Ironic Inspector Documentation
Release 10.2.2.dev1

OpenStack Foundation

Aug 05, 2020

5

Introduction

Release Notes

Using Ironic Inspector

3.1 Install Guide

3.3 User Guide

Contributor Docs

4.1 How To Contribute

Indices and tables

Python Module Index

Index

3.2 Configuration Guide

3.4 Administrator Guide

CONTENTS

155
157

159

CHAPTER
ONE

INTRODUCTION

This is an auxiliary service for discovering hardware properties for a node managed by Ironic. Hardware
introspection or hardware properties discovery is a process of getting hardware parameters required for
scheduling from a bare metal node, given its power management credentials (e.g. IPMI address, user
name and password).

* Free software: Apache license

Source: https://opendev.org/openstack/ironic-inspector/

Bugs: https://storyboard.openstack.org/#!/project/944

Downloads: https://tarballs.openstack.org/ironic-inspector/

* Documentation: https://docs.openstack.org/ironic-inspector/latest/

Python client library and CLI tool: python-ironic-inspector-client (documentation).

Note: ironic-inspector was called ironic-discoverd before version 2.0.0.

https://wiki.openstack.org/wiki/Ironic
https://opendev.org/openstack/ironic-inspector/
https://storyboard.openstack.org/#!/project/944
https://tarballs.openstack.org/ironic-inspector/
https://docs.openstack.org/ironic-inspector/latest/
https://pypi.org/project/python-ironic-inspector-client
https://docs.openstack.org/python-ironic-inspector-client/latest/

Ironic Inspector Documentation, Release 10.2.2.dev1

2 Chapter 1. Introduction

CHAPTER
TWO

RELEASE NOTES

For information on any current or prior version, see the release notes.

https://docs.openstack.org/releasenotes/ironic-inspector/

Ironic Inspector Documentation, Release 10.2.2.dev1

4 Chapter 2. Release Notes

CHAPTER
THREE

USING IRONIC INSPECTOR

3.1 Install Guide

Install from PyPI (you may want to use virtualenv to isolate your environment):

Also there is a DevStack plugin for ironic-inspector - see How To Contribute for the current status.

Finally, some distributions (e.g. Fedora) provide ironic-inspector packaged, some of them - under its
old name ironic-discoverd.

There are several projects you can use to set up ironic-inspector in production. puppet-ironic provides
Puppet manifests, while bifrost provides an Ansible-based standalone installer. Refer to Configuration
if you plan on installing ironic-inspector manually.

Note: Please beware of possible DNS issues when installing ironic-inspector on Ubuntu.

3.1.1 Sample Configuration Files

To generate a sample configuration file, run the following command from the top level of the code tree:

For a pre-generated sample configuration file, see Ironic Inspector Configuration Options.

To generate a sample policy file, run the following command from the top level of the code tree:

For a pre-generated sample configuration file, see Ironic Inspector Policy.

https://pypi.org/project/ironic-inspector
https://docs.openstack.org/devstack/10.2/
https://git.openstack.org/cgit/openstack/puppet-ironic/
https://docs.openstack.org/bifrost/10.2/

Ironic Inspector Documentation, Release 10.2.2.dev1

3.1.2 Installation options

Starting with Train release, ironic-inspector can run in a non-standalone mode, which means ironic-
inspector API and ironic-inspector conductor are separated services, they can be installed on the same
host or different hosts.

Following are some considerations when you run ironic-inspector in non-standalone mode:

Additional packages may be required depending on the tooz backend used in the installation.
For example, et cd3gw is required if the backend driver is configured to use et cd3+http:/
/, pymemcache is required to use memcached://. Some distributions may provide pack-
ages like python3-etcd3gw or python3-memcache. Supported drivers are listed at Tooz
drivers.

For ironic-inspector running in non-standalone mode, PXE configuration is only required on the
node where ironic-inspector conductor service is deployed.

Switch to a database backend other than sqlite.

3.1.3 Configuration

Copy the sample configuration files to some permanent place (e.g. /etc/ironic—inspector/
inspector.conf). Fill in these minimum configuration values:

The standalone in the DEFAULT section - This determines whether ironic-inspector services
are intended to be deployed separately.

The keystone_authtoken section - credentials to use when checking user authentication.

The ironic section - credentials to use when accessing ironic API. When ironic is deployed
standalone with no authentication, specify the following:

When ironic is deployed standalone with HTTP Basic authentication, valid credentials are also
required:

connection in the database section - SQLAlchemy connection string for the database. By
default ironic-inspector uses sqlite as the database backend, if you are running ironic-inspector in
a non-standalone mode, please change to other database backends.

dnsmasq_interface in the iptables section - interface on which dnsmasqg (or another
DHCEP service) listens for PXE boot requests (defaults to br—ct 1plane which is a sane default
for tripleo-based installations but is unlikely to work for other cases).

if you wish to use the dnsmasq PXE/DHCP filter driver rather than the default iptables
driver, see the dnsmasq PXE filter description.

store_data in the processing section defines where introspection data is stored and takes
one of three values:

Chapter 3. Using Ironic Inspector

https://docs.openstack.org/tooz/10.2/user/drivers.html
https://docs.openstack.org/tooz/10.2/user/drivers.html

Ironic Inspector Documentation, Release 10.2.2.dev1

none introspection data is not stored (the default)

database introspection data is stored in the database (recommended for standalone deploy-
ments)

swift introspection data is stored in the Object Store service (recommended for full openstack
deployments)

Note: It is possible to create third party storage backends using the ironic_inspector.
introspection_data.store entry point.

See comments inside the sample configuration for other possible configuration options.

Note: Configuration file contains a password and thus should be owned by root and should have
access rights like 0600.

Here is an example inspector.conf (adapted from a gate run):

[DEFAULT]
debug = false
rootwrap_config = /etc/ironic—-inspector/rootwrap.conf

[database]
connection = mysqgl+pymysql://root:<PASSWORD>@127.0.0.1/ironic_inspector?
—charset=utf8

[pxe_filter]
driver=iptables

[iptables]

dnsmasg_interface = br-ctlplane
[ironic]

os_region = RegionOne
project_name = service

password = <PASSWORD>

username = ironic-inspector

auth_url = http://127.0.0.1/identity
auth_type = password

[keystone_authtoken]
www_authenticate_uri = http://127.0.0.1/identity

project_name = service

password = <PASSWORD>

username = ironic-inspector

auth_url = http://127.0.0.1/identity_v2_admin

auth_type = password

[processing]

ramdisk_logs_dir = /var/log/ironic—-inspector/ramdisk
store_data = swift

[swift]

os_region = RegionOne

(continues on next page)

3.1. Install Guide 7

Ironic Inspector Documentation, Release 10.2.2.dev1

(continued from previous page)

project_name = service
password = <PASSWORD>
username = ironic-inspector

auth_url = http://127.0.0.1/identity
auth_type = password

Note: Set debug = true if you want to see complete logs.

ironic-inspector requires root rights for managing iptables. It gets them by running
ironic-inspector-rootwrap utility with sudo. To allow it, copy file rootwrap.conf and
directory rootwrap . d to the configuration directory (e.g. /etc/ironic—inspector/) and cre-
ate file /etc/sudoers.d/ironic-inspector-rootwrap with the following content:

Defaults:stack !requiretty
stack ALL=(root) NOPASSWD: /usr/bin/ironic-inspector-rootwrap /etc/ironic-
—inspector/rootwrap.conf =«

Danger: Be very careful about typos in /etc/sudoers.d/
ironic-inspector—-rootwrap as any typo will break sudo for ALL users on the system.
Especially, make sure there is a new line at the end of this file.

Note: rootwrap.conf and all files in rootwrap . d must be writeable only by root.

Note: If you store rootwrap.d in a different location, make sure to update the filters_path option in
rootwrap.conf to reflect the change.

If your rootwrap. conf is in a different location, then you need to update the rootwrap_config option
in ironic-inspector.conf to point to that location.

Replace stack with whatever user youll be using to run ironic-inspector.

Configuring IPA

ironic-python-agent is a ramdisk developed for ironic and support for ironic-inspector was added during
the Liberty cycle. This is the default ramdisk starting with the Mitaka release.

Note: You need at least 2 GiB of RAM on the machines to use IPA built with diskimage-builder and at
least 384 MiB to use the TinyIPA.

To build an ironic-python-agent ramdisk, use ironic-python-agent-builder. Alternatively, you can
download a prebuild image.

For local testing and CI purposes you can use a TinyIPA image.

8 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/ironic-python-agent/10.2/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/

Ironic Inspector Documentation, Release 10.2.2.dev1

Configuring PXE

For the PXE boot environment, youll need:

* TFTP server running and accessible (see below for using dnsmasq). Ensure pxelinux.0 is
present in the TFTP root.

Copy ironic-python—-agent.kernel and ironic-python-agent.initramfs to
the TFTP root as well.

* Next, setup STFTPROOT /pxelinux.cfg/default as follows:

— 5050

!

Replace {IP} with IP of the machine (do not use loopback interface, it will be accessed by
ramdisk on a booting machine).

Note: While systemd. journald. forward_to_console=yes is not actually required,
it will substantially simplify debugging if something goes wrong. You can also enable IPA debug
logging by appending ipa-debug=1.

IPA is pluggable: you can insert introspection plugins called collectors into it. For example,
to enable a very handy 1ogs collector (sending ramdisk logs to ironic-inspector), modify the
append line in $STFTPROOT /pxelinux.cfg/default:

5050

!

!

Note: You probably want to always keep the default collector, as it provides the basic infor-
mation required for introspection.

* You need PXE boot server (e.g. dnsmasqg) running on the same machine as ironic-inspector.
Dont do any firewall configuration: ironic-inspector will handle it for you. In ironic-inspector
configuration file set dnsmasqg_interface to the interface your PXE boot server listens on.
Here is an example dnsmasq.conf:

0

range 192.168.0.50,192.168.0.150

3.1. Install Guide 9

Ironic Inspector Documentation, Release 10.2.2.dev1

Note: dhcp-sequential-ip is used because otherwise a lot of nodes booting simultane-
ously cause conflicts - the same IP address is suggested to several nodes.

Configuring iPXE
iPXE allows better scaling as it primarily uses the HTTP protocol instead of slow and unreliable TFTP.
You still need a TFTP server as a fallback for nodes not supporting iPXE. To use iPXE, youll need:

* TFTP server running and accessible (see above for using dnsmasq). Ensure undionly .kpxe is
present in the TFTP root. If any of your nodes boot with UEFI, youll also need ipxe.ef1i there.

* You also need an HTTP server capable of serving static files. Copy ironic-python—-agent.
kernel and ironic-python—-agent.initramfs there.

* Create a file called inspector. ipxe in the HTTP root (you can name and place it differently,
just dont forget to adjust the dnsmasq.conf example below):

#!ipxe
:retry_dhcp
dhcp || goto retry_dhcp

:retry_boot

imgfree

kernel —--timeout 30000 http://{IP}:8088/ironic-python—-agent.kernel_
—ipa-inspection-callback-url=http://{IP}>:5050/v1/continue systemd.
—Jjournald. forward_to_console=yes BOOTIF=${mac} initrd=agent.ramdisk_,
— || goto retry_boot

initrd --timeout 30000 http://{IP}:8088/ironic-python-agent.ramdisk_,
— || goto retry_boot

boot

Note: Older versions of the iPXE ROM tend to misbehave on unreliable network connection,
thus we use the timeout option with retries.

Just like with PXE, you can customize the list of collectors by appending the
ipa-inspector—-collectors kernel option. For example:

* Just as with PXE, youll need a PXE boot server. The configuration, however, will be different.
Here is an example dnsmasq.conf:

port=0

interface={INTERFACE}

bind-interfaces

dhcp-range={DHCP IP RANGE, e.g. 192.168.0.50,192.168.0.150}
enable-tftp

tftp-root={TFTP ROOT, e.g. /tftpboot}

dhcp-sequential-ip

dhcp-match=ipxe, 175

(continues on next page)

10 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

(continued from previous page)

dhcp-match=set:efi,option:client-arch, 7
dhcp-match=set:efi,option:client-arch, 9
dhcp-match=set:efi,option:client-arch, 11l

dhcpvé.option: Client System Architecture Type (61)
dhcp-match=set:efi6,option6:61,0007

dhcp-match=set:efi6, option6:61, 0009
dhcp-match=set:efi6,option6:61,0011

dhcp-userclass=set:ipxeb, iPXE

Client is already running iPXE; move to next stage of chainloading
dhcp-boot=tag:ipxe,http://{IP}:8088/inspector.ipxe

Client is PXE booting over EFI without iPXE ROM,

send EFI version of iPXE chainloader
dhcp-boot=tag:efi,tag:!ipxe, ipxe.efi
dhcp-option=tag:efi6,tag:!ipxe6,option6:bootfile-url,tftp://{IP}/ipxe.
—efi

Client is running PXE over BIOS; send BIOS version of iPXE |
—chainloader

dhcp-boot=undionly.kpxe, localhost.localdomain, {IP}

First, we configure the same common parameters as with PXE. Then we define ipxe and efi
tags for IPv4 and ipxe6 and efi6 for IPv6. Nodes already supporting iPXE are ordered to
download and execute inspector.ipxe. Nodes without iPXE booted with UEFI will get
ipxe.efi firmware to execute, while the remaining will get undionly.kpxe.

Configuring PXE for aarch64

For aarch64 Bare Metals, the PXE boot environment is basically the same as x86_64, youll need:

* TFTP server running and accessible (see below for using dnsmasq). Ensure grubaa64.efi is
present in the TFTP root. The firmware can be retrieved from the installation distributions for
aarch64.

e Copy ironic-agent.kernel and ironic-agent.initramfs to the TFTP
root as well. Note that the ramdisk needs to be pre-built on an aarch64 machine
with tools like ironic-python-agent-builder, see https://docs.openstack.org/
ironic-python-agent-builder/latest/admin/dib.html for how to build ramdisk for aarch64.

e Next, setup STFTPROOT/EFI/BOOT/grub.cfqg as follows:

set
set 5

[5050 continued
3 1a

{
o)

!

Replace {IP} with IP of the machine (do not use loopback interface, it will be accessed by
ramdisk on a booting machine).

» Update DHCP options for aarch64, here is an example dnsmasq.conf:

3.1. Install Guide 11

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html

Ironic Inspector Documentation, Release 10.2.2.dev1

range 192.168.0.50,192.168.0.150

11

Configuring PXE for Multi-arch

If the environment consists of bare metals with different architectures, normally different ramdisks are
required for each architecture. The grub built-in variable grub_cpu could be used to locate the correct
config file for each of them.

For example, setup STFTPROOT/EFI/BOOT/grub.cfg as following:

set default=master
set timeout=5
set hidden_timeout_quiet=false

menuentry "master" {
configfile /tftpboot/grub-${grub_cpu}.cfg
}

Prepare specific grub config for each existing architectures, e.g. grub—arm64.cfg for ARM64 and
grub-x86_64.cfqg for x86_64.

Update dnsmasq configuration to contain options for supported architectures.

3.1.4 Managing the ironic-inspector Database

ironic-inspector provides a command line client for managing its database. This client can be used for
upgrading, and downgrading the database using alembic migrations.

If this is your first time running ironic-inspector to migrate the database, simply run:

If you have previously run a version of ironic-inspector earlier than 2.2.0, the safest thing is to delete the
existing SQLite database and run upgrade as shown above. However, if you want to save the existing
database, to ensure your database will work with the migrations, youll need to run an extra step before
upgrading the database. You only need to do this the first time running version 2.2.0 or later.

If you are upgrading from ironic-inspector version 2.1.0 or lower:

< 578

If you are upgrading from a git master install of the ironic-inspector after rules were introduced:

12 Chapter 3. Using Ironic Inspector

https://www.gnu.org/software/grub/manual/grub/html_node/grub_005fcpu.html
https://alembic.readthedocs.org/

Ironic Inspector Documentation, Release 10.2.2.dev1

Other available commands can be discovered by running:

3.1.5 Running
Running in standalone mode

Execute:

Running in non-standalone mode

API service can be started in development mode with:

5050

For production, the ironic-inspector API service should be hosted under a web service. Below is a
sample configuration for Apache with module mod_wsgi:

5050

5050
10,

bin

all

You can refer to ironic installation document for more guides.

ironic-inspector conductor can be started with:

3.1. Install Guide 13

https://docs.openstack.org/ironic/10.2/install/install-rdo.html#configuring-ironic-api-behind-mod-wsgi

Ironic Inspector Documentation, Release 10.2.2.dev1

3.2 Configuration Guide

The ironic-inspector service operation is defined by a configuration file. The overview of configuration
file options follow.

3.2.1 ironic-inspector.conf
DEFAULT

backdoor_port
Type string
Default <None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number
(and not enabling backdoor if that port is in use); and <start>:<end> results in listening on the
smallest unused port number within the specified range of port numbers. The chosen port is
displayed in the services log file.

backdoor socket
Type string
Default <None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options
Type boolean
Default True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout
Type integer
Default 60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

api_paste_config

Type string

14 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Default api-paste.ini
File name for the paste.deploy config for api service

wsgi_log_format

Type string
Default % (client_ip)s "% (request_line)s" status:
% (status_code)s len: % (body_length)s time:

% (wall_seconds) .7f

A python format string that is used as the template to generate log lines. The following values can
beformatted into it: client_ip, date_time, request_line, status_code, body_length, wall_seconds.

tcp_keepidle
Type integer
Default 600
Sets the value of TCP_KEEPIDLE in seconds for each server socket. Not supported on OS X.
wsgi_default_pool_size
Type integer
Default 100
Size of the pool of greenthreads used by wsgi
max header line
Type integer
Default 16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated when keystone is configured to use PKI tokens
with big service catalogs).

wsgi_keep_alive
Type boolean
Default True
If False, closes the client socket connection explicitly.
client socket timeout
Type integer
Default 900

Timeout for client connections socket operations. If an incoming connection is idle for this number
of seconds it will be closed. A value of 0 means wait forever.

debug
Type boolean
Default False

Mutable This option can be changed without restarting.

3.2. Configuration Guide 15

Ironic Inspector Documentation, Release 10.2.2.dev1

If set to true, the logging level will be set to DEBUG instead of the default INFO level.
log_config_append
Type string
Default <None>
Mutable This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging config-
uration files. For details about logging configuration files, see the Python logging module doc-
umentation. Note that when logging configuration files are used then all logging configuration
is set in the configuration file and other logging configuration options are ignored (for example,
log-date-format).

Table 1: Deprecated Variations
Group Name

DEFAULT | log-config
DEFAULT | log_config

log_date_format
Type string
Default $Y-%m-%d %$H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log file
Type string
Default <None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT | logfile

log dir
Type string
Default <None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT | logdir

watch_log_file

16 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Type boolean
Default False

Uses logging handler designed to watch file system. When log file is moved or removed this
handler will open a new log file with specified path instantaneously. It makes sense only if log_file
option is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog
Type boolean
Default False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal
Type boolean
Default False

Enable journald for logging. If running in a systemd environment you may wish to enable journal
support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility
Type string
Default LOG_USER
Syslog facility to receive log lines. This option is ignored if log_config_append is set.
use_json
Type boolean
Default False
Use JSON formatting for logging. This option is ignored if log_config_append is set.
use_stderr
Type boolean
Default False
Log output to standard error. This option is ignored if log_config_append is set.
use_eventlog
Type boolean
Default False
Log output to Windows Event Log.
log_rotate_interval
Type integer
Default 1

3.2. Configuration Guide 17

Ironic Inspector Documentation, Release 10.2.2.dev1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is setto interval.

log _rotate_interval_type
Type string
Default days
Valid Values Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count
Type integer
Default 30
Maximum number of rotated log files.
max_logfile_size_mb
Type integer
Default 200
Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.
log _rotation_type
Type string
Default none
Valid Values interval, size, none

Log rotation type.

Possible values

interval Rotate logs at predefined time intervals.
size Rotate logs once they reach a predefined size.

none Do not rotate log files.

logging_context_format_string
Type string

Default % (asctime)s.% (msecs) 03d % (process)d % (levelname)s
% (name) s [%(request_id)s % (user_identity) s]
% (instance) s% (message) s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter
logging_default_format_string

Type string

Default ¢ (asctime) s.% (msecs) 03d % (process)d % (levelname) s
% (name)s [-] % (instance)s% (message)s

18 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Format string to use for log messages

when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug format_suffix

Type string

Default % (funcName)s % (pathname)s:% (lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used
by oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type string

Default ¢ (asctime) s.% (msecs) 03d % (process)d ERROR
% (instance) s

[

% (name) s

Prefix each line of exception output with

this format.
oslo_log.formatters.ContextFormatter

Used by
logging_user_ identity format

Type string

Default % (user)s % (tenant)s %(domain)s % (user_domain)s
% (project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels
Type list

Default ['sglalchemy=WARNING', 'iso8601=WARNING',
'request s=WARNING',

'urllib3.connectionpool=WARNING',
'keystonemiddleware=WARNING',

'ironicclient=WARNING',

'keystoneauth=WARNING',
'amgplib=WARNING',

'amgp=WARNING',

'oslo.messaging=WARNING',
'oslo_messaging=WARNING']

List of package logging levels in logger=LEVEL pairs.
log_config_append is set.

publish_errors

This option is ignored if

Type boolean

Default False

Enables or disables publication of error events.
instance_format
Type string

Default "[instance: % (uuid)s] "

The format for an instance that is passed with the log message.
instance_uuid_format

3.2. Configuration Guide

19

Ironic Inspector Documentation, Release 10.2.2.dev1

Type string

Default " [instance: % (uuid)s] "
The format for an instance UUID that is passed with the log message.
rate limit interval
Type integer
Default 0
Interval, number of seconds, of log rate limiting.
rate_limit_ burst
Type integer
Default 0
Maximum number of logged messages per rate_limit_interval.
rate_limit_except_level
Type string
Default CRITICAL

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_ deprecations
Type boolean
Default False
Enables or disables fatal status of deprecations.
rpc_conn_pool_size
Type integer
Default 30

Size of RPC connection pool.

Table 4: Deprecated Variations

Group Name
DEFAULT | rpc_conn_pool_size

conn_pool_min_size
Type integer
Default 2
The pool size limit for connections expiration policy
conn_pool_ttl
Type integer
Default 1200

20 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

The time-to-live in sec of idle connections in the pool
executor_thread pool_size
Type integer
Default 64

Size of executor thread pool when executor is threading or eventlet.

Table 5: Deprecated Variations

Group Name
DEFAULT | rpc_thread_pool_size

rpc_response_timeout
Type integer
Default 60
Seconds to wait for a response from a call.
transport_url
Type string
Default rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass @ Jhost:port[,[userN:passN @ JhostN:portN]/virtual_host?query
Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange
Type string
Default openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

listen_address
Type string
Default 0.0.0.0
IP to listen on.
listen_port
Type port number
Default 5050
Minimum Value 0

Maximum Value 65535

3.2. Configuration Guide 21

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Ironic Inspector Documentation, Release 10.2.2.dev1

Port to listen on.
host
Type string
Default 1ocalhost

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of this node. This can be an opaque identifier. It is not necessarily a hostname, FQDN, or
IP address. However, the node name must be valid within an AMQP key, and if using ZeroMQ, a
valid hostname, FQDN, or IP address.

auth_strategy
Type string
Default keystone
Valid Values noauth, keystone, http_basic

Authentication method used on the ironic-inspector API. noauth, keystone or http_basic are valid
options. noauth will disable all authentication.

Possible values

noauth no authentication
keystone use the Identity service for authentication

http_basic HTTP basic authentication

http_basic_auth_user_file
Type string
Default /etc/ironic—inspector/htpasswd
Path to Apache format user authentication file used when auth_strategy=http_basic
timeout
Type integer
Default 3600
Maximum Value 315576000
Timeout after which introspection is considered failed, set to O to disable.
clean_up_period
Type integer
Default 60
Minimum Value 0

Amount of time in seconds, after which repeat clean up of timed out nodes and old nodes status
information. WARNING: If set to a value of 0, then the periodic task is disabled and inspector will

22 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

not sync with ironic to complete the internal clean-up process. Not advisable if the deployment
uses a PXE filter, and will result in the ironic-inspector ceasing periodic cleanup activities.
leader election_interval
Type integer
Default 10

Interval (in seconds) between leader elections.

use_ssl
Type boolean
Default False
SSL Enabled/Disabled
max_concurrency
Type integer
Default 1000
Minimum Value 2
The green thread pool size.
introspection_delay
Type integer

Default 5
Delay (in seconds) between two introspections. Only applies when boot is managed by ironic-

inspector (i.e. manage_boot==True).
ipmi_address_fields

Type list

Default ['ilo_address', 'drac_host', 'drac_address']

Ironic driver_info fields that are equivalent to ipmi_address.

rootwrap_config

Type string

Default /etc/ironic-inspector/rootwrap.conf

Path to the rootwrap configuration file to use for running commands as root

api_max_limit
Type integer
Default 1000
Minimum Value 1

Limit the number of elements an API list-call returns

can_manage_boot

Type boolean

3.2. Configuration Guide

Ironic Inspector Documentation, Release 10.2.2.dev1

Default True

Whether the current installation of ironic-inspector can manage PXE booting of nodes. If set to
False, the API will reject introspection requests with manage_boot missing or set to True.
enable mdns

Type boolean

Default False

Whether to enable publishing the ironic-inspector API endpoint via multicast DNS.
standalone

Type boolean

Default True

Whether to run ironic-inspector as a standalone service. Its EXPERIMENTAL to set to False.
capabilities

boot_mode

Type boolean

Default False

Whether to store the boot mode (BIOS or UEFI).

cpu_flags
Type dict
Default {'vmx': 'cpu_vt', 'svm': 'cpu_vt', 'aes':
'cpu_aes', 'pse': 'cpu_hugepages', 'pdpelgb':
'cpu_hugepages_1lg', 'smx': 'cpu_txt'}

Mapping between a CPU flag and a capability to set if this flag is present.

coordination

backend_url
Type string
Default memcached://localhost:11211

The backend URL to use for distributed coordination. EXPERIMENTAL.

24 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

cors

allowed origin
Type list
Default <None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials
Type boolean
Default True
Indicate that the actual request can include user credentials
expose_headers
Type list
Default []
Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.
max_age
Type integer
Default 3600
Maximum cache age of CORS preflight requests.
allow _methods
Type list

Default ['GET', 'POST', 'PUT', 'HEAD', 'PATCH', 'DELETE',
'OPTIONS']

Indicate which methods can be used during the actual request.
allow_ headers
Type list

Default ['X-Auth-Token', 'X-OpenStack-Ironic-Inspector-API-Minimum-Version
'X-OpenStack-Ironic-Inspector-API-Maximum—-Version',
'X-OpenStack-Ironic-Inspector-API-Version']

Indicate which header field names may be used during the actual request.

3.2. Configuration Guide 25

https://horizon.example.com
https://horizon.example.com

Ironic Inspector Documentation, Release 10.2.2.dev1

database

sqgqlite_synchronous
Type boolean
Default True

If True, SQLite uses synchronous mode.

Table 6: Deprecated Variations

Group Name
DEFAULT | sqlite_synchronous

backend
Type string
Default sqlalchemy

The back end to use for the database.

Table 7: Deprecated Variations

Group Name
DEFAULT | db_backend

connection
Type string
Default <None>

The SQLAIchemy connection string to use to connect to the database.

