reason
(ironic.objects.node.NodeCRUDPayload
property), 1369

protected_reason
(ironic.objects.node.NodePayload prop-
erty), 1378

protected_reason
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

protected_reason
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

provider (ironic.common.dhcp_factory.DHCPFactory
property), 860

provision() (ironic.api.controllers.v1.node.NodeStatesController
method), 796

provision_state
(ironic.db.sqlalchemy.models.Node
attribute), 1030

provision_state
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

provision_state (ironic.objects.node.Node
property), 1362

provision_state
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

provision_state
(ironic.objects.node.NodeCRUDPayload
property), 1369

provision_state
(ironic.objects.node.NodePayload prop-

erty), 1378
provision_state

(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

provision_state
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

provision_updated_at
(ironic.db.sqlalchemy.models.Node
attribute), 1030

provision_updated_at
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

provision_updated_at
(ironic.objects.node.Node property),
1362

provision_updated_at
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

provision_updated_at
(ironic.objects.node.NodeCRUDPayload
property), 1369

provision_updated_at
(ironic.objects.node.NodePayload prop-
erty), 1378

provision_updated_at
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

provision_updated_at
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

provisioning_error_handler() (in module
ironic.conductor.utils), 980

public (ironic.db.sqlalchemy.models.Runbook at-
tribute), 1036

public (ironic.objects.runbook.Runbook prop-
erty), 1411

public (ironic.objects.runbook.RunbookCRUDPayload
property), 1413

PublicUrlHook (class in ironic.api.hooks), 845
publish() (ironic.common.image_publisher.AbstractPublisher

method), 883
publish() (ironic.common.image_publisher.LocalPublisher

method), 883
publish() (ironic.common.image_publisher.SwiftPublisher

method), 884
publish_image()

(ironic.drivers.modules.image_utils.ImageHandler
method), 1241

publisher (ironic.objects.allocation.AllocationCRUDNotification
property), 1326

Index 1517

Ironic Documentation, Release 26.1.2.dev21

publisher (ironic.objects.chassis.ChassisCRUDNotification
property), 1338

publisher (ironic.objects.deploy_template.DeployTemplateCRUDNotification
property), 1345

publisher (ironic.objects.node.NodeConsoleNotification
property), 1370

publisher (ironic.objects.node.NodeCorrectedPowerStateNotification
property), 1371

publisher (ironic.objects.node.NodeCRUDNotification
property), 1365

publisher (ironic.objects.node.NodeMaintenanceNotification
property), 1374

publisher (ironic.objects.node.NodeSetPowerStateNotification
property), 1379

publisher (ironic.objects.node.NodeSetProvisionStateNotification
property), 1383

publisher (ironic.objects.notification.NotificationBase
property), 1393

publisher (ironic.objects.port.PortCRUDNotification
property), 1401

publisher (ironic.objects.portgroup.PortgroupCRUDNotification
property), 1407

publisher (ironic.objects.runbook.RunbookCRUDNotification
property), 1412

publisher (ironic.objects.volume_connector.VolumeConnectorCRUDNotification
property), 1420

publisher (ironic.objects.volume_target.VolumeTargetCRUDNotification
property), 1425

put() (ironic.api.controllers.v1.node.BootDeviceController
method), 792

put() (ironic.api.controllers.v1.node.IndicatorController
method), 793

put() (ironic.api.controllers.v1.node.InjectNmiController
method), 793

put() (ironic.api.controllers.v1.node.NodeConsoleController
method), 794

put() (ironic.api.controllers.v1.node.NodeMaintenanceController
method), 795

put() (ironic.api.controllers.v1.node.NodeTraitsController
method), 799

PXE (in module ironic.common.boot_devices), 854
pxe_enabled (ironic.db.sqlalchemy.models.Port

attribute), 1035
pxe_enabled (ironic.objects.port.Port property),

1399
pxe_enabled (ironic.objects.port.PortCRUDPayload

property), 1402
PXEAnacondaDeploy (class in

ironic.drivers.modules.pxe), 1263
PXEBaseMixin (class in

ironic.drivers.modules.pxe_base), 1265

PXEBoot (class in ironic.drivers.modules.pxe),
1264

PXEFilterManager (class in
ironic.pxe_filter.service), 1427

Q
QcowInspector (class in

ironic.common.image_format_inspector),
880

QEDInspector (class in
ironic.common.image_format_inspector),
880

query_node_history_records_for_purge()
(ironic.db.api.Connection method), 1062

query_node_history_records_for_purge()
(ironic.db.sqlalchemy.api.Connection
method), 1014

R
raid (ironic.api.controllers.v1.driver.DriversController

attribute), 790
raid (ironic.drivers.base.BareDriver attribute),

1280
raid() (ironic.api.controllers.v1.node.NodeStatesController

method), 798
RAID_APPLY_CONFIGURATION_ARGSINFO (in

module ironic.drivers.base), 1305
raid_config (ironic.db.sqlalchemy.models.Node

attribute), 1030
raid_config (ironic.db.sqlalchemy.models.NodeBase

attribute), 1032
raid_config (ironic.objects.node.Node prop-

erty), 1362
raid_interface

(ironic.db.sqlalchemy.models.Node
attribute), 1030

raid_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

raid_interface (ironic.objects.node.Node prop-
erty), 1362

raid_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

raid_interface
(ironic.objects.node.NodeCRUDPayload
property), 1369

raid_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

raid_interface
(ironic.objects.node.NodeSetPowerStatePayload

1518 Index

Ironic Documentation, Release 26.1.2.dev21

property), 1382
raid_interface

(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

RaidDeviceHook (class in
ironic.drivers.modules.inspector.hooks.raid_device),
1121

RAIDInterface (class in ironic.drivers.base),
1303

ramdisk_ref (ironic.objects.deployment.Deployment
property), 1348

RamdiskDeploy (class in
ironic.drivers.modules.ramdisk), 1267

RamdiskErrorHook (class in
ironic.drivers.modules.inspector.hooks.ramdisk_error),
1121

read() (ironic.common.image_format_inspector.InfoWrapper
method), 880

read_iso9600_config_drive() (in module
ironic.common.kickstart_utils), 894

read_only (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

read_only (ironic.objects.bios.BIOSSetting prop-
erty), 1333

REBOOT (in module ironic.common.states), 916
reboot (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4

attribute), 1274
reboot() (ironic.drivers.base.PowerInterface

method), 1302
reboot() (ironic.drivers.modules.agent_client.AgentClient

method), 1208
reboot() (ironic.drivers.modules.agent_power.AgentPower

method), 1210
reboot() (ironic.drivers.modules.fake.FakePower

method), 1235
reboot() (ironic.drivers.modules.ilo.power.IloPower

method), 1111
reboot() (ironic.drivers.modules.ipmitool.IPMIPower

method), 1250
reboot() (ironic.drivers.modules.irmc.power.IRMCPower

method), 1145
reboot() (ironic.drivers.modules.redfish.power.RedfishPower

method), 1176
reboot() (ironic.drivers.modules.snmp.SNMPPower

method), 1276
reboot_to_finish_step() (in module

ironic.drivers.modules.deploy_utils),
1221

reboot_to_instance()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1200

reboot_to_instance()
(ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1264

rebootOff (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1275

rebootOn (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1275

REBUILD (in module ironic.common.states), 916
RedfishBIOS (class in

ironic.drivers.modules.redfish.bios),
1159

RedfishConnectionError, 874
RedfishError, 874
RedfishFirmware (class in

ironic.drivers.modules.redfish.firmware),
1165

RedfishHardware (class in
ironic.drivers.redfish), 1317

RedfishHttpsBoot (class in
ironic.drivers.modules.redfish.boot),
1160

RedfishInspect (class in
ironic.drivers.modules.redfish.inspect),
1168

RedfishManagement (class in
ironic.drivers.modules.redfish.management),
1169

RedfishPower (class in
ironic.drivers.modules.redfish.power),
1176

RedfishRAID (class in
ironic.drivers.modules.redfish.raid),
1177

RedfishVendorPassthru (class in
ironic.drivers.modules.redfish.vendor),
1184

RedfishVirtualMediaBoot (class in
ironic.drivers.modules.redfish.boot),
1162

redirect_url (ironic.common.exception.ImageRefIsARedirect
attribute), 868

refresh() (ironic.objects.allocation.Allocation
method), 1325

refresh() (ironic.objects.chassis.Chassis
method), 1337

refresh() (ironic.objects.conductor.Conductor
method), 1340

refresh() (ironic.objects.deploy_template.DeployTemplate
method), 1343

refresh() (ironic.objects.deployment.Deployment
method), 1348

Index 1519

Ironic Documentation, Release 26.1.2.dev21

refresh() (ironic.objects.node.Node method),
1362

refresh() (ironic.objects.port.Port method),
1399

refresh() (ironic.objects.portgroup.Portgroup
method), 1406

refresh() (ironic.objects.runbook.Runbook
method), 1411

refresh() (ironic.objects.volume_connector.VolumeConnector
method), 1419

refresh() (ironic.objects.volume_target.VolumeTarget
method), 1424

refresh_clean_steps()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1200

refresh_service_steps()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1200

refresh_steps()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1196

refresh_steps()
(ironic.drivers.modules.agent_base.HeartbeatMixin
method), 1200

region() (ironic.common.image_format_inspector.FileInspector
method), 879

register() (ironic.objects.conductor.Conductor
class method), 1340

register_all() (in module ironic.objects), 1427
register_auth_opts() (in module

ironic.conf.auth), 985
register_conductor()

(ironic.db.api.Connection method),
1063

register_conductor()
(ironic.db.sqlalchemy.api.Connection
method), 1014

register_conductor_hardware_interfaces()
(ironic.db.api.Connection method), 1063

register_conductor_hardware_interfaces()
(ironic.db.sqlalchemy.api.Connection
method), 1015

register_hardware_interfaces()
(ironic.objects.conductor.Conductor
method), 1340

register_opts() (in module ironic.conf.agent),
984

register_opts() (in module
ironic.conf.anaconda), 984

register_opts() (in module
ironic.conf.ansible), 984

register_opts() (in module ironic.conf.api),
984

register_opts() (in module ironic.conf.audit),
985

register_opts() (in module ironic.conf.cinder),
985

register_opts() (in module
ironic.conf.conductor), 985

register_opts() (in module
ironic.conf.console), 985

register_opts() (in module
ironic.conf.database), 985

register_opts() (in module
ironic.conf.default), 985

register_opts() (in module
ironic.conf.deploy), 986

register_opts() (in module ironic.conf.dhcp),
986

register_opts() (in module
ironic.conf.disk_utils), 986

register_opts() (in module
ironic.conf.dnsmasq), 986

register_opts() (in module ironic.conf.drac),
986

register_opts() (in module ironic.conf.fake),
986

register_opts() (in module ironic.conf.glance),
986

register_opts() (in module
ironic.conf.healthcheck), 986

register_opts() (in module ironic.conf.ilo),
987

register_opts() (in module
ironic.conf.inspector), 987

register_opts() (in module
ironic.conf.inventory), 987

register_opts() (in module ironic.conf.ipmi),
987

register_opts() (in module ironic.conf.irmc),
987

register_opts() (in module
ironic.conf.metrics), 987

register_opts() (in module
ironic.conf.metrics_statsd), 987

register_opts() (in module ironic.conf.molds),
987

register_opts() (in module
ironic.conf.neutron), 988

register_opts() (in module ironic.conf.nova),
988

register_opts() (in module ironic.conf.pxe),

1520 Index

Ironic Documentation, Release 26.1.2.dev21

988
register_opts() (in module

ironic.conf.redfish), 988
register_opts() (in module

ironic.conf.sensor_data), 988
register_opts() (in module

ironic.conf.service_catalog), 989
register_opts() (in module ironic.conf.snmp),

989
register_opts() (in module ironic.conf.swift),

989
registration_hook()

(ironic.objects.base.IronicObjectRegistry
method), 1329

registry_fields
(ironic.objects.bios.BIOSSetting at-
tribute), 1333

reject_fields_in_newer_versions() (in
module ironic.api.controllers.v1.node),
805

reject_patch_in_newer_versions() (in
module ironic.api.controllers.v1.node),
805

release() (ironic.objects.node.Node class
method), 1362

release_node() (ironic.db.api.Connection
method), 1063

release_node()
(ironic.db.sqlalchemy.api.Connection
method), 1015

release_port() (in module
ironic.drivers.modules.console_utils),
1213

release_resources()
(ironic.conductor.task_manager.TaskManager
method), 971

remove() (ironic.drivers.modules.ilo.firmware_processor.FirmwareImageLocation
method), 1102

remove_agent_url() (in module
ironic.conductor.utils), 980

remove_cleaning_network()
(ironic.drivers.base.NetworkInterface
method), 1299

remove_cleaning_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1152

remove_cleaning_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

remove_cleaning_network()
(ironic.drivers.modules.network.noop.NoopNetwork

method), 1158
remove_http_instance_symlink() (in mod-

ule ironic.drivers.modules.deploy_utils),
1221

remove_image_from_swift() (in module
ironic.drivers.modules.ilo.common),
1098

remove_image_from_web_server() (in module
ironic.drivers.modules.ilo.common),
1098

remove_inspection_network()
(ironic.drivers.base.NetworkInterface
method), 1299

remove_inspection_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1152

remove_inspection_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

remove_large_keys() (in module
ironic.common.utils), 923

remove_neutron_ports() (in module
ironic.common.neutron), 900

remove_node_flags() (in module
ironic.common.async_steps), 853

remove_node_rescue_password() (in module
ironic.conductor.utils), 980

remove_node_traits()
(ironic.conductor.manager.ConductorManager
method), 935

remove_node_traits()
(ironic.conductor.rpcapi.ConductorAPI
method), 959

remove_ports_from_network() (in module
ironic.common.neutron), 900

remove_provisioning_network()
(ironic.drivers.base.NetworkInterface
method), 1299

remove_provisioning_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1152

remove_provisioning_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

remove_provisioning_network()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1158

remove_rescuing_network()
(ironic.drivers.base.NetworkInterface
method), 1300

remove_rescuing_network()

Index 1521

Ironic Documentation, Release 26.1.2.dev21

(ironic.drivers.modules.network.flat.FlatNetwork
method), 1153

remove_rescuing_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

remove_servicing_network()
(ironic.drivers.base.NetworkInterface
method), 1300

remove_servicing_network()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1153

remove_servicing_network()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1155

remove_single_or_list_of_files()
(in module
ironic.drivers.modules.ilo.common),
1098

remove_vifs_from_node() (in module
ironic.common.network), 897

render_template() (in module
ironic.common.utils), 923

replace_node_id_with_uuid() (in module
ironic.api.controllers.v1.utils), 831

replace_node_uuid_with_id() (in module
ironic.api.controllers.v1.utils), 831

REQUEST (in module
ironic.common.lessee_sources), 895

RequestContext (class in
ironic.common.context), 859

RequestContextSerializer (class in
ironic.common.rpc), 912

require_exclusive_lock() (in module
ironic.conductor.task_manager), 972

RESCUE (in module ironic.common.states), 916
rescue (ironic.drivers.base.BareDriver attribute),

1280
rescue() (ironic.drivers.base.RescueInterface

method), 1305
rescue() (ironic.drivers.modules.agent.AgentRescue

method), 1191
rescue() (ironic.drivers.modules.fake.FakeRescue

method), 1237
rescue() (ironic.drivers.modules.noop.NoRescue

method), 1260
RESCUE_ABORT_FAILURE (in module

ironic.common.faults), 876
rescue_interface

(ironic.db.sqlalchemy.models.Node
attribute), 1030

rescue_interface

(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

rescue_interface (ironic.objects.node.Node
property), 1363

rescue_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

rescue_interface
(ironic.objects.node.NodeCRUDPayload
property), 1369

rescue_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

rescue_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

rescue_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

rescue_or_deploy_mode() (in module
ironic.drivers.modules.deploy_utils),
1221

RESCUEFAIL (in module ironic.common.states),
916

RescueInterface (class in ironic.drivers.base),
1305

RESCUEWAIT (in module ironic.common.states),
916

RESCUING (in module ironic.common.states), 916
rescuing_error_handler() (in module

ironic.conductor.utils), 980
reservation (ironic.db.sqlalchemy.models.Node

attribute), 1030
reservation (ironic.db.sqlalchemy.models.NodeBase

attribute), 1032
reservation (ironic.objects.node.Node prop-

erty), 1363
reserve() (ironic.objects.node.Node class

method), 1363
reserve_node() (ironic.db.api.Connection

method), 1064
reserve_node()

