
DevStack Docs

OpenStack DevStack Team

Mar 05, 2024

CONTENTS

1 Quick Start 3
1.1 Install Linux . 3
1.2 Add Stack User (optional) . 3
1.3 Download DevStack . 3
1.4 Create a local.conf . 4
1.5 Start the install . 4
1.6 Profit! . 4
1.7 Going further . 4

2 Contents 7
2.1 Configuration . 7
2.2 System-wide debugging . 19
2.3 Developing with Devstack . 20
2.4 FAQ . 21
2.5 Guides . 26
2.6 Contributing to DevStack . 61
2.7 DevStack Networking . 66
2.8 Overview . 68
2.9 DevStack Plugin Registry . 69
2.10 Plugins . 73
2.11 Using Systemd in DevStack . 79
2.12 Migrating Zuul V2 CI jobs to V3 . 83
2.13 Zuul CI Jobs . 87
2.14 Zuul CI Roles . 89

Index 95

i

ii

DevStack Docs

DevStack is a series of extensible scripts used to quickly bring up a complete OpenStack environment
based on the latest versions of everything from git master. It is used interactively as a development
environment and as the basis for much of the OpenStack projects functional testing.

The source is available at https://opendev.org/openstack/devstack.

Warning: DevStack will make substantial changes to your system during installation. Only run
DevStack on servers or virtual machines that are dedicated to this purpose.

CONTENTS 1

https://opendev.org/openstack/devstack

DevStack Docs

2 CONTENTS

CHAPTER

ONE

QUICK START

1.1 Install Linux

Start with a clean and minimal install of a Linux system. DevStack attempts to support the two latest
LTS releases of Ubuntu, the latest/current Fedora version, CentOS/RHEL 8 and OpenSUSE.

If you do not have a preference, Ubuntu 18.04 (Bionic Beaver) is the most tested, and will probably go
the smoothest.

1.2 Add Stack User (optional)

DevStack should be run as a non-root user with sudo enabled (standard logins to cloud images such as
ubuntu or cloud-user are usually fine).

If you are not using a cloud image, you can create a separate stack user to run DevStack with

$ sudo useradd -s /bin/bash -d /opt/stack -m stack

Since this user will be making many changes to your system, it should have sudo privileges:

$ echo "stack ALL=(ALL) NOPASSWD: ALL" | sudo tee /etc/sudoers.d/stack
$ sudo su - stack

1.3 Download DevStack

$ git clone https://opendev.org/openstack/devstack
$ cd devstack

The devstack repo contains a script that installs OpenStack and templates for configuration files.

3

DevStack Docs

1.4 Create a local.conf

Create a local.conf file with four passwords preset at the root of the devstack git repo.

[[local|localrc]]
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD

This is the minimum required config to get started with DevStack.

Note: There is a sample local.conf file under the samples directory in the devstack repository.

1.5 Start the install

$./stack.sh

This will take a 15 - 20 minutes, largely depending on the speed of your internet connection. Many git
trees and packages will be installed during this process.

1.6 Profit!

You now have a working DevStack! Congrats!

Your devstack will have installed keystone, glance, nova, placement, cinder, neutron,
and horizon. Floating IPs will be available, guests have access to the external world.

You can access horizon to experience the web interface to OpenStack, and manage vms, networks,
volumes, and images from there.

You can source openrc in your shell, and then use the openstack command line tool to manage
your devstack.

You can cd /opt/stack/tempest and run tempest tests that have been configured to work with
your devstack.

You can make code changes to OpenStack and validate them.

1.7 Going further

Learn more about our configuration system to customize devstack for your needs. Including making
adjustments to the default networking.

Read guides for specific setups people have (note: guides are point in time contributions, and may not
always be kept up to date to the latest devstack).

Enable devstack plugins to support additional services, features, and configuration not present in base
devstack.

4 Chapter 1. Quick Start

DevStack Docs

Use devstack in your CI with Ansible roles and Jobs for Zuul V3. Migrate your devstack Zuul V2 jobs
to Zuul V3 with this full migration how-to.

Get the big picture of what we are trying to do with devstack, and help us by contributing to the project.

If you are a new contributor to devstack please refer: So You Want to Contribute

1.7.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Devstack.

Communication

• IRC channel #openstack-qa at FreeNode

• Mailing list (prefix subjects with [qa][devstack] for faster responses) http://lists.openstack.
org/cgi-bin/mailman/listinfo/openstack-discuss

Contacting the Core Team

Please refer to the Devstack Core Team contacts.

New Feature Planning

If you want to propose a new feature please read Feature Proposal Process Devstack features are tracked
on Launchpad BP.

Task Tracking

We track our tasks in Launchpad.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad. More info
about Launchpad usage can be found on OpenStack docs page

1.7. Going further 5

https://docs.openstack.org/contributors/
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://review.opendev.org/#/admin/groups/50,members
https://wiki.openstack.org/wiki/QA#Feature_Proposal_.26_Design_discussions
https://blueprints.launchpad.net/devstack
https://bugs.launchpad.net/devstack
https://bugs.launchpad.net/devstack/+filebug
https://docs.openstack.org/contributors/common/task-tracking.html#launchpad

DevStack Docs

Getting Your Patch Merged

All changes proposed to the Devstack require two Code-Review +2 votes from Devstack core re-
viewers before one of the core reviewers can approve the patch by giving Workflow +1 vote. One
exception is for patches to unblock the gate which can be approved by single core reviewers.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

The Release Process for QA is documented in QA Release Process.

6 Chapter 1. Quick Start

https://docs.openstack.org/project-team-guide/ptl.html
https://wiki.openstack.org/wiki/QA/releases

CHAPTER

TWO

CONTENTS

2.1 Configuration

• local.conf

• openrc

• Minimal Configuration

• Historical Notes

• Configuration Notes

2.1.1 local.conf

DevStack configuration is modified via the file local.conf. It is a modified INI format file that
introduces a meta-section header to carry additional information regarding the configuration files to be
changed.

A sample is provided in devstack/samples

The new header is similar to a normal INI section header but with double brackets ([[...]]) and
two internal fields separated by a pipe (|). Note that there are no spaces between the double brackets
and the internal fields. Likewise, there are no spaces between the pipe and the internal fields:

'[[' <phase> '|' <config-file-name> ']]'

where <phase> is one of a set of phase names defined by stack.sh and <config-file-name>
is the configuration filename. The filename is evaled in the stack.sh context so all environment
variables are available and may be used. Using the project config file variables in the header is strongly
suggested (see the NOVA_CONF example below). If the path of the config file does not exist it is skipped.

The defined phases are:

• local - extracts localrc from local.conf before stackrc is sourced

• post-config - runs after the layer 2 services are configured and before they are started

• extra - runs after services are started and before any files in extra.d are executed

• post-extra - runs after files in extra.d are executed

• test-config - runs after tempest (and plugins) are configured

7

DevStack Docs

The file is processed strictly in sequence; meta-sections may be specified more than once but if any
settings are duplicated the last to appear in the file will be used.

[[post-config|$NOVA_CONF]]
[DEFAULT]
use_syslog = True

[osapi_v3]
enabled = False

A specific meta-section local|localrc is used to provide a default localrc file (actually .
localrc.auto). This allows all custom settings for DevStack to be contained in a single file. If
localrc exists it will be used instead to preserve backward-compatibility.

[[local|localrc]]
IPV4_ADDRS_SAFE_TO_USE=10.254.1.0/24
ADMIN_PASSWORD=speciale
LOGFILE=$DEST/logs/stack.sh.log

Note that Q_PLUGIN_CONF_FILE is unique in that it is assumed to NOT start with a / (slash) char-
acter. A slash will need to be added:

[[post-config|/$Q_PLUGIN_CONF_FILE]]

Also note that the localrc section is sourced as a shell script fragment and MUST conform to the
shell requirements, specifically no whitespace around = (equals).

2.1.2 openrc

openrc configures login credentials suitable for use with the OpenStack command-line tools. openrc
sources stackrc at the beginning (which in turn sources the localrc section of local.conf) in
order to pick up HOST_IP and/or SERVICE_HOST to use in the endpoints. The values shown below
are the default values.

OS_PROJECT_NAME (OS_TENANT_NAME) Keystone has standardized the term project as the
entity that owns resources. In some places references still exist to the previous term tenant for this
use. Also, project_name is preferred to project_id. OS_TENANT_NAME remains supported for
compatibility with older tools.

OS_PROJECT_NAME=demo

OS_USERNAME In addition to the owning entity (project), OpenStack calls the entity performing the
action user.

OS_USERNAME=demo

OS_PASSWORD Keystones default authentication requires a password be provided. The usual cau-
tions about putting passwords in environment variables apply, for most DevStack uses this may
be an acceptable tradeoff.

OS_PASSWORD=secret

HOST_IP, SERVICE_HOST Set API endpoint host using HOST_IP. SERVICE_HOST may also be
used to specify the endpoint, which is convenient for some local.conf configurations. Typi-
cally, HOST_IP is set in the localrc section.

8 Chapter 2. Contents

DevStack Docs

HOST_IP=127.0.0.1
SERVICE_HOST=$HOST_IP

OS_AUTH_URL Authenticating against an OpenStack cloud using Keystone returns a Token and Ser-
vice Catalog. The catalog contains the endpoints for all services the user/tenant has access to -
including Nova, Glance, Keystone and Swift.

OS_AUTH_URL=http://$SERVICE_HOST:5000/v3.0

KEYSTONECLIENT_DEBUG, NOVACLIENT_DEBUG Set command-line client log level to
DEBUG. These are commented out by default.

export KEYSTONECLIENT_DEBUG=1
export NOVACLIENT_DEBUG=1

2.1.3 Minimal Configuration

While stack.sh is happy to run without a localrc section in local.conf, devlife is better when
there are a few minimal variables set. This is an example of a minimal configuration that touches the
values that most often need to be set.

• no logging

• pre-set the passwords to prevent interactive prompts

• move network ranges away from the local network (IPV4_ADDRS_SAFE_TO_USE and
FLOATING_RANGE, commented out below)

• set the host IP if detection is unreliable (HOST_IP, commented out below)

[[local|localrc]]
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
#IPV4_ADDRS_SAFE_TO_USE=172.31.1.0/24
#FLOATING_RANGE=192.168.20.0/25
#HOST_IP=10.3.4.5

If the *_PASSWORD variables are not set here you will be prompted to enter values for them by stack.
sh.

The network ranges must not overlap with any networks in use on the host. Overlap is not uncommon as
RFC-1918 private ranges are commonly used for both the local networking and Novas fixed and floating
ranges.

HOST_IP is normally detected on the first run of stack.sh but often is indeterminate on later runs
due to the IP being moved from an Ethernet interface to a bridge on the host. Setting it here also makes
it available for openrc to set OS_AUTH_URL. HOST_IP is not set by default.

HOST_IPV6 is normally detected on the first run of stack.sh but will not be set if there is no IPv6
address on the default Ethernet interface. Setting it here also makes it available for openrc to set
OS_AUTH_URL. HOST_IPV6 is not set by default.

For architecture specific configurations which differ from the x86 default here, see arch-configuration.

2.1. Configuration 9

DevStack Docs

2.1.4 Historical Notes

Historically DevStack obtained all local configuration and customizations from a localrc file. In
Oct 2013 the local.conf configuration method was introduced (in review 46768) to simplify this
process.

2.1.5 Configuration Notes

• Service Repos

• Installation Directory

• Logging

– Enable Logging

– Logging the Service Output

– Example Logging Configuration

• Database Backend

• RPC Backend

• Apache Frontend

• Libraries from Git

• Virtual Environments

• A clean install every time

• Upgrade packages installed by pip

• Guest Images

• Instance Type

• IP Version

– Service Version

– Multi-node setup

• Projects

– Neutron

– Swift

* Swift S3

– Tempest

– Cinder

– Keystone

* Multi-Region Setup

* Disabling Identity API v2

10 Chapter 2. Contents

https://review.opendev.org/#/c/46768/

DevStack Docs

• Architectures

– KVM on s390x (IBM z Systems)

Service Repos

The Git repositories used to check out the source for each service are controlled by a pair of variables
set for each service. *_REPO points to the repository and *_BRANCH selects which branch to check
out. These may be overridden in local.conf to pull source from a different repo for testing, such as
a Gerrit branch proposal. GIT_BASE points to the primary repository server.

NOVA_REPO=$GIT_BASE/openstack/nova.git
NOVA_BRANCH=master

To pull a branch directly from Gerrit, get the repo and branch from the Gerrit review page:

git fetch https://review.opendev.org/openstack/nova \
refs/changes/50/5050/1 && git checkout FETCH_HEAD

The repo is the stanza following fetch and the branch is the stanza following that:

NOVA_REPO=https://review.opendev.org/openstack/nova
NOVA_BRANCH=refs/changes/50/5050/1

Installation Directory

The DevStack install directory is set by the DEST variable. By default it is /opt/stack.

By setting it early in the localrc section you can reference it in later variables. It can be useful to set
it even though it is not changed from the default value.

DEST=/opt/stack

Logging

Enable Logging

By default stack.sh output is only written to the console where it runs. It can be sent to a file in
addition to the console by setting LOGFILE to the fully-qualified name of the destination log file. A
timestamp will be appended to the given filename for each run of stack.sh.

LOGFILE=$DEST/logs/stack.sh.log

Old log files are cleaned automatically if LOGDAYS is set to the number of days of old log files to keep.

LOGDAYS=1

Some coloring is used during the DevStack runs to make it easier to see what is going on. This can be
disabled with:

2.1. Configuration 11

DevStack Docs

LOG_COLOR=False

When using the logfile, by default logs are sent to the console and the file. You can set VERBOSE
to false if you only wish the logs to be sent to the file (this may avoid having double-logging in
some cases where you are capturing the script output and the log files). If VERBOSE is true you can
additionally set VERBOSE_NO_TIMESTAMP to avoid timestamps being added to each output line sent
to the console. This can be useful in some situations where the console output is being captured by a
runner or framework (e.g. Ansible) that adds its own timestamps. Note that the log lines sent to the
LOGFILE will still be prefixed with a timestamp.

Logging the Service Output

By default, services run under systemd and are natively logging to the systemd journal.

To query the logs use the journalctl command, such as:

sudo journalctl --unit devstack@*

More examples can be found in Querying Logs.

Example Logging Configuration

For example, non-interactive installs probably wish to save output to a file, keep service logs and disable
color in the stored files.

[[local|localrc]]
DEST=/opt/stack/
LOGFILE=$LOGDIR/stack.sh.log
LOG_COLOR=False

Database Backend

Multiple database backends are available. The available databases are defined in the lib/databases direc-
tory. mysql is the default database, choose a different one by putting the following in the localrc
section:

disable_service mysql
enable_service postgresql

mysql is the default database.

12 Chapter 2. Contents

DevStack Docs

RPC Backend

Support for a RabbitMQ RPC backend is included. Additional RPC backends may be available via
external plugins. Enabling or disabling RabbitMQ is handled via the usual service functions and
ENABLED_SERVICES.

Example disabling RabbitMQ in local.conf:

disable_service rabbit

Apache Frontend

The Apache web server can be enabled for wsgi services that support being deployed under HTTPD
+ mod_wsgi. By default, services that recommend running under HTTPD + mod_wsgi are deployed
under Apache. To use an alternative deployment strategy (e.g. eventlet) for services that support an
alternative to HTTPD + mod_wsgi set ENABLE_HTTPD_MOD_WSGI_SERVICES to False in your
local.conf.

Each service that can be run under HTTPD + mod_wsgi also has an override toggle available that can
be set in your local.conf.

Keystone is run under Apache with mod_wsgi by default.

Example (Keystone):

KEYSTONE_USE_MOD_WSGI="True"

Example (Nova):

NOVA_USE_MOD_WSGI="True"

Example (Swift):

SWIFT_USE_MOD_WSGI="True"

Example (Heat):

HEAT_USE_MOD_WSGI="True"

Example (Cinder):

CINDER_USE_MOD_WSGI="True"

Libraries from Git

By default devstack installs OpenStack server components from git, however it installs client libraries
from released versions on pypi. This is appropriate if you are working on server development, but if you
want to see how an unreleased version of the client affects the system you can have devstack install it
from upstream, or from local git trees by specifying it in LIBS_FROM_GIT. Multiple libraries can be
specified as a comma separated list.

LIBS_FROM_GIT=python-keystoneclient,oslo.config

Setting the variable to ALL will activate the download for all libraries.

2.1. Configuration 13

DevStack Docs

Virtual Environments

Enable the use of Python virtual environments by setting USE_VENV to True. This will enable the
creation of venvs for each project that is defined in the PROJECT_VENV array.

Each entry in the PROJECT_VENV array contains the directory name of a venv to be used for the project.
The array index is the project name. Multiple projects can use the same venv if desired.

PROJECT_VENV["glance"]=${GLANCE_DIR}.venv

ADDITIONAL_VENV_PACKAGES is a comma-separated list of additional packages to be installed
into each venv. Often projects will not have certain packages listed in its requirements.txt file
because they are optional requirements, i.e. only needed for certain configurations. By default, the
enabled databases will have their Python bindings added when they are enabled.

ADDITIONAL_VENV_PACKAGES="python-foo, python-bar"

A clean install every time

By default stack.sh only clones the project repos if they do not exist in $DEST. stack.sh will
freshen each repo on each run if RECLONE is set to yes. This avoids having to manually remove repos
in order to get the current branch from $GIT_BASE.

RECLONE=yes

Upgrade packages installed by pip

By default stack.sh only installs Python packages if no version is currently installed or the current
version does not match a specified requirement. If PIP_UPGRADE is set to True then existing required
Python packages will be upgraded to the most recent version that matches requirements.

PIP_UPGRADE=True

Guest Images

Images provided in URLS via the comma-separated IMAGE_URLS variable will be downloaded and
uploaded to glance by DevStack.

Default guest-images are predefined for each type of hypervisor and their testing-requirements in
stack.sh. Setting DOWNLOAD_DEFAULT_IMAGES=False will prevent DevStack downloading
these default images; in that case, you will want to populate IMAGE_URLS with sufficient images to
satisfy testing-requirements.

DOWNLOAD_DEFAULT_IMAGES=False
IMAGE_URLS="http://foo.bar.com/image.qcow,"
IMAGE_URLS+="http://foo.bar.com/image2.qcow"

14 Chapter 2. Contents

DevStack Docs

Instance Type

DEFAULT_INSTANCE_TYPE can be used to configure the default instance type. When this parameter
is not specified, Devstack creates additional micro & nano flavors for really small instances to run
Tempest tests.

For guests with larger memory requirements, DEFAULT_INSTANCE_TYPE should be specified in the
configuration file so Tempest selects the default flavors instead.

KVM on Power with QEMU 2.4 requires 512 MB to load the firmware - QEMU 2.4 - PowerPC so users
running instances on ppc64/ppc64le can choose one of the default created flavors as follows:

DEFAULT_INSTANCE_TYPE=m1.tiny

IP Version

IP_VERSION can be used to configure Neutron to create either an IPv4, IPv6, or dual-stack self-service
project data-network by with either IP_VERSION=4, IP_VERSION=6, or IP_VERSION=4+6 re-
spectively.

IP_VERSION=4+6

The following optional variables can be used to alter the default IPv6 behavior:

IPV6_RA_MODE=slaac
IPV6_ADDRESS_MODE=slaac
IPV6_ADDRS_SAFE_TO_USE=fd$IPV6_GLOBAL_ID::/56
IPV6_PRIVATE_NETWORK_GATEWAY=fd$IPV6_GLOBAL_ID::1

Note: IPV6_ADDRS_SAFE_TO_USE and IPV6_PRIVATE_NETWORK_GATEWAY can be config-
ured with any valid IPv6 prefix. The default values make use of an auto-generated IPV6_GLOBAL_ID
to comply with RFC4193.

Service Version

DevStack can enable service operation over either IPv4 or IPv6 by setting SERVICE_IP_VERSION to
either SERVICE_IP_VERSION=4 or SERVICE_IP_VERSION=6 respectively.

When set to 4 devstack services will open listen sockets on 0.0.0.0 and service endpoints will be
registered using HOST_IP as the address.

When set to 6 devstack services will open listen sockets on :: and service endpoints will be registered
using HOST_IPV6 as the address.

The default value for this setting is 4. Dual-mode support, for example 4+6 is not currently supported.
HOST_IPV6 can optionally be used to alter the default IPv6 address:

HOST_IPV6=${some_local_ipv6_address}

2.1. Configuration 15

https://wiki.qemu.org/ChangeLog/2.4

DevStack Docs

Multi-node setup

See the multi-node lab guide

Projects

Neutron

See the neutron configuration guide for details on configuration of Neutron

Swift

Swift is disabled by default. When enabled, it is configured with only one replica to avoid being
IO/memory intensive on a small VM.

If you would like to enable Swift you can add this to your localrc section:

enable_service s-proxy s-object s-container s-account

If you want a minimal Swift install with only Swift and Keystone you can have this instead in your
localrc section:

disable_all_services
enable_service key mysql s-proxy s-object s-container s-account

If you only want to do some testing of a real normal swift cluster with multiple replicas you can do so
by customizing the variable SWIFT_REPLICAS in your localrc section (usually to 3).