Table 8: Deprecated Variations
Group Name
DEFAULT sql_connection
DATABASE | sql_connection
sql connection

slave connection
Type string
Default <None>
The SQLAIchemy connection string to use to connect to the slave database.
mysqgl_sql_mode
Type string
Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

26 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

mysql_enable_ndb
Type boolean
Default False
If True, transparently enables support for handling MySQL Cluster (NDB).
connection_recycle_time
Type integer
Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

Table 9: Deprecated Variations

Group Name
DATABASE | idle_timeout
database idle_timeout

DEFAULT sql_idle_timeout
DATABASE | sql_idle_timeout
sql idle_timeout

max_pool_size
Type integer
Default 5
Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no

limit.

Table 10: Deprecated Variations
Group Name
DEFAULT sql_max_pool_size
DATABASE | sql_max_pool_size

max_retries
Type integer
Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

Table 11: Deprecated Variations
Group Name

DEFAULT sql_max_retries
DATABASE | sql_max_retries

retry_ interval

Type integer

3.2. Configuration Guide 27

Ironic Inspector Documentation, Release 10.2.2.dev1

Default 10

Interval between retries of opening a SQL connection.

Table 12: Deprecated Variations
Group Name
DEFAULT sql_retry_interval
DATABASE | reconnect_interval

max overflow
Type integer
Default 50

If set, use this value for max_overflow with SQLAlchemy.

Table 13: Deprecated Variations
Group Name
DEFAULT sql_max_overflow
DATABASE | sqlalchemy_max_overflow

connection_debug
Type integer
Default 0
Minimum Value 0

Maximum Value 100

Verbosity of SQL debugging information: 0=None, 100=Everything.

Table 14: Deprecated Variations

Group Name
DEFAULT | sql_connection_debug

connection_trace
Type boolean
Default False

Add Python stack traces to SQL as comment strings.

Table 15: Deprecated Variations

Group Name
DEFAULT | sql_connection_trace

pool_timeout

Type integer

Default <None>

28 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

If set, use this value for pool_timeout with SQLAlchemy.

Table 16: Deprecated Variations

Group Name
DATABASE | sqlalchemy_pool_timeout

use_db reconnect
Type boolean
Default False
Enable the experimental use of database reconnect on connection lost.
db_retry interval
Type integer
Default 1
Seconds between retries of a database transaction.
db_inc_retry_ interval
Type boolean
Default True
If True, increases the interval between retries of a database operation up to db_max_retry_interval.
db_max_retry_interval
Type integer
Default 10
If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.
db max retries
Type integer
Default 20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters
Type string
Default ''

Optional URL parameters to append onto the connection URL at connect time; specify as
paraml=valuel¶m2=value2&

3.2. Configuration Guide 29

Ironic Inspector Documentation, Release 10.2.2.dev1

discovery

enroll node driver
Type string
Default fake-hardware
The name of the Ironic driver used by the enroll hook when creating a new node in Ironic.
enroll node_fields
Type dict
Default {}
Additional fields to set on newly discovered nodes.
enabled bmc_address_version
Type list
Default ['4', '6']

IP version of BMC address that will be used when enrolling a new node in Ironic. Defaults to 4,6.
Could be 4 (use v4 address only), 4,6 (v4 address have higher priority and if both addresses found
v6 version is ignored), 6,4 (v6 is desired but fall back to v4 address for BMCs having v4 address,
opposite to 4,6), 6 (use v6 address only and ignore v4 version).

dnsmasq_pxe_filter

dhcp_hostsdir
Type string
Default /var/lib/ironic—inspector/dhcp-hostsdir

The MAC address cache directory, exposed to dnsmasq.This directory is expected to be in exclu-
sive control of the driver.

purge_dhcp_hostsdir
Type boolean
Default True

Purge the hostsdir upon driver initialization. Setting to false should only be performed when the
deployment of inspector is such that there are multiple processes executing inside of the same host
and namespace. In this case, the Operator is responsible for setting up a custom cleaning facility.

dnsmasq start_command
Type string
Default "'
A (shell) command line to start the dnsmasq service upon filter initialization. Default: dont start.
dnsmasq stop_command
Type string
Default '’

30 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

A (shell) command line to stop the dnsmasq service upon inspector (error) exit. Default: dont
stop.

iptables

dnsmasq interface
Type string
Default br-ctlplane
Interface on which dnsmasq listens, the default is for VMs.
firewall chain
Type string
Default ironic-inspector
iptables chain name to use.
ethoib interfaces
Type list
Default []

List of Etherent Over InfiniBand interfaces on the Inspector host which are used for physical
access to the DHCP network. Multiple interfaces would be attached to a bond or bridge specified
in dnsmasq_interface. The MACs of the InfiniBand nodes which are not in desired state are going
to be blacklisted based on the list of neighbor MACs on these interfaces.

ip_version
Type string
Default 4
Valid Values 4, 6

The IP version that will be used for iptables filter. Defaults to 4.

Possible values

4 IPv4
6 IPv6

ironic
auth url
Type unknown type
Default <None>
Authentication URL

auth_type

3.2. Configuration Guide 31

Ironic Inspector Documentation, Release 10.2.2.dev1

Type unknown type
Default <None>

Authentication type to load

Table 17: Deprecated Variations

Group | Name
ironic | auth_plugin

cafile
Type string
Default <None>
PEM encoded Certificate Authority to use when verifying HTTPs connections.
certfile
Type string
Default <None>
PEM encoded client certificate cert file
collect_timing
Type boolean
Default False
Collect per-API call timing information.
connect_retries
Type integer
Default <None>
The maximum number of retries that should be attempted for connection errors.
connect_retry_delay
Type floating point
Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id
Type unknown type
Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default _domain name
Type unknown type

Default <None>

32 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain id
Type unknown type
Default <None>
Domain ID to scope to
domain_name
Type unknown type
Default <None>
Domain name to scope to
endpoint_override
Type string
Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

insecure
Type boolean
Default False
Verify HTTPS connections.
keyfile
Type string
Default <None>
PEM encoded client certificate key file
max_ version
Type string
Default <None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

max_retries
Type integer
Default 30
Maximum number of retries in case of conflict error (HTTP 409).
min_version
Type string

Default <None>

3.2. Configuration Guide 33

Ironic Inspector Documentation, Release 10.2.2.dev1

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version

it is as if max version is latest.

password
Type unknown type
Default <None>
Users password
project_domain_id
Type unknown type

Default <None>

Domain ID containing project

project_domain_name
Type unknown type

Default <None>

Domain name containing project

project_id
Type unknown type
Default <None>

Project ID to scope to

project_name
Type unknown type
Default <None>

Project name to scope to

region_name
Type string

Default <None>

Table 18: Deprecated Variations

Group | Name
ironic | tenant-id

ironic tenant_id

Table 19: Deprecated Variations

Group | Name
ironic tenant-name

ironic tenant_name

The default region_name for endpoint URL discovery.

34

Chapter 3.

Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

retry interval
Type integer
Default 2
Interval between retries in case of conflict error (HTTP 409).
service_name
Type string
Default <None>
The default service_name for endpoint URL discovery.
service_type
Type string
Default baremetal
The default service_type for endpoint URL discovery.
split_loggers
Type boolean
Default False
Log requests to multiple loggers.
status_code_retries
Type integer
Default <None>
The maximum number of retries that should be attempted for retriable HTTP status codes.
status_code_retry_delay
Type floating point
Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope
Type unknown type
Default <None>
Scope for system operations
tenant_id
Type unknown type
Default <None>
Tenant ID
tenant_name

Type unknown type

3.2. Configuration Guide 35

Ironic Inspector Documentation, Release 10.2.2.dev1

Default <None>
Tenant Name
timeout
Type integer
Default <None>
Timeout value for http requests
trust_id
Type unknown type
Default <None>
Trust ID
user_domain_id
Type unknown type
Default <None>
Users domain id
user_domain_name
Type unknown type
Default <None>
Users domain name
user_id
Type unknown type
Default <None>
User id
username
Type unknown type
Default <None>

Username

Table 20: Deprecated Variations

Group | Name
ironic user-name

ironic user_name

valid interfaces

Type list
Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

36 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

version
Type string
Default <None>

Minimum Major API version within a given Major API version for endpoint URL discovery.
Mutually exclusive with min_version and max_version

keystone_authtoken

www_authenticate_uri
Type string
Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 21: Deprecated Variations

Group Name
keystone_authtoken | auth_uri

auth uri

Type string

Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning: This option is deprecated for removal since Queens. Its value may be silently
ignored in the future.

Reason The auth_uri option is deprecated in favor of www_authenticate_uri and
will be removed in the S release.

auth version
Type string
Default <None>

API version of the Identity API endpoint.

3.2. Configuration Guide 37

Ironic Inspector Documentation, Release 10.2.2.dev1

interface
Type string
Default internal
Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.
delay_ auth_decision
Type boolean
Default False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout
Type integer
Default <None>
Request timeout value for communicating with Identity API server.
http_request_max retries
Type integer
Default 3
How many times are we trying to reconnect when communicating with Identity API Server.
cache
Type string
Default <None>

Request environment key where the Swift cache object is stored. When auth_token middleware
is deployed with a Swift cache, use this option to have the middleware share a caching backend
with swift. Otherwise, use the memcached_servers option instead.

certfile
Type string
Default <None>
Required if identity server requires client certificate
keyfile
Type string
Default <None>
Required if identity server requires client certificate
cafile
Type string
Default <None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

38 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

insecure
Type boolean
Default False
Verify HTTPS connections.
region_name
Type string
Default <None>
The region in which the identity server can be found.
memcached_servers
Type list
Default <None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 22: Deprecated Variations

Group Name
keystone_authtoken | memcache_servers

token cache time
Type integer
Default 300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy
Type string
Default None
Valid Values None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key
Type string
Default <None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type integer

3.2. Configuration Guide 39

Ironic Inspector Documentation, Release 10.2.2.dev1

Default 300
(Optional) Number of seconds memcached server is considered dead before it is tried again.
memcache_pool_maxsize
Type integer
Default 10
(Optional) Maximum total number of open connections to every memcached server.
memcache_pool_socket_timeout
Type integer
Default 3
(Optional) Socket timeout in seconds for communicating with a memcached server.
memcache_pool_unused_timeout
Type integer
Default 60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout
Type integer
Default 10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool
Type boolean
Default False

(Optional) Use the advanced (eventlet safe) memcached client pool. The advanced pool will only
work under python 2.x.

include_service_catalog
Type boolean
Default True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind
Type string
Default permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token

40 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service token roles
Type list
Default ['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list must
be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required
Type boolean
Default False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the
service_token_roles check as valid. Setting this true will become the default in a future release
and should be enabled if possible.

service_type
Type string
Default <None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type
Type unknown type
Default <None>

Authentication type to load

Table 23: Deprecated Variations

Group Name
keystone_authtoken | auth_plugin

auth_section
Type unknown type
Default <None>

Config Section from which to load plugin specific options

3.2. Configuration Guide 41

Ironic Inspector Documentation, Release 10.2.2.dev1

mdns

registration_attempts
Type integer
Default 5
Minimum Value 1

Number of attempts to register a service. Currently has to be larger than 1 because of race condi-
tions in the zeroconf library.

lookup_attempts
Type integer
Default 3
Minimum Value 1
Number of attempts to lookup a service.
params
Type unknown type
Default {}
Additional parameters to pass for the registered service.
interfaces
Type list
Default <None>

List of IP addresses of interfaces to use for mDNS. Defaults to all interfaces on the system.

oslo_messaging_amqp

container name
Type string
Default <None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 24: Deprecated Variations

Group | Name
amqpl | container_name

idle_timeout
Type integer
Default 0

42 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Timeout for inactive connections (in seconds)

Table 25: Deprecated Variations

Group | Name
amgpl | idle_timeout

trace
Type boolean
Default False

Debug: dump AMQP frames to stdout

Table 26: Deprecated Variations

Group | Name
amqgpl | trace

ssl
Type boolean
Default False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl ca_file
Type string
Default ''

CA certificate PEM file used to verify the servers certificate

Table 27: Deprecated Variations

Group | Name
amqpl | ssl_ca_file

ssl cert file
Type string
Default '’

Self-identifying certificate PEM file for client authentication

Table 28: Deprecated Variations

Group | Name
amqgpl | ssl_cert_file

ssl_key_file

Type string
Default "'

3.2. Configuration Guide 43

Ironic Inspector Documentation, Release 10.2.2.dev1

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 29: Deprecated Variations

Group | Name
amqgpl | ssl_key_file

ssl_key_password
Type string
Default <None>

Password for decrypting ssl_key_file (if encrypted)

Table 30: Deprecated Variations

Group | Name
amqpl | ssl_key_password

ssl_verify vhost
Type boolean
Default False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

sasl mechanisms
Type string
Default '’

Space separated list of acceptable SASL mechanisms

Table 31: Deprecated Variations

Group | Name
amgpl | sasl_mechanisms

sasl_config dir
Type string
Default ''

Path to directory that contains the SASL configuration

Table 32: Deprecated Variations

Group | Name
amqpl | sasl_config_dir

sasl_config_name

44 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Type string
Default "'

Name of configuration file (without .conf suffix)

Table 33: Deprecated Variations

Group | Name
amqpl | sasl_config_name

sasl_default_realm
Type string
Default '’
SASL realm to use if no realm present in username
connection_retry_interval
Type integer
Default 1
Minimum Value 1
Seconds to pause before attempting to re-connect.
connection_retry backoff
Type integer
Default 2
Minimum Value 0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max
Type integer
Default 30
Minimum Value 1
Maximum limit for connection_retry_interval + connection_retry_backoff
link retry delay
Type integer
Default 10
Minimum Value 1
Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.
default_reply retry
Type integer
Default 0

3.2. Configuration Guide 45

Ironic Inspector Documentation, Release 10.2.2.dev1

Minimum Value -1
The maximum number of attempts to re-send a reply message which failed due to a recoverable

error.
default_reply_ timeout
Type integer
Default 30
Minimum Value 5
The deadline for an rpc reply message delivery.
default send timeout
Type integer
Default 30

Minimum Value 5
The deadline for an rpc cast or call message delivery. Only used when caller does not provide a

timeout expiry.
default_notify timeout
Type integer
Default 30

Minimum Value 5
The deadline for a sent notification message delivery. Only used when caller does not provide a

timeout expiry.
default_ sender link timeout
Type integer
Default 600

Minimum Value 1

The duration to schedule a purge of idle sender links. Detach link after expiry.

addressing mode

Type string

Default dynamic
Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the mes-

sage bus does not support routing otherwise use routable addressing

pseudo_vhost

Type boolean

Default True
Enable virtual host support for those message buses that do not natively support virtual hosting
(such as gpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports

46 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

virtual hosting using the hostname field in the AMQP 1.0 Open performative as the name of the

virtual host.
server_request_prefix
Type string
Default exclusive

address prefix used when sending to a specific server

Table 34: Deprecated Variations

Group | Name

amqgpl | server_request_prefix

broadcast_prefix
Type string
Default broadcast

address prefix used when broadcasting to all servers

Table 35: Deprecated Variations

Group | Name
amqgpl | broadcast_prefix

group_request_prefix
Type string
Default unicast

address prefix when sending to any server in group

Table 36: Deprecated Variations

Group | Name

amqpl | group_request_prefix

rpc_address_prefix
Type string
Default openstack.org/om/rpc
Address prefix for all generated RPC addresses
notify address_prefix
Type string
Default openstack.org/om/notify
Address prefix for all generated Notification addresses

multicast_address

Type string

3.2. Configuration Guide

47

Ironic Inspector Documentation, Release 10.2.2.dev1

Default multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address
Type string
Default unicast

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

anycast_address
Type string
Default anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

default_notification_exchange
Type string
Default <None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else no-
tify

default_rpc_exchange
Type string
Default <None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply link_credit
Type integer
Default 200
Minimum Value 1
Window size for incoming RPC Reply messages.
rpc_server_credit
Type integer
Default 100
Minimum Value 1
Window size for incoming RPC Request messages
notify server_credit

Type integer

48 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Default 100
Minimum Value 1
Window size for incoming Notification messages
pre_settled
Type multi-valued
Default rpc-cast
Default rpc-reply

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_ fetch_bytes
Type integer
Default 1048576
Max fetch bytes of Kafka consumer
kafka consumer timeout
Type floating point
Default 1.0
Default timeout(s) for Kafka consumers
pool_size
Type integer
Default 10

Pool Size for Kafka Consumers

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_min_size
Type integer
Default 2

The pool size limit for connections expiration policy

3.2. Configuration Guide 49

Ironic Inspector Documentation, Release 10.2.2.dev1

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_ttl
Type integer
Default 1200

The time-to-live in sec of idle connections in the pool

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

consumer_group
Type string
Default oslo_messaging_consumer
Group id for Kafka consumer. Consumers in one group will coordinate message consumption
producer_batch_timeout
Type floating point
Default 0.0
Upper bound on the delay for KafkaProducer batching in seconds
producer_batch_size
Type integer
Default 16384
Size of batch for the producer async send
compression_codec
Type string
Default none
Valid Values none, gzip, snappy, 1z4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit
Type boolean
Default False

Enable asynchronous consumer commits

50 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

max_poll_ records
Type integer
Default 500
The maximum number of records returned in a poll call
security protocol
Type string
Default PLAINTEXT
Valid Values PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL
Protocol used to communicate with brokers
sasl mechanism
Type string
Default PLAIN
Mechanism when security protocol is SASL
ssl cafile
Type string
Default "'
CA certificate PEM file used to verify the server certificate
ssl_client_cert_file
Type string
Default '’
Client certificate PEM file used for authentication.
ssl_client_key_ file
Type string
Default "'
Client key PEM file used for authentication.
ssl_client_key_ password
Type string
Default "'

Client key password file used for authentication.

3.2. Configuration Guide 51

Ironic Inspector Documentation, Release 10.2.2.dev1

oslo_messaging_notifications

driver
Type multi-valued
Default "'

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv?2, rout-
ing, log, test, noop

Table 37: Deprecated Variations

Group Name
DEFAULT | notification_driver

transport_url
Type string
Default <None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 38: Deprecated Variations

Group Name
DEFAULT | notification_transport_url

topics
Type list
Default ['notifications']

AMAQP topic used for OpenStack notifications.

Table 39: Deprecated Variations
Group Name
rpc_notifier2 | topics
DEFAULT notification_topics

retry
Type integer
Default -1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. O - No retry, -1 - indefinite

52 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

oslo_messaging_rabbit

amgp_durable_queues
Type boolean
Default False
Use durable queues in AMQP.
amgp_auto_delete
Type boolean
Default False

Auto-delete queues in AMQP.

Table 40: Deprecated Variations

Group Name
DEFAULT | amgp_auto_delete

ssl
Type boolean
Default False

Connect over SSL.

Table 41: Deprecated Variations

Group Name
oslo_messaging_rabbit | rabbit_use_ssl

ssl version

Type string
Default '’

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 42: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_version

ssl_key_ file
Type string
Default "'
SSL key file (valid only if SSL enabled).

3.2. Configuration Guide 53

Ironic Inspector Documentation, Release 10.2.2.dev1

Table 43: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_keyfile

ssl cert file
Type string
Default '’
SSL cert file (valid only if SSL enabled).

Table 44: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_certfile

ssl ca _file
Type string
Default '’
SSL certification authority file (valid only if SSL enabled).

Table 45: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_ca_certs

heartbeat_in_pthread
Type boolean
Default False

EXPERIMENTAL: Run the health check heartbeat thread through a native python thread. By
default if this option isnt provided the health check heartbeat will inherit the execution model
from the parent process. By example if the parent process have monkey patched the stdlib by
using eventlet/greenlet then the heartbeat will be run through a green thread.

kombu_reconnect_delay
Type floating point
Default 1.0

How long to wait before reconnecting in response to an AMQP consumer cancel notification.

Table 46: Deprecated Variations

Group Name
DEFAULT | kombu_reconnect_delay

kombu_compression
Type string

Default <None>

54 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

EXPERIMENTAL.: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry timeout
Type integer
Default 60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 47: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_reconnect_timeout

kombu_failover_strategy
Type string
Default round-robin
Valid Values round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method
Type string
Default AMQPLAIN
Valid Values PLAIN, AMQPLAIN, RABBIT-CR-DEMO
The RabbitMQ login method.

Table 48: Deprecated Variations

Group Name
DEFAULT | rabbit_login_method

rabbit_retry_interval
Type integer
Default 1
How frequently to retry connecting with RabbitMQ.
rabbit_retry backoff
Type integer
Default 2

How long to backoff for between retries when connecting to RabbitMQ.

Table 49: Deprecated Variations

Group Name
DEFAULT | rabbit_retry_backoff

3.2. Configuration Guide 55

Ironic Inspector Documentation, Release 10.2.2.dev1

rabbit interval max
Type integer
Default 30
Maximum interval of RabbitMQ connection retries. Default is 30 seconds.
rabbit_ha_queues
Type boolean
Default False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe
the RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-
policy argument when declaring a queue. If you just want to make sure that all queues (except
those with auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA
A(?!amgq.).* {ha-mode: all}

Table 50: Deprecated Variations

Group Name
DEFAULT | rabbit_ha_queues

rabbit_transient_queues_ttl
Type integer
Default 1800
Minimum Value 1

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues.

rabbit_qgos_prefetch_count
Type integer
Default 0
Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.
heartbeat_ timeout_ threshold
Type integer
Default 60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate
Type integer
Default 2
How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

56 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Type integer
Default True

Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send is used as reply, so
the MessageUndeliverable exception is raised in case the client queue does not exist.

oslo_policy

enforce_scope
Type boolean
Default False

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced.
If the scopes do not match, an InvalidScope exception will be raised. If False, a message
will be logged informing operators that policies are being invoked with mismatching scope.

enforce new defaults
Type boolean
Default False

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token
is allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged
to enable this flag along with the enforce_scope flag so that you can get the benefits of new
defaults and scope_type together

policy file
Type string
Default policy. json

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 51: Deprecated Variations

Group Name
DEFAULT | policy_file

policy default_rule
Type string
Default default

Default rule. Enforced when a requested rule is not found.

Table 52: Deprecated Variations

Group Name
DEFAULT | policy_default_rule

3.2. Configuration Guide 57

Ironic Inspector Documentation, Release 10.2.2.dev1

policy dirs
Type multi-valued
Default policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

Table 53: Deprecated Variations

Group Name
DEFAULT | policy_dirs

remote_content_type
Type string
Default application/x-www—-form-urlencoded
Valid Values application/x-www-form-urlencoded, application/json
Content Type to send and receive data for REST based policy check
remote_ssl_verify server_crt
Type boolean
Default False
server identity verification for REST based policy check
remote ssl ca crt file
Type string
Default <None>
Absolute path to ca cert file for REST based policy check
remote _ssl client_ crt_ file
Type string
Default <None>
Absolute path to client cert for REST based policy check
remote_ssl_client_key_ file
Type string
Default <None>

Absolute path client key file REST based policy check

58 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

pci_devices

alias
Type multi-valued
Default "'

An alias for PCI device identified by vendor_id and product_id fields. Format: {vendor_id: 1234,
product_id: 5678, name: pci_devl}

port_physnet

cidr_map
Type list
Default 10.10.10.0/24:physnet_a,2001:db8::/64:physnet_b

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Mapping of IP subnet CIDR to physical network. When the physnet_cidr_map processing hook
is enabled the physical_network property of baremetal ports is populated based on this mapping.

processing

add_ports
Type string
Default pxe
Valid Values all, active, pxe, disabled

Which MAC addresses to add as ports during introspection. Possible values: all (all MAC ad-
dresses), active (MAC addresses of NIC with IP addresses), pxe (only MAC address of NIC node
PXE booted from, falls back to active if PXE MAC is not supplied by the ramdisk).

keep_ports
Type string
Default a1l
Valid Values all, present, added

Which ports (already present on a node) to keep after introspection. Possible values: all (do
not delete anything), present (keep ports which MACs were present in introspection data), added
(keep only MACs that we added during introspection).

overwrite_existing
Type boolean
Default True

Whether to overwrite existing values in node database. Disable this option to make introspection
a non-destructive operation.

3.2. Configuration Guide 59

Ironic Inspector Documentation, Release 10.2.2.dev1

default_processing hooks
Type string

Default ramdisk_error, root_disk_selection, scheduler,
validate_interfaces, capabilities,pci_devices

Comma-separated list of default hooks for processing pipeline. Hook scheduler updates the node
with the minimum properties required by the Nova scheduler. Hook validate_interfaces ensures
that valid NIC data was provided by the ramdisk. Do not exclude these two unless you really
know what youre doing.

processing hooks
Type string
Default $default_processing_hooks

Comma-separated list of enabled hooks for processing pipeline. The default for this is
$default_processing_hooks, hooks can be added before or after the defaults like this: pre-
hook,$default_processing_hooks,posthook.

ramdisk_logs_dir
Type string
Default <None>
If set, logs from ramdisk will be stored in this directory.
always_store_ramdisk_ logs
Type boolean
Default False

Whether to store ramdisk logs even if it did not return an error message (dependent upon
ramdisk_logs_dir option being set).

node not_ found hook
Type string
Default <None>

The name of the hook to run when inspector receives inspection information from a node it isnt
already aware of. This hook is ignored by default.

store data
Type string
Default none

The storage backend for storing introspection data. Possible values are: none, database and swift.
If set to none, introspection data will not be stored.

disk_partitioning spacing
Type boolean
Default True

Whether to leave 1 GiB of disk size untouched for partitioning. Only has effect when used with
the IPA as a ramdisk, for older ramdisk local_gb is calculated on the ramdisk side.

60 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

ramdisk_logs_filename_ format
Type string
Default {uuid}_{dt:%Y%m%d-%H%M%S.%f}.tar.gz

File name template for storing ramdisk logs. The following replacements can be used: {uuid} -
node UUID or unknown, {bmc} - node BMC address or unknown, {dt} - current UTC date and
time, {mac} - PXE booting MAC or unknown.

power_off
Type boolean
Default True

Whether to power off a node after introspection.Nodes in active or rescue states which submit
introspection data will be left on if the feature is enabled via the permit_active_introspection
configuration option.

permit_active_introspection
Type boolean
Default False
Whether to process nodes that are in running states.
update_pxe_enabled
Type boolean
Default True

Whether to update the pxe_enabled value according to the introspection data. This option has no
effect if [processing]overwrite_existing is set to False

pxe_filter

driver
Type string
Default iptables

PXE boot filter driver to use, possible filters are: iptables, dnsmasq and noop. Set noop to disable
the firewall filtering.

sync_period
Type integer
Default 15
Minimum Value 0

Amount of time in seconds, after which repeat periodic update of the filter.