(ironic.db.sqlalchemy.api.Connection
method), 1016

reset() (in module
ironic.drivers.modules.inspector.hooks.base),
1117

reset() (ironic.common.hash_ring.HashRingManager
class method), 877

reset() (ironic.common.wsgi_service.WSGIService
method), 925

1522 Index

Ironic Documentation, Release 26.1.2.dev21

reset_bios_to_default()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1108

reset_idrac() (ironic.drivers.modules.drac.management.DracRedfishManagement
method), 1082

reset_ilo() (ironic.drivers.modules.ilo.management.IloManagement
method), 1108

reset_ilo_credential()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1108

reset_required
(ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

reset_required
(ironic.objects.bios.BIOSSetting prop-
erty), 1333

reset_secure_boot_keys_to_default()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1108

reset_secure_boot_keys_to_default()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1173

resolve_type()
(ironic.api.functions.FunctionArgument
method), 842

resolve_types()
(ironic.api.functions.FunctionDefinition
method), 842

resource_class
(ironic.db.sqlalchemy.models.Allocation
attribute), 1025

resource_class
(ironic.db.sqlalchemy.models.Node
attribute), 1030

resource_class
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

resource_class
(ironic.objects.allocation.Allocation
property), 1325

resource_class
(ironic.objects.allocation.AllocationCRUDPayload
property), 1327

resource_class (ironic.objects.node.Node prop-
erty), 1363

resource_class
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

resource_class
(ironic.objects.node.NodeCRUDPayload
property), 1369

resource_class
(ironic.objects.node.NodePayload prop-
erty), 1378

resource_class
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

resource_class
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

restore_boot_device()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1173

restore_irmc_bios_config()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1142

restore_power_state_if_needed() (in mod-
ule ironic.conductor.utils), 981

resume_cleaning()
(ironic.conductor.task_manager.TaskManager
method), 971

retired (ironic.db.sqlalchemy.models.Node at-
tribute), 1030

retired (ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

retired (ironic.objects.node.Node property),
1363

retired (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

retired (ironic.objects.node.NodeCRUDPayload
property), 1369

retired (ironic.objects.node.NodePayload prop-
erty), 1378

retired (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

retired (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

retired_reason
(ironic.db.sqlalchemy.models.Node
attribute), 1030

retired_reason
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1032

retired_reason (ironic.objects.node.Node prop-
erty), 1363

retired_reason
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

retired_reason
(ironic.objects.node.NodeCRUDPayload
property), 1369

retired_reason

Index 1523

Ironic Documentation, Release 26.1.2.dev21

(ironic.objects.node.NodePayload prop-
erty), 1378

retired_reason
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

retired_reason
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

retry_interval
(ironic.drivers.modules.snmp.SNMPDriverBase
attribute), 1270

retry_on_outdated_cache() (in module
ironic.drivers.modules.snmp), 1277

return_type (ironic.api.functions.FunctionDefinition
attribute), 842

revision
ironic-dbsync command line option,

437
revision command line option

--autogenerate, 438
--help, 438
--message, 438
-h, 438
-m, 438

revision() (in module ironic.db.migration),
1071

revision() (in module
ironic.db.sqlalchemy.migration), 1024

revision() (ironic.cmd.dbsync.DBCommand
method), 846

ring (ironic.common.hash_ring.HashRingManager
property), 877

rmtree_without_raise() (in module
ironic.common.utils), 924

rollback_ports() (in module
ironic.common.neutron), 900

root() (in module ironic.api.controllers.root),
839

root_device (ironic.objects.deployment.Deployment
property), 1348

root_gib (ironic.objects.deployment.Deployment
property), 1348

RootController (class in
ironic.api.controllers.root), 839

RootDeviceHook (class in
ironic.drivers.modules.inspector.hooks.root_device),
1122

RPC_API_VERSION
(ironic.conductor.manager.ConductorManager
attribute), 931

RPC_API_VERSION

(ironic.conductor.rpcapi.ConductorAPI
attribute), 941

RPCHook (class in ironic.api.hooks), 845
RPCService (class in ironic.cmd.pxe_filter), 847
RPCService (class in

ironic.conductor.rpc_service), 939
run_inspection_hooks() (in module

ironic.drivers.modules.inspector.agent),
1124

run_node_action() (in module
ironic.conductor.utils), 981

Runbook (class in ironic.db.sqlalchemy.models),
1035

Runbook (class in ironic.objects.runbook), 1408
runbook (ironic.db.sqlalchemy.models.RunbookStep

attribute), 1036
runbook_id (ironic.db.sqlalchemy.models.RunbookStep

attribute), 1036
runbook_sanitize() (in module

ironic.api.controllers.v1.runbook),
813

RunbookAlreadyExists, 874
RunbookCRUDNotification (class in

ironic.objects.runbook), 1412
RunbookCRUDPayload (class in

ironic.objects.runbook), 1412
RunbookDuplicateName, 874
RunbookNotFound, 874
RunbooksController (class in

ironic.api.controllers.v1.runbook),
812

RunbookStep (class in
ironic.db.sqlalchemy.models), 1036

S
SAFE (in module ironic.common.boot_devices),

854
safe_rstrip() (in module ironic.common.utils),

924
safety_check()

(ironic.common.image_format_inspector.FileInspector
method), 879

safety_check()
(ironic.common.image_format_inspector.QcowInspector
method), 880

safety_check()
(ironic.common.image_format_inspector.QEDInspector
method), 880

safety_check()
(ironic.common.image_format_inspector.VMDKInspector
method), 882

1524 Index

Ironic Documentation, Release 26.1.2.dev21

safety_check_image() (in module
ironic.common.images), 892

sanitize_dict() (in module
ironic.api.controllers.v1.utils), 831

SAS (in module ironic.common.raid), 910
SATA (in module ironic.common.raid), 910
save() (ironic.objects.allocation.Allocation

method), 1325
save() (ironic.objects.bios.BIOSSetting method),

1333
save() (ironic.objects.bios.BIOSSettingList class

method), 1334
save() (ironic.objects.chassis.Chassis method),

1337
save() (ironic.objects.conductor.Conductor

method), 1341
save() (ironic.objects.deploy_template.DeployTemplate

method), 1344
save() (ironic.objects.firmware.FirmwareComponent

method), 1353
save() (ironic.objects.node.Node method), 1363
save() (ironic.objects.port.Port method), 1400
save() (ironic.objects.portgroup.Portgroup

method), 1406
save() (ironic.objects.runbook.Runbook

method), 1411
save() (ironic.objects.volume_connector.VolumeConnector

method), 1419
save() (ironic.objects.volume_target.VolumeTarget

method), 1424
save_configuration() (in module

ironic.common.molds), 895
SCHEMA (ironic.objects.allocation.AllocationCRUDPayload

attribute), 1326
SCHEMA (ironic.objects.chassis.ChassisCRUDPayload

attribute), 1338
SCHEMA (ironic.objects.deploy_template.DeployTemplateCRUDPayload

attribute), 1345
SCHEMA (ironic.objects.node.NodeCRUDPayload

attribute), 1365
SCHEMA (ironic.objects.node.NodePayload at-

tribute), 1374
SCHEMA (ironic.objects.node.NodeSetProvisionStatePayload

attribute), 1383
SCHEMA (ironic.objects.notification.NotificationPayloadBase

attribute), 1393
SCHEMA (ironic.objects.port.PortCRUDPayload at-

tribute), 1401
SCHEMA (ironic.objects.portgroup.PortgroupCRUDPayload

attribute), 1407
SCHEMA (ironic.objects.runbook.RunbookCRUDPayload

attribute), 1412
SCHEMA (ironic.objects.volume_connector.VolumeConnectorCRUDPayload

attribute), 1420
SCHEMA (ironic.objects.volume_target.VolumeTargetCRUDPayload

attribute), 1425
schema() (in module ironic.common.args), 851
SCSI (in module ironic.common.raid), 910
second_method()

(ironic.drivers.modules.fake.FakeVendorB
method), 1240

secure_boot (ironic.db.sqlalchemy.models.Node
attribute), 1030

secure_boot (ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

secure_boot (ironic.objects.node.Node prop-
erty), 1363

secure_boot (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

secure_boot (ironic.objects.node.NodeCRUDPayload
property), 1369

secure_boot (ironic.objects.node.NodePayload
property), 1378

secure_boot (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

secure_boot (ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

secure_boot() (ironic.api.controllers.v1.node.NodeStatesController
method), 798

security_parameters_update()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1109

send_raw() (in module
ironic.drivers.modules.ipmitool), 1254

send_raw() (ironic.drivers.modules.ipmitool.VendorPassthru
method), 1253

serialize_context()
(ironic.common.rpc.RequestContextSerializer
method), 912

serialize_entity()
(ironic.common.rpc.RequestContextSerializer
method), 912

serialize_entity()
(ironic.objects.base.IronicObjectSerializer
method), 1330

SERVICE (in module ironic.common.states), 916
service (ironic.objects.notification.NotificationPublisher

property), 1394
SERVICE_FAILURE (in module

ironic.common.faults), 876
service_step (ironic.db.sqlalchemy.models.Node

attribute), 1030

Index 1525

Ironic Documentation, Release 26.1.2.dev21

service_step (ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

service_step (ironic.objects.node.Node prop-
erty), 1363

service_step() (in module ironic.drivers.base),
1310

SERVICEFAIL (in module ironic.common.states),
917

SERVICEHOLD (in module ironic.common.states),
917

ServiceUnavailable, 874
SERVICEWAIT (in module ironic.common.states),

917
SERVICING (in module ironic.common.states), 917
servicing_error_handler() (in module

ironic.conductor.utils), 981
SessionCache (class in

ironic.drivers.modules.redfish.utils),
1181

set() (ironic.drivers.modules.snmp.SNMPClient
method), 1268

set_arg_types()
(ironic.api.functions.FunctionDefinition
method), 843

set_boot_device()
(ironic.conductor.manager.ConductorManager
method), 935

set_boot_device()
(ironic.conductor.rpcapi.ConductorAPI
method), 959

set_boot_device()
(ironic.drivers.base.ManagementInterface
method), 1295

set_boot_device()
(ironic.drivers.modules.fake.FakeManagement
method), 1234

set_boot_device()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1109

set_boot_device()
(ironic.drivers.modules.ipmitool.IPMIManagement
method), 1249

set_boot_device()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1142

set_boot_device()
(ironic.drivers.modules.noop_mgmt.NoopManagement
method), 1262

set_boot_device()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1174

set_boot_mode() (in module
ironic.drivers.modules.ilo.common),
1098

set_boot_mode()
(ironic.drivers.base.ManagementInterface
method), 1295

set_boot_mode()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1109

set_boot_mode()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1143

set_boot_mode()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1174

set_console_mode()
(ironic.conductor.manager.ConductorManager
method), 935

set_console_mode()
(ironic.conductor.rpcapi.ConductorAPI
method), 960

set_defaults() (in module ironic.common.rpc),
913

set_driver_internal_info()
(ironic.objects.node.Node method),
1363

set_failed_state() (in module
ironic.drivers.modules.deploy_utils),
1221

set_global_manager() (in module
ironic.common.rpc), 913

set_indicator_state()
(ironic.conductor.manager.ConductorManager
method), 935

set_indicator_state()
(ironic.conductor.rpcapi.ConductorAPI
method), 960

set_indicator_state()
(ironic.drivers.base.ManagementInterface
method), 1296

set_indicator_state()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1143

set_indicator_state()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1175

set_instance_info()
(ironic.objects.node.Node method),
1364

set_irmc_version() (in module
ironic.drivers.modules.irmc.common),

1526 Index

Ironic Documentation, Release 26.1.2.dev21

1135
set_iscsi_boot_target()

(ironic.drivers.modules.ilo.management.IloManagement
method), 1109

set_local_link_connection()
(ironic.objects.port.Port method), 1400

set_node_cleaning_steps() (in module
ironic.conductor.steps), 967

set_node_deployment_steps() (in module
ironic.conductor.steps), 967

set_node_flags() (in module
ironic.common.async_steps), 853

set_node_nested_field() (in module
ironic.common.utils), 924

set_node_service_steps() (in module
ironic.conductor.steps), 967

set_node_tags() (ironic.db.api.Connection
method), 1064

set_node_tags()
(ironic.db.sqlalchemy.api.Connection
method), 1016

set_node_traits() (ironic.db.api.Connection
method), 1064

set_node_traits()
(ironic.db.sqlalchemy.api.Connection
method), 1016

set_options() (ironic.api.functions.FunctionDefinition
method), 843

set_power_state()
(ironic.drivers.base.PowerInterface
method), 1302

set_power_state()
(ironic.drivers.modules.agent_power.AgentPower
method), 1210

set_power_state()
(ironic.drivers.modules.fake.FakePower
method), 1235

set_power_state()
(ironic.drivers.modules.ilo.power.IloPower
method), 1112

set_power_state()
(ironic.drivers.modules.ipmitool.IPMIPower
method), 1251

set_power_state()
(ironic.drivers.modules.irmc.power.IRMCPower
method), 1145

set_power_state()
(ironic.drivers.modules.redfish.power.RedfishPower
method), 1177

set_power_state()
(ironic.drivers.modules.snmp.SNMPPower

method), 1277
set_property() (ironic.objects.node.Node

method), 1364
set_secure_boot_mode() (in module

ironic.drivers.modules.ilo.common),
1098

set_secure_boot_mode() (in module
ironic.drivers.modules.irmc.common),
1136

set_secure_boot_state()
(ironic.drivers.base.ManagementInterface
method), 1296

set_secure_boot_state()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1109

set_secure_boot_state()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1143

set_secure_boot_state()
(ironic.drivers.modules.redfish.management.RedfishManagement
method), 1175

set_spawn_error_hook()
(ironic.conductor.task_manager.TaskManager
method), 971

set_target_raid_config()
(ironic.conductor.manager.ConductorManager
method), 935

set_target_raid_config()
(ironic.conductor.rpcapi.ConductorAPI
method), 961

set_value() (ironic.drivers.modules.inspector.lldp_parsers.LLDPParser
method), 1127

setup() (in module ironic.common.profiler), 904
setup_app() (in module ironic.api.app), 841
setup_uefi_https() (in module

ironic.drivers.modules.ilo.common),
1099

setup_vmedia() (in module
ironic.drivers.modules.ilo.common),
1099

setup_vmedia_for_boot() (in module
ironic.drivers.modules.ilo.common),
1099

severity (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

severity (ironic.objects.node_history.NodeHistory
property), 1391

shard (ironic.db.sqlalchemy.models.Node at-
tribute), 1030

shard (ironic.db.sqlalchemy.models.NodeBase at-
tribute), 1033

Index 1527

Ironic Documentation, Release 26.1.2.dev21

shard (ironic.objects.node.Node property), 1364
ShardController (class in

ironic.api.controllers.v1.shard), 813
should_manage_boot()

(ironic.drivers.modules.agent.CustomAgentDeploy
method), 1193

should_manage_boot()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1196

should_manage_boot()
(ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1264

should_write_image()
(ironic.drivers.base.StorageInterface
method), 1306

should_write_image()
(ironic.drivers.modules.fake.FakeStorage
method), 1238

should_write_image()
(ironic.drivers.modules.storage.cinder.CinderStorage
method), 1186

should_write_image()
(ironic.drivers.modules.storage.external.ExternalStorage
method), 1187

should_write_image()
(ironic.drivers.modules.storage.noop.NoopStorage
method), 1188

show() (ironic.common.glance_service.image_service.GlanceImageService
method), 848

show() (ironic.common.image_service.BaseImageService
method), 884

show() (ironic.common.image_service.FileImageService
method), 885

show() (ironic.common.image_service.HttpImageService
method), 887

shutdown (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

sig (in module ironic.api.functions), 843
signature (class in ironic.api.functions), 843
simple_headers (ironic.api.app.IronicCORS at-

tribute), 841
skip_automated_cleaning() (in module

ironic.conductor.utils), 982
sleep() (in module ironic.drivers.modules.fake),

1240
SNMPClient (class in

ironic.drivers.modules.snmp), 1268
SNMPDriverAPCMasterSwitch (class in

ironic.drivers.modules.snmp), 1269
SNMPDriverAPCMasterSwitchPlus (class in

ironic.drivers.modules.snmp), 1269

SNMPDriverAPCRackPDU (class in
ironic.drivers.modules.snmp), 1269

SNMPDriverAten (class in
ironic.drivers.modules.snmp), 1269

SNMPDriverAuto (class in
ironic.drivers.modules.snmp), 1270

SNMPDriverBase (class in
ironic.drivers.modules.snmp), 1270

SNMPDriverBaytechMRP27 (class in
ironic.drivers.modules.snmp), 1270

SNMPDriverCyberPower (class in
ironic.drivers.modules.snmp), 1271

SNMPDriverEatonPower (class in
ironic.drivers.modules.snmp), 1271

SNMPDriverRaritanPDU2 (class in
ironic.drivers.modules.snmp), 1272

SNMPDriverServerTechSentry3 (class in
ironic.drivers.modules.snmp), 1273

SNMPDriverServerTechSentry4 (class in
ironic.drivers.modules.snmp), 1273

SNMPDriverSimple (class in
ironic.drivers.modules.snmp), 1274

SNMPDriverTeltronix (class in
ironic.drivers.modules.snmp), 1275

SNMPDriverVertivGeistPDU (class in
ironic.drivers.modules.snmp), 1275

SNMPFailure, 874
SNMPHardware (class in ironic.drivers.snmp),

1318
SNMPPower (class in

ironic.drivers.modules.snmp), 1276
SOFT_POWER_OFF (in module

ironic.common.states), 917
SOFT_REBOOT (in module ironic.common.states),

917
spawn_after() (ironic.conductor.task_manager.TaskManager

method), 971
spawn_cleaning_error_handler() (in module

ironic.conductor.utils), 982
spawn_deploying_error_handler() (in mod-

ule ironic.conductor.utils), 982
spawn_rescue_error_handler() (in module

ironic.conductor.utils), 982
spawn_servicing_error_handler() (in mod-

ule ironic.conductor.utils), 982
STABLE_STATES (in module

ironic.common.states), 917
stage() (in module

ironic.drivers.modules.redfish.firmware_utils),
1167

stamp

1528 Index

Ironic Documentation, Release 26.1.2.dev21

ironic-dbsync command line option,
437

stamp command line option
--help, 439
--revision, 439
-h, 439

stamp() (in module ironic.db.migration), 1071
stamp() (in module

ironic.db.sqlalchemy.migration), 1024
stamp() (ironic.cmd.dbsync.DBCommand

method), 846
standalone_ports_supported

(ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

standalone_ports_supported
(ironic.objects.portgroup.Portgroup
property), 1406

standalone_ports_supported
(ironic.objects.portgroup.PortgroupCRUDPayload
property), 1408

standard_fields
(ironic.api.controllers.v1.node.NodeHistoryController
attribute), 795