You can manually override the ring building to use specific storage nodes, for example when you
want to test a multinode environment. In this case you have to set a space-separated list of IPs in
SWIFT_STORAGE_IPS in your localrc section that should be used as Swift storage nodes. Please
note that this does not create a multinode setup, it is only used when adding nodes to the Swift rings.

SWIFT_STORAGE_IPS="192.168.1.10 192.168.1.11 192.168.1.12"

Swift S3

If you are enabling s3api in ENABLED_SERVICES DevStack will install the s3api middleware em-
ulation. Swift will be configured to act as a S3 endpoint for Keystone so effectively replacing the
nova-objectstore.

Only Swift proxy server is launched in the systemd system all other services are started in background
and managed by swift-init tool.

16 Chapter 2. Contents

DevStack Docs

Tempest

If tempest has been successfully configured, a basic set of smoke tests can be run as follows:

$ cd /opt/stack/tempest
$ tox -efull tempest.scenario.test_network_basic_ops

By default tempest is downloaded and the config file is generated, but the tempest package is not installed
in the systems global site-packages (the package install includes installing dependences). So tempest
wont run outside of tox. If you would like to install it add the following to your localrc section:

INSTALL_TEMPEST=True

Cinder

The logical volume group used to hold the Cinder-managed volumes is set by VOLUME_GROUP_NAME,
the logical volume name prefix is set with VOLUME_NAME_PREFIX and the size of the volume backing
file is set with VOLUME_BACKING_FILE_SIZE.

VOLUME_GROUP_NAME="stack-volumes"
VOLUME_NAME_PREFIX="volume-"
VOLUME_BACKING_FILE_SIZE=24G

Keystone

Multi-Region Setup

We want to setup two devstack (RegionOne and RegionTwo) with shared keystone (same users and
services) and horizon. Keystone and Horizon will be located in RegionOne. Full spec is available at:
https://wiki.openstack.org/wiki/Heat/Blueprints/Multi_Region_Support_for_Heat.

In RegionOne:

REGION_NAME=RegionOne

In RegionTwo:

disable_service horizon
KEYSTONE_SERVICE_HOST=<KEYSTONE_IP_ADDRESS_FROM_REGION_ONE>
KEYSTONE_AUTH_HOST=<KEYSTONE_IP_ADDRESS_FROM_REGION_ONE>
REGION_NAME=RegionTwo
KEYSTONE_REGION_NAME=RegionOne

In the devstack for RegionOne, we set REGION_NAME as RegionOne, so region of the services
started in this devstack are registered as RegionOne. In devstack for RegionTwo, similarly, we set
REGION_NAME as RegionTwo since we want services started in this devstack to be registered in Re-
gionTwo. But Keystone service is started and registered in RegionOne, not RegionTwo, so we use KEY-
STONE_REGION_NAME to specify the region of Keystone service. KEYSTONE_REGION_NAME
has a default value the same as REGION_NAME thus we omit it in the configuration of RegionOne.

2.1. Configuration 17

https://wiki.openstack.org/wiki/Heat/Blueprints/Multi_Region_Support_for_Heat

DevStack Docs

Disabling Identity API v2

The Identity API v2 is deprecated as of Mitaka and it is recommended to only use the v3 API. It is
possible to setup keystone without v2 API, by doing:

ENABLE_IDENTITY_V2=False

Architectures

The upstream CI runs exclusively on nodes with x86 architectures, but OpenStack supports even more
architectures. Some of them need to configure Devstack in a certain way.

KVM on s390x (IBM z Systems)

KVM on s390x (IBM z Systems) is supported since the Kilo release. For an all-in-one setup, these
minimal settings in the local.conf file are needed:

[[local|localrc]]
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD

DOWNLOAD_DEFAULT_IMAGES=False
IMAGE_URLS="https://cloud-images.ubuntu.com/xenial/current/xenial-server-
↪→cloudimg-s390x-disk1.img"

Provide a custom etcd3 binary download URL and ints sha256.
The binary must be located under '/<etcd version>/etcd-<etcd-version>-
↪→linux-s390x.tar.gz'
on this URL.
Build instructions for etcd3: https://github.com/linux-on-ibm-z/docs/
↪→wiki/Building-etcd
ETCD_DOWNLOAD_URL=<your-etcd-download-url>
ETCD_SHA256=<your-etcd3-sha256>

enable_service n-sproxy
disable_service n-novnc

[[post-config|$NOVA_CONF]]

[serial_console]
base_url=ws://$HOST_IP:6083/ # optional

Reasoning:

• The default image of Devstack is x86 only, so we deactivate the download with
DOWNLOAD_DEFAULT_IMAGES. The referenced guest image in the code above
(IMAGE_URLS) serves as an example. The list of possible s390x guest images is not
limited to that.

• This platform doesnt support a graphical console like VNC or SPICE. The technical reason is the
missing framebuffer on the platform. This means we rely on the substitute feature serial console
which needs the proxy service n-sproxy. We also disable VNCs proxy n-novnc for that

18 Chapter 2. Contents

DevStack Docs

reason . The configuration in the post-config section is only needed if you want to use the
serial console outside of the all-in-one setup.

• A link to an etcd3 binary and its sha256 needs to be provided as the binary for s390x is not
hosted on github like it is for other architectures. For more details see https://bugs.launchpad.net/
devstack/+bug/1693192. Etcd3 can easily be built along https://github.com/linux-on-ibm-z/docs/
wiki/Building-etcd.

Note: To run Tempest against this Devstack all-in-one, youll need to use a guest image which is smaller
than 1GB when uncompressed. The example image from above is bigger than that!

2.2 System-wide debugging

A lot can go wrong during a devstack run, and there are a few inbuilt tools to help you.

2.2.1 dstat

Enable the dstat service to produce performance logs during the devstack run. These will be logged
to the journal and also as a CSV file.

2.2.2 memory_tracker

The memory_tracker service periodically monitors RAM usage and provides consumption output
when available memory is seen to be falling (i.e. processes are consuming memory). It also provides
output showing locked (unswappable) memory.

2.2.3 tcpdump

Enable the tcpdump service to run a background tcpdump. You must set the TCPDUMP_ARGS variable
to something suitable (there is no default). For example, to trace iSCSI communication during a job in
the OpenStack gate and copy the result into the log output, you might use:

job:
name: devstack-job
parent: devstack
vars:

devstack_services:
tcpdump: true

devstack_localrc:
TCPDUMP_ARGS: "-i any tcp port 3260"

zuul_copy_output:
'{{ devstack_log_dir }}/tcpdump.pcap': logs

2.2. System-wide debugging 19

https://bugs.launchpad.net/devstack/+bug/1693192
https://bugs.launchpad.net/devstack/+bug/1693192
https://github.com/linux-on-ibm-z/docs/wiki/Building-etcd
https://github.com/linux-on-ibm-z/docs/wiki/Building-etcd

DevStack Docs

2.3 Developing with Devstack

Now that you have your nifty DevStack up and running, what can you do with it?

2.3.1 Inspecting Services

By default most services in DevStack are running as systemd units named devs-
tack@$servicename.service. You can see running services with.

sudo systemctl status "devstack@*"

To learn more about the basics of systemd, see Using Systemd in DevStack

2.3.2 Patching a Service

If you want to make a quick change to a running service the easiest way to do that is to change the code
directly in /opt/stack/$service and then restart the affected daemons.

sudo systemctl restart devstack@n-cpu.service

If your change impacts more than one daemon you can restart by wildcard as well.

sudo systemctl restart "devstack@n-*"

Warning: All changes you are making are in checked out git trees that DevStack thinks it has
full control over. Uncommitted work, or work committed to the master branch, may be overwritten
during subsequent DevStack runs.

2.3.3 Testing a Patch Series

When testing a larger set of patches, or patches that will impact more than one service within a project,
it is often less confusing to use custom git locations, and make all your changes in a dedicated git tree.

In your local.conf you can add **_REPO, **_BRANCH for most projects to use a custom git tree
instead of the default upstream ones.

For instance:

[[local|localrc]]
NOVA_REPO=/home/sdague/nova
NOVA_BRANCH=fold_disk_config

Will use a custom git tree and branch when doing any devstack operations, such as stack.sh.

When testing complicated changes committing to these trees, then doing ./unstack.sh && ./
stack.sh is often a valuable way to iterate. This does take longer per iteration than direct patching,
as the whole devstack needs to rebuild.

You can use this same approach to test patches that are up for review in gerrit by using the ref name that
gerrit assigns to each change.

20 Chapter 2. Contents

DevStack Docs

[[local|localrc]]
NOVA_BRANCH=refs/changes/10/353710/1

2.3.4 Testing Changes to Libraries

When testing changes to libraries consumed by OpenStack services (such as oslo or any of the python-
fooclient libraries) things are a little more complicated. By default we only test with released versions
of these libraries that are on pypi.

You must first override this with the setting LIBS_FROM_GIT. This will enable your DevStack with
the git version of that library instead of the released version.

After that point you can also specify **_REPO, **_BRANCH to use your changes instead of just up-
stream master.

[[local|localrc]]
LIBS_FROM_GIT=oslo.policy
OSLOPOLICY_REPO=/home/sdague/oslo.policy
OSLOPOLICY_BRANCH=better_exception

As libraries are not installed editable by pip, after you make any local changes you will need to:

• cd to top of library path

• sudo pip install -U .

• restart all services you want to use the new library

You can do that with wildcards such as

sudo systemctl restart "devstack@n-*"

which will restart all nova services.

2.4 FAQ

• General Questions

– Can I use DevStack for production?

– Can I use DevStack as a development environment?

– Why a shell script, why not chef/puppet/

– Id like to help!

– Why not use packages?

– Why isnt $MY_FAVORITE_DISTRO supported?

– Are there any differences between Ubuntu and CentOS/Fedora support?

– Why cant I use another shell?

– Can I test on OS/X?

2.4. FAQ 21

DevStack Docs

– Can I at least source openrc with zsh?

• Operation and Configuration

– Can DevStack handle a multi-node installation?

– How can I document the environment that DevStack is using?

– How do I turn off a service that is enabled by default?

– Is enabling a service that defaults to off done with the reverse of the above?

– How do I run a specific OpenStack release?

– What can I do about RabbitMQ not wanting to start on my fresh new VM?

– Why are my configuration changes ignored?

• Miscellaneous

– tools/fixup_stuff.sh is broken and shouldnt fix just one version of packages.

2.4.1 General Questions

Can I use DevStack for production?

DevStack is targeted at developers and CI systems to use the raw upstream code. It makes many choices
that are not appropriate for production systems.

Your best choice is probably to choose a distribution of OpenStack.

Can I use DevStack as a development environment?

Sure, you can. That said, there are a couple of things you should note before doing so:

• DevStack makes a lot of configuration changes to your system and should not be run in your main
development environment.

• All the repositories that DevStack clones when deploying are considered volatile by default and
thus are subject to hard resets. This is necessary to keep you in sync with the latest upstream,
which is what you want in a CI situation, but it can result in branches being overwritten and files
being removed.

The corollary of this is that if you are working on a specific project, using the DevStack project
repository (defaulted to /opt/stack/<project>) as the single master repository for storing
all your work is not recommended. This behavior can be overridden by setting the RECLONE
config option to no. Alternatively, you can avoid running stack.sh to redeploy by restarting
services manually. In any case, you should generally ensure work in progress is pushed to Gerrit
or otherwise backed up before running stack.sh.

• If you use DevStack within a VM, you may wish to mount a local OpenStack directory, such as
~/src/openstack, inside the VM and configure DevStack to use this as the clone location
using the {PROJECT}_REPO config variables. For example, assuming youre using Vagrant and
sharing your home directory, you should place the following in local.conf:

22 Chapter 2. Contents

https://www.openstack.org/marketplace/distros/

DevStack Docs

NEUTRON_REPO=/home/vagrant/src/neutron
NOVA_REPO=/home/vagrant/src/nova
KEYSTONE_REPO=/home/vagrant/src/keystone
GLANCE_REPO=/home/vagrant/src/glance
SWIFT_REPO=/home/vagrant/src/swift
HORIZON_REPO=/home/vagrant/src/horizon
CINDER_REPO=/home/vagrant/src/cinder
HEAT_REPO=/home/vagrant/src/heat
TEMPEST_REPO=/home/vagrant/src/tempest
HEATCLIENT_REPO=/home/vagrant/src/python-heatclient
GLANCECLIENT_REPO=/home/vagrant/src/python-glanceclient
NOVACLIENT_REPO=/home/vagrant/src/python-novaclient
NEUTRONCLIENT_REPO=/home/vagrant/src/python-neutronclient
OPENSTACKCLIENT_REPO=/home/vagrant/src/python-openstackclient
HEAT_CFNTOOLS_REPO=/home/vagrant/src/heat-cfntools
HEAT_TEMPLATES_REPO=/home/vagrant/src/heat-templates
NEUTRON_FWAAS_REPO=/home/vagrant/src/neutron-fwaas
...

Why a shell script, why not chef/puppet/

The script is meant to be read by humans (as well as ran by computers); it is the primary documentation
after all. Using a recipe system requires everyone to agree and understand chef or puppet.

Id like to help!

That isnt a question, but please do! The source for DevStack is at opendev.org and bug reports go to
LaunchPad. Contributions follow the usual process as described in the developer guide. This Sphinx
documentation is housed in the doc directory.

Why not use packages?

Unlike packages, DevStack leaves your cloud ready to develop - checkouts of the code and services
running locally under systemd, making it easy to hack on and test new patches. However, many people
are doing the hard work of packaging and recipes for production deployments.

Why isnt $MY_FAVORITE_DISTRO supported?

DevStack is meant for developers and those who want to see how OpenStack really works. DevStack is
known to run on the distro/release combinations listed in README.md. DevStack is only supported on
releases other than those documented in README.md on a best-effort basis.

2.4. FAQ 23

https://opendev.org/openstack/devstack
https://bugs.launchpad.net/devstack/
https://docs.openstack.org/infra/manual/developers.html

DevStack Docs

Are there any differences between Ubuntu and CentOS/Fedora support?

Both should work well and are tested by DevStack CI.

Why cant I use another shell?

DevStack now uses some specific bash-ism that require Bash 4, such as associative arrays. Simple com-
patibility patches have been accepted in the past when they are not complex, at this point no additional
compatibility patches will be considered except for shells matching the array functionality as it is very
ingrained in the repo and project management.

Can I test on OS/X?

Some people have success with bash 4 installed via homebrew to keep running tests on OS/X.

Can I at least source openrc with zsh?

People have reported success with a special function to run openrc through bash for this

function sourceopenrc {
pushd ~/devstack >/dev/null
eval $(bash -c ". openrc $1 $2 >/dev/null;env|sed -n '/OS_/ { s/^/

↪→export /;p}'")
popd >/dev/null

}

2.4.2 Operation and Configuration

Can DevStack handle a multi-node installation?

Yes, see multinode lab guide

How can I document the environment that DevStack is using?

DevStack includes a script (tools/info.sh) that gathers the versions of the relevant installed apt
packages, pip packages and git repos. This is a good way to verify what Python modules are installed.

How do I turn off a service that is enabled by default?

Services can be turned off by adding disable_service xxx to local.conf (using c-vol in
this example):

disable_service c-vol

24 Chapter 2. Contents

DevStack Docs

Is enabling a service that defaults to off done with the reverse of the above?

Of course!

enable_service q-svc

How do I run a specific OpenStack release?

DevStack master tracks the upstream master of all the projects. If you would like to run a stable branch
of OpenStack, you should use the corresponding stable branch of DevStack as well. For instance the
stable/ocata version of DevStack will already default to all the projects running at stable/
ocata levels.

Note: its also possible to manually adjust the *_BRANCH variables further if you would like to test
specific milestones, or even custom out of tree branches. This is done with entries like the following in
your local.conf

[[local|localrc]]
GLANCE_BRANCH=11.0.0.0rc1
NOVA_BRANCH=12.0.0.0.rc1

Upstream DevStack is only tested with master and stable branches. Setting custom BRANCH definitions
is not guaranteed to produce working results.

What can I do about RabbitMQ not wanting to start on my fresh new VM?

This is often caused by erlang not being happy with the hostname resolving to a reachable IP address.
Make sure your hostname resolves to a working IP address; setting it to 127.0.0.1 in /etc/hosts is
often good enough for a single-node installation. And in an extreme case, use clean.sh to eradicate
it and try again.

Why are my configuration changes ignored?

You may have run into the package prerequisite installation timeout. tools/install_prereqs.
sh has a timer that skips the package installation checks if it was run within the last
PREREQ_RERUN_HOURS hours (default is 2). To override this, set FORCE_PREREQ=1 and the pack-
age checks will never be skipped.

2.4.3 Miscellaneous

tools/fixup_stuff.sh is broken and shouldnt fix just one version of packages.

Stuff in there is to correct problems in an environment that need to be fixed elsewhere or may/will be
fixed in a future release. In the case of httplib2 and prettytable specific problems with specific
versions are being worked around. If later releases have those problems than well add them to the script.
Knowing about the broken future releases is valuable rather than polling to see if it has been fixed.

2.4. FAQ 25

DevStack Docs

2.5 Guides

Warning: The guides are point in time contributions, and may not always be up to date with the
latest work in devstack.

Walk through various setups used by stackers

2.5.1 All-In-One Single VM

Use the cloud to build the cloud! Use your cloud to launch new versions of OpenStack in about 5
minutes. If you break it, start over! The VMs launched in the cloud will be slow as they are running in
QEMU (emulation), but their primary use is testing OpenStack development and operation.

Prerequisites Cloud & Image

Virtual Machine

DevStack should run in any virtual machine running a supported Linux release. It will perform best with
4GB or more of RAM.

OpenStack Deployment & cloud-init

If the cloud service has an image with cloud-init pre-installed, use it. You can get one from Ubuntus
Daily Build site if necessary. This will enable you to launch VMs with userdata that installs everything
at boot time. The userdata script below will install and run DevStack with a minimal configuration. The
use of cloud-init is outside the scope of this document, refer to the cloud-init docs for more
information.

If you are directly using a hypervisor like Xen, kvm or VirtualBox you can manually kick off the script
below as a non-root user in a bare-bones server installation.

Installation shake and bake

Launching With Cloud-Init

This cloud config grabs the latest version of DevStack via git, creates a minimal local.conf file and
kicks off stack.sh. It should be passed as the user-data file when booting the VM.

#cloud-config

users:
- default
- name: stack

lock_passwd: False
sudo: ["ALL=(ALL) NOPASSWD:ALL\nDefaults:stack !requiretty"]
shell: /bin/bash

(continues on next page)

26 Chapter 2. Contents

http://uec-images.ubuntu.com
http://uec-images.ubuntu.com

DevStack Docs

(continued from previous page)

write_files:
- content: |

#!/bin/sh
DEBIAN_FRONTEND=noninteractive sudo apt-get -qqy update || sudo

↪→yum update -qy
DEBIAN_FRONTEND=noninteractive sudo apt-get install -qqy git ||

↪→sudo yum install -qy git
sudo chown stack:stack /home/stack
cd /home/stack
git clone https://opendev.org/openstack/devstack
cd devstack
echo '[[local|localrc]]' > local.conf
echo ADMIN_PASSWORD=password >> local.conf
echo DATABASE_PASSWORD=password >> local.conf
echo RABBIT_PASSWORD=password >> local.conf
echo SERVICE_PASSWORD=password >> local.conf
./stack.sh

path: /home/stack/start.sh
permissions: 0755

runcmd:
- su -l stack ./start.sh

As DevStack will refuse to run as root, this configures cloud-init to create a non-root user and run
the start.sh script as that user.

If you are using cloud-init and you have not enabled custom logging of the stack output, then the stack
output can be found in /var/log/cloud-init-output.log by default.

Launching By Hand

Using a hypervisor directly, launch the VM and either manually perform the steps in the embedded shell
script above or copy it into the VM.

Using OpenStack

At this point you should be able to access the dashboard. Launch VMs and if you give them floating IPs,
access those VMs from other machines on your network.

One interesting use case is for developers working on a VM on their laptop. Once stack.sh has
completed once, all of the pre-requisite packages are installed in the VM and the source trees checked
out. Setting OFFLINE=True in local.conf enables stack.sh to run multiple times without an
Internet connection. DevStack, making hacking at the lake possible since 2012!

2.5. Guides 27

DevStack Docs

2.5.2 All-In-One Single Machine

Things are about to get real! Using OpenStack in containers or VMs is nice for kicking the tires, but
doesnt compare to the feeling you get with hardware.

Prerequisites Linux & Network

Minimal Install

You need to have a system with a fresh install of Linux. You can download the Minimal CD for Ubuntu
releases since DevStack will download & install all the additional dependencies. The netinstall ISO is
available for Fedora and CentOS/RHEL. You may be tempted to use a desktop distro on a laptop, it will
probably work but you may need to tell Network Manager to keep its fingers off the interface(s) that
OpenStack uses for bridging.

Network Configuration

Determine the network configuration on the interface used to integrate your OpenStack cloud with your
existing network. For example, if the IPs given out on your network by DHCP are 192.168.1.X - where
X is between 100 and 200 you will be able to use IPs 201-254 for floating ips.

To make things easier later change your host to use a static IP instead of DHCP (i.e. 192.168.1.201).