3.2. Configuration Guide 61

Ironic Inspector Documentation, Release 10.2.2.dev1

service_catalog

auth_url
Type unknown type
Default <None>
Authentication URL
auth_type
Type unknown type
Default <None>

Authentication type to load

Table 54: Deprecated Variations

Group Name
service_catalog | auth_plugin

cafile
Type string
Default <None>
PEM encoded Certificate Authority to use when verifying HTTPs connections.
certfile
Type string
Default <None>
PEM encoded client certificate cert file
collect_timing
Type boolean
Default False
Collect per-API call timing information.
connect_ retries
Type integer
Default <None>
The maximum number of retries that should be attempted for connection errors.
connect_retry_delay
Type floating point
Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default domain id

62 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Type unknown type
Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name
Type unknown type
Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id
Type unknown type
Default <None>
Domain ID to scope to
domain_name
Type unknown type
Default <None>
Domain name to scope to
endpoint_override
Type string
Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

insecure
Type boolean
Default False
Verify HTTPS connections.
keyfile
Type string
Default <None>
PEM encoded client certificate key file
max version
Type string
Default <None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

3.2. Configuration Guide 63

Ironic Inspector Documentation, Release 10.2.2.dev1

min_version
Type string

Default <None>

The minimum major version of a given API, intended to be used as the lower bound of a range

with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password
Type unknown type
Default <None>
Users password
project_domain_id
Type unknown type
Default <None>
Domain ID containing project
project_domain_name
Type unknown type
Default <None>
Domain name containing project
project_id
Type unknown type
Default <None>

Project ID to scope to

Table 55: Deprecated Variations
Group Name

service_catalog | tenant-id
service_catalog | tenant_id

project_name
Type unknown type
Default <None>

Project name to scope to

Table 56: Deprecated Variations

Group Name
service_catalog | tenant-name
service_catalog | tenant_name

region_name

64 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Type string

Default <None>

The default region_name for endpoint URL discovery.

service_name
Type string

Default <None>

The default service_name for endpoint URL discovery.

service_type

Type string

Default baremetal-introspection

The default service_type for endpoint URL discovery.

split_loggers
Type boolean

Default False

Log requests to multiple loggers.

status_code_ retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay
Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_ scope
Type unknown type
Default <None>
Scope for system operations
tenant_id
Type unknown type
Default <None>
Tenant ID
tenant_name
Type unknown type

Default <None>

3.2. Configuration Guide

65

Ironic Inspector Documentation, Release 10.2.2.dev1

Tenant Name
timeout
Type integer
Default <None>
Timeout value for http requests
trust_id
Type unknown type
Default <None>
Trust ID
user _domain_id
Type unknown type
Default <None>
Users domain id
user_domain_name
Type unknown type
Default <None>
Users domain name
user_id
Type unknown type
Default <None>
User id
username
Type unknown type
Default <None>

Username

Table 57: Deprecated Variations
Group Name
service_catalog | user-name
service_catalog | user_name

valid_interfaces
Type list
Default ['internal', 'public']
List of interfaces, in order of preference, for endpoint URL.

version

66 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Type string

Default <None>

Minimum Major API version within a given Major API version for endpoint URL discovery.
Mutually exclusive with min_version and max_version

ssl

ca_file
Type string
Default <None>

CA certificate file to use to verify connecting clients.

Table 58: Deprecated Variations

Group Name
DEFAULT | ssl_ca_file

cert file
Type string
Default <None>

Certificate file to use when starting the server securely.

Table 59: Deprecated Variations

Group Name
DEFAULT | ssl_cert_file

key file
Type string
Default <None>

Private key file to use when starting the server securely.

Table 60: Deprecated Variations

Group Name
DEFAULT | ssl_key_file

version
Type string
Default <None>

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ciphers

Type string

3.2. Configuration Guide 67

Ironic Inspector Documentation, Release 10.2.2.dev1

swift

Default <None>

Sets the list of available ciphers. value should be a string in the OpenSSL cipher list format.

auth_url

Type unknown type
Default <None>

Authentication URL

auth_type

Type unknown type
Default <None>

Authentication type to load

cafile

Type string

Default <None>

Table 61: Deprecated Variations

Group

Name

swift

auth_plugin

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

collect_timing

Type boolean

Default False

Collect per-API call timing information.

connect_ retries

Type integer

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

68

Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

container
Type string
Default ironic-inspector
Default Swift container to use when creating objects.
default domain_id
Type unknown type
Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default domain name
Type unknown type
Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

delete after
Type integer
Default 0

Number of seconds that the Swift object will last before being deleted. (set to O to never delete
the object).

domain_ id
Type unknown type
Default <None>
Domain ID to scope to
domain_ name
Type unknown type
Default <None>
Domain name to scope to
endpoint_override
Type string
Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

insecure

3.2. Configuration Guide 69

Ironic Inspector Documentation, Release 10.2.2.dev1

Type boolean
Default False
Verify HTTPS connections.
keyfile
Type string
Default <None>
PEM encoded client certificate key file
max_ version
Type string

Default <None>

The maximum major version of a given API, intended to be used as the upper bound of a range

with min_version. Mutually exclusive with version.
min_version
Type string

Default <None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version

it is as if max version is latest.
password
Type unknown type
Default <None>
Users password
project_domain_id
Type unknown type
Default <None>
Domain ID containing project
project_domain_name
Type unknown type
Default <None>
Domain name containing project
project_id
Type unknown type
Default <None>

Project ID to scope to

70

Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Table 62: Deprecated Variations
Group | Name

swift tenant-id
swift tenant_id

project_name
Type unknown type
Default <None>

Project name to scope to

Table 63: Deprecated Variations
Group | Name

swift tenant-name
swift tenant_name

region_name
Type string
Default <None>
The default region_name for endpoint URL discovery.
service_name
Type string
Default <None>
The default service_name for endpoint URL discovery.
service_type
Type string
Default ocbject-store
The default service_type for endpoint URL discovery.
split_loggers
Type boolean
Default False
Log requests to multiple loggers.
status_code_retries
Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point

3.2. Configuration Guide

Ironic Inspector Documentation, Release 10.2.2.dev1

Default <None>

Delay (in seconds) between two retries for retriable status codes.

starting with 0.5 seconds up to a maximum of 60 seconds is used.
system_scope
Type unknown type
Default <None>
Scope for system operations
tenant_id
Type unknown type
Default <None>
Tenant ID
tenant_name
Type unknown type
Default <None>
Tenant Name
timeout
Type integer
Default <None>
Timeout value for http requests
trust_id
Type unknown type
Default <None>
Trust ID
user_domain_id
Type unknown type
Default <None>
Users domain id
user_ domain_ name
Type unknown type
Default <None>
Users domain name
user_id
Type unknown type
Default <None>

User id

If not set, exponential retry

72

Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

username
Type unknown type
Default <None>

Username

Table 64: Deprecated Variations
Group | Name

swift user-name
swift user_name

valid interfaces
Type list
Default ['internal', 'public']
List of interfaces, in order of preference, for endpoint URL.
version
Type string
Default <None>

Minimum Major API version within a given Major API version for endpoint URL discovery.
Mutually exclusive with min_version and max_version

3.2.2 Policies

The following is an overview of all available policies in ironic inspector. For a sample configuration
file, refer to Ironic Inspector Policy.

ironic_inspector.api

is admin

Default role:admin or role:administrator or
role:baremetal_admin

Full read/write API access
is_observer
Default role:baremetal_observer
Read-only API access
public_api
Default is_public_api:True
Internal flag for public API routes
default
Default !

3.2. Configuration Guide 73

Ironic Inspector Documentation, Release 10.2.2.dev1

Default API access policy
introspection
Default rule:public_api
Operations
* GET /
Access the API root for available versions information
introspection:version
Default rule:public_api
Operations
e GET /{version}
Access the versioned API root for version information
introspection:continue
Default rule:public_api
Operations
* POST /continue
Ramdisk callback to continue introspection
introspection:status
Default rule:is_admin or rule:is_observer
Operations
* GET /introspection
e GET /introspection/{node_id}
Get introspection status
introspection:start
Default rule:is_admin
Operations
e POST /introspection/{node_id}
Start introspection
introspection:abort
Default rule:is_admin
Operations
e POST /introspection/{node_id}/abort
Abort introspection
introspection:data

Default rule:is_admin

74 Chapter 3.

Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Operations
* GET /introspection/{node_id}/data
Get introspection data
introspection:reapply
Default rule:is_admin
Operations
e POST /introspection/{node_id}/data/unprocessed
Reapply introspection on stored data
introspection:rule:get
Default rule:is_admin
Operations
* GET /rules
e GET /rules/{rule_id}
Get introspection rule(s)
introspection:rule:delete
Default rule:is_admin
Operations
* DELETE /rules
e DELETE /rules/{rule_id}
Delete introspection rule(s)
introspection:rule:create
Default rule:is_admin
Operations
* POST /rules

Create introspection rule

3.3 User Guide

3.3.1 How Ironic Inspector Works
How Ironic Inspector Works

Workflow

Usual hardware introspection flow is as follows:

* Operator enrolls nodes into Ironic e.g. via openstack baremetal CLI command. Power manage-
ment credentials should be provided to Ironic at this step.

3.3. User Guide 75

https://wiki.openstack.org/wiki/Ironic
https://docs.openstack.org/python-ironicclient/10.2/cli/osc_plugin_cli.html

Ironic Inspector Documentation, Release 10.2.2.dev1

Nodes are put in the correct state for introspection as described in node states.
Operator sends nodes on introspection using ironic-inspector API or CLI (see usage).
On receiving node UUID ironic-inspector:

— validates node power credentials, current power and provisioning states,

— allows access to PXE boot service for the nodes,

— issues reboot command for the nodes, so that they boot the ramdisk.
The ramdisk collects the required information and posts it back to ironic-inspector.
On receiving data from the ramdisk, ironic-inspector:

— validates received data,

— finds the node in Ironic database using its BMC address (MAC address in case of SSH
driver),

— fills missing node properties with received data and creates missing ports.

Note: ironic-inspector is responsible to create Ironic ports for some or all NICs found on the
node. ironic-inspector is also capable of deleting ports that should not be present. There are
two important configuration options that affect this behavior: add_ports and keep_ports
(please refer to the sample configuration file for a detailed explanation).

Default values as of ironic-inspector 1.1.0 are add_ports=pxe, keep_ports=all, which
means that only one port will be added, which is associated with NIC the ramdisk PXE booted
from. No ports will be deleted. This setting ensures that deploying on introspected nodes will
succeed despite Ironic bug 1405131.

Ironic inspection feature by default requires different settings: add_ports=all,
keep_ports=present, which means that ports will be created for all detected NICs, and
all other ports will be deleted. Refer to the Ironic inspection documentation for details.

Ironic inspector can also be configured to not create any ports. This is done by setting
add_ports=disabled. If setting add_ports to disabled the keep_ports option should
be also set to all. This will ensure no manually added ports will be deleted.

» Separate API (see usage and api) can be used to query introspection results for a given node.

* Nodes are put in the correct state for deploying as described in node states.

Starting DHCP server and configuring PXE boot environment is not part of this package and should be
done separately.

76

Chapter 3. Using Ironic Inspector

https://bugs.launchpad.net/ironic/+bug/1405131
https://docs.openstack.org/ironic/10.2/admin/inspection.html

Ironic Inspector Documentation, Release 10.2.2.dev1

State machine diagram

The diagram below shows the introspection states that an ironic-inspector FSM goes through during
the node introspection, discovery and reprocessing. The diagram also shows events that trigger state
transitions.

process

error

timeout

errory reapply finish

abort_end @/@ [reappl [

timeout

abort

3.3.2 How to use Ironic Inspector
Usage

Refer to api for information on the HTTP API. Refer to the client documentation for information on
how to use CLI and Python library.

Using from Ironic API

Ironic Kilo introduced support for hardware introspection under name of inspection. ironic-inspector
introspection is supported for some generic drivers, please refer to Ironic inspection documentation for
details.

Node States

* The nodes should be moved to MANAGEABLE provision state before introspection (requires
python-ironicclient of version 0.5.0 or newer):

* The introspection can be triggered by using the following command:

* After successful introspection and before deploying nodes should be made available to Nova, by
moving them to AVAILABLE state:

3.3. User Guide 77

https://docs.openstack.org/python-ironic-inspector-client/10.2/
https://docs.openstack.org/ironic/10.2/admin/inspection.html

Ironic Inspector Documentation, Release 10.2.2.dev1

Note: Due to how Nova interacts with Ironic driver, you should wait 1 minute before Nova be-
comes aware of available nodes after issuing this command. Use nova hypervisor-stats
command output to check it.

Introspection Rules

Inspector supports a simple JSON-based DSL to define rules to run during introspection. Inspector
provides an API to manage such rules, and will run them automatically after running all processing
hooks.

A rule consists of conditions to check, and actions to run. If conditions evaluate to true on the introspec-
tion data, then actions are run on a node.

Please refer to the command below to import introspection rule:

Available conditions and actions are defined by plugins, and can be extended, see How To Contribute
for details. See api for specific calls to define introspection rules.

Conditions

A condition is represented by an object with fields:
op the type of comparison operation, default available operators include:

* eq, le, ge, ne, 1t, gt - basic comparison operators;

* in-net - checks that an IP address is in a given network;

* matches - requires a full match against a given regular expression;

* contains - requires a value to contain a given regular expression;

* is—empty - checks that field is an empty string, list, dict or None value.
field aJSON path to the field in the introspection data to use in comparison.

Starting with the Mitaka release, you can also apply conditions to ironic node field. Prefix field with
schema (data:// ornode: //) to distinguish between values from introspection data and node. Both
schemes use JSON path:

if scheme (node or data) is missing, condition compares data with introspection data.
invert boolean value, whether to invert the result of the comparison.

multiple how to treat situations where the field query returns multiple results (e.g. the field con-
tains a list), available options are:

78 Chapter 3. Using Ironic Inspector

http://goessner.net/articles/JsonPath/

Ironic Inspector Documentation, Release 10.2.2.dev1

any (the default) require any to match,
all require all to match,

first requrie the first to match.

All other fields are passed to the condition plugin, e.g. numeric comparison operations require a value
field to compare against.

Scope

By default, introspection rules are applied to all nodes being inspected. In order for the rule to be applied
only to specific nodes, a matching scope variable must be set to both the rule and the node. To set the
scope for a rule include field "scope" in JSON file before importing. For example:

Set the property inspection_scope on the node you want the rule to be applied to:

set property

Now,

when inspecting, the rule will be applied only to nodes with matching scope value. It will also

ignore nodes that do not have inspection_scope property set. Note that if a rule has no scope set,
it will be applied to all nodes, regardless if they have inspection_scope set or not.

Actions

An action is represented by an object with fields:

action type of action. Possible values are defined by plugins.

All other fields are passed to the action plugin.

Default available actions include:

fail fail introspection. Requires a message parameter for the failure message.

set—attribute sets an attribute on an Ironic node. Requires a path field, which is the path
to the attribute as used by ironic (e.g. /properties/something), and a value to set.

set—-capability sets acapability on an Ironic node. Requires name and value fields, which
are the name and the value for a new capability accordingly. Existing value for this same capability
is replaced.

extend-attribute the same as set—-attribute, but treats existing value as a list and
appends value to it. If optional unique parameter is set to True, nothing will be added if given
value is already in a list.

add-trait adds a trait to an Ironic node. Requires a name field with the name of the trait to
add.

3.3.

User Guide 79

Ironic Inspector Documentation, Release 10.2.2.dev1

* remove-trait removes a trait from an Ironic node. Requires a name field with the name of
the trait to remove.

Starting from Mitaka release, value field in actions supports fetching data from introspection, using
python string formatting notation:

Note that any value referenced in this way will be converted to a string.

If value is a dict or list, strings nested at any level within the structure will be formatted as well:

Plugins

ironic-inspector heavily relies on plugins for data processing. Even the standard functionality is largely
based on plugins. Set processing_hooks option in the configuration file to change the set of plugins
to be run on introspection data. Note that order does matter in this option, especially for hooks that have
dependencies on other hooks.

These are plugins that are enabled by default and should not be disabled, unless you understand what
youre doing:

scheduler validates and updates basic hardware scheduling properties: CPU number and architec-
ture, memory and disk size.

Note: Diskless nodes have the disk size property local_gb == 0. Always use node driver
root_device hints to prevent unexpected HW failures passing silently.

validate_interfaces validates network interfaces information. Creates new ports, optionally
deletes ports that were not present in the introspection data. Also sets the pxe_enabled flag for
the PXE-booting port and unsets it for all the other ports to avoid nova picking a random port to
boot the node.

The following plugins are enabled by default, but can be disabled if not needed:

ramdisk_error reports error, if error field is set by the ramdisk, also optionally stores logs from
logs field, see api for details.

capabilities detect node capabilities: CPU, boot mode, etc. See Capabilities Detection for more
details.

pci_devices gathers the list of all PCI devices returned by the ramdisk and compares to those de-
fined in alias field(s) from pci_devices section of configuration file. The recognized PCI
devices and their count are then stored in node properties. This information can be later used in
nova flavors for node scheduling.

Here are some plugins that can be additionally enabled:
example example plugin logging its input and output.

raid_device gathers block devices from ramdisk and exposes root device in multiple runs.

80 Chapter 3. Using Ironic Inspector

https://docs.python.org/2/library/string.html#formatspec

Ironic Inspector Documentation, Release 10.2.2.dev1

extra_hardware stores the value of the data key returned by the ramdisk as a JSON encoded string
in a Swift object. The plugin will also attempt to convert the data into a format usable by in-
trospection rules. If this is successful then the new format will be stored in the extra key. The
data key is then deleted from the introspection data, as unless converted its assumed unusable by
introspection rules.

local_link_ connection Processes LLDP data returned from inspection specifically looking for
the port ID and chassis ID, if found it configures the local link connection information on the nodes
Ironic ports with that data. To enable LLDP in the inventory from IPA ipa-collect-11dp=1
should be passed as a kernel parameter to the IPA ramdisk. In order to avoid processing the raw
LLDP data twice, the 11dp_basic plugin should also be installed and run prior to this plugin.

11dp_basic Processes LLDP data returned from inspection and parses TLVs from the Basic Manage-
ment (802.1AB), 802.1Q, and 802.3 sets and stores the processed data back to the Ironic inspector
data in Swift.

physnet_cidr_map Configures the physical_network property of the nodes Ironic port when
the IP address is in a configured CIDR mapping. CIDR to physical network mappings is set in
configuration using the [port_physnet]/cidr_map option, for example:

10.10.10.0/24 2001 64

Refer to How To Contribute for information on how to write your own plugin.

Discovery

Starting from Mitaka, ironic-inspector is able to register new nodes in Ironic.

The existing node—not-found-hook handles what happens if ironic-inspector receives inspection
data from a node it can not identify. This can happen if a node is manually booted without registering it
with Ironic first.

For discovery, the configuration file option node_not_found_hook should be set to load the hook
called enroll. This hook will enroll the unidentified node into Ironic using the fake-hardware
hardware type. This is a configurable option: set enroll_node_driver in the ironic-inspector
configuration file to the hardware type you want. You can also configure arbitrary fields to set on
discovery, for example:

The enroll hook will also set the ipmi_address property on the new node, if its available in the
introspection data we received, see ramdisk_callback.

Once the enrol1 hook is finished, ironic-inspector will process the introspection data in the same way
it would for an identified node. It runs the processing plugins, and after that it runs introspection rules,
which would allow for more customisable node configuration, see rules.

A rule to set a nodes Ironic driver to ipmi and populate the required driver_info for that driver
would look like:

3.3. User Guide 81

Ironic Inspector Documentation, Release 10.2.2.dev1

All nodes discovered and enrolled via the enrol1 hook, will contain an auto_discovered flag in
the introspection data, this flag makes it possible to distinguish between manually enrolled nodes and
auto-discovered nodes in the introspection rules using the rule condition eq:

Reapplying introspection on stored data

To allow correcting mistakes in introspection rules the API provides an entry point that triggers the
introspection over stored data. The data to use for processing is kept in Swift separately from the
data already processed. Reapplying introspection overwrites processed data in the store. Updating the
introspection data through the endpoint isnt supported yet. Following preconditions are checked before
reapplying introspection:

* no data is being sent along with the request
» Swift store is configured and enabled
* introspection data is stored in Swift for the node UUID

* node record is kept in database for the UUID

82 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

* introspection is not ongoing for the node UUID
Should the preconditions fail an immediate response is given to the user:
* 400 if the request contained data or in case Swift store is not enabled in configuration
* 404 in case Ironic doesnt keep track of the node UUID
* 409 if an introspection is already ongoing for the node

If the preconditions are met a background task is executed to carry out the processing and a 202
Accepted response is returned to the endpoint user. As requested, these steps are performed in the
background task:

* preprocessing hooks
* post processing hooks, storing result in Swift
* introspection rules
These steps are avoided, based on the feature requirements:
* node_not_found_hook is skipped
* power operations
* roll-back actions done by hooks
Limitations:
* theres no way to update the unprocessed data atm.
* the unprocessed data is never cleaned from the store

* check for stored data presence is performed in background; missing data situation still results in a
202 response

Capabilities Detection

Starting with the Newton release, Ironic Inspector can optionally discover several node capabilities. A
recent (Newton or newer) IPA image is required for it to work.

Boot mode

The current boot mode (BIOS or UEFI) can be detected and recorded as boot_mode capability in
Ironic. It will make some drivers to change their behaviour to account for this capability. Set the
[capabilities]boot_mode configuration option to True to enable.

3.3. User Guide 83

Ironic Inspector Documentation, Release 10.2.2.dev1

CPU capabilities

Several CPU flags are detected by default and recorded as following capabilities:
e cpu_aes AES instructions.
* cpu_vt virtualization support.
* cpu_txt TXT support.
* cpu_hugepages huge pages (2 MiB) support.
* cpu_hugepages_1g huge pages (1 GiB) support.

It is possible to define your own rules for detecting CPU capabilities. Set the
[capabilities]cpu_flags configuration option to a mapping between a CPU flag and a
capability, for example:

See the default value of this option for a more detail example.

InfiniBand support

Starting with the Ocata release, Ironic Inspector supports detection of InfiniBand network interfaces. A
recent (Ocata or newer) IPA image is required for that to work. When an InfiniBand network interface is
discovered, the Ironic Inspector adds a c1ient—id attribute to the ext ra attribute in the ironic port.
The Ironic Inspector should be configured with iptables.ethoib_interfaces to indicate the
Ethernet Over InfiniBand (EoIB) which are used for physical access to the DHCP network. For exam-
ple if Ironic Inspector DHCP server is using br—inspector and the br-inspector has EolB
port e.g. ethO, the iptables.ethoib_interfaces should be set to eth0. The iptables.
ethoib_interfaces allows to map the baremetal GUID to its EoIB MAC based on the neighs files.
This is needed for blocking DHCP traffic of the nodes (MACs) which are not part of the introspection.

The format of the /sys/class/net/<ethoib>/eth/neighs file:

97 80:00:00:00:00:00:00:7 90:03:00:29:26:52
97

80:00:00:00:00:00:00

7 90:03:00:29:26:52

Example of content:

02:00:02:97:00:01,

— 97 80:00:00:00:00:00:00:7 90:03:00:29:26:52
02:00:00:61:00:02,
— 61 80:00:00:00:00:00:00:7 90:03:00:29:24:4

84 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

3.3.3 HTTP API Reference
HTTP API

By default ironic-inspector listenson 0.0.0.0: 5050, port can be changed in configuration. Protocol
is JSON over HTTP.

Start Introspection

POST /vl/introspection/<Node ID> initiate hardware introspection for node <Node ID>.
All power management configuration for this node needs to be done prior to calling the endpoint.

Requires X-Auth-Token header with Keystone token for authentication.
Optional parameter:

* manage_boot boolean value, whether to manage boot (boot device, power and firewall) for a
node. Defaults to true.

Response:
* 202 - accepted introspection request
* 400 - bad request
* 401, 403 - missing or invalid authentication

¢ 404 - node cannot be found

Get Introspection Status

GET /vl/introspection/<Node ID> get hardware introspection status.
Requires X-Auth-Token header with Keystone token for authentication.
Response:

* 200 - OK

* 400 - bad request

* 401, 403 - missing or invalid authentication

* 404 - node cannot be found
Response body: JSON dictionary with keys:

* finished (boolean) whether introspection is finished (t rue on introspection completion or if
it ends because of an error)

* state state of the introspection

* error error string or null; Canceled by operator in case introspection was aborted
* uuid node UUID

* started_at a UTC ISO8601 timestamp

e finished_at a UTC ISO8601 timestamp or null

3.3. User Guide 85

Ironic Inspector Documentation, Release 10.2.2.dev1

* links containing a self URL

Get All Introspection Statuses

GET /vl/introspection get all hardware introspection statuses.
Requires X-Auth-Token header with Keystone token for authentication.

Returned status list is sorted by the started_at, uuid attribute pair, newer items first, and is pagi-
nated with these query string fields:

* marker the UUID of the last node returned previously

* limit default, max: CONF.api_max_limit
Response:

* 200 - OK

* 400 - bad request

* 401, 403 - missing or invalid authentication

Response body: a JSON object containing a list of status objects:

Each status object contains these keys:

* finished (boolean) whether introspection is finished (t rue on introspection completion or if
it ends because of an error)

* state state of the introspection

* error error string or null; Canceled by operator in case introspection was aborted
* uuid node UUID

* started_at an UTC ISO8601 timestamp

* finished_at an UTC ISO8601 timestamp or null

86 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Abort Running Introspection

POST /vl/introspection/<Node ID>/abort abort running introspection.
Requires X-Auth-Token header with Keystone token for authentication.
Response:

* 202 - accepted

* 400 - bad request

401, 403 - missing or invalid authentication
* 404 - node cannot be found

* 409 - inspector has locked this node for processing

Get Introspection Data

GET /vl/introspection/<Node ID>/data get stored data from successful introspection.
Requires X-Auth-Token header with Keystone token for authentication.
Response:

* 200 - OK

* 400 - bad request

* 401, 403 - missing or invalid authentication

* 404 - data cannot be found or data storage not configured

Response body: JSON dictionary with introspection data. For more details about the inventory key, refer
to the ironic-python-agent documentation.

Note: We do not provide any backward compatibility guarantees regarding the format and contents
of the stored data, other than the inventory. Notably, it depends on the ramdisk used and plugins
enabled both in the ramdisk and in inspector itself.

Reapply introspection on stored data

POST /vl/introspection/<Node ID>/data/unprocessed to trigger introspection on
stored unprocessed data. No data is allowed to be sent along with the request.

Requires X-Auth-Token header with Keystone token for authentication. Requires enabling Swift store
in processing section of the configuration file.

Response:
* 202 - accepted
* 400 - bad request or store not configured
* 401, 403 - missing or invalid authentication

¢ 404 - node not found for Node ID

3.3. User Guide 87

https://docs.openstack.org/ironic-python-agent/10.2/admin/how_it_works.html#inspection-data

Ironic Inspector Documentation, Release 10.2.2.dev1

* 409 - inspector locked node for processing

Introspection Rules

See rules for details.
All these API endpoints require X-Auth-Token header with Keystone token for authentication.
* POST /v1/rules create a new introspection rule.

Request body: JSON dictionary with keys:

conditions rule conditions, see rules

actions rule actions, see rules

description (optional) human-readable description

uuid (optional) rule UUID, autogenerated if missing
Response

— 200 - OK for API version < 1.6

— 201 - OK for API version 1.6 and higher

— 400 - bad request

Response body: JSON dictionary with introspection rule representation (the same as above with
UUID filled in).

* GET /v1/rules listall introspection rules.
Response
- 200 - OK

Response body: JSON dictionary with key rules - list of short rule representations. Short rule
representation is a JSON dictionary with keys:

— uuidrule UUID
— description human-readable description
— links list of HTTP links, use one with rel=self to get the full rule details
* DELETE /v1/rules delete all introspection rules.
Response
- 204 - OK
* GET /v1/rules/<UUID> getone introspection rule by its <UUID>.
Response
- 200 - OK
— 404 - not found

Response body: JSON dictionary with introspection rule representation (see POST /v1/rules
above).

88 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

* DELETE /v1/rules/<UUID> delete one introspection rule by its <UUID>.

Response

204 - OK
404 - not found

Ramdisk Callback

POST /vl1/continue internal endpoint for the ramdisk to post back discovered data. Should not be
used for anything other than implementing the ramdisk. Request body: JSON dictionary with at least

these keys:

* inventory full hardware inventory from the ironic-python-agent with at least the following

keys:

memory memory information containing at least key physical_mb - physical memory
size as reported by dmidecode,

cpu CPU information containing at least keys count (CPU count) and architecture
(CPU architecture, e.g. x86_64),

bmc_address IP address of the nodes BMC,
interfaces list of dictionaries with the following keys:
#* name interface name,
% ipv4_address IPv4 address of the interface,
+* mac_address MAC (physical) address of the interface.
client_id InfiniBand Client-ID, for Ethernet is None.

disks list of disk block devices containing at least name and size (in bytes) keys. In case
disks are not provided ironic-inspector assumes that this is a disk-less node.