standby (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1272

START (ironic.objects.fields.NotificationStatus at-
tribute), 1351

start() (ironic.common.rpc_service.BaseRPCService
method), 913

start() (ironic.common.wsgi_service.WSGIService
method), 925

start_console()
(ironic.drivers.base.ConsoleInterface
method), 1285

start_console()
(ironic.drivers.modules.fake.FakeConsole
method), 1227

start_console()
(ironic.drivers.modules.ipmitool.IPMIShellinaboxConsole
method), 1251

start_console()
(ironic.drivers.modules.ipmitool.IPMISocatConsole
method), 1252

start_console()
(ironic.drivers.modules.noop.NoConsole
method), 1257

start_deploy() (in module
ironic.conductor.deployments), 930

start_shellinabox_console() (in module
ironic.drivers.modules.console_utils),
1213

start_socat_console() (in module
ironic.drivers.modules.console_utils),
1213

state (ironic.db.sqlalchemy.models.Allocation at-
tribute), 1025

state (ironic.objects.allocation.Allocation prop-
erty), 1325

state (ironic.objects.allocation.AllocationCRUDPayload
property), 1327

state (ironic.objects.deployment.Deployment
property), 1349

states (ironic.api.controllers.v1.node.NodesController
attribute), 804

status (ironic.objects.notification.EventType
property), 1392

status_closed (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

status_code (ironic.api.controllers.v1.utils.PassthruResponse
attribute), 814

status_code (ironic.api.functions.FunctionDefinition
attribute), 843

status_normal (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

status_off (ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

status_off (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

status_off (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

status_off (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

status_off_wait
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

status_on (ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

status_on (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

status_on (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

status_on (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

status_on_wait
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

status_open (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

status_pending_off
(ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

status_pending_on

Index 1529

Ironic Documentation, Release 26.1.2.dev21

(ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1271

status_pendOff
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

status_pendOn (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

step (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

step (ironic.db.sqlalchemy.models.RunbookStep
attribute), 1036

step_error_handler() (in module
ironic.drivers.modules.deploy_utils),
1221

step_id() (in module ironic.conductor.steps),
968

step_sanitize() (in module
ironic.api.controllers.v1.deploy_template),
789

step_sanitize() (in module
ironic.api.controllers.v1.runbook),
813

steps (ironic.db.sqlalchemy.models.DeployTemplate
attribute), 1027

steps (ironic.db.sqlalchemy.models.Runbook at-
tribute), 1036

steps (ironic.objects.deploy_template.DeployTemplate
property), 1344

steps (ironic.objects.deploy_template.DeployTemplateCRUDPayload
property), 1345

steps (ironic.objects.runbook.Runbook property),
1411

steps (ironic.objects.runbook.RunbookCRUDPayload
property), 1413

Stop, 938
stop() (ironic.cmd.pxe_filter.RPCService

method), 847
stop() (ironic.common.wsgi_service.WSGIService

method), 925
stop() (ironic.conductor.rpc_service.RPCService

method), 939
stop_after_retries() (in module

ironic.common.utils), 924
stop_console()

(ironic.drivers.base.ConsoleInterface
method), 1285

stop_console()
(ironic.drivers.modules.fake.FakeConsole
method), 1227

stop_console()
(ironic.drivers.modules.ipmitool.IPMIShellinaboxConsole

method), 1252
stop_console()

(ironic.drivers.modules.ipmitool.IPMISocatConsole
method), 1252

stop_console()
(ironic.drivers.modules.noop.NoConsole
method), 1257

stop_shellinabox_console() (in module
ironic.drivers.modules.console_utils),
1213

stop_socat_console() (in module
ironic.drivers.modules.console_utils),
1213

storage (ironic.drivers.base.BareDriver at-
tribute), 1280

storage_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1030

storage_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

storage_interface (ironic.objects.node.Node
property), 1364

storage_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

storage_interface
(ironic.objects.node.NodeCRUDPayload
property), 1369

storage_interface
(ironic.objects.node.NodePayload prop-
erty), 1378

storage_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

storage_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

StorageError, 874
StorageInterface (class in ironic.drivers.base),

1306
StorageInterfaceFactory (class in

ironic.common.driver_factory), 861
store_agent_certificate() (in module

ironic.conductor.utils), 982
store_inspection_data() (in module

ironic.drivers.modules.inspect_utils),
1247

store_ramdisk_logs() (in module
ironic.drivers.utils), 1321

string (ironic.api.controllers.base.Version

1530 Index

Ironic Documentation, Release 26.1.2.dev21

attribute), 838
string() (in module ironic.common.args), 852
string_list() (in module ironic.common.args),

852
StringAcceptsCallable (class in

ironic.objects.fields), 1351
StringField (class in ironic.objects.fields), 1351
StringFieldThatAcceptsCallable (class in

ironic.objects.fields), 1351
STUCK_STATES_TREATED_AS_FAIL (in module

ironic.common.states), 917
SUCCESS (ironic.objects.fields.NotificationStatus

attribute), 1351
supported (ironic.drivers.base.BaseInterface at-

tribute), 1283
supported (ironic.drivers.hardware_type.AbstractHardwareType

attribute), 1314
supported (ironic.drivers.modules.drac.bios.DracRedfishBIOS

attribute), 1079
supported (ironic.drivers.modules.drac.power.DracRedfishPower

attribute), 1083
supported (ironic.drivers.modules.drac.vendor_passthru.DracRedfishVendorPassthru

attribute), 1085
supported() (ironic.api.controllers.v1.node.BootDeviceController

method), 792
supported_bios_interfaces

(ironic.drivers.drac.IDRACHardware
property), 1311

supported_bios_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_bios_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1314

supported_bios_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1315

supported_bios_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_bios_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1317

supported_boot_interfaces
(ironic.drivers.drac.IDRACHardware
property), 1312

supported_boot_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_boot_interfaces
(ironic.drivers.generic.GenericHardware

property), 1313
supported_boot_interfaces

(ironic.drivers.hardware_type.AbstractHardwareType
property), 1314

supported_boot_interfaces
(ironic.drivers.ilo.Ilo5Hardware prop-
erty), 1315

supported_boot_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1315

supported_boot_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_boot_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1317

SUPPORTED_BOOT_MODE_LEGACY_BIOS_AND_UEFI
(in module
ironic.drivers.modules.ilo.common),
1094

SUPPORTED_BOOT_MODE_LEGACY_BIOS_ONLY
(in module
ironic.drivers.modules.ilo.common),
1094

SUPPORTED_BOOT_MODE_UEFI_ONLY (in module
ironic.drivers.modules.ilo.common),
1094

supported_console_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_console_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1314

supported_console_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1315

supported_console_interfaces
(ironic.drivers.ipmi.IPMIHardware
property), 1316

supported_console_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_deploy_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_deploy_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_deploy_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1314

Index 1531

Ironic Documentation, Release 26.1.2.dev21

supported_firmware_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_firmware_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_firmware_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1314

supported_firmware_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1317

supported_inspect_interfaces
(ironic.drivers.drac.IDRACHardware
property), 1312

supported_inspect_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_inspect_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_inspect_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1314

supported_inspect_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1316

supported_inspect_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_inspect_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1317

supported_management_interfaces
(ironic.drivers.drac.IDRACHardware
property), 1312

supported_management_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_management_interfaces
(ironic.drivers.generic.ManualManagementHardware
property), 1314

supported_management_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_management_interfaces
(ironic.drivers.ilo.Ilo5Hardware prop-
erty), 1315

supported_management_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1316

supported_management_interfaces
(ironic.drivers.intel_ipmi.IntelIPMIHardware
property), 1316

supported_management_interfaces
(ironic.drivers.ipmi.IPMIHardware
property), 1316

supported_management_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_management_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1317

supported_management_interfaces
(ironic.drivers.snmp.SNMPHardware
property), 1318

supported_network_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_network_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_power_interfaces
(ironic.drivers.drac.IDRACHardware
property), 1312

supported_power_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1312

supported_power_interfaces
(ironic.drivers.generic.ManualManagementHardware
property), 1314

supported_power_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_power_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1316

supported_power_interfaces
(ironic.drivers.ipmi.IPMIHardware
property), 1316

supported_power_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_power_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1318

supported_power_interfaces
(ironic.drivers.snmp.SNMPHardware
property), 1318

supported_raid_interfaces
(ironic.drivers.drac.IDRACHardware
property), 1312

1532 Index

Ironic Documentation, Release 26.1.2.dev21

supported_raid_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1313

supported_raid_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_raid_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_raid_interfaces
(ironic.drivers.ilo.Ilo5Hardware prop-
erty), 1315

supported_raid_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_raid_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1318

supported_rescue_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1313

supported_rescue_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_rescue_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_storage_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1313

supported_storage_interfaces
(ironic.drivers.generic.GenericHardware
property), 1313

supported_storage_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_vendor_interfaces
(ironic.drivers.drac.IDRACHardware
property), 1312

supported_vendor_interfaces
(ironic.drivers.fake_hardware.FakeHardware
property), 1313

supported_vendor_interfaces
(ironic.drivers.generic.ManualManagementHardware
property), 1314

supported_vendor_interfaces
(ironic.drivers.hardware_type.AbstractHardwareType
property), 1315

supported_vendor_interfaces
(ironic.drivers.ilo.IloHardware prop-
erty), 1316

supported_vendor_interfaces
(ironic.drivers.ipmi.IPMIHardware
property), 1316

supported_vendor_interfaces
(ironic.drivers.irmc.IRMCHardware
property), 1317

supported_vendor_interfaces
(ironic.drivers.redfish.RedfishHardware
property), 1318

supports_ipxe_tag()
(ironic.dhcp.base.BaseDHCP method),
1071

supports_ipxe_tag()
(ironic.dhcp.dnsmasq.DnsmasqDHCPApi
method), 1073

supports_ipxe_tag()
(ironic.dhcp.neutron.NeutronDHCPApi
method), 1074

supports_is_smartnic()
(ironic.objects.port.Port class method),
1400

supports_physical_network()
(ironic.objects.port.Port class method),
1400

supports_power_sync()
(ironic.drivers.base.PowerInterface
method), 1302

supports_power_sync()
(ironic.drivers.modules.agent_power.AgentPower
method), 1210

supports_version()
(ironic.objects.base.IronicObject class
method), 1329

swap_mib (ironic.objects.deployment.Deployment
property), 1349

swift_temp_url()
(ironic.common.glance_service.image_service.GlanceImageService
method), 848

SwiftAPI (class in ironic.common.swift), 918
SwiftObjectNotFoundError, 874
SwiftObjectStillExists, 874
SwiftOperationError, 874
SwiftPublisher (class in

ironic.common.image_publisher), 884
switch_pxe_config() (in module

ironic.drivers.modules.deploy_utils),
1221

switch_to_tenant_network()
(ironic.drivers.modules.agent_base.AgentOobStepsMixin
method), 1199

sync() (in module ironic.pxe_filter.dnsmasq),

Index 1533

Ironic Documentation, Release 26.1.2.dev21

1427
sync() (ironic.drivers.modules.agent_client.AgentClient

method), 1209
sync_boot_mode() (in module

ironic.drivers.modules.boot_mode_utils),
1212

sync_firmware_components()
(ironic.objects.firmware.FirmwareComponentList
class method), 1354

sync_node_setting()
(ironic.objects.bios.BIOSSettingList
class method), 1335

SYS_OBJ_OID (ironic.drivers.modules.snmp.SNMPDriverAuto
attribute), 1270

SYSTEM (in module ironic.common.components),
859

system_id (ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitch
attribute), 1269

system_id (ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitchPlus
attribute), 1269

system_id (ironic.drivers.modules.snmp.SNMPDriverAPCRackPDU
attribute), 1269

system_id (ironic.drivers.modules.snmp.SNMPDriverAten
attribute), 1269

system_id (ironic.drivers.modules.snmp.SNMPDriverCyberPower
attribute), 1271

system_id (ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1272

system_id (ironic.drivers.modules.snmp.SNMPDriverTeltronix
attribute), 1275

T
table_args() (in module

ironic.db.sqlalchemy.models), 1037
tag (ironic.db.sqlalchemy.models.NodeTag

attribute), 1034
tags (ironic.db.sqlalchemy.models.Node at-

tribute), 1030
take_over() (ironic.drivers.base.DeployInterface

method), 1287
take_over() (ironic.drivers.modules.agent_base.AgentBaseMixin

method), 1196
take_over() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy

method), 1078
take_over() (ironic.drivers.modules.fake.FakeDeploy

method), 1229
take_over_allocation()

(ironic.db.api.Connection method),
1065

take_over_allocation()
(ironic.db.sqlalchemy.api.Connection

method), 1016
target (ironic.conductor.manager.ConductorManager

attribute), 935
target_power_state

(ironic.db.sqlalchemy.models.Node
attribute), 1030

target_power_state
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

target_power_state (ironic.objects.node.Node
property), 1364

target_power_state
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

target_power_state
(ironic.objects.node.NodeCRUDPayload
property), 1369

target_power_state
(ironic.objects.node.NodePayload prop-
erty), 1378

target_power_state
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

target_power_state
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1387

target_provision_state
(ironic.db.sqlalchemy.models.Node
attribute), 1030

target_provision_state
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

target_provision_state
(ironic.objects.node.Node property),
1364

target_provision_state
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1373

target_provision_state
(ironic.objects.node.NodeCRUDPayload
property), 1369

target_provision_state
(ironic.objects.node.NodePayload prop-
erty), 1378

target_provision_state
(ironic.objects.node.NodeSetPowerStatePayload
property), 1382

target_provision_state
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1388

target_raid_config

1534 Index

Ironic Documentation, Release 26.1.2.dev21

(ironic.db.sqlalchemy.models.Node
attribute), 1031

target_raid_config
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

target_raid_config (ironic.objects.node.Node
property), 1364

target_state (ironic.common.fsm.FSM prop-
erty), 877

TaskManager (class in
ironic.conductor.task_manager), 970

tear_down() (ironic.drivers.base.DeployInterface
method), 1287

tear_down() (ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1196

tear_down() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1078

tear_down() (ironic.drivers.modules.fake.FakeDeploy
method), 1229

tear_down_agent()
(ironic.drivers.modules.agent_base.AgentDeployMixin
method), 1198

tear_down_agent()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1078

tear_down_cleaning()
(ironic.drivers.base.DeployInterface
method), 1288

tear_down_cleaning()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1197

tear_down_cleaning()
(ironic.drivers.modules.ansible.deploy.AnsibleDeploy
method), 1079

tear_down_inband_cleaning() (in module
ironic.drivers.modules.deploy_utils),
1222

tear_down_inband_service() (in module
ironic.drivers.modules.deploy_utils),
1222

tear_down_managed_boot() (in module
ironic.drivers.modules.inspector.interface),
1125

tear_down_service()
(ironic.drivers.base.DeployInterface
method), 1288

tear_down_service()
(ironic.drivers.modules.agent_base.AgentBaseMixin
method), 1197

tear_down_storage_configuration()
(in module

ironic.drivers.modules.deploy_utils),
1222

tempdir() (in module ironic.common.utils), 924
template_sanitize() (in module

ironic.api.controllers.v1.deploy_template),
789

TemporaryFailure, 874
TempUrlCacheElement (class in

ironic.common.glance_service.image_service),
849

TFTPImageCache (class in
ironic.common.pxe_utils), 904

third_method_sync()
(ironic.drivers.modules.fake.FakeVendorB
method), 1240

timestamp_driver_internal_info()
(ironic.objects.node.Node method),
1364

to_dict() (ironic.common.context.RequestContext
method), 860

to_event_type_field()
(ironic.objects.notification.EventType
method), 1393

to_policy_values()
(ironic.common.context.RequestContext
method), 860

to_power (ironic.objects.node.NodeSetPowerStatePayload
property), 1382

topic (ironic.pxe_filter.service.PXEFilterManager
attribute), 1427

touch() (ironic.objects.conductor.Conductor
method), 1341

touch_conductor() (ironic.db.api.Connection
method), 1065

touch_conductor()
(ironic.db.sqlalchemy.api.Connection
method), 1017

touch_node_provisioning()
(ironic.db.api.Connection method),
1065

touch_node_provisioning()
(ironic.db.sqlalchemy.api.Connection
method), 1017

touch_provisioning()
(ironic.objects.node.Node method),
1364

trace_cls() (in module ironic.common.profiler),
904

TraceDisabled (class in
ironic.common.image_format_inspector),
881

Index 1535

Ironic Documentation, Release 26.1.2.dev21

Trait (class in ironic.objects.trait), 1413
trait (ironic.db.sqlalchemy.models.NodeTrait at-

tribute), 1034
trait (ironic.objects.trait.Trait property), 1414
TraitList (class in ironic.objects.trait), 1414
traits (ironic.db.sqlalchemy.models.Allocation

attribute), 1025
traits (ironic.db.sqlalchemy.models.Node

attribute), 1031
traits (ironic.objects.allocation.Allocation prop-

erty), 1325
traits (ironic.objects.allocation.AllocationCRUDPayload

property), 1327
traits (ironic.objects.node.Node property), 1364
traits (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1373
traits (ironic.objects.node.NodeCRUDPayload

property), 1369
traits (ironic.objects.node.NodePayload prop-

erty), 1378
traits (ironic.objects.node.NodeSetPowerStatePayload

property), 1382
traits (ironic.objects.node.NodeSetProvisionStatePayload

property), 1388
transform_header()