Installation shake and bake

Add your user

We need to add a user to install DevStack. (if you created a user during install you can skip this step and
just give the user sudo privileges below)

$ sudo useradd -s /bin/bash -d /opt/stack -m stack

Since this user will be making many changes to your system, it will need to have sudo privileges:

$ apt-get install sudo -y || yum install -y sudo
$ echo "stack ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

Note: On some systems you may need to use sudo visudo.

From here on you should use the user you created. Logout and login as that user:

$ sudo su stack && cd ~

28 Chapter 2. Contents

https://help.ubuntu.com/community/Installation/MinimalCD
http://mirrors.kernel.org/fedora/releases/
http://mirrors.kernel.org/centos/

DevStack Docs

Download DevStack

Well grab the latest version of DevStack via https:

$ sudo apt-get install git -y || sudo yum install -y git
$ git clone https://opendev.org/openstack/devstack
$ cd devstack

Run DevStack

Now to configure stack.sh. DevStack includes a sample in devstack/samples/local.conf.
Create local.conf as shown below to do the following:

• Set FLOATING_RANGE to a range not used on the local network, i.e. 192.168.1.224/27. This
configures IP addresses ending in 225-254 to be used as floating IPs.

• Set FIXED_RANGE to configure the internal address space used by the instances.

• Set the administrative password. This password is used for the admin and demo accounts set up
as OpenStack users.

• Set the MySQL administrative password. The default here is a random hex string which is incon-
venient if you need to look at the database directly for anything.

• Set the RabbitMQ password.

• Set the service password. This is used by the OpenStack services (Nova, Glance, etc) to authenti-
cate with Keystone.

local.conf should look something like this:

[[local|localrc]]
FLOATING_RANGE=192.168.1.224/27
FIXED_RANGE=10.11.12.0/24
ADMIN_PASSWORD=supersecret
DATABASE_PASSWORD=iheartdatabases
RABBIT_PASSWORD=flopsymopsy
SERVICE_PASSWORD=iheartksl

Note: There is a sample local.conf file under the samples directory in the devstack repository.

Run DevStack:

$./stack.sh

A seemingly endless stream of activity ensues. When complete you will see a summary of stack.shs
work, including the relevant URLs, accounts and passwords to poke at your shiny new OpenStack.

2.5. Guides 29

DevStack Docs

Using OpenStack

At this point you should be able to access the dashboard from other computers on the local network. In
this example that would be http://192.168.1.201/ for the dashboard (aka Horizon). Launch VMs and if
you give them floating IPs and security group access those VMs will be accessible from other machines
on your network.

2.5.3 All-In-One Single LXC Container

This guide walks you through the process of deploying OpenStack using devstack in an LXC container
instead of a VM.

The primary benefits to running devstack inside a container instead of a VM is faster performance and
lower memory overhead while still providing a suitable level of isolation. This can be particularly useful
when you want to simulate running OpenStack on multiple nodes.

Warning: Containers do not provide the same level of isolation as a virtual machine.

Note: Not all OpenStack features support running inside of a container. See Limitations section below
for details. OpenStack in a VM is recommended for beginners.

Prerequisites

This guide is written for Ubuntu 14.04 but should be adaptable for any modern Linux distribution.

Install the LXC package:

sudo apt-get install lxc

You can verify support for containerization features in your currently running kernel using the
lxc-checkconfig command.

Container Setup

Configuration

For a successful run of stack.sh and to permit use of KVM to run the VMs you launch inside your
container, we need to use the following additional configuration options. Place the following in a file
called devstack-lxc.conf:

Permit access to /dev/loop*
lxc.cgroup.devices.allow = b 7:* rwm

Setup access to /dev/net/tun and /dev/kvm
lxc.mount.entry = /dev/net/tun dev/net/tun none bind,create=file 0 0
lxc.mount.entry = /dev/kvm dev/kvm none bind,create=file 0 0

(continues on next page)

30 Chapter 2. Contents

http://192.168.1.201/

DevStack Docs

(continued from previous page)

Networking
lxc.network.type = veth
lxc.network.flags = up
lxc.network.link = lxcbr0

Create Container

The configuration and rootfs for LXC containers are created using the lxc-create command.

We will name our container devstack and use the ubuntu template which will use debootstrap
to build a Ubuntu rootfs. It will default to the same release and architecture as the host system. We also
install the additional packages bsdmainutils and git as well need them to run devstack:

sudo lxc-create -n devstack -t ubuntu -f devstack-lxc.conf -- --
↪→packages=bsdmainutils,git

The first time it builds the rootfs will take a few minutes to download, unpack, and configure all the
necessary packages for a minimal installation of Ubuntu. LXC will cache this and subsequent containers
will only take seconds to create.

Note: To speed up the initial rootfs creation, you can specify a mirror to download the Ubuntu packages
from by appending --mirror= and then the URL of a Ubuntu mirror. To see other other template
options, you can run lxc-create -t ubuntu -h.

Start Container

To start the container, run:

sudo lxc-start -n devstack

A moment later you should be presented with the login prompt for your container. You can login using
the username ubuntu and password ubuntu.

You can also ssh into your container. On your host, run sudo lxc-info -n devstack to get the
IP address (e.g. ssh ubuntu@$(sudo lxc-info -n devstack | awk '/IP/ { print
$2 }')).

Run Devstack

You should now be logged into your container and almost ready to run devstack. The commands in this
section should all be run inside your container.

Tip: You can greatly reduce the runtime of your initial devstack setup by ensuring you have your
apt sources.list configured to use a fast mirror. Check and update /etc/apt/sources.list if
necessary and then run apt-get update.

1. Download DevStack

2.5. Guides 31

DevStack Docs

git clone https://opendev.org/openstack/devstack

2. Configure

Refer to Minimal Configuration if you wish to configure the behaviour of devstack.

3. Start the install

cd devstack
./stack.sh

Cleanup

To stop the container:

lxc-stop -n devstack

To delete the container:

lxc-destroy -n devstack

Limitations

Not all OpenStack features may function correctly or at all when ran from within a container.

Cinder

Unable to create LVM backed volume

In our configuration, we have not whitelisted access to device-mapper or LVM devices. Do-
ing so will permit your container to have access and control of LVM on the host system. To
enable, add the following to your devstack-lxc.conf before running lxc-create:

lxc.cgroup.devices.allow = c 10:236 rwm
lxc.cgroup.devices.allow = b 252:* rwm

Additionally youll need to set udev_rules = 0 in the activation section of /etc/
lvm/lvm.conf unless you mount devtmpfs in your container.

Unable to attach volume to instance

It is not possible to attach cinder volumes to nova instances due to parts of the Linux iSCSI
implementation not being network namespace aware. This can be worked around by using
network pass-through instead of a separate network namespace but such a setup significantly
reduces the isolation of the container (e.g. a halt command issued in the container will
cause the host system to shutdown).

32 Chapter 2. Contents

DevStack Docs

2.5.4 Multi-Node Lab

Here is OpenStack in a realistic test configuration with multiple physical servers.

Prerequisites Linux & Network

Minimal Install

You need to have a system with a fresh install of Linux. You can download the Minimal CD for Ubuntu
releases since DevStack will download & install all the additional dependencies. The netinstall ISO is
available for Fedora and CentOS/RHEL.

Install a couple of packages to bootstrap configuration:

apt-get install -y git sudo || yum install -y git sudo

Network Configuration

The first iteration of the lab uses OpenStacks FlatDHCP network controller so only a single network
will be required. It should be on its own subnet without DHCP; the host IPs and floating IP pool(s) will
come out of this block. This example uses the following:

• Gateway: 192.168.42.1

• Physical nodes: 192.168.42.11-192.168.42.99

• Floating IPs: 192.168.42.128-192.168.42.254

Configure each node with a static IP. For Ubuntu edit /etc/network/interfaces:

auto eth0
iface eth0 inet static

address 192.168.42.11
netmask 255.255.255.0
gateway 192.168.42.1

For Fedora and CentOS/RHEL edit /etc/sysconfig/network-scripts/ifcfg-eth0:

BOOTPROTO=static
IPADDR=192.168.42.11
NETMASK=255.255.255.0
GATEWAY=192.168.42.1

Installation shake and bake

Add the DevStack User

OpenStack runs as a non-root user that has sudo access to root. There is nothing special about the name,
well use stack here. Every node must use the same name and preferably uid. If you created a user
during the OS install you can use it and give it sudo privileges below. Otherwise create the stack user:

2.5. Guides 33

https://help.ubuntu.com/community/Installation/MinimalCD
http://mirrors.kernel.org/fedora/releases/
http://mirrors.kernel.org/centos/

DevStack Docs

useradd -s /bin/bash -d /opt/stack -m stack

This user will be making many changes to your system during installation and operation so it needs to
have sudo privileges to root without a password:

echo "stack ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

From here on use the stack user. Logout and login as the stack user.

Set Up Ssh

Set up the stack user on each node with an ssh key for access:

mkdir ~/.ssh; chmod 700 ~/.ssh
echo "ssh-rsa
↪→AAAAB3NzaC1yc2EAAAADAQABAAABAQCyYjfgyPazTvGpd8OaAvtU2utL8W6gWC4JdRS1J95GhNNfQd657yO6s1AH5KYQWktcE6FO/
↪→xNUC2reEXSGC7ezy+sGO1kj9Limv5vrvNHvF1+wts0Cmyx61D2nQw35/Qz8BvpdJANL7VwP/
↪→cFI/
↪→p3yhvx2lsnjFE3hN8xRB2LtLUopUSVdBwACOVUmH2G+2BWMJDjVINd2DPqRIA4Zhy09KJ3O1Joabr0XpQL0yt/
↪→I9x8BVHdAx6l9U0tMg9dj5+tAjZvMAFfye3PJcYwwsfJoFxC8w/
↪→SLtqlFX7Ehw++8RtvomvuipLdmWCy+T9hIkl+gHYE4cS3OIqXH7f49jdJf jesse@spacey.
↪→local" > ~/.ssh/authorized_keys

Download DevStack

Grab the latest version of DevStack:

git clone https://opendev.org/openstack/devstack
cd devstack

Up to this point all of the steps apply to each node in the cluster. From here on there are some differences
between the cluster controller (aka head node) and the compute nodes.

Configure Cluster Controller

The cluster controller runs all OpenStack services. Configure the cluster controllers DevStack in
local.conf:

[[local|localrc]]
HOST_IP=192.168.42.11
FIXED_RANGE=10.4.128.0/20
FLOATING_RANGE=192.168.42.128/25
LOGFILE=/opt/stack/logs/stack.sh.log
ADMIN_PASSWORD=labstack
DATABASE_PASSWORD=supersecret
RABBIT_PASSWORD=supersecret
SERVICE_PASSWORD=supersecret

In the multi-node configuration the first 10 or so IPs in the private subnet are usually reserved. Add this
to local.sh to have it run after every stack.sh run:

34 Chapter 2. Contents

DevStack Docs

for i in `seq 2 10`; do /opt/stack/nova/bin/nova-manage fixed reserve 10.4.
↪→128.$i; done

Fire up OpenStack:

./stack.sh

A stream of activity ensues. When complete you will see a summary of stack.shs work, including
the relevant URLs, accounts and passwords to poke at your shiny new OpenStack. The most recent log
file is available in stack.sh.log.

Configure Compute Nodes

The compute nodes only run the OpenStack worker services. For additional machines, create a local.
conf with:

[[local|localrc]]
HOST_IP=192.168.42.12 # change this per compute node
FIXED_RANGE=10.4.128.0/20
FLOATING_RANGE=192.168.42.128/25
LOGFILE=/opt/stack/logs/stack.sh.log
ADMIN_PASSWORD=labstack
DATABASE_PASSWORD=supersecret
RABBIT_PASSWORD=supersecret
SERVICE_PASSWORD=supersecret
DATABASE_TYPE=mysql
SERVICE_HOST=192.168.42.11
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292
ENABLED_SERVICES=n-cpu,q-agt,c-vol,placement-client
NOVA_VNC_ENABLED=True
NOVNCPROXY_URL="http://$SERVICE_HOST:6080/vnc_lite.html"
VNCSERVER_LISTEN=$HOST_IP
VNCSERVER_PROXYCLIENT_ADDRESS=$VNCSERVER_LISTEN

Fire up OpenStack:

./stack.sh

A stream of activity ensues. When complete you will see a summary of stack.shs work, including
the relevant URLs, accounts and passwords to poke at your shiny new OpenStack. The most recent log
file is available in stack.sh.log.

Starting in the Ocata release, Nova requires a Cells v2 deployment. Compute node services must be
mapped to a cell before they can be used.

After each compute node is stacked, verify it shows up in the nova service-list --binary
nova-compute output. The compute service is registered in the cell database asynchronously so this
may require polling.

Once the compute node services shows up, run the ./tools/discover_hosts.sh script from the
control node to map compute hosts to the single cell.

2.5. Guides 35

https://docs.openstack.org/nova/latest/user/cells.html

DevStack Docs

The compute service running on the primary control node will be discovered automatically when the
control node is stacked so this really only needs to be performed for subnodes.

Cleaning Up After DevStack

Shutting down OpenStack is now as simple as running the included unstack.sh script:

./unstack.sh

A more aggressive cleanup can be performed using clean.sh. It removes certain troublesome pack-
ages and attempts to leave the system in a state where changing the database or queue manager can be
reliably performed.

./clean.sh

Sometimes running instances are not cleaned up. DevStack attempts to do this when it runs but there are
times it needs to still be done by hand:

sudo rm -rf /etc/libvirt/qemu/inst*
sudo virsh list | grep inst | awk '{print $1}' | xargs -n1 virsh destroy

Going further

Additional Users

DevStack creates two OpenStack users (admin and demo) and two projects (also admin and demo).
admin is exactly what it sounds like, a privileged administrative account that is a member of both the
admin and demo projects. demo is a normal user account that is only a member of the demo project.
Creating additional OpenStack users can be done through the dashboard, sometimes it is easier to do
them in bulk from a script, especially since they get blown away every time stack.sh runs. The
following steps are ripe for scripting:

Get admin creds
. openrc admin admin

List existing projects
openstack project list

List existing users
openstack user list

Add a user and project
NAME=bob
PASSWORD=BigSecret
PROJECT=$NAME
openstack project create $PROJECT
openstack user create $NAME --password=$PASSWORD --project $PROJECT
openstack role add Member --user $NAME --project $PROJECT
The Member role is created by stack.sh
openstack role assignment list

36 Chapter 2. Contents

DevStack Docs

Swift

Swift, OpenStack Object Storage, requires a significant amount of resources and is disabled by default in
DevStack. The support in DevStack is geared toward a minimal installation but can be used for testing.
To implement a true multi-node test of swift, additional steps will be required. Enabling it is as simple
as enabling the swift service in local.conf:

enable_service s-proxy s-object s-container s-account

Swift, OpenStack Object Storage, will put its data files in SWIFT_DATA_DIR (default /opt/
stack/data/swift). The size of the data partition created (really a loop-mounted file) is set by
SWIFT_LOOPBACK_DISK_SIZE. The Swift config files are located in SWIFT_CONF_DIR (default
/etc/swift). All of these settings can be overridden in (wait for it) local.conf.

Volumes

DevStack will automatically use an existing LVM volume group named stack-volumes to store
cloud-created volumes. If stack-volumes doesnt exist, DevStack will set up a loop-mounted file
to contain it. If the default size is insufficient for the number and size of volumes required, it can be
overridden by setting VOLUME_BACKING_FILE_SIZE in local.conf (sizes given in truncate
compatible format, e.g. 24G).

stack-volumes can be pre-created on any physical volume supported by Linuxs LVM. The name
of the volume group can be changed by setting VOLUME_GROUP_NAME in localrc. stack.sh
deletes all logical volumes in VOLUME_GROUP_NAME that begin with VOLUME_NAME_PREFIX as
part of cleaning up from previous runs. It is recommended to not use the root volume group as
VOLUME_GROUP_NAME.

The details of creating the volume group depends on the server hardware involved but looks something
like this:

pvcreate /dev/sdc
vgcreate stack-volumes /dev/sdc

Syslog

DevStack is capable of using rsyslog to aggregate logging across the cluster. It is off by default; to
turn it on set SYSLOG=True in local.conf. SYSLOG_HOST defaults to HOST_IP; on the compute
nodes it must be set to the IP of the cluster controller to send syslog output there. In the example above,
add this to the compute node local.conf:

SYSLOG_HOST=192.168.42.11

2.5. Guides 37

DevStack Docs

Using Alternate Repositories/Branches

The git repositories for all of the OpenStack services are defined in stackrc. Since this file is a part of
the DevStack package changes to it will probably be overwritten as updates are applied. Every setting
in stackrc can be redefined in local.conf.

To change the repository or branch that a particular OpenStack service is created from, simply change
the value of *_REPO or *_BRANCH corresponding to that service.

After making changes to the repository or branch, if RECLONE is not set in localrc it may be neces-
sary to remove the corresponding directory from /opt/stack to force git to re-clone the repository.

For example, to pull nova, OpenStack Compute, from a proposed release candidate in the primary nova
repository:

NOVA_BRANCH=rc-proposed

To pull glance, OpenStack Image service, from an experimental fork:

GLANCE_BRANCH=try-something-big
GLANCE_REPO=https://github.com/mcuser/glance.git

Notes stuff you might need to know

Set MySQL Password

If you forgot to set the root password you can do this:

mysqladmin -u root -pnova password 'supersecret'

Live Migration

In order for live migration to work with the default live migration URI:

[libvirt]
live_migration_uri = qemu+ssh://stack@%s/system

SSH keys need to be exchanged between each compute node:

1. The SOURCE root users public RSA key (likely in /root/.ssh/id_rsa.pub) needs to be in the DES-
TINATION stack users authorized_keys file (~stack/.ssh/authorized_keys). This can be accom-
plished by manually copying the contents from the file on the SOURCE to the DESTINATION.
If you have a password configured for the stack user, then you can use the following command to
accomplish the same thing:

ssh-copy-id -i /root/.ssh/id_rsa.pub stack@DESTINATION

2. The DESTINATION hosts public ECDSA key (/etc/ssh/ssh_host_ecdsa_key.pub) needs to be in
the SOURCE root users known_hosts file (/root/.ssh/known_hosts). This can be accomplished by
running the following on the SOURCE machine (hostname must be used):

38 Chapter 2. Contents

DevStack Docs

ssh-keyscan -H DEST_HOSTNAME | sudo tee -a /root/.ssh/known_hosts

3. Verify that login via ssh works without a password:

ssh -i /root/.ssh/id_rsa.pub stack@DESTINATION

In essence, this means that every compute nodes root users public RSA key must exist in every other
compute nodes stack users authorized_keys file and every compute nodes public ECDSA key needs to
be in every other compute nodes root users known_hosts file. Please note that if the root or stack user
does not have a SSH key, one can be generated using:

ssh-keygen -t rsa

The above steps are necessary because libvirtd runs as root when the live_migration_uri uses the
qemu:///system family of URIs. For more information, see the libvirt documentation.

2.5.5 Using DevStack with neutron Networking

This guide will walk you through using OpenStack neutron with the ML2 plugin and the Open vSwitch
mechanism driver.

Using Neutron with a Single Interface

In some instances, like on a developer laptop, there is only one network interface that is available. In this
scenario, the physical interface is added to the Open vSwitch bridge, and the IP address of the laptop is
migrated onto the bridge interface. That way, the physical interface can be used to transmit self service
project network traffic, the OpenStack API traffic, and management traffic.

Warning: When using a single interface networking setup, there will be a temporary network
outage as your IP address is moved from the physical NIC of your machine, to the OVS bridge. If
you are SSHd into the machine from another computer, there is a risk of being disconnected from
your ssh session (due to arp cache invalidation), which would stop the stack.sh or leave it in an
unfinished state. In these cases, start stack.sh inside its own screen session so it can continue to run.

Physical Network Setup

In most cases where DevStack is being deployed with a single interface, there is a hardware router that
is being used for external connectivity and DHCP. The developer machine is connected to this network
and is on a shared subnet with other machines. The local.conf exhibited here assumes that 1500 is a
reasonable MTU to use on that network.

2.5. Guides 39

https://libvirt.org/drvqemu.html#securitydriver

DevStack Docs

40 Chapter 2. Contents

DevStack Docs

DevStack Configuration

The following is a complete local.conf for the host named devstack-1. It will run all the API and services,
as well as serving as a hypervisor for guest instances.

[[local|localrc]]
HOST_IP=172.18.161.6
SERVICE_HOST=172.18.161.6
MYSQL_HOST=172.18.161.6
RABBIT_HOST=172.18.161.6
GLANCE_HOSTPORT=172.18.161.6:9292
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Neutron options
Q_USE_SECGROUP=True
FLOATING_RANGE="172.18.161.0/24"
IPV4_ADDRS_SAFE_TO_USE="10.0.0.0/22"
Q_FLOATING_ALLOCATION_POOL=start=172.18.161.250,end=172.18.161.254
PUBLIC_NETWORK_GATEWAY="172.18.161.1"
PUBLIC_INTERFACE=eth0

Open vSwitch provider networking configuration
Q_USE_PROVIDERNET_FOR_PUBLIC=True
OVS_PHYSICAL_BRIDGE=br-ex
PUBLIC_BRIDGE=br-ex
OVS_BRIDGE_MAPPINGS=public:br-ex

Adding Additional Compute Nodes

Lets suppose that after installing DevStack on the first host, you also want to do multinode testing and
networking.