* root_disk default deployment root disk as calculated by the ironic-python-agent algorithm.

Note

: ironic-inspector default plugin root_disk_selection may change root_disk

based on root device hints if node specify hints via properties root_device key. See Specifying
the disk for deployment root device hints for more details.

e boot_interface MAC address of the NIC that the machine PXE booted from
either in standard format 11:22:33:44:55:66 or in PXELinux BOOTIF format
01-11-22-33-44-55-66. Strictly speaking, this key is optional, but some features will now
work as expected, if it is not provided.

Optionally the following keys might be provided:

* error error happened during ramdisk run, interpreted by ramdisk_error plugin.

* logs base64-encoded logs from the ramdisk.

3.3. User

Guide 89

https://docs.openstack.org/ironic-python-agent/10.2/admin/how_it_works.html#hardware-inventory
https://docs.openstack.org/ironic/10.2/install/advanced.html#specifying-the-disk-for-deployment-root-device-hints
https://docs.openstack.org/ironic/10.2/install/advanced.html#specifying-the-disk-for-deployment-root-device-hints

Ironic Inspector Documentation, Release 10.2.2.dev1

Note: This list highly depends on enabled plugins, provided above are expected keys for the default set
of plugins. See plugins for details.

Note: This endpoint is not expected to be versioned, though versioning will work on it.

Response:
* 200 - OK
* 400 - bad request
* 403 - node is not on introspection
* 404 - node cannot be found or multiple nodes found

Response body: JSON dictionary with uuid key.

Error Response

If an error happens during request processing, Ironic Inspector returns a response with an appropriate
HTTP code set, e.g. 400 for bad request or 404 when something was not found (usually node in cache
or node in ironic). The following JSON body is returned:

This body may be extended in the future to include details that are more error specific.

API Versioning

The API supports optional API versioning. You can query for minimum and maximum API version
supported by the server. You can also declare required API version in your requests, so that the server
rejects request of unsupported version.

Note: Versioning was introduced in Ironic Inspector 2.1.0.

All versions must be supplied as string in form of X .Y, where X is a major version and is always 1 for
now, Y is a minor version.

e If X-OpenStack-Ironic-Inspector-API-Version header is sent with request, the
server will check if it supports this version. HTTP error 406 will be returned for unsupported
API version.

e ANl HTTP responses contain X—-OpenStack—-Ironic-Inspector-API-Minimum-Version

and X-OpenStack—-Ironic-Inspector-API-Maximum-Version headers with mini-
mum and maximum API versions supported by the server.

90 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Note: Maximum is server API version used by default.

API Discovery

The API supports API discovery. You can query different parts of the API to discover what other
endpoints are available.

* GET / List API Versions
Response:
- 200 - OK
Response body: JSON dictionary containing a list of versions, each version contains:
— status Either CURRENT or SUPPORTED
— 1d The version identifier
— links A list of links to this version endpoint containing:
href The URL
* rel The relationship between the version and the href
* GET /vl List API vl resources
Response:
- 200 - OK
Response body: JSON dictionary containing a list of resources, each resource contains:
— name The name of this resources
— links A list of link to this resource containing:
* href The URL

% rel The relationship between the resource and the href

Version History

* 1.0 version of API at the moment of introducing versioning.

* 1.1 adds endpoint to retrieve stored introspection data.

* 1.2 endpoints for manipulating introspection rules.

* 1.3 endpoint for canceling running introspection

* 1.4 endpoint for reapplying the introspection over stored data.

* 1.5 support for Ironic node names.

* 1.6 endpoint for rules creating returns 201 instead of 200 on success.
* 1.7 UUID, started_at, finished_at in the introspection status API.

* 1.8 support for listing all introspection statuses.

3.3. User Guide 91

Ironic Inspector Documentation, Release 10.2.2.dev1

* 1.9 de-activate setting IPMI credentials, if IPMI credentials are requested, API gets HTTP
400 response.

1.10 adds node state to the GET /v1/introspection/<Node ID> and GET /v1/introspection
API response data.

1.11 adds invert&multiple fields into rules response data

* 1.12 this version indicates that support for setting IPMI credentials was completely removed from
API (all versions).

1.13 adds manage_boot parameter for the introspection API.

1.14 allows formatting to be applied to strings nested in dicts and lists in the actions of introspec-
tion rules.

1.15 allows reapply with provided introspection data from request.

1.16 adds scope field to introspection rule.

3.3.4 Troubleshooting
Troubleshooting

Errors when starting introspection

¢ Invalid provision state available

In Kilo release with python-ironicclient 0.5.0 or newer Ironic defaults to reporting provision state
AVATLABLE for newly enrolled nodes. ironic-inspector will refuse to conduct introspection in
this state, as such nodes are supposed to be used by Nova for scheduling. See node states for
instructions on how to put nodes into the correct state.

Introspection times out

There may be 3 reasons why introspection can time out after some time (defaulting to 60 minutes, altered
by timeout configuration option):

1. Fatal failure in processing chain before node was found in the local cache. See Troubleshooting
data processing for the hints.

2. Failure to load the ramdisk on the target node. See Troubleshooting PXE boot for the hints.

3. Failure during ramdisk run. See Troubleshooting ramdisk run for the hints.

92 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Troubleshooting data processing

In this case ironic-inspector logs should give a good idea what went wrong. E.g. for RDO or Fedora
the following command will output the full log:

(use openstack—-ironic-discoverd for version < 2.0.0).

Note: Service name and specific command might be different for other Linux distributions (and for old
version of ironic-inspector).

If ramdisk_error plugin is enabled and ramdisk_logs_dir configuration option is set, ironic-
inspector will store logs received from the ramdisk to the ramdisk_logs_dir directory. This de-
pends, however, on the ramdisk implementation.

A local cache miss during data processing would leave a message like:

ERROR ironic_python_agent.inspector - inspectorerror 400:
o .
-

—

One potential explanation for such an error is a misconfiguration in the BMC where a channel with the
wrong IP address is active (and hence detected and reported back by the Ironic Python Agent), but can
then not be matched to the IP address Ironic has in its cache for this node.

Troubleshooting PXE boot

PXE booting most often becomes a problem for bare metal environments with several physical networks.
If the hardware vendor provides a remote console (e.g. iDRAC for DELL), use it to connect to the
machine and see what is going on. You may need to restart introspection.

Another source of information is DHCP and TFTP server logs. Their location depends on how the
servers were installed and run. For RDO or Fedora use:

$ sudo journalctl -u openstack-ironic-inspector-dnsmasqg

(use openstack-ironic—-discoverd-dnsmasq for version < 2.0.0).

The last resort is t cpdump utility. Use something like

$ sudo tcpdump -i any port 67 or port 68 or port 69

to watch both DHCP and TFTP traffic going through your machine. Replace any with a specific network
interface to check that DHCP and TFTP requests really reach it.

If you see node not attempting PXE boot or attempting PXE boot on the wrong network, reboot the
machine into BIOS settings and make sure that only one relevant NIC is allowed to PXE boot.

If you see node attempting PXE boot using the correct NIC but failing, make sure that:

1. network switches configuration does not prevent PXE boot requests from propagating,

3.3. User Guide 93

Ironic Inspector Documentation, Release 10.2.2.dev1

2. there is no additional firewall rules preventing access to port 67 on the machine where ironic-
inspector and its DHCP server are installed.

If you see node receiving DHCP address and then failing to get kernel and/or ramdisk or to boot them,
make sure that:

1. TFTP server is running and accessible (use t £t p utility to verify),
2. no firewall rules prevent access to TFTP port,
3. SELinux is configured properly to allow external TFTP access,

If SELinux is neither permissive nor disabled, you should config t ftpp_home_dir in SELinux
by executing the command

$ sudo setsebool -P tftp_home_dir 1

See the man page for more details.
4. DHCEP server is correctly set to point to the TFTP server,

5. pxelinux.cfg/default within TFTP root contains correct reference to the kernel and
ramdisk.

Note: If using iPXE instead of PXE, check the HTTP server logs and the iPXE configuration instead.

Troubleshooting ramdisk run

First, check if the ramdisk logs were stored locally as described in the Troubleshooting data processing
section. If not, ensure that the ramdisk actually booted as described in the Troubleshooting PXE boot
section.

Finally, you can try connecting to the IPA ramdisk. If you have any remote console access to the
machine, you can check the logs as they appear on the screen. Otherwise, you can rebuild the IPA image
with your SSH key to be able to log into it. Use the dynamic-login or devuser element for a DIB-based
build or put an authorized_keys file in /usr/share/oem/ for a CoreOS-based one.

Troubleshooting DNS issues on Ubuntu

Ubuntu uses local DNS caching, so tries localhost for DNS results first before calling out to an external
DNS server. When DNSmasq is installed and configured for use with ironic-inspector, it can cause
problems by interfering with the local DNS cache. To fix this issue ensure that /etc/resolve.conf
points to your external DNS servers and notto 127.0.0.1.

On Ubuntu 14.04 this can be done by editing your /etc/resolvconf/resolv.conf.d/head
and adding your nameservers there. This will ensure they will come up first when /etc/resolv.
conf is regenerated.

94 Chapter 3. Using Ironic Inspector

https://www.systutorials.com/docs/linux/man/8-tftpd_selinux/
https://docs.openstack.org/diskimage-builder/latest/elements/dynamic-login/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/devuser/README.html

Ironic Inspector Documentation, Release 10.2.2.dev1

Running Inspector in a VirtualBox environment

By default VirtualBox does not expose a DMI table to the guest. This prevents ironic-inspector from
being able to discover the properties of the a node. In order to run ironic-inspector on a VirtualBox guest
the host must be configured to expose DMI data inside the guest. To do this run the following command
on the VirtualBox host:

Note: Replace {NodeName} with the name of the guest you wish to expose the DMI table on. This
command will need to be run once per host to enable this functionality.

3.4 Administrator Guide

3.4.1 How to upgrade Ironic Inspector

Upgrade Guide

The release notes should always be read carefully when upgrading the ironic-inspector service. Starting
with the Mitaka series, specific upgrade steps and considerations are well-documented in the release
notes.

Upgrades are only supported one series at a time, or within a series. Only offline (with downtime)
upgrades are currently supported.

When upgrading ironic-inspector, the following steps should always be taken:
» Update ironic-inspector code, without restarting the service yet.
* Stop the ironic-inspector service.

* Run database migrations:

* Start the ironic-inspector service.

* Upgrade the ironic-python-agent image used for introspection.

Note: There is no implicit upgrade order between ironic and ironic-inspector, unless the release notes
say otherwise.

3.4. Administrator Guide 95

https://docs.openstack.org/releasenotes/ironic-inspector/
https://docs.openstack.org/releasenotes/ironic-inspector/

Ironic Inspector Documentation, Release 10.2.2.dev1

Migrating introspection data

Starting with Stein release, ironic-inspector supports two introspection data storage backends: swift
and database. If you decide to change the backend, you can use the provided command to migrate
the data:

swift

Note: Configuration for both backends is expected to be present in the configuration file for this
command to succeed.

3.4.2 Dnsmasq PXE filter driver

dnsmasq PXE filter

An inspection PXE DHCP stack is often implemented by the dnsmasq service. The dnsmasq PXE
filter implementation relies on directly configuring the dnsmasq DHCP service to provide a caching
PXE traffic filter of node MAC addresses.

How it works

The filter works by populating the dnsmasq DHCP hosts directory with a configuration file per MAC
address. Each file is either enabling or disabling, thru the ignore directive, the DHCP service for a
particular MAC address:

$ cat /etc/dnsmasqg.d/de—-ad-be-ef-de-ad
de:ad:be:ef:de:ad, ignore

$

The filename is used to keep track of all MAC addresses in the cache, avoiding file parsing. The content
of the file determines the MAC address access policy.

Thanks to the inotify facility, dnsmasq is notified once a new file is created or an existing file
is modified in the DHCP hosts directory. Thus, to white-list a MAC address, the filter removes the
ignore directive:

$ cat /etc/dnsmasqg.d/de-ad-be-ef-de-ad
de:ad:be:ef:de:ad
$

The hosts directory content establishes a cached MAC addresses filter that is kept synchronized with the
ironic port list.

Note: The dnsmasq inotify facility implementation doesnt react to a file being removed or truncated.

96 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 10.2.2.dev1

Configuration

The inotify facility was introduced to dnsmasq in the version 2.73. This filter driver has been
checked by ironic-inspector CI with dnsmasq versions >=2.76.

To enable the dnsmasq PXE filter, update the PXE filter driver name in the ironic-inspector configura-
tion file:

The DHCP hosts directory can be specified to override the default /var/lib/
ironic—inspector/dhcp-hostsdir:

The filter design relies on the hosts directory being in exclusive ironic-inspector control. The hosts
directory should be considered a private cache directory of ionic-inspector that dnsmasq polls configu-
ration updates from, through the inot i fy facility. The directory has to be writable by ironic-inspector
and readable by dnsmasq.

It is also possible to override the default (empty) dnsmasq start and stop commands to, for instance,
directly control the dnsmasq service:

[dnsmasqg_pxe_filter]

dnsmasqg_start_command = dnsmasqg —--conf-file /etc/ironic—-inspector/dnsmasqg.
—conf

dnsmasqg_stop_command = kill $(cat /var/run/dnsmasqg.pid)

Note: The commands support shell expansion. The default empty start command means the dnsmasq
service wont be started upon the filter initialization. Conversely, the default empty stop command means
the service wont be stopped upon an (error) exit.

Note: These commands are executed through the rootwrap facility, so overriding may require a filter
file to be created in the rootwrap.d directory. A sample configuration to use with the systemctl
facility might be:

ironic_inspector/pxe_filter/dnsmasq.py

3.4. Administrator Guide 97

http://www.thekelleys.org.uk/dnsmasq/CHANGELOG
https://docs.openstack.org/oslo.rootwrap/10.2/

Ironic Inspector Documentation, Release 10.2.2.dev1

Caveats

The initial synchronization will put some load on the dnsmasq service starting based on the amount
of ports ironic keeps. The start-up can take up to a minute of full CPU load for huge amounts of
MAC:s (tens of thousands). Subsequent filter synchronizations will only cause the dnsmasq to parse the
modified files. Typically those are the bare metal nodes being added or phased out from the compute
service, meaning dozens of file updates per sync call.

The ironic-inspector takes over the control of the DHCP hosts directory to implement its filter cache.
Files are generated dynamically so should not be edited by hand. To minimize the interference between
the deployment and introspection, ironic-inspector has to start the dnsmasq service only after the initial
synchronization. Conversely, the dnsmasq service is stopped upon (unexpected) ironic-inspector exit.

To avoid accumulating stale DHCP host files over time, the driver cleans up the DHCP hosts directory
before the initial synchronization during the start-up.

Although the filter driver tries its best to always stop the dnsmasq service, it is recommended that
the operator configures the dnsmasq service in such a way that it terminates upon ironic-inspector
(unexpected) exit to prevent a stale blacklist from being used by the dnsmasq service.

98 Chapter 3. Using Ironic Inspector

CHAPTER
FOUR

CONTRIBUTOR DOCS

4.1 How To Contribute

4.1.1 Basics

* QOur source code is hosted on OpenStack GitHub, but please do not send pull requests there.
* Please follow usual OpenStack Gerrit Workflow to submit a patch.

* Update change log in README.rst on any significant change.

* It goes without saying that any code change should by accompanied by unit tests.

* Note the branch youre proposing changes to. master is the current focus of development, use
stable/VERSION for proposing an urgent fix, where VERSION is the current stable series.
E.g. at the moment of writing the stable branch is stable/1.0.

* Please file an RFE in StoryBoard for any significant code change and a regular story for any
significant bug fix.

4.1.2 Development Environment

First of all, install fox utility. Its likely to be in your distribution repositories under name of
python-tox. Alternatively, you can install it from PyPI.

Next checkout and create environments:

Repeat fox command each time you need to run tests. If you dont have Python interpreter of one of
supported versions (currently 3.6 and 3.7), use —e flag to select only some environments, e.g.

Note: This command also runs tests for database migrations. By default the sqlite backend is used.
For testing with mysql or postgresql, you need to set up a db named openstack_citest with user open-
stack_citest and password openstack_citest on localhost. Use the script tools/test_setup.shto
set the database up the same way as done in the OpenStack CI environment.

99

https://github.com/openstack/ironic-inspector
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://storyboard.openstack.org/#!/project/944

Ironic Inspector Documentation, Release 10.2.2.dev1

Note: Users of Fedora <= 23 will need to run sudo dnf releasever=24 update python-virtualenv to run
unit tests

To run the functional tests, use:

Once you have added new state or transition into inspection state machine, you should regenerate State
machine diagram with:

Run the service with:

bin

Of course you may have to modify example.conf to match your OpenStack environment. See the
install guide for information on generating or downloading an example configuration file.

You can develop and test ironic-inspector using DevStack - see Deploying Ironic Inspector with DevS-
tack for the current status.

4.1.3 Deploying Ironic Inspector with DevStack

DevStack provides a way to quickly build a full OpenStack development environment with requested
components. There is a plugin for installing ironic-inspector in DevStack. Installing ironic-inspector
requires a machine running Ubuntu 14.04 (or later) or Fedora 23 (or later). Make sure this machine is
fully up to date and has the latest packages installed before beginning this process.

Download DevStack:

Create local.conf file with minimal settings required to enable both the ironic and the ironic-
inspector. You can start with the Example local.conf and extend it as needed.

Example local.conf

(continues on next page)

100 Chapter 4. Contributor Docs

https://docs.openstack.org/devstack/latest/

Ironic Inspector Documentation, Release 10.2.2.dev1

(continued from previous page)

Disable nova novnc service, ironic does not support it anyway.

Enable Swift for the direct deploy interface.

object

Disable Horizon

Disable Cinder

Swift temp URL's are required for the direct deploy interface
True

Create 3 virtual machines to pose as Ironic's baremetal nodes.
3
True

Enable additional hardware types, 1f needed.

#IRONIC_ENABLED HARDWARE_TYPES=ipmi, fake-hardware

Don't forget that many hardware types require enabling of additional
interfaces, most often power and management:

#IRONIC _ENABLED MANAGEMENT INTERFACES=ipmitool, fake

#IRONIC_ENABLED POWER_INTERFACES=ipmitool, fake

The 'ipmi' hardware type's default deploy interface is 'iscsi'.

This would change the default to 'direct':

#IRONIC DEFAULT DEPLOY INTERFACE=direct

Enable inspection via ironic-inspector

Make it the default for all hardware types:

=

Change this to alter the default driver for nodes created by devstack.
This driver should be in the enabled list above.

The parameters below represent the minimum possible values to create
functional nodes.
2048
10

Size of the ephemeral partition in GB. Use 0 for no ephemeral partition.
0

To build your own IPA ramdisk from source, set this to True
False
False

(continues on next page)

4.1. How To Contribute 101

Ironic Inspector Documentation, Release 10.2.2.dev1

(continued from previous page)

10.1.0.1
10.1.0.0/24
256

Notes
* Set IRONIC_INSPECTOR_BUILD_RAMDISK to True if you want to build ramdisk. Default
value is False and ramdisk will be downloaded instead of building.

* 1024 MiB of RAM is a minimum required for the default build of IPA based on CoreOS. If
you plan to use another operating system and build IPA with diskimage-builder 2048 MiB is
recommended.

» Network configuration is pretty sensitive, better not to touch it without deep understanding.
* This configuration disables horizon, heat, cinder and tempest, adjust it if you need these services.

Start the install:

Usage

After installation is complete, you can source openrc in your shell, and then use the OpenStack CLI
to manage your DevStack:

Show DevStack screens:

To exit screen, hit CTRL—-a d.

List baremetal nodes:

list

Bring the node to manageable state:

Inspect the node:

102 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

Note: The deploy driver used must support the inspect interface. See also the Ironic Python Agent.

A node can also be inspected using the following command. However, this will not affect the provision
state of the node:

Check inspection status:

Optionally, get the inspection data:

4.1.4 Writing a Plugin

* ironic-inspector allows you to hook code into the data processing chain after introspection. In-
herit ProcessingHook class defined in ironic_inspector.plugins.base module and overwrite
any or both of the following methods:

before_processing(introspection_data, **) called before any data processing,
providing the raw data. Each plugin in the chain can modify the data, so order in which
plugins are loaded matters here. Returns nothing.

before_update (introspection_data, node_info, *x) called after node is found
and ports are created, but before data is updated on a node. Please refer to the docstring
for details and examples.

You can optionally define the following attribute:

dependencies alist of entry point names of the hooks this hook depends on. These hooks are
expected to be enabled before the current hook.

Make your plugin a setuptools entry pointunder i ronic_inspector.hooks.processing
namespace and enable it in the configuration file (processing.processing_hooks op-
tion).

ironic-inspector allows plugins to override the action when node is not found in node cache.
Write a callable with the following signature:

(introspection_data, **) called when node is not found in cache, providing the pro-
cessed data. Should return a Node Info class instance.

Make your plugin a setuptools entry point under ironic_inspector.hooks.
node_not_found namespace and enable it in the configuration file (processing.
node_not_found_hook option).

ironic-inspector allows more condition types to be added for Introspection Rules. Inherit
RuleConditionPlugin class defined in ironic_inspector.plugins.base module and overwrite
at least the following method:

4.1. How To Contribute 103

https://docs.openstack.org/ironic/latest/admin/drivers/ipa.html
https://docs.openstack.org/ironic-inspector/latest/contributor/api/ironic_inspector.plugins.base.html
https://docs.openstack.org/ironic-inspector/latest/user/usage.html#introspection-rules
https://docs.openstack.org/ironic-inspector/latest/contributor/api/ironic_inspector.plugins.base.html

Ironic Inspector Documentation, Release 10.2.2.dev1

check (node_info, field, params, **) called to check that condition holds for a given
field. Field value is provided as field argument, params is a dictionary defined at the
time of condition creation. Returns boolean value.

The following methods and attributes may also be overridden:

validate (params, x*) called to validate parameters provided during condition creating.
Default implementation requires keys listed in REQUIRED_PARAMS (and only them).

REQUIRED_PARAMS contains set of required parameters used in the default implementation of
validate method, defaults to value parameter.

ALLOW_NONE if its set to True, missing fields will be passed as None values instead of failing
the condition. Defaults to False.

Make your plugin a setuptools entry point under ironic_inspector.rules.conditions
namespace.

* ironic-inspector allows more action types to be added for Introspection Rules. Inherit
RuleActionPlugin class defined in ironic_inspector.plugins.base module and overwrite at
least the following method:

apply (node_info,params, x*) called to apply the action.
The following methods and attributes may also be overridden:

validate (params, x*) called to validate parameters provided during actions creating. De-
fault implementation requires keys listed in REQUIRED_PARAMS (and only them).

REQUIRED_PARAMS contains set of required parameters used in the default implementation of
validate method, defaults to no parameters.

Make your plugin a setuptools entry pointunder ironic_inspector.rules.conditions
namespace.

Note: «« argument is needed so that we can add optional arguments without breaking out-of-tree
plugins. Please make sure to include and ignore it.

4.1.5 Making changes to the database

In order to make a change to the ironic-inspector database you must update the database models found
in ironic_inspector.db and then create a migration to reflect that change.

There are two ways to create a migration which are described below, both of these generate a new
migration file. In this file there is only one function:

* upgrade - The function to run when ironic-inspector-dbsync upgrade is run,
and should be populated with code to bring the database up to its new state from the state it
was in after the last migration.

For further information on creating a migration, refer to Create a Migration Script from the alembic
documentation.

104 Chapter 4. Contributor Docs

https://docs.openstack.org/ironic-inspector/latest/user/usage.html#introspection-rules
https://docs.openstack.org/ironic-inspector/latest/contributor/api/ironic_inspector.plugins.base.html
https://docs.openstack.org/ironic-inspector/latest/contributor/api/ironic_inspector.db.html
http://alembic.zzzcomputing.com/en/latest/tutorial.html#create-a-migration-script

Ironic Inspector Documentation, Release 10.2.2.dev1

Autogenerate

This is the simplest way to create a migration. Alembic will compare the models to an up to date
database, and then attempt to write a migration based on the differences. This should generate correct
migrations in most cases however there are some cases when it can not detect some changes and may
require manual modification, see What does Autogenerate Detect (and what does it not detect?) from
the alembic documentation.

Manual

This will generate an empty migration file, with the correct revision information already included. How-
ever the upgrade function is left empty and must be manually populated in order to perform the correct
actions on the database:

4.1.6 Implementing PXE Filter Drivers
Background

inspector in-band introspection PXE-boots the Ironic Python Agent live image, to inspect the baremetal
server. ironic also PXE-boots IPA to perform tasks on a node, such as deploying an image. ironic uses
neutron to provide DHCP, however neutron does not provide DHCP for unknown MAC addresses so
inspector has to use its own DHCP/TFTP stack for discovery and inspection.

When ironic and inspector are operating in the same L2 network, there is a potential for the two DHCPs
to race, which could result in a node being deployed by ironic being PXE booted by inspector.

To prevent DHCP races between the inspector DHCP and ironic DHCP, inspector has to be able to
filter which nodes can get a DHCP lease from the inspector DHCP server. These filters can then be
used to prevent nodes enrolled in ironic inventory from being PXE-booted unless they are explicitly
moved into the inspected state.

Filter Interface
The contract between inspector and a PXE filter driver is described in the Fi 1 terDriver interface.
The methods a driver has to implement are:

e 1nit rfilter () called on the service start to initialize internal driver state

* sync () called both periodically and when a node starts or finishes introspection to white or
blacklist its ports MAC addresses in the driver

e tear down_ filter () called on service exit to reset the internal driver state

The driver-specific configuration is suggested to be parsed during instantiation. Theres also a conve-
nience generic interface implementation BaseFilter that provides base locking and initialization
implementation. If required, a driver can opt-out from the periodic synchronization by overriding the
get_periodic_sync_task().

4.1. How To Contribute 105

http://alembic.zzzcomputing.com/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect

Ironic Inspector Documentation, Release 10.2.2.dev1

4.1.7 Python API
ironic_inspector

ironic_inspector package
Subpackages
ironic_inspector.cmd package
Submodules
ironic_inspector.cmd.all module

The Ironic Inspector service.

ironic_inspector.cmd.all.main (args=["-b’, ’latex’, 'doc/source’, ’doc/build/pdf’])

ironic_inspector.cmd.conductor module

The Ironic Inspector Conductor service.

ironic_inspector.cmd.conductor.main (args=["-b’, ’latex’, "doc/source’,

"doc/build/pdf’])

ironic_inspector.cmd.dbsync module

ironic_inspector.cmd.dbsync.add_alembic_command (subparsers, name)
ironic_inspector.cmd.dbsync.add_command_parsers (subparsers)

ironic_inspector.cmd.dbsync.do_alembic_command (config, cmd, *args,
**kwargs)

ironic_inspector.cmd.dbsync.do_revision (config, cmd, *args, **kwargs)

ironic_inspector.cmd.dbsync.main (args=/["-b’, ’latex’, doc/source’,
"doc/build/pdf’])

ironic_inspector.cmd.dbsync.with_revision (config, cmd, *args, **kwargs)

ironic_inspector.cmd.migration module

Migrate introspected data between Swift and database.

class ironic_inspector.cmd.migration.MigrationTool
Bases: object

main ()

ironic_inspector.cmd.migration.main ()

106 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.cmd.wsgi module

WSGI script for Ironic Inspector API, installed by pbr.

ironic_inspector.cmd.wsgi.initialize_wsgi_app ()

Module contents
ironic_inspector.common package
Submodules
ironic_inspector.common.context module

class ironic_inspector.common.context .RequestContext (is_public_api=False,

**kwargs)
Bases: oslo_context.context.RequestContext

Extends security contexts from the oslo.context library.

classmethod from_dict (values, **kwargs)
Construct a context object from a provided dictionary.

classmethod from_environ (environ, **kwargs)
Load a context object from a request environment.