(ironic.api.middleware.json_ext.JsonExtensionMiddleware
method), 840

transform_header()
(ironic.api.middleware.JsonExtensionMiddleware
method), 841

translate_from_glance() (in module
ironic.common.glance_service.service_utils),
849

trigger_servicewait()
(ironic.drivers.modules.fake.FakeVendorB
method), 1240

try_set_boot_device() (in module
ironic.drivers.modules.deploy_utils),
1222

two (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

type (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1037

type (ironic.objects.volume_connector.VolumeConnector
property), 1419

type (ironic.objects.volume_connector.VolumeConnectorCRUDPayload
property), 1421

types() (in module ironic.common.args), 852

U
UEFI (in module ironic.common.boot_modes), 855

UEFIHTTP (in module
ironic.common.boot_devices), 854

unavailable (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

unavailable (ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1276

unbind_neutron_port() (in module
ironic.common.neutron), 900

unconfigure_tenant_networks()
(ironic.drivers.base.NetworkInterface
method), 1300

unconfigure_tenant_networks()
(ironic.drivers.modules.network.flat.FlatNetwork
method), 1153

unconfigure_tenant_networks()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1156

unconfigure_tenant_networks()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1158

UNDEPLOY (in module ironic.common.states), 917
unique (ironic.db.sqlalchemy.models.BIOSSetting

attribute), 1026
unique (ironic.objects.bios.BIOSSetting prop-

erty), 1333
unit_id (ironic.drivers.modules.snmp.SNMPDriverBaytechMRP27

attribute), 1271
unix_file_modification_datetime() (in

module ironic.common.utils), 924
UNKNOWN (in module

ironic.common.indicator_states), 893
UnknownArgument, 874
UnknownAttribute, 874
unpublish() (ironic.common.image_publisher.AbstractPublisher

method), 883
unpublish() (ironic.common.image_publisher.LocalPublisher

method), 884
unpublish() (ironic.common.image_publisher.SwiftPublisher

method), 884
unpublish_image()

(ironic.drivers.modules.image_utils.ImageHandler
method), 1242

unpublish_image_for_node()
(ironic.drivers.modules.image_utils.ImageHandler
class method), 1242

unregister() (ironic.objects.conductor.Conductor
method), 1341

unregister_all_hardware_interfaces()
(ironic.objects.conductor.Conductor
method), 1341

unregister_conductor()

1536 Index

Ironic Documentation, Release 26.1.2.dev21

(ironic.db.api.Connection method),
1065

unregister_conductor()
(ironic.db.sqlalchemy.api.Connection
method), 1017

unregister_conductor_hardware_interfaces()
(ironic.db.api.Connection method), 1066

unregister_conductor_hardware_interfaces()
(ironic.db.sqlalchemy.api.Connection
method), 1017

unrescue() (ironic.drivers.base.RescueInterface
method), 1305

unrescue() (ironic.drivers.modules.agent.AgentRescue
method), 1191

unrescue() (ironic.drivers.modules.fake.FakeRescue
method), 1237

unrescue() (ironic.drivers.modules.noop.NoRescue
method), 1260

UNRESCUEFAIL (in module ironic.common.states),
917

UNRESCUING (in module ironic.common.states),
917

unset_node_tags() (ironic.db.api.Connection
method), 1066

unset_node_tags()
(ironic.db.sqlalchemy.api.Connection
method), 1018

unset_node_traits()
(ironic.db.api.Connection method),
1066

unset_node_traits()
(ironic.db.sqlalchemy.api.Connection
method), 1018

UNSTABLE_STATES (in module
ironic.common.states), 917

UnsupportedDriverExtension, 875
UnsupportedHardwareFeature, 875
update() (in module ironic.pxe_filter.dnsmasq),

1427
update() (ironic.drivers.base.FirmwareInterface

method), 1288
update() (ironic.drivers.modules.fake.FakeFirmware

method), 1230
update() (ironic.drivers.modules.noop.NoFirmware

method), 1258
update() (ironic.drivers.modules.redfish.firmware.RedfishFirmware

method), 1166
update_allocation()

(ironic.db.api.Connection method),
1066

update_allocation()

(ironic.db.sqlalchemy.api.Connection
method), 1018

UPDATE_ALLOWED_STATES (in module
ironic.common.states), 917

update_auth_failure_logging_threshold()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1110

update_bios_setting_list()
(ironic.db.api.Connection method),
1066

update_bios_setting_list()
(ironic.db.sqlalchemy.api.Connection
method), 1018

update_boot_mode() (in module
ironic.drivers.modules.ilo.common),
1100

update_chassis() (ironic.db.api.Connection
method), 1067

update_chassis()
(ironic.db.sqlalchemy.api.Connection
method), 1019

update_cipher_suite_cmd() (in module
ironic.drivers.modules.ipmitool), 1255

update_deploy_template()
(ironic.db.api.Connection method),
1067

update_deploy_template()
(ironic.db.sqlalchemy.api.Connection
method), 1019

update_dhcp() (ironic.common.dhcp_factory.DHCPFactory
method), 860

update_dhcp_opts()
(ironic.dhcp.base.BaseDHCP method),
1072

update_dhcp_opts()
(ironic.dhcp.dnsmasq.DnsmasqDHCPApi
method), 1073

update_dhcp_opts()
(ironic.dhcp.neutron.NeutronDHCPApi
method), 1074

update_dhcp_opts()
(ironic.dhcp.none.NoneDHCPApi
method), 1076

update_driver_config()
(ironic.drivers.modules.image_utils.ImageHandler
method), 1242

update_firmware()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1110

update_firmware()
(ironic.drivers.modules.redfish.management.RedfishManagement

Index 1537

Ironic Documentation, Release 26.1.2.dev21

method), 1175
update_firmware_component()

(ironic.db.api.Connection class method),
1068

update_firmware_component()
(ironic.db.sqlalchemy.api.Connection
method), 1019

update_firmware_sum()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1110

update_image_type() (in module
ironic.conductor.utils), 982

update_ipmi_properties() (in module
ironic.drivers.modules.ilo.common),
1100

update_ipmi_properties() (in module
ironic.drivers.modules.irmc.common),
1136

update_minimum_password_length()
(ironic.drivers.modules.ilo.management.IloManagement
method), 1110

update_neutron_port() (in module
ironic.common.neutron), 901

update_next_step_index() (in module
ironic.conductor.utils), 982

update_node() (ironic.conductor.manager.ConductorManager
method), 935

update_node() (ironic.conductor.rpcapi.ConductorAPI
method), 961

update_node() (ironic.db.api.Connection
method), 1068

update_node() (ironic.db.sqlalchemy.api.Connection
method), 1020

update_opt_defaults() (in module
ironic.conf.opts), 988

update_port() (ironic.conductor.manager.ConductorManager
method), 935

update_port() (ironic.conductor.rpcapi.ConductorAPI
method), 962

update_port() (ironic.db.api.Connection
method), 1068

update_port() (ironic.db.sqlalchemy.api.Connection
method), 1020

update_port_address() (in module
ironic.common.neutron), 901

update_port_dhcp_opts()
(ironic.dhcp.base.BaseDHCP method),
1072

update_port_dhcp_opts()
(ironic.dhcp.dnsmasq.DnsmasqDHCPApi
method), 1074

update_port_dhcp_opts()
(ironic.dhcp.neutron.NeutronDHCPApi
method), 1075

update_port_dhcp_opts()
(ironic.dhcp.none.NoneDHCPApi
method), 1076

update_portgroup()
(ironic.conductor.manager.ConductorManager
method), 935

update_portgroup()
(ironic.conductor.rpcapi.ConductorAPI
method), 962

update_portgroup() (ironic.db.api.Connection
method), 1069

update_portgroup()
(ironic.db.sqlalchemy.api.Connection
method), 1021

update_ports() (in module
ironic.drivers.modules.inspector.hooks.ports),
1120

update_raid_config() (in module
ironic.drivers.modules.redfish.raid),
1181

update_raid_info() (in module
ironic.common.raid), 911

update_redfish_properties() (in module
ironic.drivers.modules.ilo.common),
1100

update_runbook() (ironic.db.api.Connection
method), 1069

update_runbook()
(ironic.db.sqlalchemy.api.Connection
method), 1021

update_state_in_older_versions() (in
module ironic.api.controllers.v1.node),
805

update_to_latest_versions()
(ironic.db.api.Connection method),
1069

update_to_latest_versions()
(ironic.db.sqlalchemy.api.Connection
method), 1021

update_volume_connector()
(ironic.conductor.manager.ConductorManager
method), 936

update_volume_connector()
(ironic.conductor.rpcapi.ConductorAPI
method), 962

update_volume_connector()
(ironic.db.api.Connection method),
1070

1538 Index

Ironic Documentation, Release 26.1.2.dev21

update_volume_connector()
(ironic.db.sqlalchemy.api.Connection
method), 1022

update_volume_target()
(ironic.conductor.manager.ConductorManager
method), 936

update_volume_target()
(ironic.conductor.rpcapi.ConductorAPI
method), 963

update_volume_target()
(ironic.db.api.Connection method),
1070

update_volume_target()
(ironic.db.sqlalchemy.api.Connection
method), 1022

updated_at (ironic.db.sqlalchemy.models.Allocation
attribute), 1025

updated_at (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

updated_at (ironic.db.sqlalchemy.models.Chassis
attribute), 1026

updated_at (ironic.db.sqlalchemy.models.Conductor
attribute), 1027

updated_at (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces
attribute), 1027

updated_at (ironic.db.sqlalchemy.models.DeployTemplate
attribute), 1027

updated_at (ironic.db.sqlalchemy.models.DeployTemplateStep
attribute), 1028

updated_at (ironic.db.sqlalchemy.models.FirmwareComponent
attribute), 1028

updated_at (ironic.db.sqlalchemy.models.Node
attribute), 1031

updated_at (ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

updated_at (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

updated_at (ironic.db.sqlalchemy.models.NodeInventory
attribute), 1034

updated_at (ironic.db.sqlalchemy.models.NodeTag
attribute), 1034

updated_at (ironic.db.sqlalchemy.models.NodeTrait
attribute), 1034

updated_at (ironic.db.sqlalchemy.models.Port
attribute), 1035

updated_at (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

updated_at (ironic.db.sqlalchemy.models.Runbook
attribute), 1036

updated_at (ironic.db.sqlalchemy.models.RunbookStep
attribute), 1036

updated_at (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1037

updated_at (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

updated_at (ironic.objects.allocation.Allocation
property), 1325

updated_at (ironic.objects.allocation.AllocationCRUDNotification
property), 1326

updated_at (ironic.objects.allocation.AllocationCRUDPayload
property), 1327

updated_at (ironic.objects.bios.BIOSSetting
property), 1333

updated_at (ironic.objects.bios.BIOSSettingList
property), 1335

updated_at (ironic.objects.chassis.Chassis prop-
erty), 1337

updated_at (ironic.objects.chassis.ChassisCRUDNotification
property), 1338

updated_at (ironic.objects.chassis.ChassisCRUDPayload
property), 1338

updated_at (ironic.objects.conductor.Conductor
property), 1341

updated_at (ironic.objects.deploy_template.DeployTemplate
property), 1344

updated_at (ironic.objects.deploy_template.DeployTemplateCRUDNotification
property), 1345

updated_at (ironic.objects.deploy_template.DeployTemplateCRUDPayload
property), 1345

updated_at (ironic.objects.deployment.Deployment
property), 1349

updated_at (ironic.objects.firmware.FirmwareComponent
property), 1353

updated_at (ironic.objects.firmware.FirmwareComponentList
property), 1354

updated_at (ironic.objects.node.Node property),
1364

updated_at (ironic.objects.node.NodeConsoleNotification
property), 1370

updated_at (ironic.objects.node.NodeCorrectedPowerStateNotification
property), 1371

updated_at (ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1374

updated_at (ironic.objects.node.NodeCRUDNotification
property), 1365

updated_at (ironic.objects.node.NodeCRUDPayload
property), 1370

updated_at (ironic.objects.node.NodeMaintenanceNotification
property), 1374

updated_at (ironic.objects.node.NodePayload
property), 1378

updated_at (ironic.objects.node.NodeSetPowerStateNotification

Index 1539

Ironic Documentation, Release 26.1.2.dev21

property), 1379
updated_at (ironic.objects.node.NodeSetPowerStatePayload

property), 1383
updated_at (ironic.objects.node.NodeSetProvisionStateNotification

property), 1383
updated_at (ironic.objects.node.NodeSetProvisionStatePayload

property), 1388
updated_at (ironic.objects.node_history.NodeHistory

property), 1391
updated_at (ironic.objects.node_inventory.NodeInventory

property), 1392
updated_at (ironic.objects.notification.EventType

property), 1393
updated_at (ironic.objects.notification.NotificationBase

property), 1393
updated_at (ironic.objects.notification.NotificationPayloadBase

property), 1394
updated_at (ironic.objects.notification.NotificationPublisher

property), 1394
updated_at (ironic.objects.port.Port property),

1400
updated_at (ironic.objects.port.PortCRUDNotification

property), 1401
updated_at (ironic.objects.port.PortCRUDPayload

property), 1402
updated_at (ironic.objects.portgroup.Portgroup

property), 1406
updated_at (ironic.objects.portgroup.PortgroupCRUDNotification

property), 1407
updated_at (ironic.objects.portgroup.PortgroupCRUDPayload

property), 1408
updated_at (ironic.objects.runbook.Runbook

property), 1411
updated_at (ironic.objects.runbook.RunbookCRUDNotification

property), 1412
updated_at (ironic.objects.runbook.RunbookCRUDPayload

property), 1413
updated_at (ironic.objects.trait.Trait property),

1414
updated_at (ironic.objects.trait.TraitList prop-

erty), 1416
updated_at (ironic.objects.volume_connector.VolumeConnector

property), 1419
updated_at (ironic.objects.volume_connector.VolumeConnectorCRUDNotification

property), 1420
updated_at (ironic.objects.volume_connector.VolumeConnectorCRUDPayload

property), 1421
updated_at (ironic.objects.volume_target.VolumeTarget

property), 1425
updated_at (ironic.objects.volume_target.VolumeTargetCRUDNotification

property), 1425

updated_at (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

upgrade
ironic-dbsync command line option,

437
upgrade command line option

--help, 439
--revision, 439
-h, 439

upgrade() (in module ironic.db.migration), 1071
upgrade() (in module

ironic.db.sqlalchemy.migration), 1025
upgrade() (ironic.cmd.dbsync.DBCommand

method), 846
upgrade_lock()

(ironic.conductor.task_manager.TaskManager
method), 971

upper_bound (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

upper_bound (ironic.objects.bios.BIOSSetting
property), 1333

url (ironic.common.glance_service.image_service.TempUrlCacheElement
attribute), 849

url_expires_at
(ironic.common.glance_service.image_service.TempUrlCacheElement
attribute), 849

use_reserved_step_handler() (in module
ironic.conductor.steps), 968

user (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

user (ironic.objects.node_history.NodeHistory
property), 1391

uuid (ironic.db.sqlalchemy.models.Allocation at-
tribute), 1025

uuid (ironic.db.sqlalchemy.models.Chassis
attribute), 1026

uuid (ironic.db.sqlalchemy.models.DeployTemplate
attribute), 1027

uuid (ironic.db.sqlalchemy.models.Node at-
tribute), 1031

uuid (ironic.db.sqlalchemy.models.NodeBase at-
tribute), 1033

uuid (ironic.db.sqlalchemy.models.NodeHistory
attribute), 1033

uuid (ironic.db.sqlalchemy.models.Port attribute),
1035

uuid (ironic.db.sqlalchemy.models.Portgroup at-
tribute), 1035

uuid (ironic.db.sqlalchemy.models.Runbook at-
tribute), 1036

uuid (ironic.db.sqlalchemy.models.VolumeConnector

1540 Index

Ironic Documentation, Release 26.1.2.dev21

attribute), 1037
uuid (ironic.db.sqlalchemy.models.VolumeTarget

attribute), 1037
uuid (ironic.objects.allocation.Allocation prop-

erty), 1325
uuid (ironic.objects.allocation.AllocationCRUDPayload

property), 1327
uuid (ironic.objects.chassis.Chassis property),

1337
uuid (ironic.objects.chassis.ChassisCRUDPayload

property), 1338
uuid (ironic.objects.deploy_template.DeployTemplate

property), 1344
uuid (ironic.objects.deploy_template.DeployTemplateCRUDPayload

property), 1345
uuid (ironic.objects.deployment.Deployment

property), 1349
uuid (ironic.objects.node.Node property), 1364
uuid (ironic.objects.node.NodeCorrectedPowerStatePayload

property), 1374
uuid (ironic.objects.node.NodeCRUDPayload

property), 1370
uuid (ironic.objects.node.NodePayload property),

1379
uuid (ironic.objects.node.NodeSetPowerStatePayload

property), 1383
uuid (ironic.objects.node.NodeSetProvisionStatePayload

property), 1388
uuid (ironic.objects.node_history.NodeHistory

property), 1391
uuid (ironic.objects.port.Port property), 1400
uuid (ironic.objects.port.PortCRUDPayload

property), 1402
uuid (ironic.objects.portgroup.Portgroup prop-

erty), 1406
uuid (ironic.objects.portgroup.PortgroupCRUDPayload

property), 1408
uuid (ironic.objects.runbook.Runbook property),

1412
uuid (ironic.objects.runbook.RunbookCRUDPayload

property), 1413
uuid (ironic.objects.volume_connector.VolumeConnector

property), 1419
uuid (ironic.objects.volume_connector.VolumeConnectorCRUDPayload

property), 1421
uuid (ironic.objects.volume_target.VolumeTarget

property), 1425
uuid (ironic.objects.volume_target.VolumeTargetCRUDPayload

property), 1426
uuid() (in module ironic.common.args), 852
uuid_or_name() (in module

ironic.common.args), 853
UUIDField (class in ironic.objects.fields), 1351

V
validate() (in module ironic.common.args), 853
validate() (ironic.api.controllers.v1.node.NodesController