2.5. Guides 41

DevStack Docs

Physical Network Setup

After DevStack installs and configures Neutron, traffic from guest VMs flows out of devstack-2 (the
compute node) and is encapsulated in a VXLAN tunnel back to devstack-1 (the control node) where the
L3 agent is running.

stack@devstack-2:~/devstack$ sudo ovs-vsctl show
8992d965-0ba0-42fd-90e9-20ecc528bc29

Bridge br-int
fail_mode: secure
Port br-int

Interface br-int
type: internal

Port patch-tun
Interface patch-tun

type: patch
options: {peer=patch-int}

Bridge br-tun
fail_mode: secure

(continues on next page)

42 Chapter 2. Contents

DevStack Docs

(continued from previous page)

Port "vxlan-c0a801f6"
Interface "vxlan-c0a801f6"

type: vxlan
options: {df_default="true", in_key=flow, local_ip="172.18.

↪→161.7", out_key=flow, remote_ip="172.18.161.6"}
Port patch-int

Interface patch-int
type: patch
options: {peer=patch-tun}

Port br-tun
Interface br-tun

type: internal
ovs_version: "2.0.2"

Open vSwitch on the control node, where the L3 agent runs, is configured to de-encapsulate traffic from
compute nodes, then forward it over the br-ex bridge, where eth0 is attached.

stack@devstack-1:~/devstack$ sudo ovs-vsctl show
422adeea-48d1-4a1f-98b1-8e7239077964

Bridge br-tun
fail_mode: secure
Port br-tun

Interface br-tun
type: internal

Port patch-int
Interface patch-int

type: patch
options: {peer=patch-tun}

Port "vxlan-c0a801d8"
Interface "vxlan-c0a801d8"

type: vxlan
options: {df_default="true", in_key=flow, local_ip="172.18.

↪→161.6", out_key=flow, remote_ip="172.18.161.7"}
Bridge br-ex

Port phy-br-ex
Interface phy-br-ex

type: patch
options: {peer=int-br-ex}

Port "eth0"
Interface "eth0"

Port br-ex
Interface br-ex

type: internal
Bridge br-int

fail_mode: secure
Port "tapce66332d-ea"

tag: 1
Interface "tapce66332d-ea"

type: internal
Port "qg-65e5a4b9-15"

tag: 2
Interface "qg-65e5a4b9-15"

type: internal
Port "qr-33e5e471-88"

tag: 1
Interface "qr-33e5e471-88"

(continues on next page)

2.5. Guides 43

DevStack Docs

(continued from previous page)

type: internal
Port "qr-acbe9951-70"

tag: 1
Interface "qr-acbe9951-70"

type: internal
Port br-int

Interface br-int
type: internal

Port patch-tun
Interface patch-tun

type: patch
options: {peer=patch-int}

Port int-br-ex
Interface int-br-ex

type: patch
options: {peer=phy-br-ex}

ovs_version: "2.0.2"

br-int is a bridge that the Open vSwitch mechanism driver creates, which is used as the integration bridge
where ports are created, and plugged into the virtual switching fabric. br-ex is an OVS bridge that is
used to connect physical ports (like eth0), so that floating IP traffic for project networks can be received
from the physical network infrastructure (and the internet), and routed to self service project network
ports. br-tun is a tunnel bridge that is used to connect OpenStack nodes (like devstack-2) together. This
bridge is used so that project network traffic, using the VXLAN tunneling protocol, flows between each
compute node where project instances run.

DevStack Compute Configuration

The host devstack-2 has a very minimal local.conf.

[[local|localrc]]
HOST_IP=172.18.161.7
SERVICE_HOST=172.18.161.6
MYSQL_HOST=172.18.161.6
RABBIT_HOST=172.18.161.6
GLANCE_HOSTPORT=172.18.161.6:9292
ADMIN_PASSWORD=secret
MYSQL_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Neutron options
PUBLIC_INTERFACE=eth0
ENABLED_SERVICES=n-cpu,rabbit,q-agt,placement-client

Network traffic from eth0 on the compute nodes is then NATd by the controller node that runs Neutrons
neutron-l3-agent and provides L3 connectivity.

44 Chapter 2. Contents

DevStack Docs

Neutron Networking with Open vSwitch and Provider Networks

In some instances, it is desirable to use neutrons provider networking extension, so that networks that are
configured on an external router can be utilized by neutron, and instances created via Nova can attach to
the network managed by the external router.

For example, in some lab environments, a hardware router has been pre-configured by another party, and
an OpenStack developer has been given a VLAN tag and IP address range, so that instances created via
DevStack will use the external router for L3 connectivity, as opposed to the neutron L3 service.

Physical Network Setup

On a compute node, the first interface, eth0 is used for the OpenStack management (API, message bus,
etc) as well as for ssh for an administrator to access the machine.

stack@compute:~$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr bc:16:65:20:af:fc

inet addr:10.0.0.3

eth1 is manually configured at boot to not have an IP address. Consult your operating system documen-
tation for the appropriate technique. For Ubuntu, the contents of /etc/network/interfaces contains:

auto eth1
iface eth1 inet manual

(continues on next page)

2.5. Guides 45

DevStack Docs

(continued from previous page)

up ifconfig $IFACE 0.0.0.0 up
down ifconfig $IFACE 0.0.0.0 down

The second physical interface, eth1 is added to a bridge (in this case named br-ex), which is used to
forward network traffic from guest VMs.

stack@compute:~$ sudo ovs-vsctl add-br br-ex
stack@compute:~$ sudo ovs-vsctl add-port br-ex eth1
stack@compute:~$ sudo ovs-vsctl show
9a25c837-32ab-45f6-b9f2-1dd888abcf0f

Bridge br-ex
Port br-ex

Interface br-ex
type: internal

Port phy-br-ex
Interface phy-br-ex

type: patch
options: {peer=int-br-ex}

Port "eth1"
Interface "eth1"

Service Configuration

Control Node

In this example, the control node will run the majority of the OpenStack API and management services
(keystone, glance, nova, neutron)

Compute Nodes

In this example, the nodes that will host guest instances will run the
neutron-openvswitch-agent for network connectivity, as well as the compute service
nova-compute.

DevStack Configuration

The following is a snippet of the DevStack configuration on the controller node.

HOST_IP=10.0.0.2
SERVICE_HOST=10.0.0.2
MYSQL_HOST=10.0.0.2
RABBIT_HOST=10.0.0.2
GLANCE_HOSTPORT=10.0.0.2:9292
PUBLIC_INTERFACE=eth1

ADMIN_PASSWORD=secret
MYSQL_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Neutron options
Q_USE_SECGROUP=True

(continues on next page)

46 Chapter 2. Contents

DevStack Docs

(continued from previous page)

ENABLE_TENANT_VLANS=True
TENANT_VLAN_RANGE=3001:4000
PHYSICAL_NETWORK=default
OVS_PHYSICAL_BRIDGE=br-ex

Q_USE_PROVIDER_NETWORKING=True

disable_service q-l3

Neutron Networking options used to create Neutron Subnets

IPV4_ADDRS_SAFE_TO_USE="203.0.113.0/24"
NETWORK_GATEWAY=203.0.113.1
PROVIDER_SUBNET_NAME="provider_net"
PROVIDER_NETWORK_TYPE="vlan"
SEGMENTATION_ID=2010
USE_SUBNETPOOL=False

In this configuration we are defining IPV4_ADDRS_SAFE_TO_USE to be a publicly routed IPv4 sub-
net. In this specific instance we are using the special TEST-NET-3 subnet defined in RFC 5737, which is
used for documentation. In your DevStack setup, IPV4_ADDRS_SAFE_TO_USE would be a public IP
address range that you or your organization has allocated to you, so that you could access your instances
from the public internet.

The following is the DevStack configuration on compute node 1.

HOST_IP=10.0.0.3
SERVICE_HOST=10.0.0.2
MYSQL_HOST=10.0.0.2
RABBIT_HOST=10.0.0.2
GLANCE_HOSTPORT=10.0.0.2:9292
ADMIN_PASSWORD=secret
MYSQL_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Services that a compute node runs
ENABLED_SERVICES=n-cpu,rabbit,q-agt

Open vSwitch provider networking options
PHYSICAL_NETWORK=default
OVS_PHYSICAL_BRIDGE=br-ex
PUBLIC_INTERFACE=eth1
Q_USE_PROVIDER_NETWORKING=True

Compute node 2s configuration will be exactly the same, except HOST_IP will be 10.0.0.4

When DevStack is configured to use provider networking (via Q_USE_PROVIDER_NETWORKING is
True) - DevStack will automatically add the network interface defined in PUBLIC_INTERFACE to the
OVS_PHYSICAL_BRIDGE

For example, with the above configuration, a bridge is created, named br-ex which is managed by
Open vSwitch, and the second interface on the compute node, eth1 is attached to the bridge, to forward
traffic sent by guest VMs.

2.5. Guides 47

https://tools.ietf.org/html/rfc5737

DevStack Docs

Miscellaneous Tips

Non-Standard MTU on the Physical Network

Neutron by default uses a MTU of 1500 bytes, which is the standard MTU for Ethernet.

A different MTU can be specified by adding the following to the Neutron section of local.conf. For
example, if you have network equipment that supports jumbo frames, you could set the MTU to 9000
bytes by adding the following

[[post-config|/$Q_PLUGIN_CONF_FILE]]
global_physnet_mtu = 9000

Disabling Next Generation Firewall Tools

DevStack does not properly operate with modern firewall tools. Specifically it will appear as if the guest
VM can access the external network via ICMP, but UDP and TCP packets will not be delivered to the
guest VM. The root cause of the issue is that both ufw (Uncomplicated Firewall) and firewalld (Fedoras
firewall manager) apply firewall rules to all interfaces in the system, rather then per-device. One solution
to this problem is to revert to iptables functionality.

To get a functional firewall configuration for Fedora do the following:

sudo service iptables save
sudo systemctl disable firewalld
sudo systemctl enable iptables
sudo systemctl stop firewalld
sudo systemctl start iptables

To get a functional firewall configuration for distributions containing ufw, disable ufw. Note ufw is
generally not enabled by default in Ubuntu. To disable ufw if it was enabled, do the following:

sudo service iptables save
sudo ufw disable

Configuring Extension Drivers for the ML2 Plugin

Extension drivers for the ML2 plugin are set with the variable Q_ML2_PLUGIN_EXT_DRIVERS, and
includes the port_security extension by default. If you want to remove all the extension drivers (even
port_security), set Q_ML2_PLUGIN_EXT_DRIVERS to blank.

Using Linux Bridge instead of Open vSwitch

The configuration for using the Linux Bridge ML2 driver is fairly straight forward. The Linux Bridge
configuration for DevStack is similar to the Open vSwitch based single interface setup, with small mod-
ifications for the interface mappings.

[[local|localrc]]
HOST_IP=172.18.161.6
SERVICE_HOST=172.18.161.6

(continues on next page)

48 Chapter 2. Contents

DevStack Docs

(continued from previous page)

MYSQL_HOST=172.18.161.6
RABBIT_HOST=172.18.161.6
GLANCE_HOSTPORT=172.18.161.6:9292
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Neutron options
Q_USE_SECGROUP=True
FLOATING_RANGE="172.18.161.0/24"
IPV4_ADDRS_SAFE_TO_USE="10.0.0.0/24"
Q_FLOATING_ALLOCATION_POOL=start=172.18.161.250,end=172.18.161.254
PUBLIC_NETWORK_GATEWAY="172.18.161.1"
PUBLIC_INTERFACE=eth0

Q_USE_PROVIDERNET_FOR_PUBLIC=True

Linuxbridge Settings
Q_AGENT=linuxbridge
LB_PHYSICAL_INTERFACE=eth0
PUBLIC_PHYSICAL_NETWORK=default
LB_INTERFACE_MAPPINGS=default:eth0

Using MacVTap instead of Open vSwitch

Security groups are not supported by the MacVTap agent. Due to that, devstack configures the Noop-
Firewall driver on the compute node.

MacVTap agent does not support l3, dhcp and metadata agent. Due to that you can chose between the
following deployment scenarios:

Single node with provider networks using config drive and external l3, dhcp

This scenario applies, if l3 and dhcp services are provided externally, or if you do not require them.

[[local|localrc]]
HOST_IP=10.0.0.2
SERVICE_HOST=10.0.0.2
MYSQL_HOST=10.0.0.2
RABBIT_HOST=10.0.0.2
ADMIN_PASSWORD=secret
MYSQL_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Q_ML2_PLUGIN_MECHANISM_DRIVERS=macvtap
Q_USE_PROVIDER_NETWORKING=True

enable_plugin neutron https://opendev.org/openstack/neutron

MacVTap agent options

(continues on next page)

2.5. Guides 49

DevStack Docs

(continued from previous page)

Q_AGENT=macvtap
PHYSICAL_NETWORK=default

IPV4_ADDRS_SAFE_TO_USE="203.0.113.0/24"
NETWORK_GATEWAY=203.0.113.1
PROVIDER_SUBNET_NAME="provider_net"
PROVIDER_NETWORK_TYPE="vlan"
SEGMENTATION_ID=2010
USE_SUBNETPOOL=False

[[post-config|/$Q_PLUGIN_CONF_FILE]]
[macvtap]
physical_interface_mappings = $PHYSICAL_NETWORK:eth1

[[post-config|$NOVA_CONF]]
force_config_drive = True

Multi node with MacVTap compute node

This scenario applies, if you require OpenStack provided l3, dhcp or metadata services. Those are hosted
on a separate controller and network node, running some other l2 agent technology (in this example Open
vSwitch). This node needs to be configured for VLAN tenant networks.

For OVS, a similar configuration like described in the OVS Provider Network section can be used. Just
add the following line to this local.conf, which also loads the MacVTap mechanism driver:

[[local|localrc]]
...
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,linuxbridge,macvtap
...

For the MacVTap compute node, use this local.conf:

HOST_IP=10.0.0.3
SERVICE_HOST=10.0.0.2
MYSQL_HOST=10.0.0.2
RABBIT_HOST=10.0.0.2
ADMIN_PASSWORD=secret
MYSQL_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_PASSWORD=secret

Services that a compute node runs
disable_all_services
enable_plugin neutron https://opendev.org/openstack/neutron
ENABLED_SERVICES+=n-cpu,q-agt

MacVTap agent options
Q_AGENT=macvtap
PHYSICAL_NETWORK=default

[[post-config|/$Q_PLUGIN_CONF_FILE]]
[macvtap]
physical_interface_mappings = $PHYSICAL_NETWORK:eth1

50 Chapter 2. Contents

DevStack Docs

2.5.6 Configure DevStack with KVM-based Nested Virtualization

When using virtualization technologies like KVM, one can take advantage of Nested VMX (i.e. the
ability to run KVM on KVM) so that the VMs in cloud (Nova guests) can run relatively faster than with
plain QEMU emulation.

Kernels shipped with Linux distributions doesnt have this enabled by default. This guide outlines the
configuration details to enable nested virtualization in KVM-based environments. And how to setup
DevStack (thatll run in a VM) to take advantage of this.

Nested Virtualization Configuration

Configure Nested KVM for Intel-based Machines

Procedure to enable nested KVM virtualization on Intel-based machines.

Check if the nested KVM Kernel parameter is enabled:

cat /sys/module/kvm_intel/parameters/nested
N

Temporarily remove the KVM intel Kernel module, enable nested virtualization to be persistent across
reboots and add the Kernel module back:

sudo rmmod kvm-intel
sudo sh -c "echo 'options kvm-intel nested=y' >> /etc/modprobe.d/dist.conf"
sudo modprobe kvm-intel

Ensure the Nested KVM Kernel module parameter for Intel is enabled on the host:

cat /sys/module/kvm_intel/parameters/nested
Y

modinfo kvm_intel | grep nested
parm: nested:bool

Start your VM, now it should have KVM capabilities you can verify that by ensuring /dev/kvm
character device is present.

Configure Nested KVM for AMD-based Machines

Procedure to enable nested KVM virtualization on AMD-based machines.

Check if the nested KVM Kernel parameter is enabled:

cat /sys/module/kvm_amd/parameters/nested
0

Temporarily remove the KVM AMD Kernel module, enable nested virtualization to be persistent across
reboots and add the Kernel module back:

sudo rmmod kvm-amd
sudo sh -c "echo 'options kvm-amd nested=1' >> /etc/modprobe.d/dist.conf"
sudo modprobe kvm-amd

2.5. Guides 51

DevStack Docs

Ensure the Nested KVM Kernel module parameter for AMD is enabled on the host:

cat /sys/module/kvm_amd/parameters/nested
1

modinfo kvm_amd | grep -i nested
parm: nested:int

To make the above value persistent across reboots, add an entry in /etc/modprobe.d/dist.conf so it looks
as below:

cat /etc/modprobe.d/dist.conf
options kvm-amd nested=y

Expose Virtualization Extensions to DevStack VM

Edit the VMs libvirt XML configuration via virsh utility:

sudo virsh edit devstack-vm

Add the below snippet to expose the host CPU features to the VM:

<cpu mode='host-passthrough'>
</cpu>

Ensure DevStack VM is Using KVM

Before invoking stack.sh in the VM, ensure that KVM is enabled. This can be verified by check-
ing for the presence of the file /dev/kvm in your VM. If it is present, DevStack will default to
using the config attribute virt_type = kvm in /etc/nova.conf; otherwise, itll fall back to
virt_type=qemu, i.e. plain QEMU emulation.

Optionally, to explicitly set the type of virtualization, to KVM, by the libvirt driver in nova, the below
config attribute can be used in DevStacks local.conf:

LIBVIRT_TYPE=kvm

Once DevStack is configured successfully, verify if the Nova instances are using KVM by noticing the
QEMU CLI invoked by Nova is using the parameter accel=kvm, e.g.:

ps -ef | grep -i qemu
root 29773 1 0 11:24 ? 00:00:00 /usr/bin/qemu-system-x86_
↪→64 -machine accel=kvm [. . .]

52 Chapter 2. Contents

DevStack Docs

2.5.7 Nova and DevStack

This is a rough guide to various configuration parameters for nova running with DevStack.

nova-serialproxy

In Juno, nova implemented a spec to allow read/write access to the serial console of an instance via
nova-serialproxy.

The service can be enabled by adding n-sproxy to ENABLED_SERVICES. Further options can be
enabled via local.conf, e.g.

[[post-config|$NOVA_CONF]]
[serial_console]
#
Options defined in nova.cmd.serialproxy
#

Host on which to listen for incoming requests (string value)
#serialproxy_host=0.0.0.0

Port on which to listen for incoming requests (integer
value)
#serialproxy_port=6083

#
Options defined in nova.console.serial
#

Enable serial console related features (boolean value)
#enabled=false
Do not set this manually. Instead enable the service as
outlined above.

Range of TCP ports to use for serial ports on compute hosts
(string value)
#port_range=10000:20000

Location of serial console proxy. (string value)
#base_url=ws://127.0.0.1:6083/

IP address on which instance serial console should listen
(string value)
#listen=127.0.0.1

The address to which proxy clients (like nova-serialproxy)
should connect (string value)
#proxyclient_address=127.0.0.1

Enabling the service is enough to be functional for a single machine DevStack.

These config options are defined in nova.conf.serial_console.

For more information on OpenStack configuration see the OpenStack Compute Service Configuration
Reference

2.5. Guides 53

https://specs.openstack.org/openstack/nova-specs/specs/juno/implemented/serial-ports.html
https://docs.openstack.org/nova/latest/cli/nova-serialproxy.html
https://opendev.org/openstack/nova/src/master/nova/conf/serial_console.py
https://docs.openstack.org/nova/latest/admin/configuration/index.html
https://docs.openstack.org/nova/latest/admin/configuration/index.html

DevStack Docs

Fake virt driver

Nova has a fake virt driver which can be used for scale testing the control plane services or testing move
operations between fake compute nodes, for example cold/live migration, evacuate and unshelve.

The fake virt driver does not communicate with any hypervisor, it just reports some fake resource in-
ventory values and keeps track of the state of the guests created, moved and deleted. It is not feature-
complete with the compute API but is good enough for most API testing, and is also used within the
nova functional tests themselves so is fairly robust.

Configuration

Set the following in your devstack local.conf:

[[local|localrc]]
VIRT_DRIVER=fake
NUMBER_FAKE_NOVA_COMPUTE=<number>

The NUMBER_FAKE_NOVA_COMPUTE variable controls the number of fake nova-compute services
to run and defaults to 1.

When VIRT_DRIVER=fake is used, devstack will disable quota checking in nova and neutron auto-
matically. However, other services, like cinder, will still enforce quota limits by default.

Scaling

The actual value to use for NUMBER_FAKE_NOVA_COMPUTE depends on factors such as:

• The size of the host (physical or virtualized) on which devstack is running.

• The number of API workers. By default, devstack will run max($nproc/2, 2) workers per
API service. If you are running several fake compute services on a single host, then consider
setting API_WORKERS=1 in local.conf.

In addition, while quota will be disabled in neutron, there is no fake ML2 backend for neutron so
creating fake VMs will still result in real ports being created. To create servers without networking, you
can specify --nic=none when creating the server, for example:

$ openstack --os-compute-api-version 2.37 server create --flavor cirros256
↪→\

--image cirros-0.3.5-x86_64-disk --nic none --wait test-server

Note: --os-compute-api-version greater than or equal to 2.37 is required to use
--nic=none.