If keyword arguments are provided then they override the values in the request environment.

Parameters environ (dict) The environment dictionary associated with a re-
quest.

to_policy_values ()
A dictionary of context attributes to enforce policy with.

oslo.policy enforcement requires a dictionary of attributes representing the current logged
in user on which it applies policy enforcement. This dictionary defines a standard list of
attributes that should be available for enforcement across services.

It is expected that services will often have to override this method with either deprecated
values or additional attributes used by that service specific policy.

ironic_inspector.common.coordination module

class ironic_inspector.common.coordination.Coordinator (prefix=None)
Bases: object

Tooz coordination wrapper.

get_lock (uuid)
Get lock for node uuid.

get_members ()
Get members in the service group.

group_name = b'ironic_inspector.service_group'

4.1. How To Contribute 107

Ironic Inspector Documentation, Release 10.2.2.dev1

join_group ()
Join service group.

leave_group ()
Leave service group

lock _prefix = 'ironic_inspector.'

run_elect_coordinator ()
Trigger a new leader election.

start (heartbeat=True)
Start coordinator.

Parameters heartbeat Whether spawns a new thread to keep heartbeating
with the tooz backend. Unless there is periodic task to do heartbeat manually,
it should be always set to True.

stop ()
Disconnect from coordination backend and stop heartbeat.

ironic_inspector.common.coordination.get_coordinator (prefix=None)

ironic_inspector.common.ironic module

exception ironic_inspector.common.ironic.NotFound (node_ident,
code=404, *args,
**lwargs)

Bases: ironic _inspector.utils.Error
Node not found in Ironic.

ironic_inspector.common.ironic.call_with_retries (func, *args, **kwargs)
Call an ironic client function retrying all errors.

If an ironic client exception is raised, try calling the func again, at most 5 times, waiting 1 sec
between each call. If on the 5th attempt the func raises again, the exception is propagated to the
caller.

ironic_inspector.common.ironic.capabilities_to_dict (caps)
Convert the Nodes capabilities into a dictionary.

ironic_inspector.common.ironic.check_provision_state (node)
Sanity checks the provision state of the node.

Parameters node An API client returned node object describing the baremetal node
according to ironics node data model.

Returns None if no action is to be taken, True if the power node state should not be
modified.

Raises Error on an invalid state being detected.

ironic_inspector.common.ironic.dict_to_capabilities (caps_dict)
Convert a dictionary into a string with the capabilities syntax.

ironic_inspector.common.ironic.get_client (foken=None)
Get an ironic client connection.

108 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.common.ironic.get_ipmi_address (node)
Get the BMC address defined in node.driver_info dictionary

Possible names of BMC address value examined in order of list [ipmi_address] +
CONF.ipmi_address_fields. The value could be an IP address or a hostname. DNS lookup per-
formed for the first non empty value.

The first valid BMC address value returned along with its v4 and v6 IP addresses.
Parameters node Node object with defined driver_info dictionary
Returns tuple (ipmi_address, ipv4_address, ipv6_address)

ironic_inspector.common.ironic.get_node (node_id, ironic=None, **kwargs)
Get a node from Ironic.

Parameters

* node_id node UUID or name.

* ironic ironic client instance.

* kwargs arguments to pass to Ironic client.
Raises Error on failure

ironic_inspector.common.ironic.lookup_node (macs=None,
bmc_addresses=None, in-
trospection_data=None,
ironic=None)
Lookup a node in the ironic database.
ironic_inspector.common.ironic.lookup_node_by bmc_addresses (addresses,
intro-
spec-
tion_data=None,
ironic=None,

fail=False)
Find a node by its BMC address.

ironic_inspector.common.ironic.lookup_node_by_ macs (macs, introspec-
tion_data=None,
ironic=None,

fail=False)
Find a node by its MACs.

ironic_inspector.common.ironic.reset_ironic_session ()
Reset the global session variable.

Mostly useful for unit tests.

4.1. How To Contribute 109

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.common.keystone module

ironic_inspector.common.keystone.add _auth_options (options, ser-
vice_type)

ironic_inspector.common.keystone.get_adapter (group, **adapter_kwargs)
ironic_inspector.common.keystone.get_endpoint (group, **kwargs)
ironic_inspector.common.keystone.get_session (group)

ironic_inspector.common.keystone.register_auth_opts (group, ser-
vice_type)

ironic_inspector.common.lidp_parsers module

Names and mapping functions used to map LLDP TLVs to name/value pairs

class ironic_inspector.common.lldp_parsers.LLDPBasicMgmtParser (nv=None)
Bases: ironic_inspector.common.lldp_parsers.LLDPParser

Class to handle parsing of 802.1AB Basic Management set
This class will also handle 802.1Q and 802.3 OUI TLVs.

add_capabilities (struct, name, data)
Handle LLDP_TLV_SYS_CAPABILITIES

add_mgmt_address (struct, name, data)
Handle LLDP_TLV_MGMT_ADDRESS

There can be multiple Mgmt Address TLVs, store in list.

handle_org specific_tlwv (struct, name, data)
Handle Organizationally Unique ID TLVs

This class supports 802.1Q and 802.3 OUI TLVs.

See http://www.ieee802.org/1/pages/802.1Q-2014.html, Annex D and http://standards.ieee.
org/about/get/802/802.3.html

class ironic_inspector.common.lldp_parsers.LLDPParser (node_info,

nv=None)
Bases: object

Base class to handle parsing of LLDP TLVs

Each class that inherits from this base class must provide a parser map. Parser maps are used
to associate a LLDP TLV with a function handler and arguments necessary to parse the TLV and
generate one or more name/value pairs. Each LLDP TLV maps to a tuple with the following fields:

function - handler function to generate name/value pairs
construct - name of construct definition for TLV

name - user-friendly name of TLV. For TLVs that generate only one name/value pair this is the
name used

len_check - boolean indicating if length check should be done on construct

110 Chapter 4. Contributor Docs

http://www.ieee802.org/1/pages/802.1Q-2014.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

Ironic Inspector Documentation, Release 10.2.2.dev1

Its valid to have a function handler of None, this is for TLVs that are not mapped to a name/value
pair(e.g.LLDP_TLV_TTL).

add_dotl_1link_aggregation (struct, name, data)
Add name/value pairs for TLV Dotl_LinkAggregationld

This is in base class since it can be used by both dot1 and dot3.

add_nested_wvalue (struct, name, data)
Add a single nested name/value pair to the dict

add_single_value (struct, name, data)
Add a single name/value pair to the nv dict

append_value (name, value)
Add value to a list mapped to name

parse_tlv (tv_type, data)
Parse TLVs from mapping table

This functions takes the TLV type and the raw data for this TLV and gets a tuple from the
parser_map. The construct field in the tuple contains the construct lib definition of the TLV
which can be parsed to access individual fields. Once the TLV is parsed, the handler function
for each TLV will store the individual fields as name/value pairs in nv_dict.

If the handler function does not exist, then no name/value pairs will be added to nv_dict, but
since the TLV was handled, True will be returned.

Param tlv_type - type identifier for TLV
Param data - raw TLV value
Returns True if TLV in parser_map and data is valid, otherwise False.

set_value (name, value)
Set name value pair in dictionary

The value for a name should not be changed if it exists.

class ironic_inspector.common.lldp_parsers.LLDPdotlParser (node_info,

nv=None)
Bases: ironic_inspector.common.lldp_parsers.LLDPParser

Class to handle parsing of 802.1Q TLVs

add_dotl_port_protocol_vlan (struct, name, data)
Handle dotl _PORT_ PROTOCOL_VLANID

add_dotl_protocol_identities (struct, name, data)
Handle dotl_PROTOCOL_IDENTITY

There can be multiple protocol ids TLVs, store in list

add dotl_wvlans (struct, name, data)
Handle dotl_VLAN_NAME

There can be multiple vlan TLVs, add dictionary entry with id/vlan to list.

class ironic_inspector.common.lldp_parsers.LLDPdot3Parser (node_info,

nv=None)
Bases: ironic_inspector.common.lldp_parsers.LLDPParser

Class to handle parsing of 802.3 TLVs

4.1. How To Contribute 111

Ironic Inspector Documentation, Release 10.2.2.dev1

add_dot3_macphy_ config (struct, name, data)
Handle dot3_MACPHY_CONFIG_STATUS

ironic_inspector.common.lidp_tlvs module

Link Layer Discovery Protocol TLVs

ironic_inspector.common.lldp_tlvs.bytes_to_int (0bj)
Convert bytes to an integer

Param obj - array of bytes

ironic_inspector.common.lldp_tlvs.get_autoneg cap (pmd)
Get autonegotiated capability strings

This returns a list of capability strings from the Physical Media Dependent (PMD) capability bits.
Parameters pmd PMD bits
Returns Sorted ist containing capability strings

ironic_inspector.common.lldp_tlvs.mapping for_ enum (mapping)
Return tuple used for keys as a dict

Param mapping - dict with tuple as keys

ironic_inspector.common.lldp_tlvs.mapping for_ switch (mapping)
Return dict from values

Param mapping - dict with tuple as keys

ironic_inspector.common.locking module

class ironic_inspector.common.locking.BaseLock
Bases: object

abstract acquire (blocking=True)
Acquire lock.

abstract is_locked()
Return lock status

abstract release ()
Release lock.

class ironic_inspector.common.locking.InternalLock (uuid)
Bases: ironic _inspector.common.locking.BaseLock

Locking mechanism based on threading.Semaphore.

acquire (blocking=True)
Acquire lock.

is_locked ()
Return lock status

release ()
Release lock.

112 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

class ironic_inspector.common.locking.ToozLock (lock)
Bases: ironic inspector.common.locking.BaseLock

Wrapper on tooz locks.

acquire (blocking=True)
Acquire lock.

is_locked ()
Return lock status

release ()
Release lock.

ironic_inspector.common.locking.get_lock (uuid)

ironic_inspector.common.rpc module

ironic_inspector.common.rpc.get_client (fopic=None)
Get a RPC client instance.

Parameters topic The topic of the message will be delivered to. This argument is
ignored if CONF.standalone is True.

ironic_inspector.common.rpc.get_server (endpoints)
Get a RPC server instance.

ironic_inspector.common.rpc.init ()

ironic_inspector.common.rpc_service module

class ironic_inspector.common.rpc_service.RPCService (host)
Bases: oslo_service.service.Service

start ()
Start a service.

stop ()
Stop a service.

Parameters graceful indicates whether to wait for all threads to finish or ter-
minate them instantly

ironic_inspector.common.service_utils module

ironic_inspector.common.service_utils.prepare_service (args=None)

4.1. How To Contribute 113

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.common.swift module

class ironic_inspector.common.swift.SwiftAPT
Bases: object

API for communicating with Swift.

create_obiject (object, data, container=None, headers=None)
Uploads a given string to Swift.

Parameters
* object The name of the object in Swift
* data string data to put in the object

* container The name of the container for the object. Defaults to the value
set in the configuration options.

* headers the headers for the object to pass to Swift
Returns The Swift UUID of the object
Raises utils.Error, if any operation with Swift fails.

get_object (object, container=None)
Downloads a given object from Swift.

Parameters
* object The name of the object in Swift

* container The name of the container for the object. Defaults to the value
set in the configuration options.

Returns Swift object
Raises utils.Error, if the Swift operation fails.

ironic_inspector.common.swift.get_introspection_data (uuid, suf-

fix=None)
Downloads introspection data from Swift.

Parameters

* uuid UUID of the Ironic node that the data came from

* suffix optional suffix to add to the underlying swift object name
Returns Swift object with the introspection data

ironic_inspector.common.swift.reset_swift_ session|()
Reset the global session variable.

Mostly useful for unit tests.

ironic_inspector.common.swift.store_introspection_data (data, uuid,

suffix=None)
Uploads introspection data to Swift.

Parameters

e data data to store in Swift

114 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

e uuid UUID of the Ironic node that the data came from
* suffix optional suffix to add to the underlying swift object name

Returns name of the Swift object that the data is stored in

Module contents

ironic_inspector.conductor package

Submodules

ironic_inspector.conductor.manager module

class ironic_inspector.conductor.manager.ConductorManager
Bases: object

ironic inspector conductor manager
RPC_API_VERSION = '1.3'

del_host ()
Shutdown the ironic inspector conductor service.

do_abort (**kwargs)
do_continue (**kwargs)
do_introspection (**kwargs)
do_reapply (**kwargs)

init_host ()
Initialize Worker host

Init db connection, load and validate processing hooks, runs periodic tasks.
:returns None
target = <Target version=1.3>
ironic_inspector.conductor.manager.periodic_clean_up ()
ironic_inspector.conductor.manager.periodic_leader_election (conductor)

ironic_inspector.conductor.manager.sync_with_ironic (conductor)

Module contents

ironic_inspector.conf package

Submodules

ironic_inspector.conf.capabilities module

ironic_inspector.conf.capabilities.list_opts ()

4.1. How To Contribute 115

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.conf.capabilities.register_opts (conf)

ironic_inspector.conf.coordination module

ironic_inspector.conf.coordination.list_opts ()

ironic_inspector.conf.coordination.register_opts (conf)

ironic_inspector.conf.default module

ironic_inspector.conf.default.list_opts ()

ironic_inspector.conf.default.register_opts (conf)

ironic_inspector.conf.discovery module

ironic_inspector.conf.discovery.list_opts ()

ironic_inspector.conf.discovery.register_ opts (conf)

ironic_inspector.conf.dnsmasq_pxe_filter module

ironic_inspector.conf.dnsmasq_pxe_filter.list_opts ()

ironic_inspector.conf.dnsmasqg _pxe_filter.register_opts (conf)

ironic_inspector.conf.iptables module

ironic_inspector.conf.iptables.list_opts()

ironic_inspector.conf.iptables.register_opts (conf)

ironic_inspector.conf.ironic module

ironic_inspector.conf.ironic.list_opts()

ironic_inspector.conf.ironic.register_opts (conf)

ironic_inspector.conf.opts module

ironic_inspector.conf.opts.list_opts()
ironic_inspector.conf.opts.parse_args (args, default_config_files=None)

ironic_inspector.conf.opts.set_config_defaults()
Return a list of oslo.config options available in Inspector code.

ironic_inspector.conf.opts.set_cors_middleware_defaults ()
Update default configuration options for oslo.middleware.

116 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.conf.pci_devices module

ironic_inspector.conf.pci_devices.list_opts ()

ironic_inspector.conf.pci_devices.register_ opts (conf)

ironic_inspector.conf.port_physnet module

ironic_inspector.conf.port_physnet.list_opts ()

ironic_inspector.conf.port_physnet.register_opts (conf)

ironic_inspector.conf.processing module

ironic_inspector.conf.processing.

ironic_inspector.conf.processing.

ironic_inspector.conf.pxe_filter module

ironic_inspector.conf.pxe_filter.

ironic_inspector.conf.pxe_filter

list_opts ()

register_opts (conf)

list_opts ()

.register_opts (conf)

ironic_inspector.conf.service_catalog module

ironic_inspector.conf.service_catalog.list_opts()

ironic_inspector.conf.service_catalog.register_opts (conf)

ironic_inspector.conf.swift module

ironic_inspector.conf.swift.list_opts()

ironic_inspector.conf.swift.register_ opts (conf)

Module contents
ironic_inspector.plugins package
Submodules
ironic_inspector.plugins.base module

Base code for plugins support.

4.1. How To Contribute

117

Ironic Inspector Documentation, Release 10.2.2.dev1

class ironic_inspector.plugins.base.ProcessingHook
Bases: object

Abstract base class for introspection data processing hooks.

before_processing (introspection_data, **kwargs)
Hook to run before any other data processing.

This hook is run even before sanity checks.
Parameters

* introspection_data raw information sent by the ramdisk, may be
modified by the hook.

* kwargs used for extensibility without breaking existing hooks
Returns nothing.

before_update (introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters
* introspection_data processed data from the ramdisk.
* node_info Nodelnfo instance.
* kwargs used for extensibility without breaking existing hooks.
Returns nothing.
[RFC 6902] - http://tools.ietf.org/html/rfc6902

dependencies = []
An ordered list of hooks that must be enabled before this one.

The items here should be entry point names, not classes.

class ironic_inspector.plugins.base.RuleActionPlugin
Bases: ironic _inspector.plugins.base.WithValidation

Abstract base class for rule action plugins.

FORMATTED PARAMS = []
List of params will be formatted with python format.

abstract apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters
* node_info Nodelnfo object
* params parameters as a dictionary
* kwargs used for extensibility without breaking existing plugins

Raises utils.Error on failure

118 Chapter 4. Contributor Docs

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 10.2.2.dev1

class ironic_inspector.plugins.base.RuleConditionPlugin
Bases: ironic _inspector.plugins.base.WithValidation

Abstract base class for rule condition plugins.

ALLOW_NONE = False
Whether this condition accepts None when field is not found.

REQUIRED PARAMS = {'value'}

abstract check (node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters
* node_info Nodelnfo object
e field field value

* params parameters as a dictionary, changing it here will change what will
be stored in database

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on unacceptable field value
Returns True if check succeeded, otherwise False

class ironic_inspector.plugins.base.WithValidation
Bases: object

OPTIONAL_ PARAMS = {}
Set with names of optional parameters.

REQUIRED PARAMS = {}
Set with names of required parameters.

validate (params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters
* params params as a dictionary
* kwargs used for extensibility without breaking existing plugins
Raises ValueError on validation failure
ironic_inspector.plugins.base.introspection_data_manager ()

ironic_inspector.plugins.base.missing_entrypoints_callback (names)
Raise MissingHookError with comma-separated list of missing hooks

ironic_inspector.plugins.base.node_not_found_hook_manager (*args)

ironic_inspector.plugins.base.processing hooks_manager (*args)
Create a Stevedore extension manager for processing hooks.

Parameters args arguments to pass to the hooks constructor.

4.1. How To Contribute 119

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.plugins.base.reset ()
Reset cached managers.

ironic_inspector.plugins.base.rule_actions_manager ()
Create a Stevedore extension manager for actions in rules.

ironic_inspector.plugins.base.rule_conditions_manager ()
Create a Stevedore extension manager for conditions in rules.

ironic_inspector.plugins.base.validate_processing hooks ()
Validate the enabled processing hooks.

Raises MissingHookError on missing or failed to load hooks
Raises RuntimeError on validation failure

Returns the list of hooks passed validation

ironic_inspector.plugins.base_physnet module

class ironic_inspector.plugins.base_physnet.BasePhysnetHook
Bases: ironic inspector.plugins.base.ProcessingHook

Base class for plugins that assign a physical network to ports.

The mechanism for mapping a port to a physical network should be provided by a subclass via the
get_physnet() method.

before_update (introspection_data, node_info, **kwargs)
Process introspection data and patch port physical network.

abstract get_physnet (port, iface_name, introspection_data)
Return a physical network to apply to a port.

Subclasses should implement this method to determine how to map a port to a physical
network.

Parameters
e port The ironic port to patch.
* iface_name Name of the interface.
* introspection_data Introspection data.

Returns The physical network to set, or None.

ironic_inspector.plugins.capabilities module

Gather capabilities from inventory.

class ironic_inspector.plugins.capabilities.CapabilitiesHook
Bases: ironic inspector.plugins.base.ProcessingHook

Processing hook for detecting capabilities.

before_update (introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

120 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

* introspection_data processed data from the ramdisk.

* node_info Nodelnfo instance.

* kwargs used for extensibility without breaking existing hooks.
Returns nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.discovery module

Enroll node not found hook hook.

ironic_inspector.plugins.discovery.enroll_node_not_found_hook (introspection_data,
**kwargs)

ironic_inspector.plugins.example module

Example plugin.

class ironic_inspector.plugins.example.ExampleProcessingHook
Bases: ironic_inspector.plugins.base.ProcessingHook

before_processing (introspection_data, **kwargs)
Hook to run before any other data processing.

This hook is run even before sanity checks.
Parameters

* introspection_data raw information sent by the ramdisk, may be
modified by the hook.

* kwargs used for extensibility without breaking existing hooks
Returns nothing.

before_update (introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

* introspection_data processed data from the ramdisk.

* node_info Nodelnfo instance.

* kwargs used for extensibility without breaking existing hooks.
Returns nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

4.1. How To Contribute 121

http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 10.2.2.dev1

class ironic_inspector.plugins.example.ExampleRuleAction
Bases: ironic inspector.plugins.base.RuleActionPlugin

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters

* node_info Nodelnfo object

* params parameters as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises utils.Error on failure

ironic_inspector.plugins.example.example_ not_found_hook (introspection_data,
**kwargs)

ironic_inspector.plugins.extra_hardware module

Plugin to store extra hardware information in Swift.

Stores the value of the data key returned by the ramdisk as a JSON encoded string in a Swift object. The
object is named extra_hardware-<node uuid> and is stored in the inspector container.

class ironic_inspector.plugins.extra_hardware.ExtraHardwareHook
Bases: ironic_inspector.plugins.base.ProcessingHook

Processing hook for saving extra hardware information in Swift.

before_update (introspection_data, node_info, **kwargs)
Stores the data key from introspection_data in Swift.

If the data key exists, updates Ironic extra column hardware_swift_object key to the name of
the Swift object, and stores the data in the inspector container in Swift.

Otherwise, it does nothing.

ironic_inspector.plugins.introspection_data module

Backends for storing introspection data.

class ironic_inspector.plugins.introspection_data.BaseStorageBackend
Bases: object

abstract get (node_uuid, processed=True, get_json="False)
Get introspected data from storage backend.

Parameters
* node_uuid node UUID.
» processed Specify whether the data to be retrieved is processed or not.

* get_json Specify whether return the introspection data in json format,
string value is returned if False.

Returns the introspection data.

122 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

Raises IntrospectionDataStoreDisabled if storage backend is disabled.

abstract save (node_uuid, data, processed=True)
Save introspected data to storage backend.

Parameters

* node_uuid node UUID.

* data the introspected data to be saved, in dict format.

* processed Specify whether the data to be saved is processed or not.
Raises IntrospectionDataStoreDisabled if storage backend is disabled.

class ironic_inspector.plugins.introspection_data.DatabaseStore
Bases: object

get (node_uuid, processed=True, get_json=False)
save (node_uuid, data, processed=True)

class ironic_inspector.plugins.introspection_data.NoStore
Bases: ironic _inspector.plugins.introspection_data.
BaseStorageBackend

get (node_uuid, processed=True, get_json=False)
Get introspected data from storage backend.

Parameters
* node_uuid node UUID.
* processed Specify whether the data to be retrieved is processed or not.

* get_json Specify whether return the introspection data in json format,
string value is returned if False.

Returns the introspection data.
Raises IntrospectionDataStoreDisabled if storage backend is disabled.

save (node_uuid, data, processed=True)
Save introspected data to storage backend.

Parameters

* node_uuid node UUID.

* data the introspected data to be saved, in dict format.

» processed Specify whether the data to be saved is processed or not.
Raises IntrospectionDataStoreDisabled if storage backend is disabled.

class ironic_inspector.plugins.introspection_data.SwiftStore
Bases: object

get (node_uuid, processed=True, get_json=False)

save (node_uuid, data, processed=True)

4.1. How To Contribute 123

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.plugins.lidp_basic module

LLDP Processing Hook for basic TLVs

class ironic_inspector.plugins.lldp_basic.LLDPBasicProcessingHook

Bases: ironic_inspector.plugins.base.ProcessingHook
Process mandatory and optional LLDP packet fields

Loop through raw LLDP TLVs and parse those from the basic management, 802.1, and 802.3
TLV sets. Store parsed data back to the ironic-inspector database.

before_update (introspection_data, node_info, **kwargs)
Process LLDP data and update all_interfaces with processed data

ironic_inspector.plugins.local_link_connection module

Generic LLDP Processing Hook

class ironic_inspector.plugins.local_link_connection.GenericLocalLinkConnectionH

Bases: ironic_inspector.plugins.base.ProcessingHook
Process mandatory LLDP packet fields

Non-vendor specific LLDP packet fields processed for each NIC found for a baremetal node, port
ID and chassis ID. These fields if found and if valid will be saved into the local link connection
info port id and switch id fields on the Ironic port that represents that NIC.

before_update (introspection_data, node_info, **kwargs)
Process LLDP data and patch Ironic port local link connection

ironic_inspector.plugins.pci_devices module

Gather and distinguish PCI devices from inventory.

class ironic_inspector.plugins.pci_devices.PciDevicesHook

Bases: ironic_inspector.plugins.base.ProcessingHook
Processing hook for counting and distinguishing various PCI devices.
That information can be later used by nova for node scheduling.
aliases = {}

before_update (introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters
* introspection_data processed data from the ramdisk.
* node_info Nodelnfo instance.
* kwargs used for extensibility without breaking existing hooks.

Returns nothing.

124

Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.physnet_cidr_map module

Port Physical Network Hook

class ironic_inspector.plugins.physnet_cidr_map.PhysnetCidrMapHook
Bases: ironic _inspector.plugins.base_physnet.BasePhysnetHook

Process port physical network

Set the physical_network field of baremetal ports based on a cidr to physical network mapping in
the configuration.

get_physnet (port, iface_name, introspection_data)
Return a physical network to apply to a port.

Parameters
» port The ironic port to patch.
e iface name Name of the interface.
* introspection_data Introspection data.

Returns The physical network to set, or None.

ironic_inspector.plugins.raid_device module

Gather root device hint from recognized block devices.

class ironic_inspector.plugins.raid_device.RaidDeviceDetection
Bases: ironic_inspector.plugins.base.ProcessingHook

Processing hook for learning the root device after RAID creation.

The plugin can figure out the root device in 2 runs. First, it saves the discovered block device
serials in node.extra. The second run will check the difference between the recently discovered
block devices and the previously saved ones. After saving the root device in node.properties, it
will delete the temporarily saved block device serials in node.extra.

This way, it helps to figure out the root device hint in cases when otherwise Ironic doesnt have
enough information to do so. Such a usecase is DRAC RAID configuration where the BMC doesnt
provide any useful information about the created RAID disks. Using this plugin immediately
before and after creating the root RAID device will solve the issue of root device hints.

In cases where theres no RAID volume on the node, the standard plugin will fail due to the missing
local_gb value. This plugin fakes the missing value, until its corrected during later runs. Note,
that for this to work the plugin needs to take precedence over the standard plugin.

before_processing (introspection_data, **kwargs)
Adds fake local_gb value if its missing from introspection_data.

before_update (introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

4.1. How To Contribute 125

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 10.2.2.dev1

Parameters

* introspection_data processed data from the ramdisk.

* node_info Nodelnfo instance.