method), 804
validate() (ironic.drivers.base.BaseInterface

method), 1283
validate() (ironic.drivers.base.NetworkInterface

method), 1300
validate() (ironic.drivers.base.RAIDInterface

method), 1304
validate() (ironic.drivers.base.VendorInterface

method), 1307
validate() (ironic.drivers.modules.agent.AgentDeploy

method), 1189
validate() (ironic.drivers.modules.agent.AgentRescue

method), 1192
validate() (ironic.drivers.modules.agent.CustomAgentDeploy

method), 1193
validate() (ironic.drivers.modules.agent_power.AgentPower

method), 1211
validate() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy

method), 1079
validate() (ironic.drivers.modules.fake.FakeBIOS

method), 1225
validate() (ironic.drivers.modules.fake.FakeBoot

method), 1226
validate() (ironic.drivers.modules.fake.FakeConsole

method), 1227
validate() (ironic.drivers.modules.fake.FakeDeploy

method), 1229
validate() (ironic.drivers.modules.fake.FakeFirmware

method), 1230
validate() (ironic.drivers.modules.fake.FakeInspect

method), 1231
validate() (ironic.drivers.modules.fake.FakeManagement

method), 1234
validate() (ironic.drivers.modules.fake.FakePower

method), 1236
validate() (ironic.drivers.modules.fake.FakeRescue

method), 1237
validate() (ironic.drivers.modules.fake.FakeStorage

method), 1238
validate() (ironic.drivers.modules.fake.FakeVendorA

method), 1239
validate() (ironic.drivers.modules.fake.FakeVendorB

method), 1240
validate() (ironic.drivers.modules.ilo.bios.IloBIOS

method), 1086

Index 1541

Ironic Documentation, Release 26.1.2.dev21

validate() (ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1089

validate() (ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1091

validate() (ironic.drivers.modules.ilo.console.IloConsoleInterface
method), 1101

validate() (ironic.drivers.modules.ilo.inspect.IloInspect
method), 1103

validate() (ironic.drivers.modules.ilo.management.IloManagement
method), 1110

validate() (ironic.drivers.modules.ilo.power.IloPower
method), 1112

validate() (ironic.drivers.modules.ilo.vendor.VendorPassthru
method), 1114

validate() (ironic.drivers.modules.inspector.interface.Common
method), 1125

validate() (ironic.drivers.modules.ipmitool.IPMIConsole
method), 1247

validate() (ironic.drivers.modules.ipmitool.IPMIManagement
method), 1249

validate() (ironic.drivers.modules.ipmitool.IPMIPower
method), 1251

validate() (ironic.drivers.modules.ipmitool.VendorPassthru
method), 1253

validate() (ironic.drivers.modules.irmc.bios.IRMCBIOS
method), 1130

validate() (ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1133

validate() (ironic.drivers.modules.irmc.inspect.IRMCInspect
method), 1137

validate() (ironic.drivers.modules.irmc.management.IRMCManagement
method), 1144

validate() (ironic.drivers.modules.irmc.power.IRMCPower
method), 1145

validate() (ironic.drivers.modules.irmc.vendor.IRMCVendorPassthru
method), 1147

validate() (ironic.drivers.modules.network.flat.FlatNetwork
method), 1153

validate() (ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1156

validate() (ironic.drivers.modules.noop.FailMixin
method), 1256

validate() (ironic.drivers.modules.noop_mgmt.NoopManagement
method), 1263

validate() (ironic.drivers.modules.pxe.PXEAnacondaDeploy
method), 1264

validate() (ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1266

validate() (ironic.drivers.modules.ramdisk.RamdiskDeploy
method), 1267

validate() (ironic.drivers.modules.redfish.bios.RedfishBIOS

method), 1160
validate() (ironic.drivers.modules.redfish.boot.RedfishHttpsBoot

method), 1162
validate() (ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot

method), 1164
validate() (ironic.drivers.modules.redfish.firmware.RedfishFirmware

method), 1166
validate() (ironic.drivers.modules.redfish.inspect.RedfishInspect

method), 1168
validate() (ironic.drivers.modules.redfish.management.RedfishManagement

method), 1175
validate() (ironic.drivers.modules.redfish.power.RedfishPower

method), 1177
validate() (ironic.drivers.modules.redfish.vendor.RedfishVendorPassthru

method), 1185
validate() (ironic.drivers.modules.snmp.SNMPPower

method), 1277
validate() (ironic.drivers.modules.storage.cinder.CinderStorage

method), 1186
validate() (ironic.drivers.modules.storage.external.ExternalStorage

method), 1187
validate() (ironic.drivers.modules.storage.noop.NoopStorage

method), 1188
validate() (ironic.drivers.utils.MixinVendorInterface

method), 1318
validate_and_normalize_datapath_id() (in

module ironic.common.utils), 924
validate_and_normalize_mac() (in module

ironic.common.utils), 924
validate_capabilities() (in module

ironic.drivers.modules.deploy_utils),
1223

validate_checksum() (in module
ironic.common.checksum_utils), 856

validate_conductor_group() (in module
ironic.common.utils), 925

validate_configuration() (in module
ironic.common.raid), 911

validate_deploy_steps() (in module
ironic.conductor.deployments), 930

validate_driver_interfaces()
(ironic.conductor.manager.ConductorManager
method), 936

validate_driver_interfaces()
(ironic.conductor.rpcapi.ConductorAPI
method), 963

validate_firmware_interface_update_args()
(in module
ironic.drivers.modules.redfish.firmware_utils),
1167

validate_href()

1542 Index

Ironic Documentation, Release 26.1.2.dev21

(ironic.common.image_service.BaseImageService
method), 885

validate_href()
(ironic.common.image_service.FileImageService
method), 885

validate_href()
(ironic.common.image_service.HttpImageService
method), 887

validate_http_provisioning_configuration()
(in module ironic.drivers.modules.agent),
1194

validate_image_properties() (in module
ironic.drivers.modules.deploy_utils),
1223

validate_image_proxies() (in module
ironic.drivers.modules.agent), 1194

validate_inspection()
(ironic.common.neutron.NeutronNetworkInterfaceMixin
method), 897

validate_inspection()
(ironic.drivers.base.BootInterface
method), 1284

validate_inspection()
(ironic.drivers.base.NetworkInterface
method), 1300

validate_inspection()
(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1089

validate_inspection()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1092

validate_inspection()
(ironic.drivers.modules.network.noop.NoopNetwork
method), 1158

validate_inspection()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1266

validate_inspection()
(ironic.drivers.modules.redfish.boot.RedfishHttpsBoot
method), 1162

validate_inspection()
(ironic.drivers.modules.redfish.boot.RedfishVirtualMediaBoot
method), 1164

validate_inspection_hooks() (in module
ironic.drivers.modules.inspector.hooks.base),
1117

validate_instance_info_traits() (in mod-
ule ironic.conductor.utils), 982

validate_interfaces() (in module
ironic.drivers.modules.inspector.hooks.validate_interfaces),
1123

validate_kickstart_file() (in module
ironic.common.pxe_utils), 910

validate_kickstart_template() (in module
ironic.common.pxe_utils), 910

validate_limit() (in module
ironic.api.controllers.v1.utils), 831

validate_network() (in module
ironic.common.neutron), 901

validate_network_data() (in module
ironic.api.controllers.v1.node), 805

validate_network_port() (in module
ironic.common.utils), 925

validate_node() (in module
ironic.conductor.deployments), 930

validate_port_info() (in module
ironic.common.neutron), 901

validate_port_physnet() (in module
ironic.conductor.utils), 982

validate_raid_config()
(ironic.drivers.base.RAIDInterface
method), 1304

validate_raid_config()
(ironic.drivers.modules.noop.NoRAID
method), 1259

validate_raid_config()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1179

validate_rescue()
(ironic.drivers.base.BootInterface
method), 1284

validate_rescue()
(ironic.drivers.base.NetworkInterface
method), 1301

validate_rescue()
(ironic.drivers.modules.ilo.boot.IloUefiHttpsBoot
method), 1090

validate_rescue()
(ironic.drivers.modules.ilo.boot.IloVirtualMediaBoot
method), 1092

validate_rescue()
(ironic.drivers.modules.irmc.boot.IRMCVirtualMediaBoot
method), 1133

validate_rescue()
(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1156

validate_rescue()
(ironic.drivers.modules.pxe_base.PXEBaseMixin
method), 1266

validate_security_parameter_values()
(in module
ironic.drivers.modules.ilo.common),

Index 1543

Ironic Documentation, Release 26.1.2.dev21

1100
validate_servicing()

(ironic.drivers.modules.network.neutron.NeutronNetwork
method), 1156

validate_sort_dir() (in module
ironic.api.controllers.v1.utils), 831

validate_update_firmware_args()
(in module
ironic.drivers.modules.redfish.firmware_utils),
1167

validate_user_deploy_steps_and_templates()
(in module ironic.conductor.steps), 968

ValidateInterfacesHook (class in
ironic.drivers.modules.inspector.hooks.validate_interfaces),
1122

value (ironic.db.sqlalchemy.models.BIOSSetting
attribute), 1026

value (ironic.objects.bios.BIOSSetting property),
1333

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitch
attribute), 1269

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitchPlus
attribute), 1269

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverAPCRackPDU
attribute), 1269

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverAten
attribute), 1270

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverBaytechMRP27
attribute), 1271

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverCyberPower
attribute), 1271

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1272

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverSimple

property), 1275
value_power_off

(ironic.drivers.modules.snmp.SNMPDriverTeltronix
attribute), 1275

value_power_off
(ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1276

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitch
attribute), 1269

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverAPCMasterSwitchPlus
attribute), 1269

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverAPCRackPDU
attribute), 1269

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverAten
attribute), 1270

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverBaytechMRP27
attribute), 1271

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverCyberPower
attribute), 1271

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverEatonPower
attribute), 1272

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2
attribute), 1273

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry3
attribute), 1273

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverSimple
property), 1275

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverTeltronix
attribute), 1275

value_power_on
(ironic.drivers.modules.snmp.SNMPDriverVertivGeistPDU
attribute), 1276

value_within_timeout() (in module
ironic.conductor.utils), 983

VDIInspector (class in
ironic.common.image_format_inspector),
881

1544 Index

Ironic Documentation, Release 26.1.2.dev21

vendor (ironic.drivers.base.BareDriver attribute),
1280

vendor_interface
(ironic.db.sqlalchemy.models.Node
attribute), 1031

vendor_interface
(ironic.db.sqlalchemy.models.NodeBase
attribute), 1033

vendor_interface (ironic.objects.node.Node
property), 1364

vendor_interface
(ironic.objects.node.NodeCorrectedPowerStatePayload
property), 1374

vendor_interface
(ironic.objects.node.NodeCRUDPayload
property), 1370

vendor_interface
(ironic.objects.node.NodePayload prop-
erty), 1379

vendor_interface
(ironic.objects.node.NodeSetPowerStatePayload
property), 1383

vendor_interface
(ironic.objects.node.NodeSetProvisionStatePayload
property), 1388

vendor_passthru
(ironic.api.controllers.v1.driver.DriversController
attribute), 790

vendor_passthru
(ironic.api.controllers.v1.node.NodesController
attribute), 804

vendor_passthru() (in module
ironic.api.controllers.v1.utils), 831

vendor_passthru()
(ironic.conductor.manager.ConductorManager
method), 936

vendor_passthru()
(ironic.conductor.rpcapi.ConductorAPI
method), 963

VendorInterface (class in ironic.drivers.base),
1306

VendorMetadata (class in ironic.drivers.base),
1307

VendorPassthru (class in
ironic.drivers.modules.ilo.vendor),
1114

VendorPassthru (class in
ironic.drivers.modules.ipmitool), 1253

VendorPassthruException, 875
VERBS (in module ironic.common.states), 917
verify_basic_auth_cred_format()

(ironic.common.image_service.HttpImageService
static method), 887

verify_checksum() (in module
ironic.drivers.modules.redfish.firmware_utils),
1167

verify_firmware_update_args() (in module
ironic.drivers.modules.ilo.firmware_processor),
1103

verify_http_https_connection_and_fw_version()
(ironic.drivers.modules.irmc.management.IRMCManagement
method), 1144

verify_image_checksum() (in module
ironic.drivers.modules.ilo.common),
1101

verify_node_for_deallocation() (in module
ironic.conductor.allocations), 926

verify_step() (in module ironic.drivers.base),
1311

VERIFYING (in module ironic.common.states), 918
verifying_error_handler() (in module

ironic.conductor.utils), 983
version

ironic-dbsync command line option,
437

Version (class in ironic.api.controllers.base), 838
version (ironic.db.sqlalchemy.models.Allocation

attribute), 1025
version (ironic.db.sqlalchemy.models.BIOSSetting

attribute), 1026
version (ironic.db.sqlalchemy.models.Chassis at-

tribute), 1026
version (ironic.db.sqlalchemy.models.Conductor

attribute), 1027
version (ironic.db.sqlalchemy.models.ConductorHardwareInterfaces

attribute), 1027
version (ironic.db.sqlalchemy.models.DeployTemplate

attribute), 1027
version (ironic.db.sqlalchemy.models.DeployTemplateStep

attribute), 1028
version (ironic.db.sqlalchemy.models.FirmwareComponent

attribute), 1028
version (ironic.db.sqlalchemy.models.IronicBase

attribute), 1028
version (ironic.db.sqlalchemy.models.Node at-

tribute), 1031
version (ironic.db.sqlalchemy.models.NodeBase

attribute), 1033
version (ironic.db.sqlalchemy.models.NodeHistory

attribute), 1033
version (ironic.db.sqlalchemy.models.NodeInventory

attribute), 1034

Index 1545

Ironic Documentation, Release 26.1.2.dev21

version (ironic.db.sqlalchemy.models.NodeTag
attribute), 1034

version (ironic.db.sqlalchemy.models.NodeTrait
attribute), 1034

version (ironic.db.sqlalchemy.models.Port
attribute), 1035

version (ironic.db.sqlalchemy.models.Portgroup
attribute), 1035

version (ironic.db.sqlalchemy.models.Runbook
attribute), 1036

version (ironic.db.sqlalchemy.models.RunbookStep
attribute), 1036

version (ironic.db.sqlalchemy.models.VolumeConnector
attribute), 1037

version (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

VERSION (ironic.objects.allocation.Allocation at-
tribute), 1321

VERSION (ironic.objects.allocation.AllocationCRUDNotification
attribute), 1325

VERSION (ironic.objects.allocation.AllocationCRUDPayload
attribute), 1326

VERSION (ironic.objects.bios.BIOSSetting at-
tribute), 1330

VERSION (ironic.objects.bios.BIOSSettingList at-
tribute), 1333

VERSION (ironic.objects.chassis.Chassis at-
tribute), 1335

VERSION (ironic.objects.chassis.ChassisCRUDNotification
attribute), 1337

VERSION (ironic.objects.chassis.ChassisCRUDPayload
attribute), 1338

VERSION (ironic.objects.conductor.Conductor at-
tribute), 1339

VERSION (ironic.objects.deploy_template.DeployTemplate
attribute), 1341

VERSION (ironic.objects.deploy_template.DeployTemplateCRUDNotification
attribute), 1344

VERSION (ironic.objects.deploy_template.DeployTemplateCRUDPayload
attribute), 1345

VERSION (ironic.objects.deployment.Deployment
attribute), 1346

VERSION (ironic.objects.firmware.FirmwareComponent
attribute), 1352

VERSION (ironic.objects.firmware.FirmwareComponentList
attribute), 1353

VERSION (ironic.objects.node.Node attribute),
1356

VERSION (ironic.objects.node.NodeConsoleNotification
attribute), 1370

VERSION (ironic.objects.node.NodeCorrectedPowerStateNotification

attribute), 1370
VERSION (ironic.objects.node.NodeCorrectedPowerStatePayload

attribute), 1371
VERSION (ironic.objects.node.NodeCRUDNotification

attribute), 1365
VERSION (ironic.objects.node.NodeCRUDPayload

attribute), 1366
VERSION (ironic.objects.node.NodeMaintenanceNotification

attribute), 1374
VERSION (ironic.objects.node.NodePayload

attribute), 1375
VERSION (ironic.objects.node.NodeSetPowerStateNotification

attribute), 1379
VERSION (ironic.objects.node.NodeSetPowerStatePayload

attribute), 1379
VERSION (ironic.objects.node.NodeSetProvisionStateNotification

attribute), 1383
VERSION (ironic.objects.node.NodeSetProvisionStatePayload

attribute), 1384
VERSION (ironic.objects.node_history.NodeHistory

attribute), 1388
VERSION (ironic.objects.node_inventory.NodeInventory

attribute), 1391
VERSION (ironic.objects.notification.EventType at-

tribute), 1392
VERSION (ironic.objects.notification.NotificationBase

attribute), 1393
VERSION (ironic.objects.notification.NotificationPayloadBase

attribute), 1394
VERSION (ironic.objects.notification.NotificationPublisher

attribute), 1394
VERSION (ironic.objects.port.Port attribute), 1395
VERSION (ironic.objects.port.PortCRUDNotification

attribute), 1401
VERSION (ironic.objects.port.PortCRUDPayload

attribute), 1401
VERSION (ironic.objects.portgroup.Portgroup at-

tribute), 1402
VERSION (ironic.objects.portgroup.PortgroupCRUDNotification

attribute), 1407
VERSION (ironic.objects.portgroup.PortgroupCRUDPayload

attribute), 1407
VERSION (ironic.objects.runbook.Runbook at-

tribute), 1408
VERSION (ironic.objects.runbook.RunbookCRUDNotification

attribute), 1412
VERSION (ironic.objects.runbook.RunbookCRUDPayload

attribute), 1412
VERSION (ironic.objects.trait.Trait attribute), 1413
VERSION (ironic.objects.trait.TraitList attribute),