To avoid overhead from other services which you may not need, disable them in your local.conf,
for example:

disable_service horizon
disable_service tempest

54 Chapter 2. Contents

https://opendev.org/openstack/nova/src/branch/master/nova/virt/fake.py

DevStack Docs

2.5.8 Devstack with Octavia Load Balancing

Starting with the OpenStack Pike release, Octavia is now a standalone service providing load balancing
services for OpenStack.

This guide will show you how to create a devstack with Octavia API enabled.

Phase 1: Create DevStack + 2 nova instances

First, set up a vm of your choice with at least 8 GB RAM and 16 GB disk space, make sure it is updated.
Install git and any other developer tools you find useful.

Install devstack

git clone https://opendev.org/openstack/devstack
cd devstack/tools
sudo ./create-stack-user.sh
cd ../..
sudo mv devstack /opt/stack
sudo chown -R stack.stack /opt/stack/devstack

This will clone the current devstack code locally, then setup the stack account that devstack services will
run under. Finally, it will move devstack into its default location in /opt/stack/devstack.

Edit your /opt/stack/devstack/local.conf to look like

[[local|localrc]]
enable_plugin octavia https://opendev.org/openstack/octavia
If you are enabling horizon, include the octavia dashboard
enable_plugin octavia-dashboard https://opendev.org/openstack/octavia-
↪→dashboard.git
If you are enabling barbican for TLS offload in Octavia, include it here.
enable_plugin barbican https://opendev.org/openstack/barbican

===== BEGIN localrc =====
DATABASE_PASSWORD=password
ADMIN_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password
RABBIT_PASSWORD=password
Enable Logging
LOGFILE=$DEST/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=True
Pre-requisite
ENABLED_SERVICES=rabbit,mysql,key
Horizon - enable for the OpenStack web GUI
ENABLED_SERVICES+=,horizon
Nova
ENABLED_SERVICES+=,n-api,n-crt,n-cpu,n-cond,n-sch,n-api-meta,n-sproxy
ENABLED_SERVICES+=,placement-api,placement-client
Glance
ENABLED_SERVICES+=,g-api
Neutron
ENABLED_SERVICES+=,q-svc,q-agt,q-dhcp,q-l3,q-meta,neutron
ENABLED_SERVICES+=,octavia,o-cw,o-hk,o-hm,o-api

(continues on next page)

2.5. Guides 55

https://docs.openstack.org/api-ref/load-balancer/v2/index.html

DevStack Docs

(continued from previous page)

Cinder
ENABLED_SERVICES+=,c-api,c-vol,c-sch
Tempest
ENABLED_SERVICES+=,tempest
Barbican - Optionally used for TLS offload in Octavia
ENABLED_SERVICES+=,barbican
===== END localrc =====

Run stack.sh and do some sanity checks

sudo su - stack
cd /opt/stack/devstack
./stack.sh
. ./openrc

openstack network list # should show public and private networks

Create two nova instances that we can use as test http servers:

#create nova instances on private network
openstack server create --image $(openstack image list | awk '/ cirros-.*-
↪→x86_64-.* / {print $2}') --flavor 1 --nic net-id=$(openstack network
↪→list | awk '/ private / {print $2}') node1
openstack server create --image $(openstack image list | awk '/ cirros-.*-
↪→x86_64-.* / {print $2}') --flavor 1 --nic net-id=$(openstack network
↪→list | awk '/ private / {print $2}') node2
openstack server list # should show the nova instances just created

#add secgroup rules to allow ssh etc..
openstack security group rule create default --protocol icmp
openstack security group rule create default --protocol tcp --dst-port
↪→22:22
openstack security group rule create default --protocol tcp --dst-port
↪→80:80

Set up a simple web server on each of these instances. ssh into each instance (username cirros, password
cubswin:) or gocubsgo) and run

MYIP=$(ifconfig eth0|grep 'inet addr'|awk -F: '{print $2}'| awk '{print $1}
↪→')
while true; do echo -e "HTTP/1.0 200 OK\r\n\r\nWelcome to $MYIP" | sudo nc
↪→-l -p 80 ; done&

Phase 2: Create your load balancer

Make sure you have the openstack loadbalancer commands:

pip install python-octaviaclient

Create your load balancer:

openstack loadbalancer create --name lb1 --vip-subnet-id private-subnet
openstack loadbalancer show lb1 # Wait for the provisioning_status to be
↪→ACTIVE.

(continues on next page)

56 Chapter 2. Contents

DevStack Docs

(continued from previous page)

openstack loadbalancer listener create --protocol HTTP --protocol-port 80 -
↪→-name listener1 lb1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be
↪→ACTIVE.
openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --listener
↪→listener1 --protocol HTTP --name pool1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be
↪→ACTIVE.
openstack loadbalancer healthmonitor create --delay 5 --timeout 2 --max-
↪→retries 1 --type HTTP pool1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be
↪→ACTIVE.
openstack loadbalancer member create --subnet-id private-subnet --address
↪→<web server 1 address> --protocol-port 80 pool1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be
↪→ACTIVE.
openstack loadbalancer member create --subnet-id private-subnet --address
↪→<web server 2 address> --protocol-port 80 pool1

Please note: The <web server # address> fields are the IP addresses of the nova servers created in Phase
1. Also note, using the API directly you can do all of the above commands in one API call.

Phase 3: Test your load balancer

openstack loadbalancer show lb1 # Note the vip_address
curl http://<vip_address>
curl http://<vip_address>

This should show the Welcome to <IP> message from each member server.

2.5.9 Deploying DevStack with LDAP

The OpenStack Identity service has the ability to integrate with LDAP. The goal of this guide is to walk
you through setting up an LDAP-backed OpenStack development environment.

Introduction

LDAP support in keystone is read-only. You can use it to back an entire OpenStack deployment to a
single LDAP server, or you can use it to back separate LDAP servers to specific keystone domains.
Users within those domains can authenticate against keystone, assume role assignments, and interact
with other OpenStack services.

2.5. Guides 57

DevStack Docs

Configuration

To deploy an OpenLDAP server, make sure ldap is added to the list of ENABLED_SERVICES in the
local.conf file:

enable_service ldap

Devstack will require a password to set up an LDAP administrator. This administrative user is also the
bind user specified in keystones configuration files, similar to a keystone user for MySQL databases.

Devstack will prompt you for a password when running stack.sh if LDAP_PASSWORD is not set.
You can add the following to your local.conf:

LDAP_PASSWORD=super_secret_password

At this point, devstack should have everything it needs to deploy OpenLDAP, bootstrap it with a minimal
set of users, and configure it to back to a domain in keystone. You can do this by running the stack.sh
script:

$./stack.sh

Once stack.sh completes, you should have a running keystone deployment with a basic set of users.
It is important to note that not all users will live within LDAP. Instead, keystone will back different
domains to different identity sources. For example, the default domain will be backed by MySQL.
This is usually where youll find your administrative and services users. If you query keystone for a list
of domains, you should see a domain called Users. This domain is set up by devstack and points to
OpenLDAP.

User Management

Initially, there will only be two users in the LDAP server. The Manager user is used by keystone to talk
to OpenLDAP. The demo user is a generic user that you should be able to see if you query keystone for
users within the Users domain. Both of these users were added to LDAP using basic LDAP utilities
installed by devstack (e.g. ldap-utils) and LDIFs. The LDIFs used to create these users can be
found in devstack/files/ldap/.

Listing Users

To list all users in LDAP directly, you can use ldapsearch with the LDAP user bootstrapped by
devstack:

$ ldapsearch -x -w LDAP_PASSWORD -D cn=Manager,dc=openstack,dc=org \
-H ldap://localhost -b dc=openstack,dc=org

As you can see, devstack creates an OpenStack domain called openstack.org as a container for the
Manager and demo users.

58 Chapter 2. Contents

DevStack Docs

Creating Users

Since keystones LDAP integration is read-only, users must be added directly to LDAP. Users added
directly to OpenLDAP will automatically be placed into the Users domain.

LDIFs can be used to add users via the command line. The following is an example LDIF that can be
used to create a new LDAP user, lets call it peter.ldif.in:

dn: cn=peter,ou=Users,dc=openstack,dc=org
cn: peter
displayName: Peter Quill
givenName: Peter Quill
mail: starlord@openstack.org
objectClass: inetOrgPerson
objectClass: top
sn: peter
uid: peter
userPassword: im-a-better-pilot-than-rocket

Now, we use the Manager user to create a user for Peter in LDAP:

$ ldapadd -x -w LDAP_PASSWORD -D cn=Manager,dc=openstack,dc=org \
-H ldap://localhost -c -f peter.ldif.in

We should be able to assign Peter roles on projects. After Peter has some level of authorization, he
should be able to login to Horizon by specifying the Users domain and using his peter username
and password. Authorization can be given to Peter by creating a project within the Users domain and
giving him a role assignment on that project:

$ openstack project create --domain Users awesome-mix-vol-1
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	
domain_id	61a2de23107c46bea2d758167af707b9
enabled	True
id	7d422396d54945cdac8fe1e8e32baec4
is_domain	False
name	awesome-mix-vol-1
parent_id	61a2de23107c46bea2d758167af707b9
tags	[]
+-------------+----------------------------------+
$ openstack role add --user peter --user-domain Users \

--project awesome-mix-vol-1 --project-domain Users admin

Deleting Users

We can use the same basic steps to remove users from LDAP, but instead of using LDIFs, we can just
pass the dn of the user we want to delete:

$ ldapdelete -x -w LDAP_PASSWORD -D cn=Manager,dc=openstack,dc=org \
-H ldap://localhost cn=peter,ou=Users,dc=openstack,dc=org

2.5. Guides 59

DevStack Docs

Group Management

Like users, groups are considered specific identities. This means that groups also fall under the same
read-only constraints as users and they can be managed directly with LDAP in the same way users are
with LDIFs.

Adding Groups

Lets define a specific group with the following LDIF:

dn: cn=guardians,ou=UserGroups,dc=openstack,dc=org
objectClass: groupOfNames
cn: guardians
description: Guardians of the Galaxy
member: cn=peter,dc=openstack,dc=org
member: cn=gamora,dc=openstack,dc=org
member: cn=drax,dc=openstack,dc=org
member: cn=rocket,dc=openstack,dc=org
member: cn=groot,dc=openstack,dc=org

We can create the group using the same ldapadd command as we did with users:

$ ldapadd -x -w LDAP_PASSWORD -D cn=Manager,dc=openstack,dc=org \
-H ldap://localhost -c -f guardian-group.ldif.in

If we check the group membership in Horizon, well see that only Peter is a member of the guardians
group, despite the whole crew being specified in the LDIF. Once those accounts are created in LDAP,
they will automatically be added to the guardians group. They will also assume any role assignments
given to the guardians group.

Deleting Groups

Just like users, groups can be deleted using the dn:

$ ldapdelete -x -w LDAP_PASSWORD -D cn=Manager,dc=openstack,dc=org \
-H ldap://localhost cn=guardians,ou=UserGroups,dc=openstack,dc=org

Note that this operation will not remove users within that group. It will only remove the group itself and
the memberships any users had with that group.

2.5.10 All-In-One Single VM

Run OpenStack in a VM. The VMs launched in your cloud will be slow as they are running in QEMU
(emulation), but it is useful if you dont have spare hardware laying around. [Read]

60 Chapter 2. Contents

DevStack Docs

2.5.11 All-In-One Single Machine

Run OpenStack on dedicated hardware This can include a server-class machine or a laptop at home.
[Read]

2.5.12 All-In-One LXC Container

Run OpenStack in a LXC container. Beneficial for intermediate and advanced users. The VMs launched
in this cloud will be fully accelerated but not all OpenStack features are supported. [Read]

2.5.13 Multi-Node Lab

Setup a multi-node cluster with dedicated VLANs for VMs & Management. [Read]

2.5.14 DevStack with Neutron Networking

Building a DevStack cluster with Neutron Networking. This guide is meant for building lab environ-
ments with a dedicated control node and multiple compute nodes.

2.5.15 DevStack with KVM-based Nested Virtualization

Procedure to setup DevStack with KVM-based Nested Virtualization. With this setup, Nova instances
will be more performant than with plain QEMU emulation.

2.5.16 Nova and devstack

Guide to working with nova features Nova and devstack.

2.5.17 Configure Load-Balancer Version 2

Guide on Configure Load-Balancer Version 2.

2.5.18 Deploying DevStack with LDAP

Guide to setting up DevStack with LDAP.

2.6 Contributing to DevStack

2.6.1 General

DevStack is written in UNIX shell script. It uses a number of bash-isms and so is limited to Bash
(version 4 and up) and compatible shells. Shell script was chosen because it best illustrates the steps
used to set up and interact with OpenStack components.

2.6. Contributing to DevStack 61

DevStack Docs

DevStacks official repository is located on opendev.org at https://opendev.org/openstack/devstack. Be-
sides the master branch that tracks the OpenStack trunk branches a separate branch is maintained for all
OpenStack releases starting with Diablo (stable/diablo).

Contributing code to DevStack follows the usual OpenStack process as described in How To Contribute
in the OpenStack wiki. DevStacks LaunchPad project contains the usual links for blueprints, bugs, etc.

The Gerrit review queue is used for all commits.

The primary script in DevStack is stack.sh, which performs the bulk of the work for DevStacks use
cases. There is a subscript functions that contains generally useful shell functions and is used by a
number of the scripts in DevStack.

A number of additional scripts can be found in the tools directory that may be useful in supporting
DevStack installations. Of particular note are info.sh to collect and report information about the
installed system, and install_prereqs.sh that handles installation of the prerequisite packages
for DevStack. It is suitable, for example, to pre-load a system for making a snapshot.

2.6.2 Repo Layout

The DevStack repo generally keeps all of the primary scripts at the root level.

doc - Contains the Sphinx source for the documentation. A complete doc build can be run with tox
-edocs.

extras.d - Contains the dispatch scripts called by the hooks in stack.sh, unstack.sh and
clean.sh. See the plugins docs for more information.

files - Contains a variety of otherwise lost files used in configuring and operating DevStack. This
includes templates for configuration files and the system dependency information. This is also where
image files are downloaded and expanded if necessary.

lib - Contains the sub-scripts specific to each project. This is where the work of managing a projects
services is located. Each top-level project (Keystone, Nova, etc) has a file here. Additionally there are
some for system services and project plugins. These variables and functions are also used by related
projects, such as Grenade, to manage a DevStack installation.

samples - Contains a sample of the local files not included in the DevStack repo.

tests - the DevStack test suite is rather sparse, mostly consisting of test of specific fragile functions
in the functions and functions-common files.

tools - Contains a collection of stand-alone scripts. While these may reference the top-level DevStack
configuration they can generally be run alone.

2.6.3 Scripts

DevStack scripts should generally begin by calling env(1) in the shebang line:

#!/usr/bin/env bash

Sometimes the script needs to know the location of the DevStack install directory. TOP_DIR should
always point there, even if the script itself is located in a subdirectory:

Keep track of the current DevStack directory.
TOP_DIR=$(cd $(dirname "$0") && pwd)

62 Chapter 2. Contents

https://opendev.org/openstack/devstack
https://docs.openstack.org/infra/manual/developers.html
https://launchpad.net/devstack
https://review.opendev.org/#/q/project:openstack/devstack

DevStack Docs

Many scripts will utilize shared functions from the functions file. There are also rc files (stackrc
and openrc) that are often included to set the primary configuration of the user environment:

Keep track of the current DevStack directory.
TOP_DIR=$(cd $(dirname "$0") && pwd)

Import common functions
source $TOP_DIR/functions

Import configuration
source $TOP_DIR/openrc

stack.sh is a rather large monolithic script that flows through from beginning to end. It has been
broken down into project-specific subscripts (as noted above) located in lib to make stack.sh more
manageable and to promote code reuse.

These library sub-scripts have a number of fixed entry points, some of which may just be stubs. These
entry points will be called by stack.sh in the following order:

install_XXXX
configure_XXXX
init_XXXX
start_XXXX
stop_XXXX
cleanup_XXXX

There is a sub-script template in lib/templates to be used in creating new service sub-scripts. The
comments in <> are meta comments describing how to use the template and should be removed.

In order to show the dependencies and conditions under which project functions are executed the top-
level conditional testing for things like is_service_enabled should be done in stack.sh. There
may be nested conditionals that need to be in the sub-script, such as testing for keystone being enabled
in configure_swift().

2.6.4 stackrc

stackrc is the global configuration file for DevStack. It is responsible for calling local.conf (or
localrc if it exists) so local user configuration is recognized.

The criteria for what belongs in stackrc can be vaguely summarized as follows:

• All project repositories and branches handled directly in stack.sh

• Global configuration that may be referenced in local.conf, i.e. DEST, DATA_DIR

• Global service configuration like ENABLED_SERVICES

• Variables used by multiple services that do not have a clear owner, i.e.
VOLUME_BACKING_FILE_SIZE (nova-compute and cinder) or PUBLIC_NETWORK_NAME
(only neutron but formerly nova-network too)

• Variables that can not be cleanly declared in a project file due to dependency ordering, i.e. the
order of sourcing the project files can not be changed for other reasons but the earlier file needs to
dereference a variable set in the later file. This should be rare.

Also, variable declarations in stackrc before local.conf is sourced do NOT allow overriding (the
form FOO=${FOO:-baz}); if they did then they can already be changed in local.conf and can

2.6. Contributing to DevStack 63

DevStack Docs

stay in the project file.

2.6.5 Documentation

The DevStack repo now contains all of the static pages of devstack.org in the doc/source directory.
The OpenStack CI system rebuilds the docs after every commit and updates devstack.org (now a redirect
to https://docs.openstack.org/devstack/latest/).

All of the scripts are processed with shocco to render them with the comments as text describing the
script below. For this reason we tend to be a little verbose in the comments _ABOVE_ the code they
pertain to. Shocco also supports Markdown formatting in the comments; use it sparingly. Specifically,
stack.sh uses Markdown headers to divide the script into logical sections.

The script used to drive <code>shocco</code> is <code>tools/build_docs.sh</code>. The complete
docs build is also handled with <code>tox -edocs</code> per the OpenStack project standard.

Bash Style Guidelines

DevStack defines a bash set of best practices for maintaining large collections of bash scripts. These
should be considered as part of the review process.

DevStack uses the bashate style checker to enforce basic guidelines, similar to pep8 and flake8 tools for
Python. The list below is not complete for what bashate checks, nor is it all checked by bashate. So
many lines of code, so little time.

2.6.6 Whitespace Rules

• lines should not include trailing whitespace

• there should be no hard tabs in the file

• indents are 4 spaces, and all indentation should be some multiple of them

2.6.7 Control Structure Rules

• then should be on the same line as the if

• do should be on the same line as the for

Example:

if [[-r $TOP_DIR/local.conf]]; then
LRC=$(get_meta_section_files $TOP_DIR/local.conf local)
for lfile in $LRC; do

if [["$lfile" == "localrc"]]; then
if [[-r $TOP_DIR/localrc]]; then

warn $LINENO "localrc and local.conf:[[local]] both exist,
↪→using localrc"

else
echo "# Generated file, do not edit" >$TOP_DIR/.localrc.

↪→auto
get_meta_section $TOP_DIR/local.conf local $lfile >>$TOP_

↪→DIR/.localrc.auto

(continues on next page)

64 Chapter 2. Contents

https://docs.openstack.org/devstack/latest/
https://github.com/dtroyer/shocco/tree/rst_support
https://pypi.org/project/bashate/

DevStack Docs

(continued from previous page)

fi
fi

done
fi

2.6.8 Variables and Functions

• functions should be used whenever possible for clarity

• functions should use local variables as much as possible to ensure they are isolated from the
rest of the environment

• local variables should be lower case, global variables should be upper case

• function names should_have_underscores, NotCamelCase.

• functions should be declared as per the regex ^function foo {$ with code starting on the next line

2.6.9 Review Criteria

There are some broad criteria that will be followed when reviewing your change

• Is it passing tests your change will not be reviewed thoroughly unless the official CI has run
successfully against it.

• Does this belong in DevStack DevStack reviewers have a default position of no but are ready to
be convinced by your change.

For very large changes, you should consider the plugins system to see if your code is better ab-
stracted from the main repository.

For smaller changes, you should always consider if the change can be encapsulated by per-user set-
tings in local.conf. A common example is adding a simple config-option to an ini file. Spe-
cific flags are not usually required for this, although adding documentation about how to achieve
a larger goal (which might include turning on various settings, etc) is always welcome.

• Work-arounds often things get broken and DevStack can be in a position to fix them. Work-
arounds are fine, but should be presented in the context of fixing the root-cause of the problem.
This means it is well-commented in the code and the change-log and mostly likely includes links
to changes or bugs that fix the underlying problem.

• Should this be upstream DevStack generally does not override default choices provided by
projects and attempts to not unexpectedly modify behavior.

• Context in commit messages DevStack touches many different areas and reviewers need context
around changes to make good decisions. We also always want it to be clear to someone perhaps
even years from now why we were motivated to make a change at the time.

2.6. Contributing to DevStack 65

DevStack Docs

2.6.10 Making Changes, Testing, and CI

Changes to Devstack are tested by automated continuous integration jobs that run on a variety of Linux
Distros using a handful of common configurations. What this means is that every change to Devstack
is self testing. One major benefit of this is that developers do not typically need to add new non voting
test jobs to add features to Devstack. Instead the features can be added, then if testing passes with the
feature enabled the change is ready to merge (pending code review).