* kwargs used for extensibility without breaking existing hooks.
Returns nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.rules module

Standard plugins for rules APIL.

class ironic_inspector.plugins.rules.AddTraitAction
Bases: ironic_inspector.plugins.base.RuleActionPlugin

REQUIRED_ PARAMS = {'name'}

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters

* node_info Nodelnfo object

* params parameters as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises utils.Error on failure

class ironic_inspector.plugins.rules.ContainsCondition
Bases: ironic _inspector.plugins.rules.ReCondition

check (node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters
* node_info Nodelnfo object
e field field value

* params parameters as a dictionary, changing it here will change what will
be stored in database

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on unacceptable field value
Returns True if check succeeded, otherwise False

class ironic_inspector.plugins.rules.EmptyCondition
Bases: ironic inspector.plugins.base.RuleConditionPlugin

ALLOW_NONE = True

REQUIRED_PARAMS = {}

126 Chapter 4. Contributor Docs

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 10.2.2.dev1

check (node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters
* node_info Nodelnfo object
e field field value

* params parameters as a dictionary, changing it here will change what will
be stored in database

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on unacceptable field value
Returns True if check succeeded, otherwise False

class ironic_inspector.plugins.rules.EqCondition
Bases: ironic inspector.plugins.rules.SimpleCondition

op ()
eq(a, b) Same as a==b.

class ironic_inspector.plugins.rules.ExtendAttributeAction
Bases: ironic _inspector.plugins.base.RuleActionPlugin

FORMATTED_PARAMS = ['value']

OPTIONAL_PARAMS = {'unique'}

REQUIRED PARAMS {'path', 'value'}

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters

* node_info Nodelnfo object

* params parameters as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises utils.Error on failure

class ironic_inspector.plugins.rules.FailAction
Bases: ironic _inspector.plugins.base.RuleActionPlugin

REQUIRED_PARAMS = {'message'}

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters
* node_info Nodelnfo object
* params parameters as a dictionary
* kwargs used for extensibility without breaking existing plugins

Raises utils.Error on failure

4.1. How To Contribute 127

Ironic Inspector Documentation, Release 10.2.2.dev1

class ironic_inspector.plugins.rules.GeCondition
Bases: ironic inspector.plugins.rules.SimpleCondition

op ()
ge(a, b) Same as a>=b.

class ironic_inspector.plugins.rules.GtCondition
Bases: ironic inspector.plugins.rules.SimpleCondition

op ()
gt(a, b) Same as a>b.

class ironic_inspector.plugins.rules.LeCondition
Bases: ironic_inspector.plugins.rules.SimpleCondition

op ()
le(a, b) Same as a<=b.

class ironic_inspector.plugins.rules.LtCondition
Bases: ironic _inspector.plugins.rules.SimpleCondition

op ()
It(a, b) Same as a<b.

class ironic_inspector.plugins.rules.MatchesCondition
Bases: ironic inspector.plugins.rules.ReCondition

check (node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters
* node_info Nodelnfo object
e field field value

* params parameters as a dictionary, changing it here will change what will
be stored in database

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on unacceptable field value
Returns True if check succeeded, otherwise False

class ironic_inspector.plugins.rules.NeCondition
Bases: ironic_inspector.plugins.rules.SimpleCondition

op ()
ne(a, b) Same as a!=b.

class ironic_inspector.plugins.rules.NetCondition
Bases: ironic _inspector.plugins.base.RuleConditionPlugin

check (node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters
* node_info Nodelnfo object

e field field value

128 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

* params parameters as a dictionary, changing it here will change what will
be stored in database

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on unacceptable field value
Returns True if check succeeded, otherwise False

validate (params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

e params params as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on validation failure

class ironic_inspector.plugins.rules.ReCondition
Bases: ironic_inspector.plugins.base.RuleConditionPlugin

validate (params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

* params params as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on validation failure

class ironic_inspector.plugins.rules.RemoveTraitAction
Bases: ironic _inspector.plugins.base.RuleActionPlugin

REQUIRED_ PARAMS = {'name'}

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters

* node_info Nodelnfo object

* params parameters as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises utils.Error on failure

class ironic_inspector.plugins.rules.SetAttributeAction
Bases: ironic _inspector.plugins.base.RuleActionPlugin

FORMATTED_PARAMS = ['value']

OPTIONAL_PARAMS = {'reset_interfaces', 'value'}

4.1. How To Contribute 129

Ironic Inspector Documentation, Release 10.2.2.dev1

REQUIRED_PARAMS = {'path'}

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters

* node_info Nodelnfo object

* params parameters as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises utils.Error on failure

validate (params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

e params params as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on validation failure

class ironic_inspector.plugins.rules.SetCapabilityAction
Bases: ironic_inspector.plugins.base.RuleActionPlugin

FORMATTED PARAMS = ['value']
OPTIONAL PARAMS = {'value'}
REQUIRED PARAMS = {'name'}

apply (node_info, params, **kwargs)
Run action on successful rule match.

Parameters

* node_info Nodelnfo object

* params parameters as a dictionary

* kwargs used for extensibility without breaking existing plugins
Raises utils.Error on failure

class ironic_inspector.plugins.rules.SimpleCondition
Bases: ironic _inspector.plugins.base.RuleConditionPlugin

check (node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters
* node_info Nodelnfo object
e field field value

* params parameters as a dictionary, changing it here will change what will
be stored in database

130 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

* kwargs used for extensibility without breaking existing plugins
Raises ValueError on unacceptable field value
Returns True if check succeeded, otherwise False
op = None

ironic_inspector.plugins.rules.coerce (value, expected)

ironic_inspector.plugins.standard module

Standard set of plugins.

class ironic_inspector.plugins.standard.RamdiskErrorHook
Bases: ironic_inspector.plugins.base.ProcessingHook

Hook to process error send from the ramdisk.

before_processing (introspection_data, **kwargs)
Hook to run before any other data processing.

This hook is run even before sanity checks.
Parameters

* introspection_data raw information sent by the ramdisk, may be
modified by the hook.

* kwargs used for extensibility without breaking existing hooks
Returns nothing.

class ironic_inspector.plugins.standard.RootDiskSelectionHook
Bases: ironic inspector.plugins.base.ProcessingHook

Smarter root disk selection using Ironic root device hints.

This hook must always go before SchedulerHook, otherwise root_disk field might not be updated.

before_update (introspection_data, node_info, **kwargs)
Process root disk information.

class ironic_inspector.plugins.standard.SchedulerHook
Bases: ironic_inspector.plugins.base.ProcessingHook

Nova scheduler required properties.
KEYS = ('cpus', 'cpu_arch', 'memory_mb')

before_update (introspection_data, node_info, **kwargs)
Update node with scheduler properties.

class ironic_inspector.plugins.standard.ValidateInterfacesHook
Bases: ironic inspector.plugins.base.ProcessingHook

Hook to validate network interfaces.

before_processing (introspection_data, **kwargs)
Validate information about network interfaces.

4.1. How To Contribute 131

Ironic Inspector Documentation, Release 10.2.2.dev1

before_update (introspection_data, node_info, **kwargs)
Create new ports and drop ports that are not present in the data.

Module contents
ironic_inspector.pxe_filter package
Submodules
ironic_inspector.pxe_filter.base module

Base code for PXE boot filtering.

class ironic_inspector.pxe_filter.base.BaseFilter
Bases: ironic inspector.pxe_filter.interface.FilterDriver

The generic PXE boot filtering interface implementation.

This driver doesnt do anything but provides a basic synchronization and initialization logic for
some drivers to reuse. Subclasses have to provide a custom sync() method.

fsm = <automaton.machines.FiniteMachine object>

fsm_reset_on_error()
Reset the filter driver upon generic exception.

The context is self.fsm. The automaton.exceptions.NotFound error is cast to the InvalidFil-
terDriverState error. Other exceptions trigger self.reset()

Raises InvalidFilterDriverState
Returns nothing.

get_periodic_sync_task()
Get periodic sync task for the filter.

The periodic task returned is casting the InvalidFilterDriverState to the periodics.NeverAgain
exception to quit looping.

Raises periodics.NeverAgain
Returns a periodic task to be run in the background.

init_filter ()
Base driver initialization logic. Locked.

Raises InvalidFilterDriverState
Returns nothing.

reset ()
Reset internal driver state.

This method is called by the fsm_context manager upon exception as well as by the
tear_down_filter method. A subclass might wish to override as necessary, though must not
lock the driver. The overriding subclass should up-call.

Returns nothing.

132 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

property state
Current driver state.

sync (ironic)
Base driver sync logic. Locked.

Parameters ironic obligatory ironic client instance
Returns nothing.

tear_down_filter()
Base driver tear down logic. Locked.

Returns nothing.

class ironic_inspector.pxe_filter.base.Events
Bases: object

PXE filter driver transitions.

initialize = 'initialize'
reset = 'reset'
sync = 'sync'

exception ironic_inspector.pxe_filter.base.InvalidFilterDriverState
Bases: RuntimeError

The fsm of the filter driver raised an error.

class ironic_inspector.pxe_filter.base.NoopFilter
Bases: ironic inspector.pxe filter.base.BaseFilter

A trivial PXE boot filter.

get_periodic_sync_task()
Get periodic sync task for the filter.

The periodic task returned is casting the InvalidFilterDriverState to the periodics.NeverAgain
exception to quit looping.

Raises periodics.NeverAgain
Returns a periodic task to be run in the background.

class ironic_inspector.pxe_filter.base.States
Bases: object

PXE filter driver states.
initialized = 'initialized'
uninitialized = 'uninitialized'

ironic_inspector.pxe_filter.base.driver ()
Get the driver for the PXE filter.

Returns the singleton PXE filter driver object.

ironic_inspector.pxe_filter.base.locked driver_ event (event)
Call driver method having processed the fsm event.

4.1. How To Contribute 133

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.pxe_filter.dnsmasq module

class ironic_inspector.pxe_filter.dnsmasqg.DnsmasqFilter
Bases: ironic _inspector.pxe filter.base.BaseFilter

The dnsmasq PXE filter driver.

A pxe filter driver implementation that controls access to dnsmasq through amending its configu-
ration.

init_filter ()
Performs an initial sync with ironic and starts dnsmasq.

The initial _sync() call reduces the chances dnsmasq might lose some inotify blacklist events
by prefetching the blacklist before the dnsmasq is started.

Raises OSError, IOError.
Returns None.

reset ()
Stop dnsmasq and upcall reset.

sync (ironic)
Sync dnsmasq configuration with current Ironic&Inspector state.

Polls all ironic ports. Those being inspected, the active ones, are whitelisted while the rest
are blacklisted in the dnsmasq configuration.

Parameters ironic an ironic client instance.
Raises OSError, IOError.

Returns None.

ironic_inspector.pxe_filter.interface module

The code of the PXE boot filtering interface.

class ironic_inspector.pxe_filter.interface.FilterDriver
Bases: object

The PXE boot filtering interface.

abstract get_periodic_sync_task()
Get periodic sync task for the filter.

Returns a periodic task to be run in the background.

abstract init_filter ()
Initialize the internal driver state.

This method should be idempotent and may perform system-wide filter state changes. Can
be synchronous.

Returns nothing.

abstract sync (ironic)
Synchronize the filter with ironic and inspector.

134 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

To be called both periodically and as needed by inspector. The filter should tear down its
internal state if the sync method raises in order to propagate filtering exception between
periodic and on-demand sync call. To this end, a driver should raise from the sync call if its
internal state isnt properly initialized.

Parameters ironic an ironic client instance.
Returns nothing.

abstract tear down filter ()
Reset the filter.

This method should be idempotent and may perform system-wide filter state changes. Can
be synchronous.

Returns nothing.

ironic_inspector.pxe_filter.iptables module

class ironic_inspector.pxe_filter.iptables.IptablesFilter
Bases: ironic _inspector.pxe filter.base.BaseFilter

A PXE boot filtering interface implementation.

init_filter ()
Base driver initialization logic. Locked.

Raises InvalidFilterDriverState
Returns nothing.

reset ()
Reset internal driver state.

This method is called by the fsm_context manager upon exception as well as by the
tear_down_filter method. A subclass might wish to override as necessary, though must not
lock the driver. The overriding subclass should up-call.

Returns nothing.

sync (ironic)
Sync firewall filter rules for introspection.

Gives access to PXE boot port for any machine, except for those, whose MAC is registered
in Ironic and is not on introspection right now.

This function is called from both introspection initialization code and from periodic task.
This function is supposed to be resistant to unexpected iptables state.

init () function must be called once before any call to this function. This function is using
event let semaphore to serialize access from different green threads.

Parameters ironic an ironic client instance.

Returns nothing.

4.1. How To Contribute 135

Ironic Inspector Documentation, Release 10.2.2.dev1

Module contents
Submodules
ironic_inspector.api_tools module

Generic Rest Api tools.

ironic_inspector.api_tools.limit_field (value)
Fetch the pagination limit field from flask.request.args.

Returns the limit

ironic_inspector.api_tools.marker_ field (value)
Fetch the pagination marker field from flask.request.args.

Returns an uuid

ironic_inspector.api_tools.raises_coercion_exceptions (fi)
Convert coercion function exceptions to utils.Error.

Raises utils.Error when the coercion function raises an AssertionError or a ValueError

ironic_inspector.api_tools.request_field (field_name)
Decorate a function that coerces the specified field.

Parameters £field name name of the field to fetch

Returns a decorator

ironic_inspector.db module

SQLAIchemy models for inspection data and shared database code.

class ironic_inspector.db.Attribute (**kwargs)
Bases: sglalchemy.ext.declarative.api.Base

name
node uuid
uuid
value

class ironic_inspector.db.IntrospectionData (**kwargs)
Bases: sglalchemy.ext.declarative.api.Base

data
processed
uuid

class ironic_inspector.db.ModelBase
Bases: oslo_db.sglalchemy.models.ModelBase

class ironic_inspector.db.Node (**kwargs)
Bases: sglalchemy.ext.declarative.api.Base

136 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

error
finished at
manage_boot
started at
state
uuid

version_ id

class ironic_inspector.db.Option (**kwargs)

Bases: sglalchemy.ext.declarative.api.Base
name
uuid

value

class ironic_inspector.db.Rule (**kwargs)

Bases: sglalchemy.ext.declarative.api.Base
actions

conditions

created_at

description

disabled

scope

uuid

class ironic_inspector.db.RuleAction (**kwargs)

Bases: sglalchemy.ext.declarative.api.Base
action

as_dict ()

id

params

rule

class ironic_inspector.db.RuleCondition (**kwargs)

Bases: sglalchemy.ext.declarative.api.Base
as_dict ()

field

id

invert

multiple

op

4.1,

How To Contribute

137

Ironic Inspector Documentation, Release 10.2.2.dev1

params
rule
ironic_inspector.db.ensure_transaction (session=None)

ironic_inspector.db.get_context_manager ()
Create transaction context manager lazily.

Returns The transaction context manager.

ironic_inspector.db.get_reader_session|()
Help method to get reader session.

Returns The reader session.

ironic_inspector.db.get_writer_session|()
Help method to get writer session.

Returns The writer session.

ironic_inspector.db.init ()
Initialize the database.

Method called on service start up, initialize transaction context manager and try to create db
session.

ironic_inspector.db.model_query (model, *args, **kwargs)
Query helper for simpler session usage.

Parameters session if present, the session to use

ironic_inspector.introspect module

Handling introspection request.

ironic_inspector.introspect.abort (node_id, token=None)
Abort running introspection.

Parameters
* node_id node UUID or name
* token authentication token
Raises Error

ironic_inspector.introspect.introspect (node_id, manage_boot=True, to-

- o . ~ ken=None)
Initiate hardware properties introspection for a given node.

Parameters
* node_id node UUID or name
* manage_boot whether to manage boot for this node
* token authentication token

Raises Error

138 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.introspection_state module

Introspection state.

class ironic_inspector.introspection_state.Events

Bases: object

Events that change introspection state.
abort = 'abort'

abort _end = 'abort_ end'’

classmethod all ()
Return a list of all events.

error = 'error'
finish = 'finish'
process = 'process'

reapply = 'reapply'

start = 'start'
timeout = 'timeout'
wait = 'wait'

class ironic_inspector.introspection_state.States

Bases: object
States of an introspection.
aborting = 'aborting'

classmethod all ()
Return a list of all states.

enrolling = 'enrolling'
error = 'error'

finished = 'finished'
processing = 'processing'

reapplying = 'reapplying'
starting = 'starting'

waiting = 'waiting'

4.1. How To Contribute

139

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.main module

ironic_inspector.main.add_version_headers (res)

ironic_inspector.main.api (path,

is_public_api=False, rule=None,

verb_to_rule_map=None, **flask_kwargs)

Decorator to wrap api methods.

Performs flask routing, exception conversion, generation of oslo context for request and API ac-

cess policy enforcement.

Parameters

* path flask app route path

* is_public_api whether this API path should be treated as public, with
minimal access enforcement

* rule API access policy rule to enforce. If rule is None, the default policy
rule will be enforced, which is deny all if not overridden in policy confif file.

* verb_to_rule_map if both rule and this are given, defines mapping be-
tween http verbs (uppercase) and strings to format the rule string with

* kwargs all the rest kwargs are passed to flask app.route

ironic_inspector.main.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

ironic_inspector.

main
main
main
main
main
main
main
main
main
main
main
main

main

api_continue ()
.api_introspection (node_id)
.api_introspection_abort (node_id)
.api_introspection_data (node_id)
.api_introspection_reapply (node_id)
.api_introspection_statuses ()
.api_root ()

.api_rule (uuid)

.api_rules ()
.check_api_version()
.convert_exceptions (func)
.create_link_object (urls)
.error_response (exc, code=500)

.generate_introspection_status (node)

Return a dict representing current node status.

Parameters node

Returns dictionary

ironic_inspector.

ironic_inspector.

main

main

Get the flask instance.

ironic_inspector.

main

a Nodelnfo instance

.generate_resource_data (resources)

.get_app ()

.get_client_compat ()

140

Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.main.get_random topic ()

ironic_inspector.main.handle_404 (error)

ironic_inspector.main.rule_repr (rule, short)

ironic_inspector.main.start_coordinator ()

Create a coordinator instance for non-standalone case.

ironic_inspector.main.version_root (version)

ironic_inspector.node_cache module

Cache for nodes currently under introspection.

class ironic_inspector.node_cache.NodeInfo (uuid, version_id=None,
state=None, started_at=None,
finished_at=None, er-
ror=None, node=None,
ports=None, ironic=None,

manage_boot=True)
Bases: object

Record about a node in the cache.

This class optionally allows to acquire a lock on a node. Note that the class instance itself is NOT
thread-safe, you need to create a new instance for every thread.

acquire_lock (blocking=True)
Acquire a lock on the associated node.

Exits with success if a lock is already acquired using this Nodelnfo object.

Parameters blocking if True, wait for lock to be acquired, otherwise return
immediately.

Returns boolean value, whether lock was acquired successfully

add_attribute (name, value, session=None)
Store look up attribute for a node in the database.

Parameters
* name attribute name
* value attribute value or list of possible values
* session optional existing database session

add_trait (trait, ironic=None)
Add a trait to the node.

Parameters
e trait traitto add
e ironic Ironic client to use instead of self.ironic

property attributes
Node look up attributes as a dict.

4.1,

How To Contribute 141

Ironic Inspector Documentation, Release 10.2.2.dev1

commit ()
Commit current node status into the database.

create_ports (ports, ironic=None)
Create one or several ports for this node.

Parameters

» ports List of ports with all their attributes e.g [{mac: xx, ip: xx, client_id:
None}, {mac: xx, ip: None, client_id: None}] It also support the old style
of list of macs. A warning is issued if port already exists on a node.

e ironic Ironic client to use instead of self.ironic

delete_port (port, ironic=None)
Delete port.

Parameters
* port port object or its MAC
e ironic Ironic client to use instead of self.ironic

finished (event, error=None)
Record status for this node and process a terminal transition.

Also deletes look up attributes from the cache.
Parameters
* event the event to process
* error error message

classmethod from row (row, ironic=None, node=None)
Construct Nodelnfo from a database row.

fsm_event (event, strict=Fualse)
Update node_info.state based on a fsm.process_event(event) call.

An AutomatonException triggers an error event. If strict,
node_info.finished(istate.Events.error, error=str(exc)) is called with the AutomatonEx-
ception instance and a EventError raised.

Parameters event an event to process by the fsm
Strict whether to fail the introspection upon an invalid event
Raises NodeStatelnvalidEvent

get_by_ path (path)
Get field value by ironic-style path (e.g. /extra/foo).

Parameters path path to a field
Returns field value
Raises KeyError if field was not found

invalidate cache ()
Clear all cached info, so that its reloaded next time.

property ironic
Ironic client instance.

142 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

property manage_boot
Whether to manage boot for this node.

node (ironic=None)
Get Ironic node object associated with the cached node record.

property options
Node introspection options as a dict.

patch (patches, ironic=None, **kwargs)
Apply JSON patches to a node.

Refreshes cached node instance.
Parameters
» patches JSON patches to apply
* ironic Ironic client to use instead of self.ironic
* kwargs Arguments to pass to ironicclient.
Raises openstacksdk exceptions

patch_port (port, patches, ironic=None)
Apply JSON patches to a port.

Parameters
* port port object or its MAC
* patches JSON patches to apply
* ironic Ironic client to use instead of self.ironic

ports (ironic=None)
Get Ironic port objects associated with the cached node record.

This value is cached as well, use invalidate_cache() to clean.
Returns dict MAC -> port object

release lock ()
Release a lock on a node.

Does nothing if lock was not acquired using this Nodelnfo object.

remove_trait (trait, ironic=None)
Remove a trait from the node.

Parameters
e trait trait to add
e ironic Ironic client to use instead of self.ironic

replace_field (path, func, **kwargs)
Replace a field on ironic node.

Parameters
* path path to a field as used by the ironic client

* func function accepting an old value and returning a new one

. How To Contribute 143

Ironic Inspector Documentation, Release 10.2.2.dev1

* kwargs if default value is passed here, it will be used when no existing
value is found.

Raises KeyError if value is not found and default is not set
Raises everything that patch() may raise

set_option (name, value)
Set an option for a node.

property state
State of the node_info object.

update_capabilities (ironic=None, **caps)
Update capabilities on a node.

Parameters
* caps capabilities to update
e ironic Ironic client to use instead of self.ironic

update_properties (ironic=None, **props)
Update properties on a node.

Parameters
* props properties to update
e ironic Ironic client to use instead of self.ironic

property version_id
Get the version id

ironic_inspector.node_cache.active_macs ()
List all MAC:s that are on introspection right now.

ironic_inspector.node_cache.add_node (uuid, state, manage_boot=True, **at-

))) _tributes)
Store information about a node under introspection.

All existing information about this node is dropped. Empty values are skipped.
Parameters
* uyuid Ironic node UUID
* state The initial state of the node
* manage_boot whether to manage boot for this node

e attributes attributes known about this node (like macs, BMC etc); also
ironic client instance may be passed under ironic

Returns Nodelnfo

ironic_inspector.node_cache.clean_up ()
Clean up the cache.

Finish introspection for timed out nodes.

Returns list of timed out node UUIDs

144 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.node_cache.create_node (driver, ironic=None, **attributes)
Create ironic node and cache it.

¢ Create new node in ironic.
* Cache it in inspector.

* Sets node_info state to enrolling.

Parameters
e driver driver for Ironic node.
e ironic ironic client instance.

* attributes dict, additional keyword arguments to pass to the ironic client
on node creation.

Returns Nodelnfo, or None in case error happened.
ironic_inspector.node_cache.delete_nodes_not_in_1list (uuids)
Delete nodes which dont exist in Ironic node UUIDs.
Parameters uuids Ironic node UUIDs

ironic_inspector.node_cache.find node (**attributes)
Find node in cache.

Looks up a node based on attributes in a best-match fashion. This function acquires a lock on a
node.

Parameters attributes attributes known about this node (like macs, BMC etc)
also ironic client instance may be passed under ironic

Returns structure Nodelnfo with attributes uuid and created_at
Raises Error if node is not found or multiple nodes match the attributes

ironic_inspector.node_cache.fsm_event_after (event, strict=False)
Trigger an fsm event after the function execution.

It is assumed the first function arg of the decorated function is always a Nodelnfo instance.
Parameters
* event the event to process after the function call
* strict make an invalid fsm event trigger an error event

ironic_inspector.node_cache.fsm_event_before (event, strict=False)
Trigger an fsm event before the function execution.

It is assumed the first function arg of the decorated function is always a Nodelnfo instance.
Parameters
* event the event to process before the function call
e strict make an invalid fsm event trigger an error event

ironic_inspector.node_cache.fsm_transition (event, reentrant=True,
**exc_kwargs)
Decorate a function to perform a (non-)reentrant transition.

4.1. How To Contribute 145

Ironic Inspector Documentation, Release 10.2.2.dev1

If True, reentrant transition will be performed at the end of a function call. If False, the tran-
sition will be performed before the function call. The function is decorated with the trig-
gers_fsm_error_transition decorator as well.

Parameters
* event the event to bind the transition to.
* reentrant whether the transition is reentrant.
* exc_kwargs passed on to the triggers_fsm_error_transition decorator

ironic_inspector.node_cache.get_introspection_data (node_id, pro-

)) . cessed=True)
Get introspection data for this node.

Parameters
¢ node_id node UUID.

* processed Specify the type of introspected data, set to False indicates
retrieving the unprocessed data.

Returns A dictionary representation of intropsected data

ironic_inspector.node_cache.get_node (node_id, ironic=None)
Get node from cache.

Parameters
¢ node_id node UUID or name.
* ironiec optional ironic client instance
Returns structure Nodelnfo.
ironic_inspector.node_cache.get_node_list (ironic=None, marker=None,
limit=None)
Get node list from the cache.
The list of the nodes is ordered based on the (started_at, uuid) attribute pair, newer items first.
Parameters
* ironiec optional ironic client instance
* marker pagination marker (an UUID or None)
e limit pagination limit; None for default CONF.api_max_limit

Returns a list of Nodelnfo instances.

ironic_inspector.node_cache.introspection_active ()
Check if introspection is active for at least one node.

ironic_inspector.node_cache.record_node (ironic=None, bmc_addresses=None,

_ macs=None)
Create a cache record for a known active node.

Parameters
e ironic ironic client instance.
* bmc_addresses list of BMC addresses.

¢ macs list of MAC addresses.

146 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

Returns Nodelnfo

ironic_inspector.node_cache.release_lock (func)
Decorate a node_info-function to release the node_info lock.

Assumes the first parameter of the function func is always a NodelInfo instance.

ironic_inspector.node_cache.start_introspection (uuid, **kwargs)
Start the introspection of a node.

If a node_info record exists in the DB, a start transition is used rather than dropping the record in
order to check for the start transition validity in particular node state.

Parameters
* uuid Ironic node UUID
* kwargs passed on to add_node()

Raises NodeStateInvalidEvent in case the start transition is invalid in the current node
state

Raises NodeStateRaceCondition if a mismatch was detected between the node_info
cache and the DB

Returns Nodelnfo

ironic_inspector.node_cache.store_introspection_data (node_id, intro-
spection_data,

processed=True)
Store introspection data for this node.

Parameters
* node_id node UUID.
* introspection_data A dictionary of introspection data

» processed Specify the type of introspected data, set to False indicates the
data is unprocessed.

ironic_inspector.node_cache.triggers_fsm_error_transition (errors=(<class
"Excep-
tion’>,),
no_errors=(<class
"ironic_inspector.utils.NodeState
<class

"ironic_inspector.utils.NodeState
Trigger an fsm error transition upon certain errors.

It is assumed the first function arg of the decorated function is always a Nodelnfo instance.
Parameters

* errors a tuple of exceptions upon which an error event is triggered. Re-
raised.

* no_errors a tuple of exceptions that wont trigger the error event.

4.1. How To Contribute 147

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.policy module

ironic_inspector.policy.authorize (rule, target, creds, *args, **kwargs)
A shortcut for policy.Enforcer.authorize()

Checks authorization of a rule against the target and credentials, and raises an exception if the
rule is not defined. args and kwargs are passed directly to oslo.policy Enforcer.authorize Always
returns True if CONF.auth_strategy != keystone.

Parameters
* rule name of a registered oslo.policy rule
* target dict-like structure to check rule against
* creds dict of policy values from request
Returns True if request is authorized against given policy, False otherwise

Raises oslo_policy.policy.PolicyNotRegistered if supplied policy is not registered in
oslo_policy

ironic_inspector.policy.get_enforcer ()
Provides access to the single instance of Policy enforcer.

ironic_inspector.policy.get_oslo_policy_ enforcer ()
Get the enforcer instance to generate policy files.