1414

1546 Index

Ironic Documentation, Release 26.1.2.dev21

VERSION (ironic.objects.volume_connector.VolumeConnector
attribute), 1416

VERSION (ironic.objects.volume_connector.VolumeConnectorCRUDNotification
attribute), 1419

VERSION (ironic.objects.volume_connector.VolumeConnectorCRUDPayload
attribute), 1420

VERSION (ironic.objects.volume_target.VolumeTarget
attribute), 1421

VERSION (ironic.objects.volume_target.VolumeTargetCRUDNotification
attribute), 1425

VERSION (ironic.objects.volume_target.VolumeTargetCRUDPayload
attribute), 1426

version command line option
--help, 440
-h, 440

version() (in module ironic.db.migration), 1071
version() (in module

ironic.db.sqlalchemy.migration), 1025
version() (ironic.cmd.dbsync.DBCommand

method), 846
VersionSelectorApplication (class in

ironic.api.app), 841
VHDInspector (class in

ironic.common.image_format_inspector),
881

VHDX_METADATA_TABLE_MAX_SIZE
(ironic.common.image_format_inspector.VHDXInspector
attribute), 881

VHDXInspector (class in
ironic.common.image_format_inspector),
881

vif_attach() (ironic.conductor.manager.ConductorManager
method), 936

vif_attach() (ironic.conductor.rpcapi.ConductorAPI
method), 964

vif_attach() (ironic.drivers.base.NetworkInterface
method), 1301

vif_attach() (ironic.drivers.modules.network.common.NeutronVIFPortIDMixin
method), 1148

vif_attach() (ironic.drivers.modules.network.noop.NoopNetwork
method), 1158

vif_detach() (ironic.conductor.manager.ConductorManager
method), 936

vif_detach() (ironic.conductor.rpcapi.ConductorAPI
method), 965

vif_detach() (ironic.drivers.base.NetworkInterface
method), 1301

vif_detach() (ironic.drivers.modules.network.common.NeutronVIFPortIDMixin
method), 1149

vif_detach() (ironic.drivers.modules.network.noop.NoopNetwork
method), 1158

vif_list() (ironic.conductor.manager.ConductorManager
method), 936

vif_list() (ironic.conductor.rpcapi.ConductorAPI
method), 965

vif_list() (ironic.drivers.base.NetworkInterface
method), 1301

vif_list() (ironic.drivers.modules.network.common.VIFPortIDMixin
method), 1149

vif_list() (ironic.drivers.modules.network.noop.NoopNetwork
method), 1158

VifAlreadyAttached, 875
VifInvalidForAttach, 875
VifNotAttached, 875
VIFPortIDMixin (class in

ironic.drivers.modules.network.common),
1149

VIRTUAL_DISK_SIZE
(ironic.common.image_format_inspector.VHDXInspector
attribute), 881

VIRTUAL_MEDIA_DEVICES
(ironic.drivers.modules.drac.boot.DracRedfishVirtualMediaBoot
attribute), 1080

virtual_size (ironic.common.image_format_inspector.FileInspector
property), 879

virtual_size (ironic.common.image_format_inspector.ISOInspector
property), 879

virtual_size (ironic.common.image_format_inspector.QcowInspector
property), 881

virtual_size (ironic.common.image_format_inspector.VDIInspector
property), 881

virtual_size (ironic.common.image_format_inspector.VHDInspector
property), 881

virtual_size (ironic.common.image_format_inspector.VHDXInspector
property), 882

virtual_size (ironic.common.image_format_inspector.VMDKInspector
property), 882

VMDKInspector (class in
ironic.common.image_format_inspector),
882

VMEDIA_DEVICES (in module
ironic.common.boot_devices), 854

volume_connectors
(ironic.conductor.task_manager.TaskManager
property), 972

volume_create_error_handler()
(ironic.drivers.modules.redfish.raid.RedfishRAID
method), 1180

volume_id (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

volume_id (ironic.objects.volume_target.VolumeTarget
property), 1425

Index 1547

Ironic Documentation, Release 26.1.2.dev21

volume_id (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

volume_targets
(ironic.conductor.task_manager.TaskManager
property), 972

volume_type (ironic.db.sqlalchemy.models.VolumeTarget
attribute), 1037

volume_type (ironic.objects.volume_target.VolumeTarget
property), 1425

volume_type (ironic.objects.volume_target.VolumeTargetCRUDPayload
property), 1426

VolumeConnector (class in
ironic.db.sqlalchemy.models), 1036

VolumeConnector (class in
ironic.objects.volume_connector),
1416

VolumeConnectorAlreadyExists, 875
VolumeConnectorCRUDNotification (class in

ironic.objects.volume_connector), 1419
VolumeConnectorCRUDPayload (class in

ironic.objects.volume_connector), 1420
VolumeConnectorNotFound, 875
VolumeConnectorsController (class in

ironic.api.controllers.v1.volume_connector),
832

VolumeConnectorTypeAndIdAlreadyExists,
875

VolumeController (class in
ironic.api.controllers.v1.volume), 832

VolumeTarget (class in
ironic.db.sqlalchemy.models), 1037

VolumeTarget (class in
ironic.objects.volume_target), 1421

VolumeTargetAlreadyExists, 875
VolumeTargetBootIndexAlreadyExists, 875
VolumeTargetCRUDNotification (class in

ironic.objects.volume_target), 1425
VolumeTargetCRUDPayload (class in

ironic.objects.volume_target), 1425
VolumeTargetNotFound, 875
VolumeTargetsController (class in

ironic.api.controllers.v1.volume_target),
835

W
wait() (ironic.common.wsgi_service.WSGIService

method), 925
wait_for_host_agent() (in module

ironic.common.neutron), 902
wait_for_port_status() (in module

ironic.common.neutron), 902

wait_for_start()
(ironic.common.rpc_service.BaseRPCService
method), 913

wait_until_get_system_ready() (in module
ironic.drivers.modules.redfish.utils),
1183

wakeOff (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

wakeOn (ironic.drivers.modules.snmp.SNMPDriverServerTechSentry4
attribute), 1274

WANBOOT (in module
ironic.common.boot_devices), 854

warn_about_max_wait_parameters() (in
module ironic.cmd.conductor), 846

warn_about_sqlite() (in module
ironic.cmd.conductor), 846

warn_about_unsafe_shred_parameters() (in
module ironic.cmd.conductor), 846

WARNING (ironic.objects.fields.NotificationLevel
attribute), 1350

warning() (ironic.common.image_format_inspector.TraceDisabled
method), 881

wipe_cleaning_internal_info() (in module
ironic.conductor.utils), 983

wipe_deploy_internal_info() (in module
ironic.conductor.utils), 983

wipe_internal_info_on_power_off() (in
module ironic.conductor.utils), 984

wipe_service_internal_info() (in module
ironic.conductor.utils), 984

wipe_token_and_url() (in module
ironic.conductor.utils), 984

within_version_ranges() (in module
ironic.drivers.modules.irmc.common),
1136

wrap_ipv6() (in module ironic.common.utils),
925

wrap_sqlite_retry() (in module
ironic.db.sqlalchemy.api), 1024

wrapfunc() (in module ironic.api.functions), 843
write_image() (ironic.drivers.modules.agent.AgentDeploy

method), 1189
write_image() (ironic.drivers.modules.ansible.deploy.AnsibleDeploy

method), 1079
write_to_file() (in module

ironic.common.utils), 925
WSGIService (class in

ironic.common.wsgi_service), 925

Y
yes (ironic.drivers.modules.snmp.SNMPDriverRaritanPDU2

1548 Index

Ironic Documentation, Release 26.1.2.dev21

attribute), 1273

Index 1549

	Introduction
	Installation Guide
	Bare Metal Service Installation Guide
	Bare Metal service overview
	Bare Metal service components
	Deployment architecture
	Interaction with OpenStack components
	Logical architecture
	Associated projects

	Reference Deploy Architectures
	Common Considerations
	Components
	Hardware and drivers
	Power and management interfaces
	Boot interface
	Hardware specifications

	Image types
	Networking
	HA and Scalability
	ironic-api
	ironic-conductor
	High availability
	Performance
	Disk space
	Other services

	Scenarios
	Small cloud with trusted tenants
	Story
	Components
	Node roles
	Networking
	Control plane network
	Public network
	Bare metal network
	Management network
	Controllers
	Bare Metal services
	Shared services
	Bare metal nodes
	Storage

	Install and configure the Bare Metal service
	Install and configure for Red Hat Enterprise Linux and CentOS
	Install and configure for Ubuntu
	Install and configure for openSUSE and SUSE Linux Enterprise
	Install and configure prerequisites
	Set up the database for Bare Metal
	Running on SQLite

	Install and configure components
	Configuring ironic-api service
	Configuring ironic-api behind mod_wsgi
	Configure another WSGI container
	Configuring ironic-conductor service
	Configuring single-process ironic

	Building or downloading a deploy ramdisk image
	Building from source

	Integration with other OpenStack services
	Configure the Identity service for the Bare Metal service
	Configure the Compute service to use the Bare Metal service
	Configure the Networking service for bare metal provisioning
	Configuring services for bare metal provisioning using IPv6
	Configure ironic PXE driver for provisioning using IPv6 addressing
	Provisioning with IPv6 stateless addressing
	Creating networks and subnets in the Networking Service
	Provisioning with IPv6 stateful addressing
	Using the flat network interface
	Using the neutron network interface
	Creating networks and subnets in the Networking Service

	Configure the Image service for temporary URLs
	Enabling HTTPS
	Enabling HTTPS in Swift
	Enabling HTTPS in Image service
	Enabling HTTPS communication between Image service and Object storage
	Enabling HTTPS communication between Image service and Bare Metal service

	Configure the Bare Metal service for cleaning
	Configure tenant networks
	Add images to the Image service
	Supported Image Formats
	Instance (end-user) images
	Deploy ramdisk images

	Create flavors for use with the Bare Metal service
	Example
	Scheduling based on traits
	Example

	Set up the drivers for the Bare Metal service
	Enabling drivers and hardware types
	Introduction
	Enabling hardware types
	Enabling hardware interfaces
	Hardware interfaces in multi-conductor environments
	Configuring interface defaults

	Configuring Network Boot
	DHCP server setup
	TFTP server setup
	UEFI PXE - Grub setup
	iPXE setup
	PXE multi-architecture setup
	PXE timeouts tuning
	PXE artifacts
	Configuring unmanaged in-band inspection
	With PXE
	With iPXE

	HTTPBoot

	Configuring IPMI support
	Installing ipmitool command
	Configuring hardware
	Validation and troubleshooting
	IPMI configuration
	Collecting sensor data

	Configuring an ESP image

	Enrolling hardware with Ironic
	Choosing a driver
	Note on API versions
	Enrollment process
	Creating a node
	Adding scheduling information
	Validating node information
	Making node available for deployment
	Mapping nodes to Compute cells

	Logical names
	Defaults for hardware interfaces
	Example

	Hardware Inspection
	Tenant Networks and Port Groups

	Using Bare Metal service as a standalone service
	Configuration
	Service settings
	Using CLI

	Enrollment
	Preparing images
	Enrolling nodes

	Deploying

	Enabling the configuration drive (configdrive)
	When used with Compute service
	When used standalone
	Configuration drive storage in an object store
	Accessing the configuration drive data
	Cloud-init integration

	Advanced features
	Specifying the disk for deployment (root device hints)
	Appending kernel parameters to boot instances
	Network boot
	Local boot
	Console

	Boot mode support
	Choosing the disk label
	When used with Compute service
	When used in standalone mode

	Notifications
	Configuring node web console

	Troubleshooting
	Maintenance mode

	Next steps
	Create user images for the Bare Metal service

	Bare Metal Service Upgrade Guide
	Plan your upgrade
	Offline upgrades
	Rolling upgrades
	Requirements
	Concepts
	API & RPC version pinning and versioned object backports
	Online data migrations
	Graceful conductor service shutdown
	Drain conductor service shutdown
	API load balancer draining

	Rolling upgrade process
	Before maintenance window
	During maintenance window
	After maintenance window
	Upgrading to Hardware Types
	Planning the upgrade
	Configuration
	Migrating nodes
	Other interfaces
	Ironic Inspector
	Console
	RAID
	Network and storage
	Vendor

	User Guide
	Bare Metal Service User Guide
	Understanding Bare Metal service
	Why Provision Bare Metal
	Conceptual Architecture
	Key Technologies for Bare Metal Hosting
	Preboot Execution Environment (PXE)
	Dynamic Host Configuration Protocol (DHCP)
	Network Bootstrap Program (NBP)
	Trivial File Transfer Protocol (TFTP)
	Intelligent Platform Management Interface (IPMI)

	Understanding Bare Metal Deployment
	Deploy Process
	Example: PXE Boot and Direct Deploy Process

	Bare Metal State Machine
	State Machine Diagram
	Enrollment and Preparation
	Deploy and Undeploy
	Rescue
	Servicing

	Creating instance images
	Supported Disk Image Formats
	disk-image-builder
	Virtual machine

	Deploying with Bare Metal service
	Allocations
	Populating instance information
	Image information
	Capabilities
	Overriding a hardware interface

	Attaching virtual interfaces
	Deployment
	Deploying with a config drive
	Building a config drive on the client side
	Building a config drive on the conductor side

	Ramdisk booting

	REST API Conceptual Guide
	Versioning
	REST API Versions History
	REST API Version History
	1.92 (Dalmatian)
	1.91 (Dalmatian)
	1.90 (Caracal)
	1.89 (Caracal)
	1.88 (Bobcat)
	1.87 (Bobcat)
	1.86 (Bobcat)
	1.85 (Bobcat, 22.1)
	1.84 (Bobcat, 22.1)
	1.83 (Bobcat, 22.0)
	1.82 (Antelope, 21.4)
	1.81 (Antelope, 21.3)
	1.80 (Zed, 21.1)
	1.79 (Zed, 21.0)
	1.78 (Xena, 18.2)
	1.77 (Xena, 18.2)
	1.76 (Xena, 18.2)
	1.75 (Xena, 18.1)
	1.74 (Xena, 18.0)
	1.73 (Xena, 18.0)
	1.72 (Wallaby, 17.0)
	1.71 (Wallaby, 17.0)
	1.70 (Wallaby, 17.0)
	1.69 (Wallaby, 16.2)
	1.68 (Victoria, 16.0)
	1.67 (Victoria, 15.1)
	1.66 (Victoria, 15.1)
	1.65 (Ussuri, 15.0)
	1.64 (Ussuri, 15.0)
	1.63 (Ussuri, 15.0)
	1.62 (Ussuri, 15.0)
	1.61 (Ussuri, 14.0)
	1.60 (Ussuri, 14.0)
	1.59 (Ussuri, 14.0)
	1.58 (Train, 12.2.0)
	1.57 (Train, 12.2.0)
	1.56 (Stein, 12.1.0)
	1.55 (Stein, 12.1.0)
	1.54 (Stein, 12.1.0)
	1.53 (Stein, 12.1.0)
	1.52 (Stein, 12.1.0)
	1.51 (Stein, 12.1.0)
	1.50 (Stein, 12.1.0)
	1.49 (Stein, 12.0.0)
	1.48 (Stein, 12.0.0)
	1.47 (Stein, 12.0.0)
	1.46 (Rocky, 11.1.0)
	1.45 (Rocky, 11.1.0)
	1.44 (Rocky, 11.1.0)
	1.43 (Rocky, 11.0.0)
	1.42 (Rocky, 11.0.0)
	1.41 (Rocky, 11.0.0)
	1.40 (Rocky, 11.0.0)
	1.39 (Rocky, 11.0.0)
	1.38 (Queens, 10.1.0)
	1.37 (Queens, 10.1.0)
	1.36 (Queens, 10.0.0)
	1.35 (Queens, 9.2.0)
	1.34 (Pike, 9.0.0)
	1.33 (Pike, 9.0.0)
	1.32 (Pike, 9.0.0)
	1.31 (Ocata, 7.0.0)
	1.30 (Ocata, 7.0.0)
	1.29 (Ocata, 7.0.0)
	1.28 (Ocata, 7.0.0)
	1.27 (Ocata, 7.0.0)
	1.26 (Ocata, 7.0.0)
	1.25 (Ocata, 7.0.0)
	1.24 (Ocata, 7.0.0)
	1.23 (Ocata, 7.0.0)
	1.22 (Newton, 6.1.0)
	1.21 (Newton, 6.1.0)
	1.20 (Newton, 6.1.0)
	1.19 (Newton, 6.1.0)
	1.18 (Newton, 6.1.0)
	1.17 (Newton, 6.0.0)
	1.16 (Mitaka, 5.0.0)
	1.15 (Mitaka, 5.0.0)
	1.14 (Liberty, 4.2.0)
	1.13 (Liberty, 4.2.0)
	1.12 (Liberty, 4.2.0)
	1.11 (Liberty, 4.0.0, breaking change)
	1.10 (Liberty, 4.0.0)
	1.9 (Liberty, 4.0.0)
	1.8 (Liberty, 4.0.0)
	1.7 (Liberty, 4.0.0)
	1.6 (Kilo)
	1.5 (Kilo)
	1.4 (Kilo)
	1.3 (Kilo)
	1.2 (Kilo, breaking change)
	1.1 (Kilo)
	1.0 (Juno)

	Exceptions from Versioning

	Administrator Guide
	Drivers, Hardware Types and Hardware Interfaces for Ironic
	Generic Interfaces
	Boot interfaces
	PXE boot
	HTTP Boot
	Kernel parameters

	Common options
	Enable persistent boot device for deploy/clean operation

	Deploy Interfaces
	Direct deploy
	Deploy with custom HTTP servers
	Streaming raw images