A concrete example of this was the switch from screen based service management to systemd based
service management. No new jobs were created for this. Instead the features were added to devstack,
tested locally and in CI using a change that enabled the feature, then once the enabling change was
passing and the new behavior communicated and documented it was merged.

Using this process has been proven to be effective and leads to quicker implementation of desired fea-
tures.

2.7 DevStack Networking

An important part of the DevStack experience is networking that works by default for created guests.
This might not be optimal for your particular testing environment, so this document tries its best to
explain whats going on.

2.7.1 Defaults

If you dont specify any configuration you will get the following:

• neutron (including l3 with openvswitch)

• private project networks for each openstack project

• a floating ip range of 172.24.4.0/24 with the gateway of 172.24.4.1

• the demo project configured with fixed ips on a subnet allocated from the 10.0.0.0/22 range

• a br-ex interface controlled by neutron for all its networking (this is not connected to any phys-
ical interfaces).

• DNS resolution for guests based on the resolv.conf for your host

• an ip masq rule that allows created guests to route out

This creates an environment which is isolated to the single host. Guests can get to the external network
for package updates. Tempest tests will work in this environment.

Note: By default all OpenStack environments have security group rules which block all inbound packets
to guests. If you want to be able to ssh / ping your created guests you should run the following.

openstack security group rule create --proto icmp --dst-port 0 default
openstack security group rule create --proto tcp --dst-port 22 default

66 Chapter 2. Contents

DevStack Docs

2.7.2 Locally Accessible Guests

If you want to make your guests accessible from other machines on your network, we have to connect
br-ex to a physical interface.

Dedicated Guest Interface

If you have 2 or more interfaces on your devstack server, you can allocate an interface to neutron to fully
manage. This should not be the same interface you use to ssh into the devstack server itself.

This is done by setting with the PUBLIC_INTERFACE attribute.

[[local|localrc]]
PUBLIC_INTERFACE=eth1

That will put all layer 2 traffic from your guests onto the main network. When running in this mode the
ip masq rule is not added in your devstack, you are responsible for making routing work on your local
network.

Shared Guest Interface

Warning: This is not a recommended configuration. Because of interactions between ovs and
bridging, if you reboot your box with active networking you may lose network connectivity to your
system.

If you need your guests accessible on the network, but only have 1 interface (using something like a
NUC), you can share your one network. But in order for this to work you need to manually set a lot of
addresses, and have them all exactly correct.

[[local|localrc]]
PUBLIC_INTERFACE=eth0
HOST_IP=10.42.0.52
FLOATING_RANGE=10.42.0.0/24
PUBLIC_NETWORK_GATEWAY=10.42.0.1
Q_FLOATING_ALLOCATION_POOL=start=10.42.0.250,end=10.42.0.254

In order for this scenario to work the floating ip network must match the default networking on your
server. This breaks HOST_IP detection, as we exclude the floating range by default, so you have to
specify that manually.

The PUBLIC_NETWORK_GATEWAY is the gateway that server would normally use to get off the net-
work. Q_FLOATING_ALLOCATION_POOL controls the range of floating ips that will be handed out.
As we are sharing your existing network, youll want to give it a slice that your local dhcp server is not
allocating. Otherwise you could easily have conflicting ip addresses, and cause havoc with your local
network.

2.7. DevStack Networking 67

DevStack Docs

2.7.3 Private Network Addressing

The private networks addresses are controlled by the IPV4_ADDRS_SAFE_TO_USE and the
IPV6_ADDRS_SAFE_TO_USE variables. This allows users to specify one single variable of safe in-
ternal IPs to use that will be referenced whether or not subnetpools are in use.

For IPv4, FIXED_RANGE and SUBNETPOOL_PREFIX_V4 will just default to the value of
IPV4_ADDRS_SAFE_TO_USE directly.

For IPv6, FIXED_RANGE_V6 will default to the first /64 of the value of
IPV6_ADDRS_SAFE_TO_USE. If IPV6_ADDRS_SAFE_TO_USE is /64 or smaller,
FIXED_RANGE_V6 will just use the value of that directly. SUBNETPOOL_PREFIX_V6 will
just default to the value of IPV6_ADDRS_SAFE_TO_USE directly.

2.8 Overview

DevStack has evolved to support a large number of configuration options and alternative platforms and
support services. That evolution has grown well beyond what was originally intended and the majority
of configuration combinations are rarely, if ever, tested. DevStack is not a general OpenStack installer
and was never meant to be everything to everyone.

Below is a list of what is specifically is supported (read that as tested) going forward.

2.8.1 Supported Components

Base OS

The OpenStack Technical Committee (TC) has defined the current CI strategy to include the latest
Ubuntu release and the latest RHEL release.

• Ubuntu: current LTS release plus current development release

• Fedora: current release plus previous release

• RHEL/CentOS: current major release

• Other OS platforms may continue to be included but the maintenance of those platforms shall not
be assumed simply due to their presence. Having a listed point-of-contact for each additional OS
will greatly increase its chance of being well-maintained.

• Patches for Ubuntu and/or Fedora will not be held up due to side-effects on other OS platforms.

Databases

As packaged by the host OS

• MySQL

68 Chapter 2. Contents

DevStack Docs

Queues

As packaged by the host OS

• Rabbit

Web Server

As packaged by the host OS

• Apache

OpenStack Network

• Neutron: A basic configuration approximating the original FlatDHCP mode using linuxbridge or
OpenVSwitch.

Services

The default services configured by DevStack are Identity (keystone), Object Storage (swift), Image Ser-
vice (glance), Block Storage (cinder), Compute (nova), Placement (placement), Networking (neutron),
Dashboard (horizon).

Additional services not included directly in DevStack can be tied in to stack.sh using the plugin
mechanism to call scripts that perform the configuration and startup of the service.

Node Configurations

• single node

• multi-node configurations as are tested by the gate

2.9 DevStack Plugin Registry

The following list is an automatically-generated collection of available DevStack plugins. This includes,
but is not limited to, official OpenStack projects.

Plugin Name URL
openstack/aodh https://opendev.org/openstack/aodh
openstack/barbican https://opendev.org/openstack/barbican
openstack/blazar https://opendev.org/openstack/blazar
openstack/ceilometer https://opendev.org/openstack/ceilometer
openstack/ceilometer-powervm https://opendev.org/openstack/ceilometer-powervm
openstack/cinderlib https://opendev.org/openstack/cinderlib
openstack/cloudkitty https://opendev.org/openstack/cloudkitty
openstack/cyborg https://opendev.org/openstack/cyborg
openstack/designate https://opendev.org/openstack/designate
openstack/devstack-plugin-amqp1 https://opendev.org/openstack/devstack-plugin-amqp1

continues on next page

2.9. DevStack Plugin Registry 69

https://opendev.org/openstack/aodh
https://opendev.org/openstack/barbican
https://opendev.org/openstack/blazar
https://opendev.org/openstack/ceilometer
https://opendev.org/openstack/ceilometer-powervm
https://opendev.org/openstack/cinderlib
https://opendev.org/openstack/cloudkitty
https://opendev.org/openstack/cyborg
https://opendev.org/openstack/designate
https://opendev.org/openstack/devstack-plugin-amqp1

DevStack Docs

Table 1 – continued from previous page
Plugin Name URL
openstack/devstack-plugin-ceph https://opendev.org/openstack/devstack-plugin-ceph
openstack/devstack-plugin-container https://opendev.org/openstack/devstack-plugin-container
openstack/devstack-plugin-kafka https://opendev.org/openstack/devstack-plugin-kafka
openstack/devstack-plugin-nfs https://opendev.org/openstack/devstack-plugin-nfs
openstack/devstack-plugin-open-cas https://opendev.org/openstack/devstack-plugin-open-cas
openstack/devstack-plugin-pika https://opendev.org/openstack/devstack-plugin-pika
openstack/devstack-plugin-zmq https://opendev.org/openstack/devstack-plugin-zmq
openstack/ec2-api https://opendev.org/openstack/ec2-api
openstack/freezer https://opendev.org/openstack/freezer
openstack/freezer-api https://opendev.org/openstack/freezer-api
openstack/freezer-tempest-plugin https://opendev.org/openstack/freezer-tempest-plugin
openstack/freezer-web-ui https://opendev.org/openstack/freezer-web-ui
openstack/heat https://opendev.org/openstack/heat
openstack/heat-dashboard https://opendev.org/openstack/heat-dashboard
openstack/ironic https://opendev.org/openstack/ironic
openstack/ironic-inspector https://opendev.org/openstack/ironic-inspector
openstack/ironic-prometheus-exporter https://opendev.org/openstack/ironic-prometheus-exporter
openstack/ironic-ui https://opendev.org/openstack/ironic-ui
openstack/karbor https://opendev.org/openstack/karbor
openstack/karbor-dashboard https://opendev.org/openstack/karbor-dashboard
openstack/keystone https://opendev.org/openstack/keystone
openstack/kuryr-kubernetes https://opendev.org/openstack/kuryr-kubernetes
openstack/kuryr-libnetwork https://opendev.org/openstack/kuryr-libnetwork
openstack/kuryr-tempest-plugin https://opendev.org/openstack/kuryr-tempest-plugin
openstack/magnum https://opendev.org/openstack/magnum
openstack/magnum-ui https://opendev.org/openstack/magnum-ui
openstack/manila https://opendev.org/openstack/manila
openstack/manila-tempest-plugin https://opendev.org/openstack/manila-tempest-plugin
openstack/manila-ui https://opendev.org/openstack/manila-ui
openstack/masakari https://opendev.org/openstack/masakari
openstack/mistral https://opendev.org/openstack/mistral
openstack/monasca-analytics https://opendev.org/openstack/monasca-analytics
openstack/monasca-api https://opendev.org/openstack/monasca-api
openstack/monasca-ceilometer https://opendev.org/openstack/monasca-ceilometer
openstack/monasca-events-api https://opendev.org/openstack/monasca-events-api
openstack/monasca-log-api https://opendev.org/openstack/monasca-log-api
openstack/monasca-tempest-plugin https://opendev.org/openstack/monasca-tempest-plugin
openstack/monasca-transform https://opendev.org/openstack/monasca-transform
openstack/murano https://opendev.org/openstack/murano
openstack/networking-bagpipe https://opendev.org/openstack/networking-bagpipe
openstack/networking-baremetal https://opendev.org/openstack/networking-baremetal
openstack/networking-bgpvpn https://opendev.org/openstack/networking-bgpvpn
openstack/networking-generic-switch https://opendev.org/openstack/networking-generic-switch
openstack/networking-hyperv https://opendev.org/openstack/networking-hyperv
openstack/networking-l2gw https://opendev.org/openstack/networking-l2gw
openstack/networking-midonet https://opendev.org/openstack/networking-midonet
openstack/networking-odl https://opendev.org/openstack/networking-odl

continues on next page

70 Chapter 2. Contents

https://opendev.org/openstack/devstack-plugin-ceph
https://opendev.org/openstack/devstack-plugin-container
https://opendev.org/openstack/devstack-plugin-kafka
https://opendev.org/openstack/devstack-plugin-nfs
https://opendev.org/openstack/devstack-plugin-open-cas
https://opendev.org/openstack/devstack-plugin-pika
https://opendev.org/openstack/devstack-plugin-zmq
https://opendev.org/openstack/ec2-api
https://opendev.org/openstack/freezer
https://opendev.org/openstack/freezer-api
https://opendev.org/openstack/freezer-tempest-plugin
https://opendev.org/openstack/freezer-web-ui
https://opendev.org/openstack/heat
https://opendev.org/openstack/heat-dashboard
https://opendev.org/openstack/ironic
https://opendev.org/openstack/ironic-inspector
https://opendev.org/openstack/ironic-prometheus-exporter
https://opendev.org/openstack/ironic-ui
https://opendev.org/openstack/karbor
https://opendev.org/openstack/karbor-dashboard
https://opendev.org/openstack/keystone
https://opendev.org/openstack/kuryr-kubernetes
https://opendev.org/openstack/kuryr-libnetwork
https://opendev.org/openstack/kuryr-tempest-plugin
https://opendev.org/openstack/magnum
https://opendev.org/openstack/magnum-ui
https://opendev.org/openstack/manila
https://opendev.org/openstack/manila-tempest-plugin
https://opendev.org/openstack/manila-ui
https://opendev.org/openstack/masakari
https://opendev.org/openstack/mistral
https://opendev.org/openstack/monasca-analytics
https://opendev.org/openstack/monasca-api
https://opendev.org/openstack/monasca-ceilometer
https://opendev.org/openstack/monasca-events-api
https://opendev.org/openstack/monasca-log-api
https://opendev.org/openstack/monasca-tempest-plugin
https://opendev.org/openstack/monasca-transform
https://opendev.org/openstack/murano
https://opendev.org/openstack/networking-bagpipe
https://opendev.org/openstack/networking-baremetal
https://opendev.org/openstack/networking-bgpvpn
https://opendev.org/openstack/networking-generic-switch
https://opendev.org/openstack/networking-hyperv
https://opendev.org/openstack/networking-l2gw
https://opendev.org/openstack/networking-midonet
https://opendev.org/openstack/networking-odl

DevStack Docs

Table 1 – continued from previous page
Plugin Name URL
openstack/networking-powervm https://opendev.org/openstack/networking-powervm
openstack/networking-sfc https://opendev.org/openstack/networking-sfc
openstack/neutron https://opendev.org/openstack/neutron
openstack/neutron-dynamic-routing https://opendev.org/openstack/neutron-dynamic-routing
openstack/neutron-tempest-plugin https://opendev.org/openstack/neutron-tempest-plugin
openstack/neutron-vpnaas https://opendev.org/openstack/neutron-vpnaas
openstack/neutron-vpnaas-dashboard https://opendev.org/openstack/neutron-vpnaas-dashboard
openstack/nova-powervm https://opendev.org/openstack/nova-powervm
openstack/octavia https://opendev.org/openstack/octavia
openstack/octavia-dashboard https://opendev.org/openstack/octavia-dashboard
openstack/octavia-tempest-plugin https://opendev.org/openstack/octavia-tempest-plugin
openstack/openstacksdk https://opendev.org/openstack/openstacksdk
openstack/os-loganalyze https://opendev.org/openstack/os-loganalyze
openstack/osprofiler https://opendev.org/openstack/osprofiler
openstack/oswin-tempest-plugin https://opendev.org/openstack/oswin-tempest-plugin
openstack/ovn-octavia-provider https://opendev.org/openstack/ovn-octavia-provider
openstack/panko https://opendev.org/openstack/panko
openstack/patrole https://opendev.org/openstack/patrole
openstack/qinling https://opendev.org/openstack/qinling
openstack/qinling-dashboard https://opendev.org/openstack/qinling-dashboard
openstack/rally-openstack https://opendev.org/openstack/rally-openstack
openstack/sahara https://opendev.org/openstack/sahara
openstack/sahara-dashboard https://opendev.org/openstack/sahara-dashboard
openstack/searchlight https://opendev.org/openstack/searchlight
openstack/searchlight-ui https://opendev.org/openstack/searchlight-ui
openstack/senlin https://opendev.org/openstack/senlin
openstack/shade https://opendev.org/openstack/shade
openstack/solum https://opendev.org/openstack/solum
openstack/storlets https://opendev.org/openstack/storlets
openstack/tacker https://opendev.org/openstack/tacker
openstack/telemetry-tempest-plugin https://opendev.org/openstack/telemetry-tempest-plugin
openstack/trove https://opendev.org/openstack/trove
openstack/trove-dashboard https://opendev.org/openstack/trove-dashboard
openstack/vitrage https://opendev.org/openstack/vitrage
openstack/vitrage-dashboard https://opendev.org/openstack/vitrage-dashboard
openstack/vitrage-tempest-plugin https://opendev.org/openstack/vitrage-tempest-plugin
openstack/watcher https://opendev.org/openstack/watcher
openstack/watcher-dashboard https://opendev.org/openstack/watcher-dashboard
openstack/whitebox-tempest-plugin https://opendev.org/openstack/whitebox-tempest-plugin
openstack/zaqar https://opendev.org/openstack/zaqar
openstack/zaqar-ui https://opendev.org/openstack/zaqar-ui
openstack/zun https://opendev.org/openstack/zun
openstack/zun-ui https://opendev.org/openstack/zun-ui
performa/os-faults https://opendev.org/performa/os-faults
starlingx/config https://opendev.org/starlingx/config
starlingx/fault https://opendev.org/starlingx/fault
starlingx/ha https://opendev.org/starlingx/ha

continues on next page

2.9. DevStack Plugin Registry 71

https://opendev.org/openstack/networking-powervm
https://opendev.org/openstack/networking-sfc
https://opendev.org/openstack/neutron
https://opendev.org/openstack/neutron-dynamic-routing
https://opendev.org/openstack/neutron-tempest-plugin
https://opendev.org/openstack/neutron-vpnaas
https://opendev.org/openstack/neutron-vpnaas-dashboard
https://opendev.org/openstack/nova-powervm
https://opendev.org/openstack/octavia
https://opendev.org/openstack/octavia-dashboard
https://opendev.org/openstack/octavia-tempest-plugin
https://opendev.org/openstack/openstacksdk
https://opendev.org/openstack/os-loganalyze
https://opendev.org/openstack/osprofiler
https://opendev.org/openstack/oswin-tempest-plugin
https://opendev.org/openstack/ovn-octavia-provider
https://opendev.org/openstack/panko
https://opendev.org/openstack/patrole
https://opendev.org/openstack/qinling
https://opendev.org/openstack/qinling-dashboard
https://opendev.org/openstack/rally-openstack
https://opendev.org/openstack/sahara
https://opendev.org/openstack/sahara-dashboard
https://opendev.org/openstack/searchlight
https://opendev.org/openstack/searchlight-ui
https://opendev.org/openstack/senlin
https://opendev.org/openstack/shade
https://opendev.org/openstack/solum
https://opendev.org/openstack/storlets
https://opendev.org/openstack/tacker
https://opendev.org/openstack/telemetry-tempest-plugin
https://opendev.org/openstack/trove
https://opendev.org/openstack/trove-dashboard
https://opendev.org/openstack/vitrage
https://opendev.org/openstack/vitrage-dashboard
https://opendev.org/openstack/vitrage-tempest-plugin
https://opendev.org/openstack/watcher
https://opendev.org/openstack/watcher-dashboard
https://opendev.org/openstack/whitebox-tempest-plugin
https://opendev.org/openstack/zaqar
https://opendev.org/openstack/zaqar-ui
https://opendev.org/openstack/zun
https://opendev.org/openstack/zun-ui
https://opendev.org/performa/os-faults
https://opendev.org/starlingx/config
https://opendev.org/starlingx/fault
https://opendev.org/starlingx/ha