This method is for use by oslopolicy CLI scripts. Those scripts need the output-file and namespace
options, but having those in sys.argv means loading the inspector config options will fail as those
are not expected to be present. So we pass in an arg list with those stripped out.

ironic_inspector.policy.init_enforcer (policy_file=None, rules=None, de-

fault_rule=None, use_conf=True)
Synchronously initializes the policy enforcer

Parameters

e policy file Custom policy file to use, if none is specified,
CONF.oslo_policy.policy_file will be used.

e rules Default dictionary / Rules to use. It will be considered just in the first
instantiation.

* default_rule Default rule to use, CONF.oslo_policy.policy_default_rule
will be used if none is specified.

* use_conf Whether to load rules from config file.

ironic_inspector.policy.list_policies|()
Get list of all policies defined in code.

Used to register them all at runtime, and by oslo-config-generator to generate sample policy files.

148 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.process module

Handling introspection data from the ramdisk.

ironic_inspector.process.get_introspection_data (uuid, processed=True,

get_json=False)
Get introspection data from the storage backend.

Parameters
¢ uuid node UUID

* processed Indicates the type of introspection data to be read, set True to
request processed introspection data.

* get_json Specify whether return the introspection data in json format,
string value is returned if False.

Raises utils.Error

ironic_inspector.process.process (introspection_data)
Process data from the ramdisk.

This function heavily relies on the hooks to do the actual data processing.

ironic_inspector.process.reapply (node_uuid, data=None)
Re-apply introspection steps.

Re-apply preprocessing, postprocessing and introspection rules on stored data.
Parameters
* node_uuid node UUID
* data unprocessed introspection data to be reapplied
Raises utils.Error

ironic_inspector.process.store_introspection_data (node_uuid, data, pro-

) . cessed=True)
Store introspection data to the storage backend.

Parameters
* node_uuid node UUID
* data Introspection data to be saved

* processed The type of introspection data, set to True means the introspec-
tion data is processed, otherwise unprocessed.

Raises utils.Error

4.1. How To Contribute 149

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.rules module

Support for introspection rules.

class ironic_inspector.rules.IntrospectionRule (uuid, conditions, actions,
description, scope=None)
Bases: object

High-level class representing an introspection rule.

apply_actions (node_info, data=None)
Run actions on a node.

Parameters
* node_info Nodelnfo instance
* data introspection data
as_dict (short=Fualse)

check_conditions (node_info, data)
Check if conditions are true for a given node.

Parameters
* node_info a Nodelnfo object
* data introspection data
Returns True if conditions match, otherwise False

check_scope (node_info)
Check if nodes scope falls under rule._scope and rule is applicable

Parameters node_info a Nodelnfo object
Returns True if conditions match, otherwise False
property description
ironic_inspector.rules.actions_schema ()

ironic_inspector.rules.apply (node_info, data)
Apply rules to a node.

ironic_inspector.rules.conditions_schema ()

ironic_inspector.rules.create (conditions_json, actions_json, uuid=None, descrip-

tion=None, scope=None)
Create a new rule in database.

Parameters

* conditions_json list of dicts with the following keys: * op - operator *
field - JSON path to field to compare Other keys are stored as is.

* actions_json list of dicts with the following keys: * action - action type
Other keys are stored as is.

e yuid rule UUID, will be generated if empty

* description human-readable rule description

150 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

* scope if scope on node and rule matches, rule applies; if its empty, rule
applies to all nodes.

Returns new IntrospectionRule object
Raises utils.Error on failure

ironic_inspector.rules.delete (uuid)
Delete a rule by its UUID.

ironic_inspector.rules.delete_all ()
Delete all rules.

ironic_inspector.rules.get (uuid)
Get a rule by its UUID.

ironic_inspector.rules.get_all ()
List all rules.

ironic_inspector.utils module

class ironic_inspector.utils.DeferredBasicAuthMiddleware (app,

auth_file)
Bases: object

Middleware which sets X-Identity-Status header based on authentication

exception ironic_inspector.utils.Error (msg, code=400, log_level="error’,

**lewargs)
Bases: Exception

Inspector exception.

exception ironic_inspector.utils.IntrospectionDataNotFound (msg,
code=404,

**kwargs)
Bases: ironic _inspector.utils.NotFoundInCacheError

Introspection data not found.

exception ironic_inspector.utils.IntrospectionDataStoreDisabled (msg,

code=400,
log_level="error’,
**lewargs)
Bases: ironic_inspector.utils.Error
Introspection data store is disabled.
exception ironic_inspector.utils.NoAvailableConductor (msg,
**ywargs)
Bases: ironic inspector.utils.Error
No available conductor in the service group.
exception ironic_inspector.utils.NodeStateInvalidEvent (msg,
code=400,
log_level="error’,
**kwargs)

Bases: ironic inspector.utils.Error

4.1. How To Contribute 151

Ironic Inspector Documentation, Release 10.2.2.dev1

Invalid event attempted.

exception ironic_inspector.utils.NodeStateRaceCondition (*args,
**kwargs)

Bases: ironic _inspector.utils.Error
State mismatch between the DB and a node_info.

exception ironic_inspector.utils.NotFoundInCacheError (msg, code=404,
**hwargs)

Bases: ironic _inspector.utils.Error
Exception when node was not found in cache during processing.

class ironic_inspector.utils.ProcessinglLoggerAdapter (logger, extra)
Bases: oslo_log.log.KeywordArgumentAdapter

process (msg, kwargs)
Process the logging message and keyword arguments passed in to a logging call to insert
contextual information. You can either manipulate the message itself, the keyword args or
both. Return the message and kwargs modified (or not) to suit your needs.

Normally, youll only need to override this one method in a LoggerAdapter subclass for your
specific needs.

ironic_inspector.utils.add_auth_middleware (app)
Add authentication middleware to Flask application.

Parameters app application.

ironic_inspector.utils.add_basic_auth_middleware (app)
Add HTTP Basic authentication middleware to Flask application.

Parameters app application.

ironic_inspector.utils.add_cors_middleware (app)
Create a CORS wrapper

Attach ironic-inspector-specific defaults that must be included in all CORS responses.
Parameters app application

ironic_inspector.utils.check_auth (request, rule=None, target=None)
Check authentication on request.

Parameters

* request Flask request

* rule policy rule to check the request against

* target dict-like structure to check rule against
Raises utils.Error if access is denied

ironic_inspector.utils.executor ()
Return the current futures executor.

ironic_inspector.utils.getProcessingLogger (name)

ironic_inspector.utils.get_inventory (data, node_info=None)
Get and validate the hardware inventory from introspection data.

ironic_inspector.utils.get_ipmi_address_from_data (introspection_data)

152 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.utils.get_ipmi_véaddress_from_data (introspection_data)
ironic_inspector.utils.get_pxe_mac (introspection_data)

ironic_inspector.utils.get_wvalid_macs (data)
Get a list of valid MACs from the introspection data.

ironic_inspector.utils.iso_timestamp (timestamp=None, tz=<UTC>)
Return an ISO8601-formatted timestamp (tz: UTC) or None.

Parameters
* timestamp such as time.time() or None
* tz timezone

Returns an ISO8601-formatted timestamp, or None

ironic_inspector.utils.processing_logger_ prefix (data=None,
node_info=None)
Calculate prefix for logging.

Tries to use: * node UUID, node._state * node PXE MAC, * node BMC address
Parameters
* data introspection data
* node_info Nodelnfo or ironic node object

Returns logging prefix as a string

ironic_inspector.version module
ironic_inspector.wsgi_service module

class ironic_inspector.wsgi_service.WSGIService
Bases: oslo_service.service.Service

Provides ability to launch API from wsgi app.

reset ()
Reset server greenpool size to default.

Returns None

start ()
Start serving this service using loaded configuration.

Returns None

stop ()
Stop serving this API.

Returns None

wait ()
Wait for the service to stop serving this API.

Returns None

4.1. How To Contribute 153

Ironic Inspector Documentation, Release 10.2.2.dev1

Module contents

4.1.8 Ironic Inspector ClI

Its important to understand the role of each job in the CI. To facilitate that, we have created the docu-
mentation below.

Jobs description

The description of each jobs that runs in the CI when you submit a patch for openstack/ironic-inspector
is shown in the following table.

Note: All jobs are configured to use a pre-build tinyipa ramdisk, a wholedisk image that is downloaded
from a Swift temporary url, pxe boot and ipmi driver.

Table 1: Table. OpenStack Ironic Inspector CI jobs description

Job name Description

ironic-inspector-grenade Deploys Ironic and Ironic Inspector in DevStack and
runs upgrade for all enabled services.

ironic-inspector-tempest Deploys Ironic and Ironic Inspector in DevStack.

Runs tempest tests that match the regex InspectorBa-
sicTest and deploys 1 virtual baremetal.
ironic-inspector-tempest-discovery Deploys Ironic and Ironic Inspector in DevStack.
Runs tempest tests that match the regex InspectorDis-
coveryTest and deploys 1 virtual baremetal.
ironic-inspector-tempest-python3 Deploys Ironic and Ironic Inspector in DevStack un-
der Python3. Runs tempest tests that match the regex
Inspector and deploys 1 virtual baremetal.

openstack-tox-functional-py36 Run tox-based functional tests for Ironic Inspector un-
der Python3.6

bifrost-integration-tinyipa-ubuntu-xenial Tests the integration between Ironic Inspector and
Bifrost.

ironic-inspector-tox-bandit Runs bandit security tests in a tox environment to find

known issues in the Ironic Inspector code.

154 Chapter 4. Contributor Docs

CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

e search

155

Ironic Inspector Documentation, Release 10.2.2.dev1

156 Chapter 5. Indices and tables

PYTHON MODULE INDEX

116

ironic_inspector, 154 ironic_inspector.conf.iptables, 116
ironic_inspector.api_tools, 136 ironic_inspector.conf.ironic, 116
ironic_inspector.cmd, 107 ironic_inspector.conf.opts, 116
ironic_inspector.cmd.all, 106 ironic_inspector.conf.pci_devices,
ironic_inspector.cmd.conductor, 106 117
ironic_inspector.cmd.dbsync, 106 ironic_inspector.conf.port_physnet,
ironic_inspector.cmd.migration, 106 117
ironic_inspector.cmd.wsgi, 107 ironic_inspector.conf.processing,
ironic_inspector.common, 115 117
ironic_inspector.common.context, ironic_inspector.conf.pxe filter,

107 L7
ironic_inspector.common.coordinatiokfonic_inspector.conf.service catalog,

107 117
ironic_inspector.common.ironic, 10§ ironic_inspector.conf.swift, 117
ironic_inspector.common.keystone, ironic_inspector.db, 136

110 ironic_inspector.introspect, 138
ironic_inspector.common.lldp_parserdronic_inspector.introspection_state,

110 139
ironic_inspector.common.lldp_tlvs, ironic_inspector.main, 140

112 ironic_inspector.node_cache, 141
ironic_inspector.common.locking, ironic_inspector.plugins, 132

112 ironic_inspector.plugins.base, 117
ironic_inspector.common.rpc, 113 ironic_inspector.plugins.base_physnet,
ironic_inspector.common.rpc_service, 120

113 ironic_inspector.plugins.capabilities,
ironic_inspector.common.service_utils, 120

113 ironic_inspector.plugins.discovery,
ironic_inspector.common.swift, 114 121
ironic_inspector.conductor, 115 ironic_inspector.plugins.example,
ironic_inspector.conductor.manager, 121

115 ironic_inspector.plugins.extra_hardware,
ironic_inspector.conf, 117 122
ironic_inspector.conf.capabilities, ironic_inspector.plugins.introspection_data,

115 122
ironic_inspector.conf.coordination, ironic_inspector.plugins.lldp basic,

116 124
ironic_inspector.conf.default, 116 ironic_inspector.plugins.local_link_connectic
ironic_inspector.conf.discovery, 124

116 ironic_inspector.plugins.pci_devices,

ironic_inspector.conf.dnsmasq_pxe_filter,124

157

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.

125

ironic_inspector.

125
ironic_inspector

ironic_inspector.

131

ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

132

ironic_inspector.

134

ironic_inspector.

134

ironic_inspector.

135

ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

plugins.physnet_cidr_map,

plugins.raid_device,

.plugins.rules, 126

plugins.standard,

policy, 148
process, 149
pxe_filter, 136
pxe_filter.base,

pxe_filter.dnsmasq,
pxe_filter.interface,
pxe_filter.iptables,
rules, 150

utils, 151

version, 153
wsgi_service, 153

158

Python Module Index

A

abort (ironic_inspector.introspection_state. Events

attribute), 139

abort () (in module ironic_inspector.introspect),
138

abort_end (ironic_inspector.introspection_state. Events

attribute), 139

INDEX

(in module
ironic_inspector.cmd.dbsync), 106
add_cors_middleware () (in module
ironic_inspector.utils), 152
add_dotl_1link_aggregation()
(ironic_inspector.common.lldp_parsers. LLDPParser
method), 111

add_command_parsers ()

aborting (ironic_inspector.introspection_state. Stapdd_dot1l_port_protocol_vlan ()

attribute), 139

acquire () (ironic_inspector.common.locking.BaseLock

method), 112

(ironic_inspector.common.lldp_parsers.LLDPdotl Parser
method), 111
add_dotl_protocol_identities ()

acquire () (ironic_inspector.common.locking.InternalLock (ironic_inspector.common.lldp_parsers.LLDPdot1 Parser

method), 112

method), 111

acquire () (ironic_inspector.common.locking. TooA9ek-dot1l_vlans ()

method), 113
acquire_lock ()
(ironic_inspector.node_cache.Nodelnfo
method), 141
(ironic_inspector.db.RuleAction
tribute), 137

action at-

actions (ironic_inspector.db.Rule attribute),
137

actions_schema () (in module
ironic_inspector.rules), 150

active_macs () (in module

ironic_inspector.node_cache), 144
add_alembic_command () (in
ironic_inspector.cmd.dbsync), 106
add_attribute ()
(ironic_inspector.node_cache.Nodelnfo
method), 141

module

add_auth_middleware () (in module
ironic_inspector.utils), 152
add_auth_options () (in module

ironic_inspector.common.keystone),

110
add_basic_auth_middleware () (in mod-

ule ironic_inspector.utils), 152
add_capabilities|()

(ironic_inspector.common.lldp_parsers. LLDPdot1 Parser
method), 111

add_dot3_macphy_config()
(ironic_inspector.common.lldp_parsers.LLDPdot3Parser
method), 111

add_mgmt_address ()
(ironic_inspector.common.lldp_parsers. LLDPBasicMgmit
method), 110

add_nested_value ()
(ironic_inspector.common.lldp_parsers.LLDPParser
method), 111

add_node () (in module
ironic_inspector.node_cache), 144

add_single_value ()
(ironic_inspector.common.lldp_parsers.LLDPParser

method), 111

add_trait () (ironic_inspector.node_cache.Nodelnfo
method), 141

add_version_headers () (in module
ironic_inspector.main), 140

AddTraitAction (class in

ironic_inspector.plugins.rules), 126

aliases (ironic_inspector.plugins.pci_devices.PciDevicesHook
attribute), 124

all () (ironic_inspector.introspection_state.Events

(ironic_inspector.common.lldp _parsers.LLDPBasicMé%WFf@Pd)’ 139

method), 110

all () (ironic_inspector.introspection_state.States

159

Ironic Inspector Documentation, Release 10.2.2.dev1

class method), 139

as_dict () (ironic_inspector.rules.IntrospectionRule

ALLOW_NONE (ironic_inspector.plugins.base.Rule Condition Pheghod), 150

attribute), 119

Attribute (class in ironic_inspector.db), 136

ALLOW_NONE (ironic_inspector.plugins.rules. Empty€onditiontes () (ironic_inspector.node_cache.Nodelnfo

attribute), 126
api () (in module ironic_inspector.main), 140

api_continue () (in module
ironic_inspector.main), 140

api_introspection () (in module
ironic_inspector.main), 140

api_introspection_abort () (in module

ironic_inspector.main), 140
api_introspection_data ()
ironic_inspector.main), 140
api_introspection_reapply () (in mod-
ule ironic_inspector.main), 140
api_introspection_statuses|()
module ironic_inspector.main), 140
api_root () (in module ironic_inspector.main),
140
api_rule () (in module ironic_inspector.main),
140
api_rules()

(in module

(in

(in module
ironic_inspector.main), 140
append_value ()

property), 141

authorize () (in module
ironic_inspector.policy), 148

B

BaseFilter (class in
ironic_inspector.pxe_filter.base), 132

BaseLock (class in
ironic_inspector.common.locking),
112

BasePhysnetHook (class in
ironic_inspector.plugins.base_physnet),
120

BaseStorageBackend (class in

ironic_inspector.plugins.introspection_data),
122

before_processing()
(ironic_inspector.plugins.base. ProcessingHook
method), 118

before_processing()

(ironic_inspector.plugins.example. Example ProcessingHoc

(ironic_inspector.common.lldp_parsers.LLDPParser method), 121

method), 111
apply () (in module ironic_inspector.rules), 150

before_processing()

(ironic_inspector.plugins.raid_device.RaidDeviceDetectio

apply () (ironic_inspector.plugins.base.RuleActionPlugin method), 125

method), 118

apply () (ironic_inspector.plugins.example. ExampleRuleActitnonic_inspector.plugins.standard. RamdiskErrorHook

method), 122

before_processing()

method), 131

apply () (ironic_inspector.plugins.rules.AddTraitAk¥whore_processing ()

method), 126

(ironic_inspector.plugins.standard. ValidatelnterfacesHool

apply () (ironic_inspector.plugins.rules. ExtendAttributeActioethod), 131

method), 127

apply () (ironic_inspector.plugins.rules.FailAction

method), 127

before_update ()
(ironic_inspector.plugins.base. ProcessingHook
method), 118

apply () (ironic_inspector.plugins.rules.RemoveTrditAtnior_update ()

method), 129

(ironic_inspector.plugins.base_physnet.BasePhysnetHook

apply () (ironic_inspector.plugins.rules.SetAttributeAction method), 120

method), 130

apply () (ironic_inspector.plugins.rules.SetCapabilityAction(ironic_inspector.plugins.capabilities. CapabilitiesHook

method), 130

apply_actions ()
(ironic_inspector.rules.IntrospectionRule
method), 150

as_dict () (ironic_inspector.db.RuleAction
method), 137

as_dict () (ironic_inspector.db.RuleCondition
method), 137

before_update ()

method), 120
before_update ()

(ironic_inspector.plugins.example. ExampleProcessingHoc

method), 121
before_update ()

(ironic_inspector.plugins.extra_hardware. ExtraHardware

method), 122
before_update ()

160

Index

Ironic Inspector Documentation, Release 10.2.2.dev1

(ironic_inspector.plugins.lldp_basic.LLD P Basie PxocessinglHookn_state ()

method), 124
before_update ()

(in module
ironic_inspector.common.ironic), 108
check_scope ()

(ironic_inspector.plugins.local_link_connection. GenéinolircatisprdcCommndesdnHospkectionRule

method), 124
before_update ()

method), 150

clean_up () (in module

(ironic_inspector.plugins.pci_devices.PciDevicesHoakonic_inspector.node_cache), 144

method), 124
before_update ()

coerce () (in module

ironic_inspector.plugins.rules), 131

(ironic_inspector.plugins.raid_device. Raid Deviceletétioronic_inspector.node_cache.Nodelnfo

method), 125
before_update ()

method), 141

(ironic_inspector.plugins.standard.RootDiskSelectionHbnte), 137

method), 131
before_update ()

(ironic_inspector.plugins.standard.ScheduleeHodknct orManager

method), 131
before_update ()

(ironic_inspector.plugins.standard. Validatelatenfogestbodndit ion

method), 131

bytes_to_int () (in module
ironic_inspector.common.lldp_tlvs),
112

C

call with retries|() (in module
ironic_inspector.common.ironic), 108

capabilities_to_dict () (in module
ironic_inspector.common.ironic), 108

CapabilitiesHook (class in
ironic_inspector.plugins.capabilities),
120

conditions (ironic_inspector.db.Rule at-
conditions_schema () (in module
ironic_inspector.rules), 150
(class in
ironic_inspector.conductor.manager),
115
(class in
ironic_inspector.plugins.rules), 126
convert_exceptions () (in module
ironic_inspector.main), 140
Coordinator (class in
ironic_inspector.common.coordination),
107
create () (in module ironic_inspector.rules),
150
create_link_object () (in module
ironic_inspector.main), 140
create_node () (in module

ironic_inspector.node_cache), 144
create_object ()

check () (ironic_inspector.plugins.base.RuleConditionPlugiironic_inspector.common.swift.SwiftAPI

method), 119

method), 114

check () (ironic_inspector.plugins.rules. ContainsCenditiowre_ports ()

method), 126

check () (ironic_inspector.plugins.rules. EmptyCondition

method), 126

(ironic_inspector.node_cache.Nodelnfo
method), 142
(ironic_inspector.db.Rule

created_at at-

check () (ironic_inspector.plugins.rules.MatchesCondition tribute), 137

method), 128

check () (ironic_inspector. plugins.rules.NetCondittDz

method), 128

check () (ironic_inspector.plugins.rules.SimpleCondition

method), 130

check_api_version () (in module
ironic_inspector.main), 140
check_auth () (in module

ironic_inspector.utils), 152

check_conditions ()
(ironic_inspector.rules.IntrospectionRule
method), 150

data (ironic_inspector.db.IntrospectionData at-
tribute), 136

DatabaseStore (class in

ironic_inspector.plugins.introspection_data),

123
DeferredBasicAuthMiddleware (class in
ironic_inspector.utils), 151

del_host () (ironic_inspector.conductor.manager. ConductorMai

method), 115
delete () (in module ironic_inspector.rules),

Index

161

Ironic Inspector Documentation, Release 10.2.2.dev1

151
delete_all () (in module
ironic_inspector.rules), 151
delete_nodes_not_in_list () (in module
ironic_inspector.node_cache), 145
delete_port ()
(ironic_inspector.node_cache.Nodelnfo
method), 142

ironic_inspector.plugins.rules), 127
Error, 151
error (ironic_inspector.db.Node attribute), 136
error (ironic_inspector.introspection_state. Events
attribute), 139
error (ironic_inspector.introspection_state.States
attribute), 139

dependencies (ironic_inspector.plugins.base.ProcessingHirohic_inspector.main), 140

attribute), 118
description (ironic_inspector.db.Rule at-
tribute), 137
description ()
(ironic_inspector.rules.IntrospectionRule
property), 150
dict_to_capabilities () (in module
ironic_inspector.common.ironic), 108
disabled (ironic_inspector.db.Rule attribute),

137

DnsmasqgFilter (class in
ironic_inspector.pxe_filter.dnsmasq),
134

error_response () (in module
Events (class in
ironic_inspector.introspection_state),
139
Events (class in

ironic_inspector.pxe_filter.base), 133
example_not_found_hook () (in module
ironic_inspector.plugins.example), 122

do_abort () (ironic_inspector.conductor.manager. Esxductostlandgarmodule ironic_inspector.utils),

method), 115
do_alembic_command () (in module
ironic_inspector.cmd.dbsync), 106
do_continue ()

ExampleProcessingHook (class in
ironic_inspector.plugins.example),
121
ExampleRuleAction (class in
ironic_inspector.plugins.example),
121
152
ExtendAttributeAction (class in
ironic_inspector.plugins.rules), 127
ExtraHardwareHook (class in

(ironic_inspector.conductor.manager. ConductorMandigaric_inspector.plugins.extra_hardware),

method), 115
do_introspection ()

122

(ironic_inspector.conductor.manager. CondqurM anager

method), 115 FailAction (class in
do_reapply () (ironic_inspector.conductor.manager. Conduerovibldnsgeetor.plugins.rules), 127

method), 115 field (ironic_inspector.db.RuleCondition
do_revision () (in module attribute), 137

ironic_inspector.cmd.dbsync), 106 FilterDriver (class in
driver () (in module ironic_inspector.pxe_filter.interface),

ironic_inspector.pxe_filter.base), 133 134

find_node () (in module

E

EmptyCondition (class in
ironic_inspector.plugins.rules), 126
enroll _node_not_found_ hook ()

(in module
ironic_inspector.plugins.discovery),
121

ironic_inspector.node_cache), 145

finish (ironic_inspector.introspection_state. Events
attribute), 139

finished (ironic_inspector.introspection_state.States
attribute), 139

finished () (ironic_inspector.node_cache.Nodelnfo
method), 142

enrolling (ironic_inspector.introspection_state.Stiten i shed_at (ironic_inspector.db.Node at-

attribute), 139

ensure_transaction () (in module
ironic_inspector.db), 138
EgCondition (class in

tribute), 137
FORMATTED_PARAMS

(ironic_inspector.plugins.base.RuleActionPlugin

attribute), 118

162

Index

Ironic Inspector Documentation, Release 10.2.2.dev1

FORMATTED_PARAMS

ironic_inspector.common.keystone),

(ironic_inspector.plugins.rules. ExtendAttributeActionl 10

attribute), 127
FORMATTED_PARAMS

get_

all () (in module ironic_inspector.rules),
151

(ironic_inspector.plugins.rules.SetAttribute Agionapp () (in module ironic_inspector.main),

attribute), 129
FORMATTED_PARAMS

get_

140

autoneg_cap () (in module

(ironic_inspector.plugins.rules.SetCapabilityAction ironic_inspector.common.lldp_tlvs),

attribute), 130

112

from_dict () (ironic_inspector.common.context. RgqtesiConpext h ()

class method), 107
from_environ ()

(ironic_inspector.common.context.RequestCortexiclient ()

class method), 107

from_row () (ironic_inspector.node_cache.Nodelnfret _

class method), 142
fsm
attribute), 132

fsm_event () (ironic_inspector.node_cache.Nodelgfo: _

method), 142

fsm_event_after () (in module get_
ironic_inspector.node_cache), 145
fsm_event_before () (in module

ironic_inspector.node_cache), 145
fsm_reset_on_error ()
(ironic_inspector.pxe_filter.base.BaseFilter

method), 132 get_
fsm_transition () (in module
ironic_inspector.node_cache), 145 get_

G

get_
GeCondition (class in
ironic_inspector.plugins.rules), 127 get_
generate_introspection_status () (in

module ironic_inspector.main), 140
generate_resource_data () (in module

ironic_inspector.main), 140
GenericLocalLinkConnectionHook

(class in get_
ironic_inspector.plugins.local_link_connection),
124 get_

get () (in module ironic_inspector.rules), 151

get () (ironic_inspector.plugins.introspection_data.BaseStarageBackend

method), 122

(ironic_inspector.pxe_filter.base.BaseFilter get__

get_

get_

get_

(ironic_inspector.node_cache.Nodelnfo

method), 142

(in module
ironic_inspector.common.ironic), 108

client () (in module

ironic_inspector.common.rpc), 113

client_compat () (in module
ironic_inspector.main), 140

context_manager () (in module
ironic_inspector.db), 138

coordinator () (in module

ironic_inspector.common.coordination),
108

endpoint () (in
ironic_inspector.common.keystone),
110

enforcer ()

module

(in module
ironic_inspector.policy), 148
introspection_data () (in module
ironic_inspector.common.swift), 114
introspection_data () (in module
ironic_inspector.node_cache), 146
introspection_data() (in module

ironic_inspector.process), 149

inventory () (in module
ironic_inspector.utils), 152
ipmi_address () (in module

ironic_inspector.common.ironic), 108

ipmi_address_from_data () (in
module ironic_inspector.utils), 152
ipmi_vo6address_from_data () (in
module ironic_inspector.utils), 152
(in module

ironic_inspector.common.locking),

get () (ironic_inspector.plugins.introspection_data.DatabaselStére

method), 123

get_

lock () (ironic_inspector.common.coordination. Coordinato

get () (ironic_inspector.plugins.introspection_data.NoStore method), 107

method), 123

method), 123

get_adapter () (in

module get_

get_members ()
get () (ironic_inspector.plugins.introspection_data.SwiftStoréironic_inspector.common.coordination. Coordinator

method), 107

node () (in module

Index

163

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.common.ironic), 109

get_node () (in module
ironic_inspector.node_cache), 146 I
get_node_list () (in module

ironic_inspector.node_cache), 146

get_object () (ironic_inspector.common.swift. SwiftAPI
init ()

method), 114
get_oslo_policy_enforcer () (in module
ironic_inspector.policy), 148
get_periodic_sync_task()
(ironic_inspector.pxe_filter.base.BaseFilter
method), 132
get_periodic_sync_task ()
(ironic_inspector.pxe_filter.base.NoopFilter
method), 133
get_periodic_sync_task()
(ironic_inspector.pxe_filter.interface. FilterDriver
method), 134
get_physnet ()

init (
init_enforcer () (in

method), 110

id (ironic_inspector.db.RuleAction attribute), 137
id (ironic_inspector.db.RuleCondition attribute),