	Ansible deploy
	Ansible deploy interface
	Overview
	Features
	User images
	Configdrive partition
	Root device hints
	Node cleaning
	Logging
	Requirements
	Bootstrap image requirements
	Setting up your environment
	Ansible-deploy options
	Configuration file
	Driver properties for the Node
	Customizing the deployment logic
	Expected playbooks directory layout
	Extending playbooks
	Variables you have access to
	Included custom Ansible modules

	Anaconda deploy
	Ramdisk deploy
	Custom agent deploy

	Hardware Types
	iDRAC driver
	Overview
	Ironic Features
	Prerequisites
	Enabling
	Protocol-specific Properties
	Enrolling

	BIOS Interface
	Example

	Inspect Interface
	Management Interface
	Import and export configuration
	Storage setup
	Swift configuration
	HTTP configuration

	RAID Interface
	Mandatory properties
	Optional properties
	Backing physical disk hints
	Backing physical disks
	Examples
	Manual RAID Invocation

	Vendor Interface
	idrac-redfish

	Known Issues
	Nodes go into maintenance mode
	PXE reset with “factory_reset” BIOS clean step
	Timeout when powering off
	Unable to mount remote share with iDRAC firmware before 4.40.40.00
	Firmware update from Swift fails before 6.00.00.00

	iLO driver
	Overview
	Hardware type
	Hardware interfaces
	Node configuration

	Prerequisites
	Different configuration for ilo hardware type
	Glance Configuration
	Web server configuration on conductor

	Enable driver
	Optional functionalities for the ilo hardware type
	Boot mode support
	UEFI Secure Boot Support
	Node Cleaning Support
	Supported Automated Cleaning Operations
	Supported Manual Cleaning Operations
	Node Deployment Customization
	Example of using deploy template with the Compute service
	Hardware Inspection Support
	Swiftless deploy for intermediate images
	Deploy Process
	HTTP(S) Based Deploy Support
	Deploy Process
	Support for iLO driver with Standalone Ironic
	Configuration

	Deploy Process
	Glance and swift for partition images
	Glance and swift with whole-disk images
	Swiftless deploy
	HTTP(S) based deploy
	Standalone ironic
	Activating iLO Advanced license as manual clean step
	Removing CA certificates from iLO as manual clean step
	Initiating firmware update as manual clean step
	Smart Update Manager (SUM) based firmware update
	Updating security parameters as manual clean step
	Update Minimum Password Length security parameter as manual clean step
	Update Authentication Failure Logging security parameter as manual clean step
	Create Certificate Signing Request(CSR) as manual clean step
	Add HTTPS Certificate as manual clean step
	RAID Support
	DIB support for Proliant Hardware Manager
	Disk Erase Support
	Firmware based UEFI iSCSI boot from volume support
	BIOS configuration support
	Configuration
	Certificate based validation in iLO
	Rescue mode support
	Inject NMI support
	Soft power operation support
	Out of Band RAID Support
	IPv6 support
	Out of Band Sanitize Disk Erase Support
	Out of Band One Button Secure Erase Support
	UEFI-HTTPS Boot support
	Layer 3 or DHCP-less ramdisk booting
	Events subscription
	Anaconda based deployment

	Intel IPMI driver
	Overview
	Glossary
	Enabling the IntelIPMI hardware type
	Registering a node with the IntelIPMI driver
	Features of the intel-ipmi hardware type
	Intel SST-PP

	IPMI driver
	Overview
	Glossary
	Enabling the IPMI hardware type
	Registering a node with the IPMI driver
	Changing The Default IPMI Credential Persistence Method

	Advanced configuration
	Single/Double bridging functionality
	Changing the version of the IPMI protocol
	Cipher suites
	Using a different privilege level
	Static boot order configuration
	Vendor Differences
	send_raw clean/deploy step

	iRMC driver
	Overview
	Prerequisites
	Hardware Type
	Hardware interfaces
	Node configuration
	Configuration via driver_info
	Configuration via properties
	Configuration via ironic.conf
	Override ironic.conf configuration via driver_info

	Optional functionalities for the irmc hardware type
	UEFI Secure Boot Support
	Node Cleaning Support
	Supported Automated Cleaning Operations
	Boot from Remote Volume
	Configuration
	Supported hardware
	Hardware Inspection Support
	Configuration
	Supported properties
	RAID configuration Support
	Configuration
	Supported properties
	BIOS configuration Support
	Configuration

	Supported platforms

	Redfish driver
	Overview
	Prerequisites
	Enabling the Redfish driver
	Registering a node with the Redfish driver
	Boot mode support
	UEFI secure boot
	Rebooting on boot mode changes

	Virtual media boot
	Pre-built ISO images
	Virtual Media Ramdisk

	Redfish HTTP(s) Boot
	Limitations & Issues

	Out-Of-Band inspection
	Retrieving BIOS Settings
	Further topics
	Redfish hardware metrics
	Example (Dell)
	Node Vendor Passthru Methods
	Create Subscription
	Delete Subscription
	Get Subscription
	Get All Subscriptions
	Eject Virtual Media
	Internal Session Cache
	Session Cache Expiration
	Redfish Interoperability Profile
	OpenStackIronicProfile 1.1.0
	Bios
	Properties
	Actions
	Chassis
	Properties
	ComputerSystem
	Properties
	Actions
	ComputerSystemCollection
	Properties
	Drive
	Properties
	EthernetInterface
	Properties
	Manager
	Properties
	Power
	Properties
	Processor
	Properties
	SecureBoot
	Properties
	Actions
	ServiceRoot
	Properties
	SessionService
	SimpleStorage
	Properties
	Storage
	Properties
	TaskService
	Thermal
	Properties
	UpdateService
	Actions
	VirtualMedia
	Properties
	Actions
	Volume
	Properties
	VolumeCollection
	Properties
	Validation of Profiles using DMTF tool

	SNMP driver
	List of supported devices
	Software Requirements
	Enabling the SNMP Hardware Type
	Ironic Node Configuration

	Fake driver
	Overview
	Use cases
	Development
	Scale testing
	Adoption

	Changing Hardware Types and Interfaces
	Changing Hardware Interfaces
	Changing Hardware Type
	Static boot order configuration

	Unsupported drivers

	Bare Metal Service Features
	Hardware Inspection
	Overview
	Capabilities discovery
	In-band inspection
	Inspector Support
	Managed and unmanaged inspection

	In-Band Inspection
	Managed and unmanaged inspection
	Managed inspection
	Unmanaged inspection
	Inspection data
	Plugin data
	Data storage
	Inspection hooks
	Configuring hooks
	Default hooks
	Optional hooks
	Node auto-discovery
	Limitations
	PXE filter service
	How it works?
	Installation
	Scale considerations
	Migrating from ironic-inspector
	Understand the feature differences
	Removed
	New defaults
	Built-in hooks
	Custom hooks
	Other concerns
	Migration process
	Configuration

	Using deploy steps and templates
	Overview
	Deploy Steps
	Order of execution
	Agent steps
	In-band steps
	Requesting steps
	Excluding the default steps
	Writing a Deploy Step
	FAQ
	What deploy step is running?

	Troubleshooting

	Deploy Templates
	Deploy step format
	Matching deploy templates
	Overriding default deploy steps
	Creating a deploy template via API
	Creating a deploy template via “baremetal” client
	Example of use with the Compute service

	Node cleaning
	Overview
	Automated cleaning
	Enabling automated cleaning
	Cleaning steps
	Storage cleaning options
	Management Interface
	Bios Interface
	Raid Interface

	Manual cleaning
	Setup
	Starting manual cleaning via API
	Starting manual cleaning via “openstack baremetal” CLI
	Runbooks for Manual Cleaning

	Cleaning Network
	In-band vs out-of-band
	In-band
	Out-of-band

	FAQ
	How are cleaning steps ordered?
	How do I skip a cleaning step?
	How do I change the priority of a cleaning step?
	What cleaning step is running?
	Should I disable automated cleaning?
	Why can’t I power on/off a node while it’s cleaning?

	Advanced topics
	Parent Nodes
	Child Node Clean Step Execution

	Troubleshooting

	Node adoption
	Overview
	How it works
	Possible Risk
	How to use
	Requirements
	Example

	Troubleshooting
	Adoption with Nova

	Retiring a node in Ironic
	Overview
	Requirements
	How to use

	RAID Configuration
	Overview
	Prerequisites
	Build agent ramdisk which supports RAID configuration
	RAID configuration JSON format
	Target RAID configuration
	Mandatory properties
	Optional properties
	Backing physical disk hints
	Backing physical disks
	Examples for target_raid_config

	Current RAID configuration

	Workflow
	Software RAID
	Image requirements

	Using RAID in nova flavor for scheduling
	Developer documentation

	BIOS Configuration
	Overview
	Prerequisites
	Enabling hardware types
	Enabling hardware interface

	Retrieve BIOS settings
	Configure BIOS settings
	Factory reset
	Apply BIOS configuration

	Firmware update using manual cleaning
	How it works
	Applying updates

	Rescue Mode
	Overview
	Configuring The Bare Metal Service

	Boot From Volume
	Overview
	How this works - From Ironic’s point of view

	Prerequisites
	Conductor Configuration
	Node Configuration
	Storage Interface
	iSCSI Configuration

	Image Creation
	Advanced Topics
	Use without the Compute Service
	Use Without Cinder
	Cinder Multi-attach

	Configuring Web or Serial Console
	Overview
	Node web console
	Node serial console
	Configuring HA

	Notifications
	Configuration
	Versioning
	Available notifications
	ironic-api notifications
	Resources CRUD notifications
	Node maintenance notifications

	ironic-conductor notifications
	Node console notifications
	baremetal.node.power_set
	baremetal.node.power_state_corrected
	baremetal.node.provision_set

	Node Multi-Tenancy
	Setting the Owner and Lessee
	Configuring the Bare Metal Service Policy
	Ports
	Allocations
	Deployment and Metalsmith

	Booting a Ramdisk or an ISO
	Configuration
	Creating a ramdisk
	Booting a ramdisk
	Booting an ISO
	Limitations
	Common options
	Disable persistent boot device for ramdisk iso boot

	Hardware Burn-in
	Overview
	CPU burn-in
	Memory burn-in
	Disk burn-in
	Network burn-in
	Static network burn-in configuration
	Dynamic network burn-in configuration
	Launching network burn-in

	Logging
	Additional Information

	Vendor Passthru
	Node Vendor Passthru
	Driver Vendor Passthru

	Node servicing
	Overview
	Major differences
	Similarities to Cleaning and Deployment
	Available Steps
	Executing Service Steps
	Starting manual servicing via API
	Starting servicing via “openstack baremetal” CLI
	Using Runbooks for Servicing
	Available Steps in Ironic
	ipmi hardware type
	vendor.send_raw
	redfish hardware type
	bios.apply_configuration
	management.update_firmware
	raid.apply_configuration
	raid.delete_configuration
	Agent
	raid.apply_configuration

	Available steps in Ironic-Python-Agent

	Servicing Network

	Building images for Windows
	Requirements:
	Preparation:
	Implementation:

	Deploying without BMC Credentials
	How it works
	Enabling
	Limitations

	Layer 3 or DHCP-less ramdisk booting
	Hardware type support
	Configuring network data
	Deploying outside of the provisioning network

	Deploying with anaconda deploy interface
	Configuration
	Creating an OS Image
	Configuring the OS Image in glance
	Creating a bare metal server
	Standalone deployments
	Standalone using a repository

	Deployment Process
	Configuration Considerations
	Limitations

	Configuration and Operation
	Ironic Python Agent
	Overview
	Drivers
	Requirements

	Using proxies for image download
	Overview
	Steps to enable proxies

	Advanced configuration
	Out-of-band vs. in-band power off on deploy

	Multi-tenancy in the Bare Metal service
	Overview
	Concepts
	Network interfaces
	Local link connection
	Physical networks

	Configuring the Bare Metal service
	Configuring nodes
	Configuring the Networking service
	flat network interface
	neutron network interface

	Port groups support
	Switch-side configuration
	Physical networks
	Port groups configuration in the Bare Metal service
	Link aggregation/teaming on windows

	Conductor Groups
	Overview
	How it works
	How to use

	Security Overview
	Image Checksums
	REST API: user roles and policy settings
	Conductor Operation

	Multi-tenancy
	Network Interactions
	Lingering Effects

	Firmware security
	UEFI secure boot mode
	Underlying challenges
	Driver support for Deployment with Secure Boot
	Compatible images
	Using Shim and Grub2 for Secure Boot
	For the Ironic Administrator
	For the Ironic user

	Enabling with OpenStack Compute
	Enabling standalone

	Other considerations
	Internal networks
	Management interface technologies
	Tenant network isolation
	API endpoints for RAM disk use
	Rate Limiting
	Memory Limiting

	Disk Images
	Mitigating Factors to disk images

	Troubleshooting Ironic
	Nova returns “No valid host was found” Error
	Patching the Deploy Ramdisk
	API Errors
	Retrieving logs from the deploy ramdisk
	Accessing the log data
	When storing in the local filesystem
	When storing in Swift
	The contents of the log file

	DHCP during PXE or iPXE is inconsistent or unreliable
	Why does X issue occur when I am using LACP bonding with iPXE?
	IPMI errors
	Enable IPMI over LAN
	Troubleshooting lanplus interface

	Why are my nodes stuck in a “-ing” state?
	What can cause these sorts of failures?
	The bad news for IO related failures
	File Size != Disk Size

	Why are my nodes stuck in a “wait” state?
	Communication issues between the conductor and the node
	Ironic Python Agent stuck
	Stopping the operation

	Deployments fail with “failed to update MAC address”
	How did I get here?
	How do I resolve this?

	My test VM image does not deploy – mount point does not exist
	What is likely occurring
	How do I not encounter this issue?

	Issues with autoconfigured TLS
	Clock skew

	I changed ironic.conf, and now I can’t edit my nodes.
	Example failure
	How to fix this?

	I’m getting Out of Memory errors
	How did I get here?
	How do I resolve this?

	Why does API return “Node is locked by host”?
	What is ConcurrentActionLimit?
	Why do I have an error that an NVMe Partition is not a block device?
	Why can’t I use Secure Erase/Wipe with RAID controllers?
	I’m in “clean failed” state, what do I do?
	I can’t seem to introspect newly added nodes in a large cluster
	Some or all of my baremetal nodes disappeared! Help?!
	System Scoped Accounts
	Changing/Assigning an Owner
	Why am I only seeing some of the nodes?

	Config Drives in Swift, but rebuilds fails?
	Ironic says my Image is Invalid

	Power Synchronization
	Baremetal Power Sync
	Compute-Baremetal Power Sync
	Power State Change Callbacks to the Compute Service

	Power fault and recovery

	Fast-Track Deployment
	Enabling
	Inspection

	HTTP(s) Authentication strategy for user image servers
	How to enable the feature via global configuration options
	Example
	Known limitations

	Use of OVN Networking
	Overview
	Challenges
	DHCP
	Maximum Transmission Units
	NAT of TFTP
	Rescue
	PXE boot of GRUB

	Required Configuration
	Chassis as Gateway
	ML2 Plugins
	If you need to attach to the network…

	VTEP Switch Support
	Unknowns

	Ceph Object Gateway support
	Overview
	Configure Ironic and Glance with RADOS Gateway

	Emitting Software Metrics
	Configuring the Bare Metal Service to Enable Metrics with Statsd
	Enabling metrics in ironic-api and ironic-conductor
	Enabling metrics in ironic-python-agent

	Transmission to the Message Bus Notifier
	Types of Metrics Emitted
	Adding New Metrics

	API Audit Logging
	Enabling API Audit Logging
	Sample Audit Event

	Bare Metal Service state report (via Guru Meditation Reports)
	Configuration
	Generating a GMR
	Structure of a GMR

	Tuning Ironic
	Memory Utilization
	API
	Conductor
	Threads

	Database
	Adding indexes
	Indexes will not fix everything

	BMC interaction
	What can I do?

	Secure RBAC
	Suggested Reading
	Historical Context - How we reached our access model

	System Scoped
	Project Scoped
	Legacy Behavior
	Supported Endpoints
	How Project Scoped Works
	Field value visibility restrictions
	Field update restrictions
	Allocations

	Practical differences
	What is an owner or lessee?
	How do I assign an owner?
	How do I assign a lessee?
	What is the difference between an owner and lessee?
	Can I, a project admin, create a node?
	Can I use a service role?

	Dashboard Integration

	Administrator Command References
	ironic-dbsync
	Options
	Usage
	Command Options
	create_schema
	online_data_migrations
	revision
	stamp
	upgrade
	version

	ironic-status
	Synopsis
	Description
	Options
	Upgrade

	Configuration Reference for Ironic
	Configuration Options
	DEFAULT
	agent
	anaconda
	ansible
	api
	audit
	audit_middleware_notifications
	cinder
	conductor
	console
	cors
	database
	deploy
	dhcp
	disk_partitioner
	disk_utils
	drac
	glance
	healthcheck
	ilo
	inspector
	inventory
	ipmi
	irmc
	ironic_lib
	json_rpc
	keystone_authtoken
	mdns
	metrics
	metrics_statsd
	molds
	neutron
	nova
	oslo_concurrency
	oslo_messaging_amqp
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_middleware
	oslo_policy
	oslo_versionedobjects
	profiler
	profiler_jaeger
	profiler_otlp
	pxe
	redfish
	sensor_data
	service_catalog
	snmp
	ssl
	swift

	Policies
	ironic.api

	Architecture and Implementation Details
	Agent Token
	Purpose
	How it works
	With Virtual Media
	With PXE/iPXE/etc.