DevStack Docs

Table 1 – continued from previous page
Plugin Name URL
starlingx/integ https://opendev.org/starlingx/integ
starlingx/metal https://opendev.org/starlingx/metal
starlingx/nfv https://opendev.org/starlingx/nfv
starlingx/update https://opendev.org/starlingx/update
vexxhost/openstack-operator https://opendev.org/vexxhost/openstack-operator
x/almanach https://opendev.org/x/almanach
x/apmec https://opendev.org/x/apmec
x/bilean https://opendev.org/x/bilean
x/broadview-collector https://opendev.org/x/broadview-collector
x/collectd-openstack-plugins https://opendev.org/x/collectd-openstack-plugins
x/devstack-plugin-additional-pkg-repos https://opendev.org/x/devstack-plugin-additional-pkg-repos
x/devstack-plugin-glusterfs https://opendev.org/x/devstack-plugin-glusterfs
x/devstack-plugin-hdfs https://opendev.org/x/devstack-plugin-hdfs
x/devstack-plugin-libvirt-qemu https://opendev.org/x/devstack-plugin-libvirt-qemu
x/devstack-plugin-mariadb https://opendev.org/x/devstack-plugin-mariadb
x/devstack-plugin-vmax https://opendev.org/x/devstack-plugin-vmax
x/drbd-devstack https://opendev.org/x/drbd-devstack
x/fenix https://opendev.org/x/fenix
x/gce-api https://opendev.org/x/gce-api
x/glare https://opendev.org/x/glare
x/group-based-policy https://opendev.org/x/group-based-policy
x/gyan https://opendev.org/x/gyan
x/horizon-mellanox https://opendev.org/x/horizon-mellanox
x/ironic-staging-drivers https://opendev.org/x/ironic-staging-drivers
x/kingbird https://opendev.org/x/kingbird
x/meteos https://opendev.org/x/meteos
x/meteos-ui https://opendev.org/x/meteos-ui
x/mixmatch https://opendev.org/x/mixmatch
x/mogan https://opendev.org/x/mogan
x/mogan-ui https://opendev.org/x/mogan-ui
x/networking-6wind https://opendev.org/x/networking-6wind
x/networking-ansible https://opendev.org/x/networking-ansible
x/networking-arista https://opendev.org/x/networking-arista
x/networking-brocade https://opendev.org/x/networking-brocade
x/networking-cisco https://opendev.org/x/networking-cisco
x/networking-cumulus https://opendev.org/x/networking-cumulus
x/networking-dpm https://opendev.org/x/networking-dpm
x/networking-fortinet https://opendev.org/x/networking-fortinet
x/networking-hpe https://opendev.org/x/networking-hpe
x/networking-huawei https://opendev.org/x/networking-huawei
x/networking-infoblox https://opendev.org/x/networking-infoblox
x/networking-lagopus https://opendev.org/x/networking-lagopus
x/networking-mlnx https://opendev.org/x/networking-mlnx
x/networking-nec https://opendev.org/x/networking-nec
x/networking-omnipath https://opendev.org/x/networking-omnipath
x/networking-opencontrail https://opendev.org/x/networking-opencontrail
x/networking-ovs-dpdk https://opendev.org/x/networking-ovs-dpdk

continues on next page

72 Chapter 2. Contents

https://opendev.org/starlingx/integ
https://opendev.org/starlingx/metal
https://opendev.org/starlingx/nfv
https://opendev.org/starlingx/update
https://opendev.org/vexxhost/openstack-operator
https://opendev.org/x/almanach
https://opendev.org/x/apmec
https://opendev.org/x/bilean
https://opendev.org/x/broadview-collector
https://opendev.org/x/collectd-openstack-plugins
https://opendev.org/x/devstack-plugin-additional-pkg-repos
https://opendev.org/x/devstack-plugin-glusterfs
https://opendev.org/x/devstack-plugin-hdfs
https://opendev.org/x/devstack-plugin-libvirt-qemu
https://opendev.org/x/devstack-plugin-mariadb
https://opendev.org/x/devstack-plugin-vmax
https://opendev.org/x/drbd-devstack
https://opendev.org/x/fenix
https://opendev.org/x/gce-api
https://opendev.org/x/glare
https://opendev.org/x/group-based-policy
https://opendev.org/x/gyan
https://opendev.org/x/horizon-mellanox
https://opendev.org/x/ironic-staging-drivers
https://opendev.org/x/kingbird
https://opendev.org/x/meteos
https://opendev.org/x/meteos-ui
https://opendev.org/x/mixmatch
https://opendev.org/x/mogan
https://opendev.org/x/mogan-ui
https://opendev.org/x/networking-6wind
https://opendev.org/x/networking-ansible
https://opendev.org/x/networking-arista
https://opendev.org/x/networking-brocade
https://opendev.org/x/networking-cisco
https://opendev.org/x/networking-cumulus
https://opendev.org/x/networking-dpm
https://opendev.org/x/networking-fortinet
https://opendev.org/x/networking-hpe
https://opendev.org/x/networking-huawei
https://opendev.org/x/networking-infoblox
https://opendev.org/x/networking-lagopus
https://opendev.org/x/networking-mlnx
https://opendev.org/x/networking-nec
https://opendev.org/x/networking-omnipath
https://opendev.org/x/networking-opencontrail
https://opendev.org/x/networking-ovs-dpdk

DevStack Docs

Table 1 – continued from previous page
Plugin Name URL
x/networking-plumgrid https://opendev.org/x/networking-plumgrid
x/networking-spp https://opendev.org/x/networking-spp
x/networking-vpp https://opendev.org/x/networking-vpp
x/networking-vsphere https://opendev.org/x/networking-vsphere
x/neutron-classifier https://opendev.org/x/neutron-classifier
x/nova-dpm https://opendev.org/x/nova-dpm
x/nova-mksproxy https://opendev.org/x/nova-mksproxy
x/oaktree https://opendev.org/x/oaktree
x/omni https://opendev.org/x/omni
x/os-xenapi https://opendev.org/x/os-xenapi
x/picasso https://opendev.org/x/picasso
x/rsd-virt-for-nova https://opendev.org/x/rsd-virt-for-nova
x/scalpels https://opendev.org/x/scalpels
x/slogging https://opendev.org/x/slogging
x/stackube https://opendev.org/x/stackube
x/tap-as-a-service https://opendev.org/x/tap-as-a-service
x/tap-as-a-service-dashboard https://opendev.org/x/tap-as-a-service-dashboard
x/tatu https://opendev.org/x/tatu
x/tobiko https://opendev.org/x/tobiko
x/trio2o https://opendev.org/x/trio2o
x/valet https://opendev.org/x/valet
x/vmware-nsx https://opendev.org/x/vmware-nsx
x/vmware-vspc https://opendev.org/x/vmware-vspc

2.10 Plugins

The OpenStack ecosystem is wide and deep, and only growing more so every day. The value of DevStack
is that its simple enough to understand what its doing clearly. And yet wed like to support as much of
the OpenStack Ecosystem as possible. We do that with plugins.

DevStack plugins are bits of bash code that live outside the DevStack tree. They are called through a
strong contract, so these plugins can be sure that they will continue to work in the future as DevStack
evolves.

2.10. Plugins 73

https://opendev.org/x/networking-plumgrid
https://opendev.org/x/networking-spp
https://opendev.org/x/networking-vpp
https://opendev.org/x/networking-vsphere
https://opendev.org/x/neutron-classifier
https://opendev.org/x/nova-dpm
https://opendev.org/x/nova-mksproxy
https://opendev.org/x/oaktree
https://opendev.org/x/omni
https://opendev.org/x/os-xenapi
https://opendev.org/x/picasso
https://opendev.org/x/rsd-virt-for-nova
https://opendev.org/x/scalpels
https://opendev.org/x/slogging
https://opendev.org/x/stackube
https://opendev.org/x/tap-as-a-service
https://opendev.org/x/tap-as-a-service-dashboard
https://opendev.org/x/tatu
https://opendev.org/x/tobiko
https://opendev.org/x/trio2o
https://opendev.org/x/valet
https://opendev.org/x/vmware-nsx
https://opendev.org/x/vmware-vspc

DevStack Docs

2.10.1 Prerequisites

If you are planning to create a plugin that is going to host a service in the service catalog (that is, your
plugin will use the command get_or_create_service) please make sure that you apply to the
service types authority to reserve a valid service-type. This will help to make sure that all deployments
of your service use the same service-type.

2.10.2 Plugin Interface

DevStack supports a standard mechanism for including plugins from external repositories. The plugin
interface assumes the following:

An external git repository that includes a devstack/ top level directory. Inside this directory there
can be 3 files.

• override-defaults - a file containing global variables that will be sourced before the lib/*
files. This allows the plugin to override the defaults that are otherwise set in the lib/* files.

For example, override-defaults may export CINDER_ENABLED_BACKENDS to include the
plugin-specific storage backend and thus be able to override the default lvm only storage backend
for Cinder.

• settings - a file containing global variables that will be sourced very early in the process. This
is helpful if other plugins might depend on this one, and need access to global variables to do their
work.

Your settings should include any enable_service lines required by your plugin. This is
especially important if you are kicking off services using run_process as it only works with
enabled services.

Be careful to allow users to override global-variables for customizing their environment. Usually
it is best to provide a default value only if the variable is unset or empty; e.g. in bash syntax
FOO=${FOO:-default}.

The file should include a define_plugin line to indicate the plugins name, which is the name
that should be used by users on enable_plugin lines. It should generally be the last component of
the git repo path (e.g., if the plugins repo is openstack/foo, then the name here should be foo)

define_plugin <YOUR PLUGIN>

If your plugin depends on another plugin, indicate it in this file with one or more lines like the
following:

plugin_requires <YOUR PLUGIN> <OTHER PLUGIN>

For a complete example, if the plugin foo depends on bar, the settings file should include:

define_plugin foo
plugin_requires foo bar

Devstack does not currently use this dependency information, so its important that users continue
to add enable_plugin lines in the correct order in local.conf, however adding this information
allows other tools to consider dependency information when automatically generating local.
conf files.

74 Chapter 2. Contents

https://specs.openstack.org/openstack/service-types-authority/

DevStack Docs

• plugin.sh - the actual plugin. It is executed by devstack at well defined points during a
stack.sh run. The plugin.sh internal structure is discussed below.

Plugins are registered by adding the following to the localrc section of local.conf.

They are added in the following format:

[[local|localrc]]
enable_plugin <NAME> <GITURL> [GITREF]

• name - an arbitrary name. (ex: glusterfs, docker, zaqar, congress)

• giturl - a valid git url that can be cloned

• gitref - an optional git ref (branch / ref / tag) that will be cloned. Defaults to master.

An example would be as follows:

enable_plugin ec2-api https://opendev.org/openstack/ec2-api

2.10.3 plugin.sh contract

plugin.sh is a bash script that will be called at specific points during stack.sh, unstack.sh,
and clean.sh. It will be called in the following way:

source $PATH/TO/plugin.sh <mode> [phase]

mode can be thought of as the major mode being called, currently one of: stack, unstack, clean.
phase is used by modes which have multiple points during their run where its necessary to be able
to execute code. All existing mode and phase points are considered strong contracts and wont be
removed without a reasonable deprecation period. Additional new mode or phase points may be
added at any time if we discover we need them to support additional kinds of plugins in devstack.

The current full list of mode and phase are:

• stack - Called by stack.sh four times for different phases of its run:

– pre-install - Called after system (OS) setup is complete and before project source is installed.

– install - Called after the layer 1 and 2 projects source and their dependencies have been
installed.

– post-config - Called after the layer 1 and 2 services have been configured. All configuration
files for enabled services should exist at this point.

– extra - Called near the end after layer 1 and 2 services have been started.

– test-config - Called at the end of devstack used to configure tempest or any other test envi-
ronments

• unstack - Called by unstack.sh before other services are shut down.

• clean - Called by clean.sh before other services are cleaned, but after unstack.sh has been
called.

2.10. Plugins 75

DevStack Docs

2.10.4 Example plugin

An example plugin would look something as follows.

devstack/settings:

settings file for template
enable_service template

devstack/plugin.sh:

plugin.sh - DevStack plugin.sh dispatch script template

function install_template {
...

}

function init_template {
...

}

function configure_template {
...

}

check for service enabled
if is_service_enabled template; then

if [["$1" == "stack" && "$2" == "pre-install"]]; then
Set up system services
echo_summary "Configuring system services Template"
install_package cowsay

elif [["$1" == "stack" && "$2" == "install"]]; then
Perform installation of service source
echo_summary "Installing Template"
install_template

elif [["$1" == "stack" && "$2" == "post-config"]]; then
Configure after the other layer 1 and 2 services have been

↪→configured
echo_summary "Configuring Template"
configure_template

elif [["$1" == "stack" && "$2" == "extra"]]; then
Initialize and start the template service
echo_summary "Initializing Template"
init_template

fi

if [["$1" == "unstack"]]; then
Shut down template services
no-op
:

fi

if [["$1" == "clean"]]; then

(continues on next page)

76 Chapter 2. Contents

DevStack Docs

(continued from previous page)

Remove state and transient data
Remember clean.sh first calls unstack.sh
no-op
:

fi
fi

2.10.5 Plugin Execution Order

Plugins are run after in tree services at each of the stages above. For example, if you need something to
happen before Keystone starts, you should do that at the post-config phase.

Multiple plugins can be specified in your local.conf. When that happens the plugins will be exe-
cuted in order at each phase. This allows plugins to conceptually depend on each other through doc-
umenting to the user the order they must be declared. A formal dependency mechanism is beyond the
scope of the current work.

2.10.6 System Packages

Devstack based

Devstack provides a custom framework for getting packages installed at an early phase of its execution.
These packages may be defined in a plugin as files that contain new-line separated lists of packages
required by the plugin

Supported packaging systems include apt and yum across multiple distributions. To enable a plugin to
hook into this and install package dependencies, packages may be listed at the following locations in the
top-level of the plugin repository:

• ./devstack/files/debs/$plugin_name - Packages to install when running on Ubuntu,
Debian or Linux Mint.

• ./devstack/files/rpms/$plugin_name - Packages to install when running on Red
Hat, Fedora, or CentOS.

• ./devstack/files/rpms-suse/$plugin_name - Packages to install when running on
SUSE Linux or openSUSE.

Although there a no plans to remove this method of installing packages, plugins should consider it
deprecated for bindep support described below.

bindep

The bindep project has become the defacto standard for OpenStack projects to specify binary dependen-
cies.

A plugin may provide a ./devstack/files/bindep.txt file, which will be called with the
default profile to install packages. For details on the syntax, etc. see the bindep documentation.

It is also possible to use the bindep.txt of projects that are being installed from source with the
-bindep flag available in install functions. For example

2.10. Plugins 77

https://docs.openstack.org/infra/bindep

DevStack Docs

if use_library_from_git "diskimage-builder"; then
GITREPO["diskimage-builder"]=$DISKIMAGE_BUILDER_REPO_URL
GITDIR["diskimage-builder"]=$DEST/diskimage-builder
GITBRANCH["diskimage-builder"]=$DISKIMAGE_BUILDER_REPO_REF
git_clone_by_name "diskimage-builder"
setup_dev_lib -bindep "diskimage-builder"

fi

will result in any packages required by the bindep.txt of the diskimage-builder project being
installed. Note however that jobs that switch projects between source and released/pypi installs (e.g. with
a foo-dsvm and a foo-dsvm-src test to cover both released dependencies and master versions) will
have to deal with bindep.txt being unavailable without the source directory.

2.10.7 Using Plugins in the OpenStack Gate

For everyday use, DevStack plugins can exist in any git tree thats accessible on the internet. However,
when using DevStack plugins in the OpenStack gate, they must live in projects in OpenStacks gerrit.
This allows testing of the plugin as well as provides network isolation against upstream git repository
failures (which we see often enough to be an issue).

Ideally a plugin will be included within the devstack directory of the project they are being tested.
For example, the openstack/ec2-api project has its plugin support in its own tree.

However, some times a DevStack plugin might be used solely to configure a backend service that will
be used by the rest of OpenStack, so there is no project tree per say. Good examples include: integration
of back end storage (e.g. ceph or glusterfs), integration of SDN controllers (e.g. ovn, OpenDayLight),
or integration of alternate RPC systems (e.g. zmq, qpid). In these cases the best practice is to build a
dedicated openstack/devstack-plugin-FOO project.

Legacy project-config jobs

To enable a plugin to be used in a gate job, the following lines will be needed in your jenkins/jobs/
<project>.yaml definition in project-config:

Because we are testing a non standard project, add the
our project repository. This makes zuul do the right
reference magic for testing changes.
export PROJECTS="openstack/ec2-api $PROJECTS"

note the actual url here is somewhat irrelevant because it
caches in nodepool, however make it a valid url for
documentation purposes.
export DEVSTACK_LOCAL_CONFIG="enable_plugin ec2-api https://opendev.org/
↪→openstack/ec2-api"

78 Chapter 2. Contents

https://opendev.org/openstack/project-config/

DevStack Docs

Zuul v3 jobs

See the devstack_plugins example in Migrating Zuul V2 CI jobs to V3.

2.10.8 See Also

For additional inspiration on devstack plugins you can check out the Plugin Registry.

2.11 Using Systemd in DevStack

By default DevStack is run with all the services as systemd unit files. Systemd is now the default init
system for nearly every Linux distro, and systemd encodes and solves many of the problems related to
poorly running processes.

2.11.1 Why this instead of screen?

The screen model for DevStack was invented when the number of services that a DevStack user was
going to run was typically < 10. This made screen hot keys to jump around very easy. However, the
landscape has changed (not all services are stoppable in screen as some are under Apache, there are
typically at least 20 items)

There is also a common developer workflow of changing code in more than one service, and needing to
restart a bunch of services for that to take effect.

2.11.2 Unit Structure

Note: Originally we actually wanted to do this as user units, however there are issues with running this
under non interactive shells. For now, well be running as system units. Some user unit code is left in
place in case we can switch back later.

All DevStack user units are created as a part of the DevStack slice given the name
devstack@$servicename.service. This makes it easy to understand which services are part of
the devstack run, and lets us disable / stop them in a single command.

2.11.3 Manipulating Units

Assuming the unit n-cpu to make the examples more clear.

Enable a unit (allows it to be started):

sudo systemctl enable devstack@n-cpu.service

Disable a unit:

sudo systemctl disable devstack@n-cpu.service

Start a unit:

2.11. Using Systemd in DevStack 79

DevStack Docs

sudo systemctl start devstack@n-cpu.service

Stop a unit:

sudo systemctl stop devstack@n-cpu.service

Restart a unit:

sudo systemctl restart devstack@n-cpu.service

See status of a unit:

sudo systemctl status devstack@n-cpu.service

Operating on more than one unit at a time

Systemd supports wildcarding for unit operations. To restart every service in devstack you can do that
following:

sudo systemctl restart devstack@*

Or to see the status of all Nova processes you can do:

sudo systemctl status devstack@n-*

Well eventually make the unit names a bit more meaningful so that its easier to understand what you are
restarting.

2.11.4 Querying Logs

One of the other major things that comes with systemd is journald, a consolidated way to access logs
(including querying through structured metadata). This is accessed by the user via journalctl com-
mand.

Logs can be accessed through journalctl. journalctl has powerful query facilities. Well start with
some common options.

Follow logs for a specific service:

sudo journalctl -f --unit devstack@n-cpu.service

Following logs for multiple services simultaneously:

sudo journalctl -f --unit devstack@n-cpu.service --unit devstack@n-cond.
↪→service

or you can even do wild cards to follow all the nova services:

sudo journalctl -f --unit devstack@n-*

Use higher precision time stamps:

80 Chapter 2. Contents

DevStack Docs

sudo journalctl -f -o short-precise --unit devstack@n-cpu.service

By default, journalctl strips out unprintable characters, including ASCII color codes. To keep the color
codes (which can be interpreted by an appropriate terminal/pager - e.g. less, the default):

sudo journalctl -a --unit devstack@n-cpu.service

When outputting to the terminal using the default pager, long lines will be truncated, but horizontal
scrolling is supported via the left/right arrow keys. You can override this by setting the SYSTEMD_LESS
environment variable to e.g. FRXM.

You can pipe the output to another tool, such as grep. For example, to find a server instance UUID in
the nova logs:

sudo journalctl -a --unit devstack@n-* | grep 58391b5c-036f-44d5-bd68-
↪→21d3c26349e6

See man 1 journalctl for more.

2.11.5 Debugging

Using pdb

In order to break into a regular pdb session on a systemd-controlled service, you need to invoke the
process manually - that is, take it out of systemds control.

Discover the command systemd is using to run the service:

systemctl show devstack@n-sch.service -p ExecStart --no-pager

Stop the systemd service:

sudo systemctl stop devstack@n-sch.service

Inject your breakpoint in the source, e.g.:

import pdb; pdb.set_trace()

Invoke the command manually:

/usr/local/bin/nova-scheduler --config-file /etc/nova/nova.conf

Some executables, such as nova-compute, will need to be executed with a particular group. This will
be shown in the systemd unit file:

sudo systemctl cat devstack@n-cpu.service | grep Group

Group = libvirt

Use the sg tool to execute the command as this group:

sg libvirt -c '/usr/local/bin/nova-compute --config-file /etc/nova/nova-
↪→cpu.conf'

2.11. Using Systemd in DevStack 81

DevStack Docs

Using remote-pdb

remote-pdb works while the process is under systemd control.

Make sure you have remote-pdb installed:

sudo pip install remote-pdb

Inject your breakpoint in the source, e.g.:

import remote_pdb; remote_pdb.set_trace()

Restart the relevant service:

sudo systemctl restart devstack@n-api.service

The remote-pdb code configures the telnet port when set_trace() is invoked. Do whatever it takes
to hit the instrumented code path, and inspect the logs for a message displaying the listening port:

Sep 07 16:36:12 p8-100-neo devstack@n-api.service[772]: RemotePdb session
↪→open at 127.0.0.1:46771, waiting for connection ...

Telnet to that port to enter the pdb session:

telnet 127.0.0.1 46771

See the remote-pdb home page for more options.

2.11.6 Future Work

user units

It would be great if we could do services as user units, so that there is a clear separation of code being
run as not root, to ensure running as root never accidentally gets baked in as an assumption to services.
However, user units interact poorly with devstack-gate and the way that commands are run as users with
ansible and su.

Maybe someday we can figure that out.

2.11.7 References

• Arch Linux Wiki - https://wiki.archlinux.org/index.php/Systemd/User

• Python interface to journald - https://www.freedesktop.org/software/systemd/python-systemd/
journal.html

• Systemd documentation on service files - https://www.freedesktop.org/software/systemd/man/
systemd.service.html

• Systemd documentation on exec (can be used to impact service runs) - https://www.freedesktop.
org/software/systemd/man/systemd.exec.html

82 Chapter 2. Contents

https://pypi.org/project/remote-pdb/
https://pypi.org/project/remote-pdb/
https://wiki.archlinux.org/index.php/Systemd/User
https://www.freedesktop.org/software/systemd/python-systemd/journal.html
https://www.freedesktop.org/software/systemd/python-systemd/journal.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.exec.html
https://www.freedesktop.org/software/systemd/man/systemd.exec.html

DevStack Docs

2.12 Migrating Zuul V2 CI jobs to V3

The OpenStack CI system moved from Zuul v2 to Zuul v3, and all CI jobs moved to the new CI system.
All jobs have been migrated automatically to a format compatible with Zuul v3; the jobs produced in
this way however are suboptimal and do not use the capabilities introduced by Zuul v3, which allow for
re-use of job parts, in the form of Ansible roles, as well as inheritance between jobs.

DevStack hosts a set of roles, plays and jobs that can be used by other repositories to define their
DevStack based jobs. To benefit from them, jobs must be migrated from the legacy v2 ones into v3
native format.

This document provides guidance and examples to make the migration process as painless and smooth
as possible.