137
(in module
ironic_inspector.common.rpc), 113

) (in module ironic_inspector.db), 138

module
ironic_inspector.policy), 148

init_filter ()

(ironic_inspector.pxe_filter.base.BaseFilter
method), 132

init_filter ()

(ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter
method), 134

init_filter ()

(ironic_inspector.pxe_filter.interface.FilterDriver

(ironic_inspector.plugins.base_physnet. BasePhysnetHethod), 134

method), 120
get_physnet ()

init_filter ()

(ironic_inspector.pxe_filter.iptables.IptablesFilter

(ironic_inspector.plugins.physnet_cidr_map. PhysnetGiebvdp Ho ok

method), 125
get_pxe_mac () (in module
ironic_inspector.utils), 153

init_host () (ironic_inspector.conductor.manager.ConductorM

method), 115

initialize (ironic_inspector.pxe_filter.base.Events

get_random_topic () (in module attribute), 133
ironic_inspector.main), 141 initialize_wsgi_app () (in module
get_reader_session () (in module ironic_inspector.cmd.wsgi), 107
ironic_inspector.db), 138 initialized (ironic_inspector.pxe_filter.base.States
get_server () (in module attribute), 133
ironic_inspector.common.rpc), 113 InternallLock (class in
get_session () (in module ironic_inspector.common.locking),
ironic_inspector.common.keystone), 112
110 introspect () (in module
get_valid_macs () (in module ironic_inspector.introspect), 138
ironic_inspector.utils), 153 introspection_active () (in module
get_writer_session () (in module ironic_inspector.node_cache), 146
ironic_inspector.db), 138 introspection_data_manager () (in
getProcessingLogger () (in module module ironic_inspector.plugins.base),

ironic_inspector.utils), 152

group_name (ironic_inspector.common.coordinatidm€uordpragdrionData

attribute), 107
GtCondition (class in
ironic_inspector.plugins.rules), 128

H

handle 404 () (in module
ironic_inspector.main), 141
handle_org_specific_tlv ()

119
(class in
ironic_inspector.db), 136

IntrospectionDataNotFound, 151
IntrospectionDataStoreDisabled, 151
IntrospectionRule

(class in
ironic_inspector.rules), 150

invalidate_ cache ()

(ironic_inspector.node_cache.Nodelnfo
method), 142

(ironic_inspector.common.lldp_parsers. LLDRBraicMynitPaseDriverState, 133

164

Index

Ironic Inspector Documentation, Release 10.2.2.dev1

invert (ironic_inspector.db.RuleCondition at-

tribute), 137
IptablesFilter

(class in

ironic_inspector.pxe_filter.iptables),

135

ironic () (ironic_inspector.node_cache.Nodelnfo

property), 142
ironic_inspector
module, 154
ironic_inspector
module, 136

ironic_inspector.

module, 107

ironic_inspector.

module, 106

ironic_inspector.

module, 106

ironic_inspector.

module, 106

ironic_inspector.

api_tools
cmd
cmd.all
cmd.conductor

cmd.dbsync

cmd.migration

ironic_inspector.

module, 117

ironic_inspector.

module, 115

ironic_inspector.

module, 116

ironic_inspector.

module, 116

ironic_inspector.

module, 116

ironic_inspector.

module, 116

ironic_inspector.

module, 116

ironic_inspector.

module, 116

ironic_inspector.

module, 116

ironic_inspector.

module, 117

conf

conf.

conf.

conf.

conf.

conf.

conf.

conf.

conf.

conf

capabilities

coordination

default

discovery

dnsmasq_pxe_filter

iptables

ironic

opts

.pci_devices

module, 106 ironic_inspector.conf.port_physnet
ironic_inspector.cmd.wsgi module, 117

module, 107 ironic_inspector.conf.processing
ironic_inspector.common module, 117

module, 115 ironic_inspector.conf.pxe_filter
ironic_inspector.common.context module, 117

module, 107 ironic_inspector.conf.service_catalog
ironic_inspector.common.coordination module, 117

module, 107 ironic_inspector.conf.swift
ironic_inspector.common.ironic module, 117

module, 108 ironic_inspector.db
ironic_inspector.common.keystone module, 136

module, 110 ironic_inspector.introspect
ironic_inspector.common.lldp_parsers module, 138

module, 110 ironic_inspector.introspection_state
ironic_inspector.common.lldp_tlvs module, 139

module, 112 ironic_inspector.main
ironic_inspector.common.locking module, 140

module, 112 ironic_inspector.node_cache
ironic_inspector.common.rpc module, 141

module, 113 ironic_inspector.plugins
ironic_inspector.common.rpc_service module, 132

module, 113 ironic_inspector.plugins.base
ironic_inspector.common.service_utils module, 117

module, 113 ironic_inspector.plugins.base_physnet
ironic_inspector.common.swift module, 120

module, 114 ironic_inspector.plugins.capabilities
ironic_inspector.conductor module, 120

module, 115 ironic_inspector.plugins.discovery
ironic_inspector.conductor.manager module, 121

module, 115 ironic_inspector.plugins.example
Index 165

Ironic Inspector Documentation, Release 10.2.2.dev1

module, 121

ironic_inspector.

module, 122

ironic_inspector.

module, 122

ironic_inspector.

module, 124

ironic_inspector.

module, 124

ironic_inspector.

module, 124

ironic_inspector.

module, 125

ironic_inspector.

module, 125

ironic_inspector.

module, 126

ironic_inspector.

module, 131

ironic_inspector.

module, 148

ironic_inspector.

module, 149

ironic_inspector.

module, 136

ironic_inspector.

module, 132

ironic_inspector.

module, 134

ironic_inspector.

module, 134

ironic_inspector.

module, 135

ironic_inspector.

module, 150

ironic_inspector.

module, 151

ironic_inspector.

module, 153

ironic_inspector.

module, 153

is_locked () (ironic_inspector.common.locking. BhieloepPts O

method), 112

is_locked () (ironic_inspector.common. locking.lr;tgﬁaﬂ%ﬁ s ()

method), 112

is_locked () (ironic_inspector.common.locking. ToodbeePts ()

J

plugins.extra har d"j%li%_group () (ironic_inspector.common.coordination. Coordin
method), 107
plugins.introspect J'F€n_data
plugins.lldp_basicKEYS (ironic_inspector.plugins.standard.SchedulerHook
attribute), 131
plugins. local_link_l__connection
plugins. pci_device&eave—group ()
(ironic_inspector.common.coordination. Coordinator
plugins.physnet_cidr_map method), 108
LeCondition (class in
plugins.raid_device ironic_inspector.plugins.rules), 128
limit_field () (in module
plugins.rules ironic_inspector.api_tools), 136
list_opts () (in module
plugins.standard arlogic_inspecton conf.capabilities),
policy list_opts () (in module
ironic_inspector.conf.coordination),
process 116
list_opts() (in module
pxe filter ironic_inspector.conf.default), 116
list_opts() (in module
pxe filter.base ironic_inspector.conf.discovery), 116
list_opts () (in module
pxe filter.dnsmasg ironic_inspector.conf.dnsmasq_pxe_filter),

pxe_filter.

pxe_filter.

rules

utils

version

wsgi_service

116
interfaddst—opts () (in module
ironic_inspector.conf.iptables), 116

iptabledist_opts() (in module
ironic_inspector.conf.ironic), 116

list_opts() (in module
ironic_inspector.conf.opts), 116
list_opts() (in module
ironic_inspector.conf.pci_devices),
117
list_opts () (in module
ironic_inspector.conf.port_physnet),
117
(in module
ironic_inspector.conf.processing), 117
(in module

ironic_inspector.conf.pxe_filter), 117
(in module
ironic_inspector.conf.service_catalog),

method), 113
iso_timestamp () (in module 117
ironic_inspector.utils), 153 list_opts() (in module
ironic_inspector.conf.swift), 117
list_policies() (in module
ironic_inspector.policy), 148
166 Index

Ironic Inspector Documentation, Release 10.2.2.dev1

LLDPBasicMgmtParser (class in MatchesCondition (class in
ironic_inspector.common.lldp_parsers), ironic_inspector.plugins.rules), 128
110 MigrationTool (class in
LLDPBasicProcessingHook (class in ironic_inspector.cmd.migration), 106
ironic_inspector.plugins.lldp_basic), 124 missing_entrypoints_callback () (in

LLDPdotlParser (class in
ironic_inspector.common.lldp_parsers),
111

LLDPdot3Parser (class in
ironic_inspector.common.lldp_parsers),
111

LLDPParser (class in
ironic_inspector.common.lldp_parsers),
110

attribute), 108
locked_driver_ event () (in
ironic_inspector.pxe_filter.base), 133
lookup_node () (in module
ironic_inspector.common.ironic), 109
lookup_node_by_bmc_addresses () (in
module ironic_inspector.common.ironic),
109
lookup_node_by_macs () (in
ironic_inspector.common.ironic), 109
LtCondition (class in
ironic_inspector.plugins.rules), 128

module

module

M

main () (in module ironic_inspector.cmd.all), 106

main () (in module
ironic_inspector.cmd.conductor), 106

main () (in module ironic_inspector.cmd.dbsync),
106

main () (in
ironic_inspector.cmd.migration), 106

module

main () (ironic_inspector.cmd.migration.MigrationTool ironic_inspector.

method), 106

manage_boot (ironic_inspector.db.Node at-
tribute), 137

manage_boot ()
(ironic_inspector.node_cache.Nodelnfo
property), 142

mapping_for_enum /() (in module
ironic_inspector.common.lldp_tlvs),
112

mapping_for_switch () (in module
ironic_inspector.common.lldp_tlvs),
112

marker field() (in module

ironic_inspector.api_tools), 136

module
119

model_query ()

(in

ironic_inspector.db), 138

ironic_inspector.
ironic_inspector.
lock_prefix (ironic_inspector.common.coordination. Ceadinatorm spector.
ironic_inspector.

106

ironic_inspector.
ironic_inspector.

106

ironic_inspector.
ironic_inspector.
ironic_inspector.

107

ironic_inspector.

107

ironic_inspector.

108

ironic_inspector.

110

ironic_inspector.

110

ironic_inspector.

112

ironic_inspector.

112

ironic_inspector.

113

ironic_inspector.

113

ironic_inspector.

114

ironic_inspector.
ironic_inspector.

115

ironic_inspector.
ironic_inspector.

115

ironic_inspector.

116

ironic_inspector.plugins.base),

module

ModelBase (class in ironic_inspector.db), 136
module
ironic_inspector,

154
api_tools, 136
cmd, 107
cmd.all, 106

cmd.conductor,

cmd . dbsync, 106
cmd.migration,

cmd.wsgi, 107

common,

common

common.

common.

common

common.

common.

common

common.

common

common.

common

115
.context,

coordination,
ironic,
.keystone,
11dp_parsers,
11dp_tlvs,
.locking,

rpc, 113
.rpc_service,

service_utils,

.swift,

conductor, 115
conductor.manager,

conf, 117
conf.capabilities,

conf.coordination,

Index

167

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.

116

ironic_inspector.

116

ironic_inspector.

116

ironic_inspector.

116

ironic_inspector.

116

ironic_inspector.
ironic_inspector.

117

ironic_inspector.

117

ironic_inspector.

117

ironic_inspector.

117

ironic_inspector.

117

ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

139

ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

117

ironic_inspector.

120

ironic_inspector.

120

ironic_inspector.

121

ironic_inspector.

121

ironic_inspector.

122

ironic_inspector.

122

ironic_inspector.

124

ironic_inspector.

124

ironic_inspector.

124

ironic_inspector.

125

conf.default,
conf.
conf.
conf.iptables,
ironic,

conf.

conf.
conf

opts, 116

conf
conf
conf
conf.
conf.swift, 117

db, 136
introspect, 138

discovery,

.pci_devices,

.port_physnet,

.processing,

.pxe_filter,

ironic_inspector.

125

ironic_inspector.

126

dnsmasq_pxe_fikoanc_inspector.

131

ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

132

134

134

135

ironic_inspector.

153
multiple
attribute), 137

introspection_s$jte,

main, 140
node_cache, 141
plugins, 132

plugins.base,
plugins
plugins.
plugins.
plugins.
plugins
plugins.
plugins.
plugins

plugins

plugins

discovenpde ()

11dp_basic,

.pci_devices,

name
136

ironic_inspector.
ironic_inspector.
ironic_inspector.
ironic_inspector.

ironic_inspector.
service_cataldgonic_inspector.

(ironic_inspector.db.Attribute

plugins.raid_device,
plugins.rules,
plugins.standard,
policy, 148
process, 149
pxe_filter, 136
pxe_filter.base,
pxe_filter.dnsmasq,
pxe_filter.interface,
pxe_filter.iptables,
rules, 150

utils, 151

version, 153
wsgi_service,

(ironic_inspector.db.RuleCondition

attribute),

name (ironic_inspector.db.Option attribute), 137

NeCondition

(class in

ironic_inspector.plugins.rules), 128

.base_ph¥Jen€ondition

(class in

ironic_inspector.plugins.rules), 128

capabillNofwgilableConductor, 151

Node (class in ironic_inspector.db), 136

method), 143

examplenode_not_found_hook_manager ()
ironic_inspector.plugins.base),

module

.extra_hardward,]9

node_uuid

NodeInfo

(ironic_inspector.node_cache.Nodelnfo

(in

(ironic_inspector.db.Attribute
introspectionadiaibate), 136
(class in
ironic_inspector.node_cache), 141

NodeStateInvalidEvent, 151

.local_1lokeStanekateffondition, 152

NoopFilter (class in
ironic_inspector.pxe_filter.base), 133
NoStore (class in

123

.physnet_cidr_nwpic_inspectorplugins.introspection_data),

168

Index

Ironic Inspector Documentation, Release 10.2.2.dev1

NotFound, 108 periodic_clean_up () (in module
NotFoundInCacheError, 152 ironic_inspector.conductor.manager),
o 115
periodic_leader_election () (in mod-
op (ironic_inspector.db.RuleCondition attribute), ule ironic_inspector.conductor.manager),
137 115
op (ironic_inspector.plugins.rules.SimpleCondition physnetCidrMapHook (class in
attribute), 131 ironic_inspector.plugins.physnet_cidr_map),
op () (ironic_inspector.plugins.rules. EqCondition 125
method), 127 ports () (ironic_inspector.node_cache.Nodelnfo
op () (ironic_inspector.plugins.rules.GeCondition method), 143
method), 128 prepare_service () (in module
op () (ironic_inspector.plugins.rules.GtCondition ironic_inspector.common.service_utils),
method), 128 113
op () (ironic_inspector.plugins.rules.LeCondition process (ironic_inspector.introspection_state. Events
method), 128 attribute), 139
op () (ironic_inspector.plugins.rules.LtCondition process () (in module
method), 128 ironic_inspector.process), 149
op () (ironic_inspector.plugins.rules.NeCondition process () (ironic_inspector.utils. ProcessingLoggerAdapter
method), 128 method), 152
Option (class in ironic_inspector.db), 137 processed (ironic_inspector.db.IntrospectionData
OPTIONAL_PARAMS attribute), 136
(ironic_inspector.plugins.base. WithValidatiqhr o ce s s i ng (ironic_inspector.introspection_state.States
attribute), 119 attribute), 139
OPTIONAL_PARAMS processing_hooks_manager () (in module
(ironic_inspector.plugins.rules. ExtendAttributeActionronic_inspector.plugins.base), 119
attribute), 127 processing_logger_prefix () (in module
OPTIONAL_PARAMS ironic_inspector.utils), 153
(ironic_inspector.plugins.rules.SetAttribute ActigBe s s i ngHook (class in
attribute), 129 ironic_inspector.plugins.base), 117
OPTIONAL_PARAMS ProcessinglLoggerAdapter (class in

(ironic_inspector.plugins.rules.SetCapabilityAction jronic_inspector.utils), 152
attribute), 130
options () (ironic_inspector.node_cache.NodelnﬁJ:{

property), 143 RaidDeviceDetection (class in
P ironic_inspector.plugins.raid_device),
125
params (ironic_inspector.db.RuleAction — at- . ;ises coercion exceptions () (in
tribute), 137 module ironic_inspector.api_tools), 136
params (ironic_inspector.db.RuleCondition at- gomqiskErrorHook (class in

tribute), 137 ironic_inspector.plugins.standard),

parse_args () (in module 131

ironic_inspector.conf.opts), 116 reapply (ironic_inspector.introspection_state. Events
parse_t1lv () (ironic_inspector.common.lldp_parsers. LLDI&?ﬂm%e)’ 139

method), 111 reapply () (in module
patch () (ironic_inspector.node_cache.Nodelnfo ironic_inspector.process), 149

method), 143 reapplying (ironic_inspector.introspection_state.States
patch_port () (ironic_inspector.node_cache.Nodelnfo attribute), 139

method), 143 ReCondition (class in
PciDevicesHook (class n ironic_inspector.plugins.rules), 129
ironic_inspector.plugins.pci_devices), record_node () (in module

124

Index 169

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.node_cache), 146
register_auth_opts () (in
ironic_inspector.common.keystone),
110
register_opts () (in module
ironic_inspector.conf.capabilities),
116
register_opts () (in module
ironic_inspector.conf.coordination),
116
register_opts () (in
ironic_inspector.conf.default), 116
register_opts () (in module
ironic_inspector.conf.discovery), 116

module

module

register_opts () (in module
ironic_inspector.conf.dnsmasq_pxe_filter),
116

register_opts () (in module

ironic_inspector.conf.iptables), 116

register_opts () (in module
ironic_inspector.conf.ironic), 116
register_opts () (in module

ironic_inspector.conf.pci_devices),
117
register_opts () (in module
ironic_inspector.conf.port_physnet),
117
register_opts () (in
ironic_inspector.conf.processing), 117
register_opts () (in module
ironic_inspector.conf.pxe_filter), 117
register_opts () (in module
ironic_inspector.conf.service_catalog),
117
register_opts () (in
ironic_inspector.conf.swift), 117

module

module

ironic_inspector.plugins.rules), 129

replace_field()
(ironic_inspector.node_cache.Nodelnfo
method), 143

request_field() (in module
ironic_inspector.api_tools), 136
RequestContext (class in
ironic_inspector.common.context),
107

REQUIRED_ PARAMS
(ironic_inspector.plugins.base.RuleConditionPlugin
attribute), 119

REQUIRED_PARAMS
(ironic_inspector.plugins.base. WithValidation
attribute), 119

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.AddTraitAction
attribute), 126

REQUIRED_PARAMS
(ironic_inspector.plugins.rules. EmptyCondition
attribute), 126

REQUIRED_PARAMS
(ironic_inspector.plugins.rules. ExtendAttributeAction
attribute), 127

REQUIRED_PARAMS
(ironic_inspector.plugins.rules. FailAction
attribute), 127

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.RemoveTraitAction
attribute), 129

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.SetAttributeAction
attribute), 129

REQUIRED_ PARAMS
(ironic_inspector.plugins.rules.SetCapabilityAction
attribute), 130

release () (ironic_inspector.common.locking. Baseloskt (ironic_inspector.pxe_filter.base. Events at-

method), 112

release () (ironic_inspector.common.locking.InternaHarck)

method), 112

tribute), 133
(in module
ironic_inspector.plugins.base), 119

release () (ironic_inspector.common.locking. Toozteeket () (ironic_inspector.pxe_filter.base.BaseFilter

method), 113
release_lock () (in module
ironic_inspector.node_cache), 147
release_lock ()
(ironic_inspector.node_cache.Nodelnfo
method), 143
remove_trait ()
(ironic_inspector.node_cache.Nodelnfo
method), 143
RemoveTraitAction

(class in

method), 132

reset () (ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter
method), 134

reset () (ironic_inspector.pxe_filter.iptables.IptablesFilter
method), 135

reset () (ironic_inspector.wsgi_service. WSGIService
method), 153

reset_ironic_session () (in module

ironic_inspector.common.ironic), 109

reset_swift_session|() (in module

170

Index

Ironic Inspector Documentation, Release 10.2.2.dev1

ironic_inspector.common.swift), 114
RootDiskSelectionHook
ironic_inspector.plugins.standard),
131
RPC_API_VERSION

(class in

set_value () (ironic_inspector.common.lldp_parsers.LLDPPar:

method), 111

SetAttributeAction (class in
ironic_inspector.plugins.rules), 129
SetCapabilityAction (class in

(ironic_inspector.conductor.manager. ConductorMandigaric_inspector.plugins.rules), 130

attribute), 115

RPCService (class in
ironic_inspector.common.rpc_service),
113

Rule (class in ironic_inspector.db), 137
rule (ironic_inspector.db.RuleAction attribute),
137

rule (ironic_inspector.db.RuleCondition at-
tribute), 138
rule_actions_manager () (in module
ironic_inspector.plugins.base), 120
rule_conditions_manager () (in module
ironic_inspector.plugins.base), 120
rule_repr () (in module

ironic_inspector.main), 141
RuleAction (class in ironic_inspector.db), 137
RuleActionPlugin (class in

ironic_inspector.plugins.base), 118
RuleCondition (class in ironic_inspector.db),

137
RuleConditionPlugin (class in
ironic_inspector.plugins.base), 118

run_elect_coordinator ()

(ironic_inspector.common.coordination. Coddintutos

method), 108
S

SimpleCondition (class in
ironic_inspector.plugins.rules), 130

start (ironic_inspector.introspection_state. Events
attribute), 139

start () (ironic_inspector.common.coordination.Coordinator
method), 108

start () (ironic_inspector.common.rpc_service. RPCService
method), 113

start () (ironic_inspector.wsgi_service. WSGIService
method), 153

start_coordinator () (in module
ironic_inspector.main), 141
start_introspection () (in module

ironic_inspector.node_cache), 147

started_at (ironic_inspector.db.Node
tribute), 137

starting (ironic_inspector.introspection_state.States
attribute), 139

state (ironic_inspector.db.Node attribute), 137

state () (ironic_inspector.node_cache.Nodelnfo
property), 144

state () (ironic_inspector.pxe_filter.base.BaseFilter
property), 132

at-

(class in
ironic_inspector.introspection_state),
139
States (class in

save () (ironic_inspector.plugins.introspection_data.BaseStaregéBdakpedror.pxe_filter.base), 133

method), 123

stop () (ironic_inspector.common.coordination. Coordinator

save () (ironic_inspector.plugins.introspection_data. Databasedtiood), 108

method), 123

stop () (ironic_inspector.common.rpc_service. RPCService

save () (ironic_inspector.plugins.introspection_data.NoStoranethod), 113

stop () (ironic_inspector.wsgi_service. WSGIService

store_introspection_data () (in module
ironic_inspector.common.swift), 114
store_introspection_data () (in module

method), 123

save () (ironic_inspector.plugins.introspection_data.SwiftStanethod), 153
method), 123

SchedulerHook (class in
ironic_inspector.plugins.standard),
131

scope (ironic_inspector.db.Rule attribute), 137

set_config_defaults () (in
ironic_inspector.conf.opts), 116

set_cors_middleware_defaults () (in
module ironic_inspector.conf.opts), 116

module

set_option () (ironic_inspector.node_cache.Nodelnfo

method), 144

ironic_inspector.node_cache), 147
store_introspection_data () (in module
ironic_inspector.process), 149

SwiftAPI (class in
ironic_inspector.common.swift), 114

SwiftStore (class in
ironic_inspector.plugins.introspection_data),

123

Index

171

Ironic Inspector Documentation, Release 10.2.2.dev1

sync (ironic_inspector.pxe_filter.base.Events at- Vv

tribute), 133 validate () (ironic_inspector.plugins.base.WithValidation
sync () (ironic_inspector.pxe_filter.base.BaseFilter method), 119

method), 133 validate () (ironic_inspector.plugins.rules.NetCondition
sync () (ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter yethod), 129

method), 134 validate () (ironic_inspector.plugins.rules.ReCondition
sync () (ironic_inspectorpxe_filter.interface.FilterDriver — method), 129

method), 134 validate () (ironic_inspector.plugins.rules.SetAttributeAction
sync () (ironic_inspector.pxe_filteriptables.IptablesFilter yethod), 130

method), 135 validate_processing_hooks () (in mod-
sync_with_ironic() (in module ule ironic_inspector.plugins.base), 120

ironic_inspector.conductor.manager), ValidateInterfacesHook (class in

115 ironic_inspector.plugins.standard),
T 131

o value (ironic_inspector.db.Attribute attribute),
target (ironic_inspector.conductor.manager. ConductorManﬁlg%r
attribute), 115 value (ironic_inspector.db.Option attribute), 137

tea r_do.wn_.f l lter()) version_id (ironic_inspector.db.Node at-
(ironic_inspector.pxe_filter.base.BaseFilter tribute), 137
method), 133 version_id () (ironic_inspector.node_cache.Nodelnfo
tear_down_filter ()

LT . . . property), 144
(ironic_inspector.pxe _ﬁlter.mteiface.leterDX;;levgrS ion. root () (in module
method), 135 ironic_inspector.main), 141
timeout (ironic_inspector.introspection_state. Events
attribute), 139 W

to_pol ey _va lues () wait (ironic_inspector.introspection_state. Events
(ironic_inspector.common.context.RequestContext ,,.ip. e). 139

method), 107 wait () (ironic_inspector.wsgi_service. WSGIService
ToozLock (class in method), 153
ironic_inspector.common.locking),

. waiting (ironic_inspector.introspection_state.States

attribute), 139

triggers_fsm_error_transition () (in with_revision () (in module
module ironic_inspector.node_cache), ironic_inspector.cmd.dbsync), 106
147 WithValidation (class in
§] ironic_inspector.plugins.base), 119
o . WSGIService (class in
uninitialized

. ironic_inspector.wsgi_service), 153
(ironic_inspector.pxe_filter.base.States =nsp 8l)

attribute), 133
update_capabilities ()
(ironic_inspector.node_cache.Nodelnfo
method), 144
update_properties ()
(ironic_inspector.node_cache.Nodelnfo

method), 144
uuid (ironic_inspector.db.Attribute attribute),
136

uuid (ironic_inspector.db.IntrospectionData at-
tribute), 136

uuid (ironic_inspector.db.Node attribute), 137

uuid (ironic_inspector.db.Option attribute), 137

uuid (ironic_inspector.db.Rule attribute), 137

172 Index

	Introduction
	Release Notes
	Using Ironic Inspector
	Install Guide
	Configuration Guide
	User Guide
	Administrator Guide

	Contributor Docs
	How To Contribute

	Indices and tables
	Python Module Index
	Index