	Agent Configuration

	Steps
	What are steps?
	Reserved Functional Steps
	Example

	Administrator’s Guide
	Deploy Steps

	Contributor Guide
	Developer’s Guide
	Getting Started
	Developer Quick-Start
	Git hooks
	Integrated Testing Environments
	Unit Testing Environment
	System Prerequisites
	Python Prerequisites
	Running Unit Tests Locally
	Debugging unit tests
	Other tests

	OSProfiler Tracing in Ironic
	Building developer documentation

	Deploying Ironic with DevStack
	Basic process
	Configurations
	Ironic
	Ironic with Nova
	Stable Branch Configuration
	Other Devstack Configurations
	Ironic Boot-from-Volume with DevStack
	DevStack Configuration
	Ironic multitenant networking and DevStack
	Using VMs as baremetal servers
	DevStack Configuration
	Deploying Ironic on ARM64 with DevStack
	Configurations

	Deploying to Ironic node using Nova
	Testing Ironic with Tempest
	Add Ironic Tempest Plugin
	Running tests
	Debugging tests

	FAQ/Tips for development using devstack
	VM logs are missing
	Downloading an unmerged patch when stacking

	Bifrost Development Environment
	Exercising Ironic Services Locally
	Using tox
	Setup

	Manually
	Step 1: Create a Python virtualenv
	Step 2: Install System Dependencies Locally
	Step 3: Start the Services
	Step 4: Interact with the running services
	Step 5: Fixing your test environment

	Ironic’s State Machine

	Bugs
	Bug Reporting and Triaging Guide
	Launchpad
	Reporting Guide
	Triaging Guide
	Expiring Bugs

	Bug Deputy Guide
	Schedule
	Responsibilities
	Bug Triage
	Bug Bash
	Review Periodic Stable CI Jobs
	Weekly Report

	Community and Policies
	Bare Metal Community
	Useful Links
	Asking Questions
	Internet Relay Chat ‘IRC’
	Mailing list

	Reporting Bugs
	LaunchPad
	Storyboard

	Contributing Code

	So You Want to Contribute…
	Contributing Code
	Everything Ironic
	Related Projects

	Adding New Features
	Feature Submission Process
	Change Tracking
	Managing Change Sets
	Getting Your Patch Merged
	Timeline Expectations
	Live Upgrade Related Concerns
	Driver Internal Info
	Ironic Specs Process
	Changes to existing specs

	Project Team Leader Duties

	Developer FAQ (frequently asked questions)
	How do I…
	…create a migration script template?
	…know if a release note is needed for my change?
	…create a new release note?
	…update a release note?
	…get a decision on something?
	…add support for GMRs to new executables and extending the GMR?

	Contributor Vision
	Background
	Rocky Vision: For 2022-2023
	Common Themes
	Vision Statement

	Comparison to the 2018 OpenStack Technical Vision
	The Pillars of Cloud - Self Service
	Design Goals - Built-in Reliability and Durability
	Design Goals - Graphical User Interface

	Architecture and Implementation Details
	System Architecture
	High Level description
	Drivers
	Driver-Specific Periodic Tasks
	Driver-Specific Steps

	Message Routing

	Developing New Notifications
	Adding a new notification to ironic

	About OSProfiler
	How to Use OSProfiler with Ironic in Devstack
	References

	Rolling Upgrades
	Design
	Rolling upgrades between releases
	Rolling upgrade process
	Policy for changes to the DB model
	API, RPC and object version pinning
	Handling API versions
	Handling RPC versions
	Handling IronicObject versions
	Getting objects from the database (API/conductor <– DB)
	Saving objects to the database (API/conductor –> DB)
	Sending objects via RPC (API/conductor -> RPC)
	Receiving objects via RPC (API/conductor <- RPC)

	When developing a new feature or modifying an IronicObject
	ironic-api
	Ironic RPC versions
	Object versions
	Online data migrations
	“ironic-dbsync upgrade” command

	Role Based Access Control - Testing
	How these tests work
	How to make changes or review these tests?
	What is/will be tested?

	Governance and Processes
	Releasing Ironic Projects
	Who is responsible for releases?
	Release process
	What do we have to release?
	Non-client libraries
	Client libraries
	Normal release
	Manual release
	Independent
	Not released

	Bugfix branches
	Things to do before releasing
	How to propose a release
	Things to do after releasing
	When a release is done that results in a stable branch
	When a release is done that results in a bugfix branch
	Ironic Tempest plugin
	Bifrost
	For all releases

	Ironic Governance Structure
	What belongs in ironic governance?
	Proposing a new project to ironic governance

	Writing Drivers
	Pluggable Drivers
	Writing a hardware type
	Deploy and clean steps
	Supported Drivers

	Vendor Methods
	Writing Vendor Methods
	Backwards Compatibility

	Developing BIOS Interface
	Third Party Continuous Integration
	CI Architecture Overview
	Requirements Cookbook
	Sizing
	Infrastructure
	jenkins changes
	nodepool changes
	neutron changes
	pre-test hook
	cleanup hook
	Ironic

	Hardware Pool Management
	Problem
	Solutions
	Zuul v3
	Molten Iron

	Tips and Tricks
	Optimize Run Time
	Image Server
	Other References

	Developing deploy and clean steps
	Deploy steps basics
	Clean steps basics
	Asynchronous steps
	Combined in-band and out-of-band step
	Execution on reboot
	Polling for completion

	Implementing RAID
	Implementing BIOS settings

	Full Ironic Server Python API Reference
	ironic
	ironic package
	Subpackages
	ironic.api package
	Subpackages
	ironic.api.controllers package
	Subpackages
	ironic.api.controllers.v1 package
	Submodules
	ironic.api.controllers.v1.allocation module
	ironic.api.controllers.v1.bios module
	ironic.api.controllers.v1.chassis module
	ironic.api.controllers.v1.collection module
	ironic.api.controllers.v1.conductor module
	ironic.api.controllers.v1.deploy_template module
	ironic.api.controllers.v1.driver module
	ironic.api.controllers.v1.event module
	ironic.api.controllers.v1.firmware module
	ironic.api.controllers.v1.node module
	ironic.api.controllers.v1.notification_utils module
	ironic.api.controllers.v1.port module
	ironic.api.controllers.v1.portgroup module
	ironic.api.controllers.v1.ramdisk module
	ironic.api.controllers.v1.runbook module
	ironic.api.controllers.v1.shard module
	ironic.api.controllers.v1.utils module
	ironic.api.controllers.v1.versions module
	ironic.api.controllers.v1.volume module
	ironic.api.controllers.v1.volume_connector module
	ironic.api.controllers.v1.volume_target module
	Module contents
	Submodules
	ironic.api.controllers.base module
	ironic.api.controllers.link module
	ironic.api.controllers.root module
	ironic.api.controllers.version module
	Module contents
	ironic.api.middleware package
	Submodules
	ironic.api.middleware.auth_public_routes module
	ironic.api.middleware.json_ext module
	ironic.api.middleware.parsable_error module
	Module contents
	Submodules
	ironic.api.app module
	ironic.api.config module
	ironic.api.functions module
	ironic.api.hooks module
	ironic.api.method module
	ironic.api.wsgi module
	Module contents
	ironic.cmd package
	Submodules
	ironic.cmd.api module
	ironic.cmd.conductor module
	ironic.cmd.dbsync module
	ironic.cmd.pxe_filter module
	ironic.cmd.singleprocess module
	ironic.cmd.status module
	Module contents
	ironic.common package
	Subpackages
	ironic.common.glance_service package
	Submodules
	ironic.common.glance_service.image_service module
	ironic.common.glance_service.service_utils module
	Module contents
	Submodules
	ironic.common.args module
	ironic.common.async_steps module
	ironic.common.boot_devices module
	ironic.common.boot_modes module
	ironic.common.checksum_utils module
	ironic.common.cinder module
	ironic.common.components module
	ironic.common.config module
	ironic.common.context module
	ironic.common.dhcp_factory module
	ironic.common.driver_factory module
	ironic.common.exception module
	ironic.common.faults module
	ironic.common.fsm module
	ironic.common.hash_ring module
	ironic.common.i18n module
	ironic.common.image_format_inspector module
	ironic.common.image_publisher module
	ironic.common.image_service module
	ironic.common.images module
	ironic.common.indicator_states module
	ironic.common.keystone module
	ironic.common.kickstart_utils module
	ironic.common.lessee_sources module
	ironic.common.molds module
	ironic.common.network module
	ironic.common.neutron module
	ironic.common.nova module
	ironic.common.policy module
	ironic.common.profiler module
	ironic.common.pxe_utils module
	ironic.common.qemu_img module
	ironic.common.raid module
	ironic.common.release_mappings module
	ironic.common.rpc module
	ironic.common.rpc_service module
	ironic.common.service module
	ironic.common.states module
	ironic.common.swift module
	ironic.common.utils module
	ironic.common.wsgi_service module
	Module contents
	ironic.conductor package
	Submodules
	ironic.conductor.allocations module
	ironic.conductor.base_manager module
	ironic.conductor.cleaning module
	ironic.conductor.deployments module
	ironic.conductor.inspection module
	ironic.conductor.manager module
	ironic.conductor.notification_utils module
	ironic.conductor.periodics module
	ironic.conductor.rpc_service module
	ironic.conductor.rpcapi module
	ironic.conductor.servicing module
	ironic.conductor.steps module
	ironic.conductor.task_manager module
	ironic.conductor.utils module
	ironic.conductor.verify module
	Module contents
	ironic.conf package
	Submodules
	ironic.conf.agent module
	ironic.conf.anaconda module
	ironic.conf.ansible module
	ironic.conf.api module
	ironic.conf.audit module
	ironic.conf.auth module
	ironic.conf.cinder module
	ironic.conf.conductor module
	ironic.conf.console module
	ironic.conf.database module
	ironic.conf.default module
	ironic.conf.deploy module
	ironic.conf.dhcp module
	ironic.conf.disk_utils module
	ironic.conf.dnsmasq module
	ironic.conf.drac module
	ironic.conf.fake module
	ironic.conf.glance module
	ironic.conf.healthcheck module
	ironic.conf.ilo module
	ironic.conf.inspector module
	ironic.conf.inventory module
	ironic.conf.ipmi module
	ironic.conf.irmc module
	ironic.conf.metrics module
	ironic.conf.metrics_statsd module
	ironic.conf.molds module
	ironic.conf.neutron module
	ironic.conf.nova module
	ironic.conf.opts module
	ironic.conf.pxe module
	ironic.conf.redfish module
	ironic.conf.sensor_data module
	ironic.conf.service_catalog module
	ironic.conf.snmp module
	ironic.conf.swift module
	Module contents
	ironic.db package
	Subpackages
	ironic.db.sqlalchemy package
	Submodules
	ironic.db.sqlalchemy.api module
	ironic.db.sqlalchemy.migration module
	ironic.db.sqlalchemy.models module
	Module contents
	Submodules
	ironic.db.api module
	ironic.db.migration module
	Module contents
	ironic.dhcp package
	Submodules
	ironic.dhcp.base module
	ironic.dhcp.dnsmasq module
	ironic.dhcp.neutron module
	ironic.dhcp.none module
	Module contents
	ironic.drivers package
	Subpackages
	ironic.drivers.modules package
	Subpackages
	ironic.drivers.modules.ansible package
	Submodules
	ironic.drivers.modules.ansible.deploy module
	Module contents
	ironic.drivers.modules.drac package
	Submodules
	ironic.drivers.modules.drac.bios module
	ironic.drivers.modules.drac.boot module
	ironic.drivers.modules.drac.inspect module
	ironic.drivers.modules.drac.management module
	ironic.drivers.modules.drac.power module
	ironic.drivers.modules.drac.raid module
	ironic.drivers.modules.drac.utils module
	ironic.drivers.modules.drac.vendor_passthru module
	Module contents
	ironic.drivers.modules.ibmc package
	Module contents
	ironic.drivers.modules.ilo package
	Submodules
	ironic.drivers.modules.ilo.bios module
	ironic.drivers.modules.ilo.boot module
	ironic.drivers.modules.ilo.common module
	ironic.drivers.modules.ilo.console module
	ironic.drivers.modules.ilo.firmware_processor module
	ironic.drivers.modules.ilo.inspect module
	ironic.drivers.modules.ilo.management module
	ironic.drivers.modules.ilo.power module
	ironic.drivers.modules.ilo.raid module
	ironic.drivers.modules.ilo.vendor module
	Module contents
	ironic.drivers.modules.inspector package
	Subpackages
	ironic.drivers.modules.inspector.hooks package
	Submodules
	ironic.drivers.modules.inspector.hooks.accelerators module
	ironic.drivers.modules.inspector.hooks.architecture module
	ironic.drivers.modules.inspector.hooks.base module
	ironic.drivers.modules.inspector.hooks.boot_mode module
	ironic.drivers.modules.inspector.hooks.cpu_capabilities module
	ironic.drivers.modules.inspector.hooks.extra_hardware module
	ironic.drivers.modules.inspector.hooks.local_link_connection module
	ironic.drivers.modules.inspector.hooks.memory module
	ironic.drivers.modules.inspector.hooks.parse_lldp module
	ironic.drivers.modules.inspector.hooks.pci_devices module
	ironic.drivers.modules.inspector.hooks.physical_network module
	ironic.drivers.modules.inspector.hooks.ports module
	ironic.drivers.modules.inspector.hooks.raid_device module
	ironic.drivers.modules.inspector.hooks.ramdisk_error module
	ironic.drivers.modules.inspector.hooks.root_device module
	ironic.drivers.modules.inspector.hooks.validate_interfaces module
	Module contents
	Submodules
	ironic.drivers.modules.inspector.agent module
	ironic.drivers.modules.inspector.client module
	ironic.drivers.modules.inspector.interface module
	ironic.drivers.modules.inspector.lldp_parsers module
	ironic.drivers.modules.inspector.lldp_tlvs module
	Module contents
	ironic.drivers.modules.intel_ipmi package
	Submodules
	ironic.drivers.modules.intel_ipmi.management module
	Module contents
	ironic.drivers.modules.irmc package
	Submodules
	ironic.drivers.modules.irmc.bios module
	ironic.drivers.modules.irmc.boot module
	ironic.drivers.modules.irmc.common module
	ironic.drivers.modules.irmc.inspect module
	ironic.drivers.modules.irmc.management module
	ironic.drivers.modules.irmc.power module
	ironic.drivers.modules.irmc.raid module
	ironic.drivers.modules.irmc.vendor module
	Module contents
	ironic.drivers.modules.network package
	Submodules
	ironic.drivers.modules.network.common module
	ironic.drivers.modules.network.flat module
	ironic.drivers.modules.network.neutron module
	ironic.drivers.modules.network.noop module
	Module contents
	ironic.drivers.modules.redfish package
	Submodules
	ironic.drivers.modules.redfish.bios module
	ironic.drivers.modules.redfish.boot module
	ironic.drivers.modules.redfish.firmware module
	ironic.drivers.modules.redfish.firmware_utils module
	ironic.drivers.modules.redfish.inspect module
	ironic.drivers.modules.redfish.management module
	ironic.drivers.modules.redfish.power module
	ironic.drivers.modules.redfish.raid module
	ironic.drivers.modules.redfish.utils module
	ironic.drivers.modules.redfish.vendor module
	Module contents
	ironic.drivers.modules.storage package
	Submodules
	ironic.drivers.modules.storage.cinder module
	ironic.drivers.modules.storage.external module
	ironic.drivers.modules.storage.noop module
	Module contents
	ironic.drivers.modules.xclarity package
	Module contents
	Submodules
	ironic.drivers.modules.agent module
	ironic.drivers.modules.agent_base module
	ironic.drivers.modules.agent_client module
	ironic.drivers.modules.agent_power module
	ironic.drivers.modules.boot_mode_utils module
	ironic.drivers.modules.console_utils module
	ironic.drivers.modules.deploy_utils module
	ironic.drivers.modules.fake module
	ironic.drivers.modules.image_cache module
	ironic.drivers.modules.image_utils module
	ironic.drivers.modules.inspect_utils module
	ironic.drivers.modules.ipmitool module
	ironic.drivers.modules.ipxe module
	ironic.drivers.modules.noop module
	ironic.drivers.modules.noop_mgmt module
	ironic.drivers.modules.pxe module
	ironic.drivers.modules.pxe_base module
	ironic.drivers.modules.ramdisk module
	ironic.drivers.modules.snmp module
	Module contents
	Submodules
	ironic.drivers.base module
	ironic.drivers.drac module
	ironic.drivers.fake_hardware module
	ironic.drivers.generic module
	ironic.drivers.hardware_type module
	ironic.drivers.ilo module
	ironic.drivers.intel_ipmi module
	ironic.drivers.ipmi module
	ironic.drivers.irmc module
	ironic.drivers.redfish module
	ironic.drivers.snmp module
	ironic.drivers.utils module
	Module contents
	ironic.objects package
	Submodules
	ironic.objects.allocation module
	ironic.objects.base module
	ironic.objects.bios module
	ironic.objects.chassis module
	ironic.objects.conductor module
	ironic.objects.deploy_template module
	ironic.objects.deployment module
	ironic.objects.fields module
	ironic.objects.firmware module
	ironic.objects.indirection module
	ironic.objects.node module
	ironic.objects.node_history module
	ironic.objects.node_inventory module
	ironic.objects.notification module
	ironic.objects.port module
	ironic.objects.portgroup module
	ironic.objects.runbook module
	ironic.objects.trait module
	ironic.objects.volume_connector module
	ironic.objects.volume_target module
	Module contents
	ironic.pxe_filter package
	Submodules
	ironic.pxe_filter.dnsmasq module
	ironic.pxe_filter.service module
	Module contents
	Submodules
	ironic.version module
	Module contents

	Understanding the Ironic’s CI
	Jobs description
	Adding a new Job
	Are you familiar with Zuul?
	Where can I find the existing jobs?
	Create a new Job

	Debugging CI failures
	Zuul Web Page

	Python Module Index
	Index