2.12.1 Where to host the job definitions.

In Zuul V3 jobs can be defined in the repository that contains the code they excercise. If you are
writing CI jobs for an OpenStack service you can define your DevStack based CI jobs in one of the
repositories that host the code for your service. If you have a branchless repo, like a Tempest plugin,
that is a convenient choice to host the job definitions since job changes do not have to be backported.
For example, see the beginning of the .zuul.yaml from the sahara Tempest plugin repo:

In https://opendev.org/openstack/sahara-tests/src/branch/master/.zuul.
↪→yaml:
- job:

name: sahara-tests-tempest
description: |

Run Tempest tests from the Sahara plugin.
parent: devstack-tempest

2.12.2 Which base job to start from

If your job needs an OpenStack cloud deployed via DevStack, but you dont plan on running Tempest
tests, you can start from one of the base jobs defined in the DevStack repo.

The devstack job can be used for both single-node jobs and multi-node jobs, and it includes the list
of services used in the integrated gate (keystone, glance, nova, cinder, neutron and swift). Different
topologies can be achieved by switching the nodeset used in the child job.

The devstack-base job is similar to devstack but it does not specify any required repo or service
to be run in DevStack. It can be useful to setup children jobs that use a very narrow DevStack setup.

If your job needs an OpenStack cloud deployed via DevStack, and you do plan on running Tempest tests,
you can start from one of the base jobs defined in the Tempest repo.

The devstack-tempest job can be used for both single-node jobs and multi-node jobs. Different
topologies can be achieved by switching the nodeset used in the child job.

Jobs can be customized as follows without writing any Ansible code:

• add and/or remove DevStack services

• add or modify DevStack and services configuration

• install DevStack plugins

2.12. Migrating Zuul V2 CI jobs to V3 83

DevStack Docs

• extend the number of sub-nodes (multinode only)

• define extra log files and/or directories to be uploaded on logs.o.o

• define extra log file extensions to be rewritten to .txt for ease of access

Tempest jobs can be further customized as follows:

• define the Tempest tox environment to be used

• define the test concurrency

• define the test regular expression

Writing Ansible code, or importing existing custom roles, jobs can be further extended by:

• adding pre and/or post playbooks

• overriding the run playbook, add custom roles

The (partial) example below extends a Tempest single node base job devstack-tempest in the Kuryr
repository. The parent job name is defined in job.parent.

https://opendev.org/openstack/kuryr-kubernetes/src/branch/master/.zuul.d/
↪→base.yaml:
- job:

name: kuryr-kubernetes-tempest-base
parent: devstack-tempest
description: Base kuryr-kubernetes-job
required-projects:

- openstack/devstack-plugin-container
- openstack/kuryr
- openstack/kuryr-kubernetes
- openstack/kuryr-tempest-plugin
- openstack/neutron-lbaas

vars:
tempest_test_regex: '^(kuryr_tempest_plugin.tests.)'
tox_envlist: 'all'
devstack_localrc:

KURYR_K8S_API_PORT: 8080
devstack_services:

kubernetes-api: true
kubernetes-controller-manager: true
kubernetes-scheduler: true
kubelet: true
kuryr-kubernetes: true
(...)

devstack_plugins:
kuryr-kubernetes: https://opendev.org/openstack/kuryr
devstack-plugin-container: https://opendev.org/openstack/devstack-

↪→plugin-container
neutron-lbaas: https://opendev.org/openstack/neutron-lbaas

tempest_plugins:
- kuryr-tempest-plugin

(...)

84 Chapter 2. Contents

DevStack Docs

2.12.3 Job variables

Variables can be added to the job in three different places:

• job.vars: these are global variables available to all node in the nodeset

• job.host-vars.[HOST]: these are variables available only to the specified HOST

• job.group-vars.[GROUP]: these are variables available only to the specified GROUP

Zuul merges dict variables through job inheritance. Host and group variables override variables with the
same name defined as global variables.

In the example below, for the sundaes job, hosts that are not part of the subnode group will run vanilla
and chocolate. Hosts in the subnode group will run stracciatella and strawberry.

- job:
name: ice-creams
vars:

devstack_service:
vanilla: true
chocolate: false

group-vars:
subnode:

devstack_service:
pistacchio: true
stracciatella: true

- job:
name: sundaes
parent: ice-creams
vars:

devstack_service:
chocolate: true

group-vars:
subnode:

devstack_service:
strawberry: true
pistacchio: false

2.12.4 DevStack Gate Flags

The old CI system worked using a combination of DevStack, Tempest and devstack-gate to setup a test
environment and run tests against it. With Zuul V3, the logic that used to live in devstack-gate is moved
into different repos, including DevStack, Tempest and grenade.

DevStack-gate exposes an interface for job definition based on a number of DEVSTACK_GATE_*
environment variables, or flags. This guide shows how to map DEVSTACK_GATE flags into the new
system.

The repo column indicates in which repository is hosted the code that replaces the devstack-gate flag.
The new implementation column explains how to reproduce the same or a similar behaviour in Zuul v3
jobs. For localrc settings, devstack-gate defined a default value. In ansible jobs the default is either the
value defined in the parent job, or the default from DevStack, if any.

2.12. Migrating Zuul V2 CI jobs to V3 85

DevStack Docs

Table 2: DevStack Gate Flags
DevStack gate
flag

Repo New implementation

OVER-
RIDE_ZUUL_BRANCH

zuul override-checkout: [branch] in the job definition.

DEVS-
TACK_GATE_NET_OVERLAY

zuul-
jobs

A bridge called br-infra is set up for all jobs that inherit from
multinode with a dedicated bridge role.

DEVS-
TACK_CINDER_VOLUME_CLEAR

devs-
tack

CINDER_VOLUME_CLEAR: true/false in devstack_localrc in the
job vars.

DEVS-
TACK_GATE_NEUTRON

devs-
tack

True by default. To disable, disable all neutron services in devs-
tack_services in the job definition.

DEVS-
TACK_GATE_CONFIGDRIVE

devs-
tack

FORCE_CONFIG_DRIVE: true/false in devstack_localrc in the
job vars.

DEVS-
TACK_GATE_INSTALL_TESTONLY

devs-
tack

INSTALL_TESTONLY_PACKAGES: true/false in devstack_localrc
in the job vars.

DEVS-
TACK_GATE_VIRT_DRIVER

devs-
tack

VIRT_DRIVER: [virt driver] in devstack_localrc in the job vars.

DEVS-
TACK_GATE_LIBVIRT_TYPE

devs-
tack

LIBVIRT_TYPE: [libvirt type] in devstack_localrc in the job vars.

DEVS-
TACK_GATE_TEMPEST

devs-
tack and
tempest

Defined by the job that is used. The devstack job only runs
devstack. The devstack-tempest one triggers a Tempest run
as well.

DEVS-
TACK_GATE_TEMPEST_FULL

tempest tox_envlist: full in the job vars.

DEVS-
TACK_GATE_TEMPEST_ALL

tempest tox_envlist: all in the job vars.

DEVS-
TACK_GATE_TEMPEST_ALL_PLUGINS

tempest tox_envlist: all-plugin in the job vars.

DEVS-
TACK_GATE_TEMPEST_SCENARIOS

tempest tox_envlist: scenario in the job vars.

TEM-
PEST_CONCURRENCY

tempest tempest_concurrency: [value] in the job vars. This is available
only on jobs that inherit from devstack-tempest down.

DEVS-
TACK_GATE_TEMPEST_NOTESTS

tempest tox_envlist: venv-tempest in the job vars. This will create Tempest
virtual environment but run no tests.

DEVS-
TACK_GATE_SMOKE_SERIAL

tempest tox_envlist: smoke-serial in the job vars.

DEVS-
TACK_GATE_TEMPEST_DISABLE_TENANT_ISOLATION

tempest tox_envlist: full-serial in the job vars. TEM-
PEST_ALLOW_TENANT_ISOLATION: false in devstack_localrc
in the job vars.

The following flags have not been migrated yet or are legacy and wont be migrated at all.

86 Chapter 2. Contents

https://zuul-ci.org/docs/zuul-jobs/general-roles.html#role-multi-node-bridge

DevStack Docs

Table 3: Not Migrated DevStack Gate Flags
DevStack gate
flag

Status Details

DEVS-
TACK_GATE_TOPOLOGY

WIP The topology depends on the base job that is used and more specif-
ically on the nodeset attached to it. The new job format allows
project to define the variables to be passed to every node/node-
group that exists in the topology. Named topologies that include
the nodeset and the matching variables can be defined in the form
of base jobs.

DEVS-
TACK_GATE_GRENADE

TBD Grenade Zuul V3 jobs will be hosted in the grenade repo.

GRENADE_BASE_BRANCHTBD Grenade Zuul V3 jobs will be hosted in the grenade repo.
DEVS-
TACK_GATE_NEUTRON_DVR

TBD Depends on multinode support.

DEVS-
TACK_GATE_EXERCISES

TBD Can be done on request.

DEVS-
TACK_GATE_IRONIC

TBD This will probably be implemented on ironic side.

DEVS-
TACK_GATE_IRONIC_DRIVER

TBD This will probably be implemented on ironic side.

DEVS-
TACK_GATE_IRONIC_BUILD_RAMDISK

TBD This will probably be implemented on ironic side.

DEVS-
TACK_GATE_POSTGRES

Legacy This flag exists in d-g but the only thing that it does is capture
postgres logs. This is already supported by the roles in post, so the
flag is useless in the new jobs. postgres itself can be enabled via
the devstack_service job variable.

DEVS-
TACK_GATE_ZEROMQ

Legacy This has no effect in d-g.

DEVS-
TACK_GATE_MQ_DRIVER

Legacy This has no effect in d-g.

DEVS-
TACK_GATE_TEMPEST_STRESS_ARGS

Legacy Stress is not in Tempest anymore.

DEVS-
TACK_GATE_TEMPEST_HEAT_SLOW

Legacy This is not used anywhere.

DEVS-
TACK_GATE_CELLS

Legacy This has no effect in d-g.

DEVS-
TACK_GATE_NOVA_API_METADATA_SPLIT

Legacy This has no effect in d-g.

2.13 Zuul CI Jobs

devstack-unit-tests
Runs unit tests on devstack project.

It runs run_tests.sh.

devstack-tox-functional-consumer
Base job for devstack-based functional tests for projects that consume the devstack cloud.

This base job should only be used by projects that are not involved in the devstack deployment

2.13. Zuul CI Jobs 87

DevStack Docs

step, but are instead projects that are using devstack to get a cloud against which they can test
things.

Runs devstack in pre-run, then runs the tox functional environment, then collects tox/testr
build output like normal tox jobs.

Turns off tox sibling installation. Projects may be involved in the devstack deployment and so
may be in the required-projects list, but may not want to test against master of the other projects
in their tox env. Child jobs can set tox_install_siblings to True to re-enable sibling processing.

devstack-tox-functional
Base job for devstack-based functional tests that use tox.

Runs devstack, then runs the tox functional environment, then collects tox/testr build output
like normal tox jobs.

Turns off tox sibling installation. Projects may be involved in the devstack deployment and so
may be in the required-projects list, but may not want to test against master of the other projects
in their tox env. Child jobs can set tox_install_siblings to True to re-enable sibling processing.

devstack-tox-base
Base job for devstack-based functional tests that use tox.

This job is not intended to be run directly. Its just here for organizational purposes for devstack-
tox-functional and devstack-tox-functional-consumer.

devstack-async
Async mode enabled

devstack-multinode
Simple multinode test to verify multinode functionality on devstack side. This is not meant to be
used as a parent job.

devstack-ipv6
Devstack single node job for integration gate with IPv6.

devstack
Base devstack job for integration gate.

This base job can be used for single node and multinode devstack jobs.

With a single node nodeset, this job sets up an all-in-one (aio) devstack with the seven OpenStack
services included in the devstack tree: keystone, glance, cinder, neutron, nova, placement, and
swift.

With a two node nodeset, this job sets up an aio + compute node. The controller can be customised
using host-vars.controller, the sub-nodes can be customised using group-vars.subnode.

Descendent jobs can enable / disable services, add devstack configuration options, enable devstack
plugins, configure log files or directories to be transferred to the log server.

The job assumes that there is only one controller node. The number of subnodes can be scaled up
seamlessly by setting a custom nodeset in job.nodeset.

The run playbook consists of a single role, so it can be easily rewritten and extended.

devstack-minimal
Minimal devstack base job, intended for use by jobs that need less than the normal minimum set
of required-projects.

88 Chapter 2. Contents

DevStack Docs

devstack-base
Base abstract Devstack job.

Defines plays and base variables, but it does not include any project and it does not run any service
by default. This is a common base for all single Devstack jobs, single or multinode. Variables are
defined in job.vars, which is what is then used by single node jobs and by multi node jobs for the
controller, as well as in job.group-vars.peers, which is what is used by multi node jobs for subnode
nodes (everything but the controller).

2.14 Zuul CI Roles

apache-logs-conf
Prepare apache configs and logs for staging

Make sure apache config files and log files are available in a linux flavor independent location.
Note that this relies on hard links, to the staging directory must be in the same partition where the
logs and configs are.

Role Variables

stage_dir
Default: {{ ansible_user_dir }}

The base stage directory.

capture-system-logs
Stage a number of system type logs

Stage a number of different logs / reports: - snapshot of iptables - disk space available - pip[2|3]
freeze - installed packages (dpkg/rpm) - ceph, openswitch, gluster - coredumps - dns resolver -
listen53 - unbound.log - deprecation messages

Role Variables

stage_dir
Default: {{ ansible_user_dir }}

The base stage directory.

devstack-ipv6-only-deployments-verification
Verify the IPv6-only deployments

This role needs to be invoked from a playbook that run tests. This role verifies the IPv6 setting on
devstack side and devstack deploy services on IPv6. This role is invoked before tests are run so
that if any missing IPv6 setting or deployments can fail the job early.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

devstack-project-conf
Prepare OpenStack project configurations for staging

Prepare all relevant config files for staging. This is helpful to avoid staging the entire /etc.

Role Variables

stage_dir

2.14. Zuul CI Roles 89

DevStack Docs

Default: {{ ansible_user_dir }}
The base stage directory.

export-devstack-journal
Export journal files from devstack services

This performs a number of logging collection services

• Export the systemd journal in native format

• For every devstack service, export logs to text in a file named screen-* to maintain legacy
compatability when devstack services used to run in a screen session and were logged sepa-
rately.

• Export a syslog-style file with kernel and sudo messages for legacy compatability.

Writes the output to the logs/ subdirectory of stage_dir.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory. This is used to obtain the log-start-timestamp.txt,
used to filter the systemd journal.

stage_dir
Default: {{ ansible_user_dir }}

The base stage directory.

fetch-devstack-log-dir
Fetch content from the devstack log directory

Copy logs from every host back to the zuul executor.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

get-devstack-os-environment
Reads the OS_* variables set by devstack through openrc for the specified user and project and
exports them as the os_env_vars fact.

WARNING: this role is meant to be used as porting aid for the non-unified python-<service>client
jobs which are already around, as those clients do not use clouds.yaml as openstackclient does.
When those clients and their jobs are deprecated and removed, or anyway when the new code is
able to read from clouds.yaml directly, this role should be removed as well.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

openrc_file
Default: {{ devstack_base_dir }}/devstack/openrc

The location of the generated openrc file.

openrc_user

90 Chapter 2. Contents

DevStack Docs

Default: admin
The user whose credentials should be retrieved.

openrc_project
Default: admin

The project (which openrc_user is part of) whose access data should be retrieved.

openrc_enable_export
Default: false

Set it to true to export os_env_vars.

orchestrate-devstack
Orchestrate a devstack

Runs devstack in a multinode scenario, with one controller node and a group of subnodes.

The reason for this role is so that jobs in other repository may run devstack in their plays with no
need for re-implementing the orchestration logic.

The run-devstack role is available to run devstack with no orchestration.

This role sets up the controller and CA first, it then pushes CA data to sub-nodes and run devstack
there. The only requirement for this role is for the controller inventory_hostname to be controller
and for all sub-nodes to be defined in a group called subnode.

This role needs to be invoked from a playbook that uses a linear strategy.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

process-stackviz
Generate stackviz report.

Generate stackviz report using subunit and dstat data, using the stackviz archive embedded in test
images.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

stage_dir
Default: "{{ ansible_user_dir }}"

The stage directory where the input data can be found and the output will be produced.

zuul_work_dir
Default: {{ devstack_base_dir }}/tempest

Directory to work in. It has to be a fully qualified path.

run-devstack
Run devstack

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

2.14. Zuul CI Roles 91

DevStack Docs

setup-devstack-cache
Set up the devstack cache directory

If the node has a cache of devstack image files, copy it into place.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

devstack_cache_dir
Default: /opt/cache

The directory with the cached files.

setup-devstack-log-dir
Set up the devstack log directory

Create a log directory on the ephemeral disk partition to save space on the root device.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

setup-devstack-source-dirs
Set up the devstack source directories

Ensure that the base directory exists, and then move the source repos into it.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

devstack_sources_branch
Default: None

The target branch to be setup (where available).

setup-stack-user
Set up the stack user

Create the stack user, set up its home directory, and allow it to sudo.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

devstack_stack_home_dir
Default: {{ devstack_base_dir }}

The home directory for the stack user.

setup-tempest-user
Set up the tempest user

Create the tempest user and allow it to sudo.

Role Variables

92 Chapter 2. Contents

DevStack Docs

devstack_base_dir
Default: /opt/stack

The devstack base directory.

start-fresh-logging
Restart logging on all hosts

Restart syslog so that the system logs only include output from the job.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

sync-controller-ceph-conf-and-keys
Sync ceph config and keys between controller and subnodes

Simply copy the contents of /etc/ceph on the controller to subnodes.

sync-devstack-data
Sync devstack data for multinode configurations

Sync any data files which include certificates to be used if TLS is enabled. This role must be
executed on the controller and it pushes data to all subnodes.

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

devstack_data_base_dir
Default: {{ devstack_base_dir }}

The devstack base directory for data/. Useful for example when multiple executions of
devstack (i.e. grenade) share the same data directory.

write-devstack-local-conf
Write the local.conf file for use by devstack

Role Variables

devstack_base_dir
Default: /opt/stack

The devstack base directory.

devstack_local_conf_path
Default: {{ devstack_base_dir }}/devstack/local.conf

The path of the local.conf file.

devstack_localrc
Type: dict

A dictionary of variables that should be written to the localrc section of local.conf. The
values (which are strings) may contain bash shell variables, and will be ordered so that
variables used by later entries appear first.

As a special case, the variable LIBS_FROM_GIT will be constructed automatically from
the projects which appear in the required-projects list defined by the job plus the
project of the change under test. To instruct devstack to install a library from source rather
than pypi, simply add that library to the jobs required-projects list. To override

2.14. Zuul CI Roles 93

DevStack Docs

the automatically-generated value, set LIBS_FROM_GIT in devstack_localrc to the
desired value.

devstack_local_conf
Type: dict

A complex argument consisting of nested dictionaries which combine to form the meta-
sections of the local_conf file. The top level is a dictionary of phases, followed by dictionar-
ies of filenames, then sections, which finally contain key-value pairs for the INI file entries
in those sections.

The keys in this dictionary are the devstack phases.

devstack_local_conf{}.[phase]
Type: dict

The keys in this dictionary are the filenames for this phase.

devstack_local_conf{}.[phase]{}.[filename]
Type: dict

The keys in this dictionary are the INI sections in this file.

devstack_local_conf{}.[phase]{}.[filename]{}.[section]
Type: dict

This is a dictionary of key-value pairs which comprise this section of the INI file.

devstack_base_services
Default: {{ base_services | default(omit) }}
Type: list

A list of base services which are enabled. Services can be added or removed from this
list via the devstack_services variable. This is ignored if base is set to False in
devstack_services.

devstack_services
Type: dict

A dictionary mapping service names to boolean values. If the boolean value is false,
a disable_service line will be emitted for the service name. If it is true, then
enable_service will be emitted. All other values are ignored.

The special key base can be used to enable or disable the base set of services enabled
by default. If base is found, it will processed before all other keys. If its value is
False a disable_all_services will be emitted; if its value is True services from
devstack_base_services will be emitted via ENABLED_SERVICES.

devstack_plugins
Type: dict

A dictionary mapping a plugin name to a git repo location. If the location is a non-empty
string, then an enable_plugin line will be emmitted for the plugin name.

If a plugin declares a dependency on another plugin (via plugin_requires in the plu-
gins settings file), this role will automatically emit enable_plugin lines in the correct
order.

tempest_plugins
Type: list

A list of tempest plugins which are installed alongside tempest.

The list of values will be combined with the base devstack directory and used to populate
the TEMPEST_PLUGINS variable. If the variable already exists, its value is not changed.

94 Chapter 2. Contents

INDEX

95

	Quick Start
	Install Linux
	Add Stack User (optional)
	Download DevStack
	Create a local.conf
	Start the install
	Profit!
	Going further

	Contents
	Configuration
	System-wide debugging
	Developing with Devstack
	FAQ
	Guides
	Contributing to DevStack
	DevStack Networking
	Overview
	DevStack Plugin Registry
	Plugins
	Using Systemd in DevStack
	Migrating Zuul V2 CI jobs to V3
	Zuul CI Jobs
	Zuul CI Roles

	Index

